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Abstract

We describe a new method to obtain weak subconvexity bounds for L-functions with
mild hypotheses on the size of the Dirichlet coefficients. We verify these hypotheses
for all automorphic L-functions and (with mild restrictions) the Rankin—Selberg L-
functions attached to two automorphic representations. The proof relies on a new
unconditional log-free zero density estimate for Rankin—Selberg L-functions.

1. Statement of results

In [29], the first author obtained a weak subconvexity result bounding central values
of a large class of L-functions, assuming a weak Ramanujan hypothesis on the size
of Dirichlet series coefficients of the L-function. If C denotes the analytic conductor

of the L-function in question, then C /4

is the size of the convexity bound, and the
weak subconvexity bound established there was of the form C '/ /(log C)'~¢. In this
paper, we establish a weak subconvexity bound of the shape C'/*/(log C)® for some
small § > 0, but with a much milder hypothesis on the size of the Dirichlet series
coefficients. In particular, our results will apply to all automorphic L-functions and
(with mild restrictions) to the Rankin—Selberg L-functions attached to two automor-
phic representations.

In order to make clear the scope and limitations of our results, we axiomatize the
properties of L-functions that we need. In Section 2, we shall discuss how automor-
phic L-functions and Rankin—Selberg L-functions fit into this framework. Let m > 1
be a natural number. We now describe axiomatically a class of L-functions, which we
shall denote by & (m).
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1.1. Dirichlet series and Euler product
The functions L(s, ) appearing in the class § () will be given by a Dirichlet series
and Euler product

L(s,m)= Z a,:l(n) = l_[Lp(s ),

n=1

(1.1)

oo

- (D) =(p?)
Lp(s,n)zl_[(l “fpp) =y =

Js
j=1 j=o P

with both the series and the product converging absolutely for Re(s) > 1. It will also
be convenient for us to write

- /\n(Pk) k N k
logL,(s,m) = Z e where A, (p") = Zaj,,,(p) . (1.2)
k=1 j=1

Setting A, (n) = 0 if n is not a prime power, we have

L' o~ Ax (1) A(n) o Ax (1) A(n)
—f(s,n)zr;T, and logL(s,rr)z}Z;W. (1.3)
1.2. Functional equation
Write

(S B ()
2_—ms/2 w
Loo(s.m) = N2 2 [ ] r(f) (1.4)

j=1
where N; > 1 is known as the “conductor” of the L-function and the w,(j) are
complex numbers. We suppose that there is an integer 0 < r = r, < m such that the
completed L-function s" (1 — s)" L(s,7)Loo(s, ) extends to an entire function of
order 1, and satisfies the functional equation

sS"(1—=8) L(s,m)Loo(s, ) = kps" (1 —5)"L(1 —5,T)Loo(1 — 5, 7). (1.5)

Here « is a complex number with |k, | = 1, and

N

L =Y a’;("), Loo(s.7) = N2> T F(W) (1.6)
j=1

n=1

We suppose that r has been chosen such that the completed L-function does not
vanish at s = 1 and s = 0. Thus, if L(s, ) has a pole at s = 1, then we are assuming
that the order of this pole is at most m, and r is taken to be the order of the pole. If
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L(s, ) has no pole at s = 1, then we take r = 0 and are making the assumption that
the L(1,7) # 0. In our work, a key measure of the “complexity” of the L-function
L(s, ) is the “analytic conductor,” which is defined to be

C(m) = Nx [ (1 + |12 ()])- (1.7)
j=

1.3. Bounds toward the generalized Ramanujan and Selberg conjectures

The absolute convergence of the Euler product in (1.1) implicitly includes the assump-
tion that |o; - (p)| < p for all p and j. Further, the Euler product shows that L(s, )
is nonzero in Re(s) > 1, which implies that Re(u,(j)) > —1 for all j (otherwise,
there would be a trivial zero of L(s, ) in Re(s) > 1 to compensate for a pole of
I'((s + ux(j))/2)). We impose a modest strengthening of these estimates. Namely,
we assume that for all 1 < j <m,

lojz(p)| < P7V™ Re(ux(j)) = —(1—1/m). (1.8)

The widely believed generalized Ramanujan and Selberg conjectures for auto-
morphic L-functions state that the bounds in (1.8) hold with 1 — 1/m replaced by 0.
While these conjectures are still open, the weak bounds in (1.8) are known both for
the L-functions associated to automorphic representations and their Rankin—Selberg
convolutions. We could also weaken (1.8) further by replacing 1 — 1/m with 1 —§ for
some § > 0, but the present formulation is convenient and includes all L-functions of
interest to us.

1.4. Rankin—Selberg and Brun—Titchmarsh bounds on A5 (n)

Our final hypothesis prescribes two mild average bounds on |4, (n)|, which can be
verified by Rankin—Selberg theory for the class of L-functions associated to automor-
phic representations and their Rankin—Selberg convolutions. First, we assume that for
all n >0,

Az (0)|A
Z' ("l)l ") - M mlogC(r) + O(m?). (1.9)
nt+n -
Second, we assume that, for all 7 > 1,
3
3 @AM Km % provided x 3, (C(n)T)™**™".  (1.10)

x<n<xel/T

There is considerable latitude in formulating the conditions (1.9) and (1.10); for
example, we could have chosen the range for x in (1.10) differently. The specific
choice made here is based on the applicability of these conditions to automorphic
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L-functions. When T is of constant size, the criterion (1.10) may be viewed as a
Chebyshev-type estimate for |[A(n)| (generalizing ), _, A(n) < x), while for larger
T the criterion (1.10) is an analogue of the classical Brun—Titchmarsh inequality

> Am)<Keh, forallx=h>x*. (1.11)

x<n<x+h

We denote by §(m) the class of L-functions satisfying the properties laid out in
articles 1.1 to 1.4 above; see (1.1)—(1.10). Before stating our results, we introduce the
quantity

Ny(o,T):=#{p=B+iy: L(p.m)=0,>0,|y| <T}, (1.12)

which arises in the study of “zero density estimates.”

THEOREM 1.1
If L(s, ) is an L-function in the class §(m) and 0 <§ < 1/2, then

1
log|L(1/2,7)| < <Z - 10—95) log C () + 10778 N (1 — 8, 6)
+ 2log|L(3/2,7)| + O(m?).

Theorem 1.1 adds to a long line of investigations relating the size of L-functions
to the distribution of their zeros. For example, it is well known that the generalized
Riemann hypothesis (GRH) implies the generalized Lindel6f hypothesis. One could
weaken the assumption of the GRH, and establish (as Backlund did originally for
£(s)) that if almost all the zeros of the L-function up to height 1 are in the region
Re(s) < 1/2 + ¢, then the Lindelof bound L(1/2,7) < C (7)€ would follow. In con-
trast, Theorem 1.1 states that the more modest assumption that not too many of the
zeros of L(s, ) are very close to the line Re(s) = 1 leads to a subconvex bound for
L(1/2, ) (which is a modest form of the Lindel6f bound). For recent related work in
the context of character sums and zeros of Dirichlet L-functions, see [12]. The proof
of Theorem 1.1 is a refinement of an argument of Heath-Brown [13] to prove sharp
convexity bounds for L-values.

To obtain from Theorem 1.1 a genuine subconvexity bound of the form
L(1/2,7) <« C(m)Y*% for some § > 0, we would need a zero density estimate
of the form N, (1 —§,6) < 10~*log C(r), which we are unable to establish for any
fixed § > 0. However, one can establish a “log-free” zero density estimate which will
permit values of § of size (loglog C())/log C(m). This will then lead to the weak
subconvexity bound where a power of log C () is saved over the convexity bound.
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THEOREM 1.2
Let L(s,m)e8(m)and T > 1. Forall 1/2 <0 <1,

T 3(1—
Nr(0.T) <m (C(r)T)" "™ 7,

Log-free zero density estimates have a long history, going back to Linnik’s pio-
neering work on the least prime in arithmetic progressions. Our proof of Theorem 1.2
follows an argument of Gallagher, based on Turdn’s power sum method. A key feature
is the formulation of hypotheses (1.9) and (1.10), which are L!-bounds that can be
verified for L-functions associated to automorphic representations and their Rankin—
Selberg convolutions. Thus, Theorem 1.2 applies to a larger class of L-functions
than the earlier log-free zero density estimates established by (for example) Kowalski
and Michel [18], Motohashi [24], Akbary and Trudgian [1], and Lemke Oliver and
Thorner [19]. We have not made any attempt to optimize the exponent 10”m3, but
our argument does not seem to yield an exponent independent of m.

Combining Theorem 1.1 and Theorem 1.2, we deduce the following bound for
L(1/2, 7).

COROLLARY 1.3
Let L(s, ) € 8(m). Then

C(r 1/4

L0720 <o L0372 SO

In the above corollary, one should expect the term |L(3/2, )| (which is evalu-
ated in the region of absolute convergence) to be bounded, in which case the corollary
furnishes a weak subconvexity bound. The boundedness of | L(3/2, )| would follow,
for example, from a stronger version of assumption (1.8), and we shall check that this
holds for automorphic L-functions. For Rankin—Selberg convolutions of automorphic
representations, we cannot give a satisfactory bound for the L-value at 3/2 in com-
plete generality. Compared to the work in [29], Corollary 1.3 extends considerably
the class of L-functions for which a weak subconvexity bound may be established,
but the power of log C (i) saved is smaller than in [29].

2. Applications to automorphic L-functions

In this section, we describe how the framework and results described in Section 1
apply to automorphic L-functions. We restrict attention to automorphic represen-
tations over Q, and we let 4 (m) denote the set of all cuspidal automorphic rep-
resentations of GL,, over Q with unitary central character. Here we give a brief
description of the analytic properties of the standard L-functions associated to such
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automorphic representations. Our goal is twofold: we wish to show that elements of
A(m) give rise to L-functions in the class & (m), and also that if 7; € A(m) and
75 € A(my) then the Rankin—Selberg L-function L(s,w; X 75) fits into the frame-
work of & (mm5). For proofs and further discussion of the properties that we need,
we refer to [11], [15], [23], or the surveys in Michel [22, Lecture 1] or Brumley [5,
Section 1].

Properties 1.1 to 1.3 listed in Section | follow from the standard theory of auto-
morphic forms, while Property 1.4 will require further discussion. Thus, given 7 €
A(m), its standard L-function L(s, ) has a Dirichlet series, Euler product, and sat-
isfies a functional equation, exactly as described in (1.1) to (1.6). Note also that here
T denotes the representation which is contragredient to . Concerning Property 1.3,
for m € A(m), it is known that

e )| <P [Re(in ()] < b @
where
0 ifm=1,
Om =17/64 ifm=2, (2.2)

1/2=1/(m?*+1) ifm>3.

The bounds follow from the work of Luo, Rudnick, and Sarnak [21] for m > 3 and
Kim and Sarnak [16, Appendix 2] for m = 2 in the unramified cases. The ramified
cases are handled by Miiller and Speh [25, Proposition 3.3] for m > 3 and Brumley
and Blomer [3] for m = 2. The generalized Ramanujan and Selberg conjectures assert
that 6, may be taken as 0 in (2.1).

Now we turn to Rankin—Selberg L-functions. If 71 € A(m1) and 7, € A(m>) are
two automorphic representations, then the Euler product and Dirichlet series expan-
sions of the Rankin—Selberg L-function L (s, ; X ) are given by

L(s,mxzrz)zia”‘x”z(n) ]_[1_[ 1_[( M)

n=1 P j1=1j2=1
Here we may index the parameters o}, ,j, . xx, () in such a way that, for all p {
Ny, Ny,, one has

‘le,jz,ﬂlxﬂz(P) zajl,n’l (p)ajz,ﬂz(p)' (23)

At the archimedean place, we write

mip  m3

Loo(S,Tfl x 71'2) — Ns/2 —m1m2S/2 1_[ 1_[ (S +/l“71’1X7r2(]1’ ]2)). (2.4)

711X7'[2
J1=1j2=1
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If both 1 and 7, are unramified at infinity, one may write

My xm (J15 J2) = My (J1) + Hy (J2)- 2.5)

See Lemma 2.1 below for a complete description of ftr,xx,(j1,j2) in the general
case. As part of the Langlands functoriality conjectures, one expects that 7; X 75
corresponds to an automorphic representation of GL (m1m5) (not necessarily cuspi-
dal), but this remains unknown, apart from the work of Ramakrishnan [26] in the case
m1 = m, = 2 and the work of Kim and Shahidi [17] in the case m; = 2 and m, = 3.

Properties 1.1 and 1.2 may thus be verified for Rankin—Selberg L-functions. As
for Property 1.3, using (2.1) and (2.2), and proceeding as in [27, Appendix] (see also
[4, Section 3] and [5, Section 1]), we obtain for all primes p,

’O‘jl’jz,ﬂl X702 (p)’ = peml +6m2’ Re(Mnl RE. ) (jl,jz)) > —On, —Om,. (2.6

The reader may also consult the explicit description of L, given in Lemma 2.1 below,
and the explicit description of L, given by (A.6) in the Appendix.

So far we have discussed how automorphic L-functions and Rankin—Selberg L-
functions satisfy Properties 1.1 and 1.3 of Section 1. To facilitate our discussion of
Property 1.4, we require two lemmas.

LEMMA 2.1
If 1 € A(my) and 5 € A(my), then

C(my x mp) < eo(m1m2)C(n1)m2C(n2)m‘ ,
and

C (1 X T1)"3C (2 X 7)™ < CUmmDD (71 5 y)4mimz.

Proof
We write w € A(m) and 7’ € A(m') instead of 71 € A(m1) and 7, € A(m5) to avoid
having too many subscripts. Let

m

Ko =TT+ |e(]) 2.7

Jj=1

so that C(;r) = Ny K. For a prime p, let ord, (N, ) be the exponent of p in the prime
factorization of Ny ; in particular, ord,(N,) = 0 if and only if p { N5 . Bushnell and
Henniart proved that (see [6, Theorem 1] or [7, Corollary C])

ordy (Ngxz) <m’-ord,(Ny) 4+ m-ord,(Ny) —min{ord, (N ), ord , (Nx1)}, (2.8)
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and also that (see [7, Corollary B])

ord, (Ngxz) - l(ordp(NnX;) n ordp(N,,/X;/))
2

m'm - m2 (m/)z
These bounds imply
NM N N

We require corresponding bounds for K, x,/. Brumley [14, Appendix] proved
that

0 ’ /7
K < eOmm gm’ gm,

It remains to establish the bound
Krxz Knrxz < 30((m/m)2) Kjr.r:(ly/rrzl 2.9

In order to prove (2.9) regardless of the ramification at infinity, we use the
archimedean case of the local Langlands correspondence as described by Miiller and
Speh [25, Proof of Lemma 3.1, F = R]. We give a brief account of the archimedean
factors. Langlands proved that there exist collections of irreducible representations
{@ities and {¢);}jeg of the Weil group W such that 7o and 7§, correspond to the
direct sums P,y ¢i and € ;g ¢, respectively. Each irreducible representation ¢
of Wk is of dimension 1 or 2; furthermore, one has the factorizations

Loo(s.m) =[[L(s.0i).  Loo(s.7) =[] L(s.9)).
ied jed
Loo(s,mxn') = l_[ L(s.0i ® ¢7).
ied

jed

To describe further the L-functions above, it is convenient to define T'r(s) =
7752 (s/2) and Tc(s) = Tr(s)Tr(s + 1) = 2(27) T (s).
(1)  If ¢ is one-dimensional, then there exist v € C and ¢ € {0, 1} such that

L(s,¢) =Tr(s +v+e¢).

We define K(¢) =1+ |v +¢|.
2) If ¢ is two-dimensional, then there exist k € Z and v € C such that

L(s.¢) = Te(s +v + [k]/2).

We define K(¢) = (14 |v + |k|/2))(1 + |v + |k[/2 + 1]).
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In both of the above cases, Rudnick and Sarnak [27, Appendix A.3] proved that
[Re(v)| <1/2. (2.10)

Miiller and Speh also describe the L-functions associated to the tensor products

PR
(1) If both ¢ and ¢’ are one-dimensional, then ¢ ® ¢’ is one-dimensional and

L(s,p®@¢)=Tr(s + v+ V' + ep0¢),

where g, € {0,1} and ey0y = € + €' (mod 2). In this case, we define
Ko@) =14+ v+ +epgl.

(2) If ¢ is one-dimensional and ¢’ is two-dimensional, then ¢ ® ¢’ is two-
dimensional and

L(s,9 ®¢")=Tc(s +v+v' +k']/2).
In this case, we define
Kle®¢) =1+ v+ +I[k/2))(1+ v+ +[k'|/2+1]).

3) Suppose that ¢ and ¢’ are two-dimensional. Then ¢ ® ¢’ is the direct sum of
two two-dimensional representations and

L(s,p®¢)=Tc(s+v+v + |k +£|/2)Tc(s + v+ + [k —Kk'|/2).
In this case, we define
Kle®e)=1+P+v +k+k1/2)1+ v+ +|k+k]/2+1])
X (L4 v +v +k—K1/2)(1+ v+ +k—k'|/2+1]).
These definitions give us a complete description of

Koxn = [ | K(pi ® ¢)). (2.11)
ied
jed
We now address (2.9). First, assume that both = and 7’ are unramified at infinity,
in which case (2.5) holds. Suppose z1, 22, w;, and w, are complex numbers all having
real part > —1/2. We claim that

1 w1 |)(1 Wy
(I +|z1 + w1 + |z2 + w2|) <Cc (@1
(I +1]z1 + 220 + [z1 + w2 D1 + |wy + z2)(1 + [w1 + wa|)

for some absolute constant C. The triangle inequality gives
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L+ |z +W1] = |1+ 21 + 22— (22— W1)| S 1+ |21 + 22| + |22 — W]
L1+ |z1 + 22| + |z2 + w1,

where the last estimate follows because the real parts of z; and w; are both bounded
below by —1/2 so that |z, — wi| < O(1) + |z2 + w1 |. In the same way one sees
that 1 4 |z + 1| € 1 + |wy + wa| + |21 + w2|, and two similar inequalities for
1 + |z2 + w3 hold. Multiplying these four estimates together and taking square roots
yields (2.12).

Apply (2.12) with z1 = puz (i1), w1 = pr(i2) and z2 = g (J1), w2 = Uz’ (j2)s
where 1 <iy,io <mand1 < ji, jo <m’. Taking the product over all the inequalities
so obtained, we arrive at (2.9) in the case when both w and n’ are unramified at
infinity.

If at least one of 7 and 7’ is ramified at infinity, then by (2.11), the bound (2.9)
is equivalent to the bound

l_[ l_[ K(wil ®%2)K(¢}1 ®a}2) & 80((m’m)2)
ied ipeg K@in ® ¢ VK@i, ® ¢ ) K(pi, ® ¢ )K(9i, ® ') '

J1€4 j2€8
(2.13)

If each of ¢;,, ¢i,, <p}l , and (p}z is one-dimensional, then we are led to the quotient

(I +[viy +vi; + 8¢i1®5i2|)
(I+ vy +) + €01, ®0), D+ [vi, +v), + 8¢i1®¢}2|)

(L V), + V), + 24, 07, )

X .
(1 + |‘)i2 + v;l + Swi2®¢}l |)(1 + |‘)i2 + v;'z + 8w,~2®<p;2 |))

Recall that e,g, € {0, 1}. In light of (2.10), this quotient is a mild perturbation of
(2.12), and we conclude that it is absolutely bounded. Proceeding similarly for the
other cases, we observe that the product in (2.13) is a product of mild perturbations
of (2.12), each of which is absolutely bounded. This proves (2.13). O

LEMMA 2.2
Let 7ty € A(my) and 7 € A(my). With the notation

[e¢]

log L(s, w1 X ) = Z

n=2

Amyxy (M) A(n)
nslogn

for all prime powers n, we have
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ey (D] = ¥ Ty (s ) = 5 (e () + Ay ().

Further, for any € A(m), we have
1
A ()| = VA (1) = 5 (14 A ()

If n is the power of an unramified prime p, then from (2.3) one may see that
Amyxmy(n) = Az (n)Az,(n), and that Az, xz (n) = |Ag, (m)|* and Amyxiz, (n) =
|Arz, (n)|*. In this situation, the bound of Lemma 2.2 follows readily by Cauchy—
Schwarz. The point of the lemma is that the same bound applies in the ramified case
also. We thank Farrell Brumley for supplying a proof of this fact in the Appendix.

We now discuss Property 1.4 with relation to automorphic L-functions, starting
with the estimate (1.9). In the next section, we shall establish the following lemma,
from which we can deduce (1.9).

LEMMA 2.3
If m € A(m) is a cuspidal automorphic representation then for any n > 0

o0
Apxz(m)A 1 1
> M < -+ —logC(w x 7) + O(m>). (2.14)
ot nl+n n 2

Verifying (1.9) for & € A(m)
Applying Lemma 2.2, we find that

A
3 B <S50+ b)) 2 + sl )+ 00,

nlt+n
n=1

by Lemma 2.3. Now applying Lemma 2.1, we see that log C(zr x 7) < 2mlog C(x),
and therefore

Az(n)|A
Z M — +mlog C(r) + O(m>).
K n
n=1
This verifies (1.9) for cuspidal automorphic representations. (]

Verifying (1.9) for my X mp
If 71 € A(my) and 7, € A(my) are two cuspidal automorphic representations, then
from Lemma 2.2 and Lemma 2.3, we see that
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menz (n)|A(n)
Z

nl+n

Z iy (1) + Dy (1) 0 A

Nl'—‘

1 1 _ 1 ~
< ; + Z1ogC(n1 X T + Z1ogC(n2 X 7p) + O(m? + m3).
Appealing now to Lemma 2.1, we conclude that, for any 1 > 0,

- menz(”)V\(H)
Z rm Xmp VI AAT

e +m1mzlogC(ﬂ1 x 712) + O((m1m2)?).

This completes our verification of (1.9) for the Rankin—Selberg convolution m; X 7.
O

In Section 6, we will prove the following theorem, from which we will deduce
(1.10) for L(s, 1) and L(s, 7wy X 72).

THEOREM 2.4
Let w1 € A(m) be a cuspidal automorphic representation. If x >, C (7 X%)36m2 and
1 <T < x°" then

Y Amca(DAG) <

x<n<xel/T

Deducing (1.10) for L(s, )

By Lemma 2.2
1
> Mn(”)|/\(")55 > (14 Aaxz(m)An). (2.15)
x<n=<xel/T x<n<xel/T

By Theorem 2.4, the second term in the right-hand side above contributes < x/ T,
provided 1 < T < x/9"% and x > C (7 x7)3™” . In view of Lemma 2.1, it suffices to
assume that x > (C () T)72m3. For the same range of x and 7', the Brun-Titchmarsh
inequality (1.11) bounds the first term in the right side of (2.15) by < x/T, which
completes our deduction. ([

Deducing (1.10) for L(s, w1 X 73)
This follows similarly, appealing to Lemma 2.1, Lemma 2.2, and Theorem 2.4. O
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Gathering together the observations made so far, we arrive at the following propo-
sition.

PROPOSITION 2.5

If m € A(m) is a cuspidal automorphic representation, then L(s,) is in the class
S(m). If my € A(my) and 7y € A(my) are two cuspidal automorphic representa-
tions, then L(s,m X 1w3) is in the class 8 (mimy).

Therefore the results given in Section | apply in the context of automorphic L-
functions and yield the following corollaries.

COROLLARY 2.6
If m € A(m) is a cuspidal automorphic representation, then for all T > 1 and 1/2 <
o <1 we have

7 m3(1—
N (0.T) <m (C(r)T)" "™ 7,

Further, if my € A(my) and 7, € A(my) are two cuspidal automorphic representa-
tions, then for all T > 1 and 1/2 <o <1 we have

)107m%m§(1—0)

anan(O’, T) Lmy,ma (C(ﬂl X 7'[2)T

Apart from the exponent, this corollary gives a general result which in special

situations (or with additional hypotheses) was given by a number of authors (see

Kowalski and Michel [18], Motohashi [24], Akbary and Trudgian [1], and Lemke
Oliver and Thorner [19]).

As a consequence of Corollary 1.3 we obtain the following weak subconvexity
results for automorphic L-functions.

COROLLARY 2.7

If m € A(m) is a cuspidal automorphic representation, then
C(T[)l/4

(log C (r)) /(101 m) "

|L(1/2,7)| <m

If w1 € A(my) and 75 € A(my) are two cuspidal automorphic representations then

C(7T1 X 7T2)1/4
)1/(1017m?mg) ’

|L(1/2, 711 X 12)| Ky ms |[L(3/2, 71 x 702)|*
(log C(my x m2)

In the first part of Corollary 2.7, we dropped the term |L(3/2, )|?. This is per-
missible because (2.1) and (2.2) give | A (1n)| < n%, so the bound |L(3/2,7)| <m 1
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follows from (1.3). For the general Rankin—Selberg L-function L(s, 1 X 72), we are
not able to obtain the bound |L(3/2, 1 X m3)| <« 1—without additional hypotheses,
the best known bound for |L(3/2, w1 x m3)| follows from Theorem 2 of [20], and this
is larger than any power of log C (71 X 73).

Nevertheless, in a number of special situations the term |L(3/2, 7y x 73)|?> may
be dropped, and we give a few such examples.

Example 1
If either 7, or m, satisfies the Ramanujan conjecture, then using (2.1) and (2.2), we
obtain |A, sz, (1)| < n'/278 for some 8 = §(my,my) > 0. Therefore,

|L(3/2’7T1 X 7T2)| <<m1,m2 1
by (1.3).
Example 2

Since 6, may be taken as 7/64 (see (2.2)), if 71 and 7, are both cuspidal automorphic
forms on GL(2), then |L(3/2,m X m,)| < 1 and

C(m1 x mp)V/*

(log C (7 X 75))1/10"%"

|L(1/2,m x m)| <

Alternatively, here we could use the work of Ramakrishnan [26] which shows that
1 X mp is an isobaric sum of cuspidal automorphic representations of dimension at
most 4, and then use our bound for each constituent.

Example 3

If 771 and 7, are cuspidal automorphic representations in +4(2), then Sym?s; is an
automorphic representation on GL(3) (by the work of Gelbart and Jacquet [10]).
Since 6, = 7/64, we find that |A (n)| < n?'/* and so

Sym2n1 X7T)
|L(3/2,Sym?m; x 72)| < 1.
Therefore, if Sym?r; is cuspidal, then

C(Sym?my x 7,)1/4
(log C(Sym?m; x 15))1/10%°"

|L(1/2,Sym*my x m2)| <

The bound also applies when Sym?7; is not cuspidal, upon decomposing this and
using our result for each component. Similarly, one can obtain

C(Sym?m; x Sym?m,)!/*

L(1/2,Sym?m; x Sym?m,)| « .
| (1/2.8y 1y 2)’ (log C(Sym?m; x Sym?7,))1/10%°
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Example 4

If 7, and 7, are in A(2), then Sym37; is an automorphic form on GL(4) by the
work of Kim and Shahidi [17]. As in Example 3, we can obtain a weak subconvexity
bound for L(1/2,Sym>m; x m5).

Example 5

While we have formulated our results for the L-values at the central point 1/2, with
trivial modifications the results apply equally to any point 1/2 4 it on the critical
line. If 7y in #A(m1) and 7, in A(m5) are considered fixed, then in the ¢-aspect our
work gives the weak subconvexity bound

@+ Je)ymima/4
* (log(2 + [¢[)) /10 TmimD

|L(1/2+it, 71 X 72)| Ky

Here we have used the absolute convergence of L(s, 7y X ) for Re(s) > 1 (due
to Jacquet, Piatetski-Shapiro, and Shalika [15]) to bound |L(3/2 + it,m X 72)| by
<<]'[1 ’][2 1'

3. Preliminary lemmas
Let L(s, ) € 8(m). Since the Euler product expansion of L(s, ) converges abso-
lutely and Lo (s, ) # 0 for Re(s) > 1, there are no zeros of L(s, w) Lo (s, ) in this
region. By the functional equation, the same must be true in the region Re(s) < 0.
Thus all of the zeros of L(s, )L (s, ) lie in the critical strip 0 < Re(s) < 1; we
call these zeros the nontrivial zeros of L(s, 7). On the other hand, L (s, ) might have
a zero corresponding to a pole of Lo (s, ); we call these zeros the trivial zeros of
L(s, ). Because the Selberg eigenvalue conjecture is not yet resolved for all L(s, ),
we might have trivial zeros in the critical strip. Unless specifically mentioned other-
wise, we will always use p = 8 + iy to denote a nontrivial zero of L(s, ). Note that
neither 0 nor 1 can be a nontrivial zero of L(s, ).

By hypothesis, s" (1 — s)" L(s,7) Lo (s, ) is an entire function of order 1, and
thus has a Hadamard product representation

(1 = 8) L(s, ) Loo(s, ) = e +bms ]‘[(1 _ %)es/p, 3.1)
0

where p runs through the nontrivial zeros of L (s, ). By taking the logarithmic deriva-
tive of both sides of (3.1), we see that

/

1 1 L’ L r r
(= +)tba=Tm+ T2 s+ (D)
s—p P L Lo s os—1

Using (1.5) and the fact that s” (1 —s)" L(s, ) Lo (s, 7r) is an entire function of order
1, one can prove that Re(by) equals the absolutely convergent sum — >, Re(p™1). It
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follows that

!’

Xp:Re<sip) = Re(%(s,noo) + — L (s, ) + — 4 ) (3.3)

-1

LEMMA 3.1
We have

4
Nz (0,6)=#{p=B+iy:|y| <6} > 75102 C(m) + O(m). (3.4)
Further, for any real number t, and any 0 < n < 1, we have

I1+n-8
— < 2mlogC log(2 + |t 2 0] 3.5
> T i —op = 2mloe () + mlog(2 + |t]) + 2— + O(m?). (3.5

so that
#{p:|p— (1 +ir)| <n} <10mnlog C(m) + 5mnlog(2 + [t|) + O(m?). (3.6)

Proof
These results all follow from the Hadamard formula (3.3). We start with (3.5) and
(3.6). Apply (3.3) with s = 1 4+ n + i¢. The left-hand side of (3.3) is

Z (I+n-p)

T pr s ayr - 5 il arilzn 6D

The right-hand side of (3.3) is

(1+n+1t+un(1)) ZM ~(WIAG)

m
Z logN + = Z Re pEE 7]
which after using (1.9), Stirling’s formula, and the bound r < m, is

<2mlogC(m) + mlog(2 + |t]) + 27y 0(m?).
n

From this estimate and (3.7), we conclude (3.5) and (3.6).
To prove (3.4), we begin by applying (3.3) with s = o > 3. This gives

() |Az ()| A(n)
Z(a 5+ 2 logC(n)-l-O(m)-l-O(nX:l—)

=logC(mw) + O(m).

Applying the above with 0 = 3 and 0 = 4, we obtain
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2
= l—SlogC(n) + O(m).

5 G-p 13 _(4-p )
—\G=pR 12 15(—p)2+12

A small calculation shows that when |y | > 6 the terms on the left-hand side above are
negative, and when |y| < 6, the corresponding term is < 1/(3 — ) < 1/2. From this,
(3.4) follows. O

We end this section by establishing Lemma 2.3.

Proof of Lemma 2.3

The proof is standard, based on the Hadamard factorization formula (see [ 19, Lemma
3.5]). Rearranging the expression for the logarithmic derivative of the Hadamard fac-
torization formula for L(s, 7 x 7) (see (3.3)), we must bound

L/
Re(—f(l + 1,7 X ?f))
1

1 L 1
L L Re(E2 (4 @) - Y Re(— ).
no 14+n Loo( 1 ) p;l I+n—p

where p = 8 + iy runs through the zeros of s(1 —s)L(s, 7 X T)Loo(s, m X ). Since
0 < B <1, we have

1 1+n—
Re( ): +n ﬁ2>0’
l+n—0p I1+n—pl

so that the contribution from zeros is negative and may be discarded. Moreover, by
Stirling’s formula and (1.8),

L _ !
Re(Loo(l +n.7 XN)) = |1+n+u§ﬁ(1‘)l<lRe(1 + 71+ uﬂxﬁ(j))

1
+ ElogC(n X T) + 0(m?)

=

log C(r x T) + O(m?).

N —

Therefore,

2\ Az (n)A(n)
Z Anxz () AI)

<
n1+17 -

1 1
-+ ElogC(n x ) + 0(m?),
n

n=1

completing our proof. O
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4. Proof of Theorem 1.2
We prove the log-free zero density estimate of Theorem 1.2 by following Gallagher’s
treatment in [9], which is based on Turan’s power sum method. For the sake of com-
pleteness, we show that the axiomatic framework given in (1.1) to (1.10) is sufficient
to establish such a log-free zero density estimate.

Let k > 1 be a natural number, and let 1 be a real number with 1/log(C(xw)T) <
n < 1/(200m). Let 7 be a real number with 7 > |z| > 2007. Differentiating (3.2) k
times we find, withs =14+ n+ir,

(Fom)” (L r ()" ol + )

=1

1k 1
=(=1) k!Xp:(s—p)kH‘

Since Re(u(j)) = —1+ 1/m, we obtain

l(l’(s +un(j)))<k> _ DFE i 1 < mkH g
2\T\" 2 2T Lt (ot (5 + e () /2R ’
and, since || > 2007 and r < m, clearly

B k | r r mk'

%G+ i) < e
Thus, since m < 1/(2007),

(—Dk /L’ " m 1
- (f(s,n)) _0(4(20017)’”'1)+Xp:7(s—p)k+l' @.1)

Applying (3.5), we see that

1 1 1 I 15 0+n=8)
D ey PO e e P D

> s — pl?
|s—p|=200n

m mlog(C(x)T)

1
< W(m log(C(m)T) + n) < oo

Since n > 1/1og(C(mr)T), using this estimate in (4.1), we conclude that

(—1)k (L/ ))ac) _ O(mlog(C(n)T)) Z

AR (200m)% 4-2)

(s —p)ktt”
|s—p|<2007
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Equation (4.2) forms the starting point for the proof of Theorem 1.2. Using
Turdn’s power sum method in [28], we shall obtain a lower bound for the right-hand
side of (4.2) for a suitable & (which will eventually be of size about nlog(C()T)),
provided there is a zero p with |1 4+ it — p| < 5. On the other hand, we shall bound
from above the left-hand side of (4.2) in terms of Dirichlet polynomials over prime
powers. The interplay of these bounds will yield the theorem. We start with the lower
bound, which will use the following result from Turdn’s method (see the Theorem in

[28]).

LEMMA 4.1
Let z1,...,zy € C. If K > v, then there exists an integer k € [K,2K] such that

|28 4o 2K > (21]/50)%.

LEMMA 4.2

Let n and t be real numbers with 1/log(C(x)T) < n < 1/(200m) and 200n <
|t] < T. Suppose that L(s, ) has a zero pg satisfying |po — (1 +it)| <n. If K >
[2000mnlog(C(m)T) + O(m?)], then one has (recall s =1 +n+it)

| Z (s _;)k+1 ) = (lol()n)k+l’

P
ls—p|<200n

for some integer k € [K,2K].

Proof

By (3.6) we see that there are at most 2000mnlog(C () T) + O(m?) zeros p satisfy-
ing |s — p| < 2007. By applying Lemma 4.1 with z; there being 1/(s — pg), which is
> 1/(2n) in size, the lemma follows. O

We now proceed to the upper bound.

LEMMA 4.3

Let n and t be real numbers with 1/1og(C(w)T) < n < 1/(200m) and 200y <
|t] < T. Let K > 1 be a natural number, and put Ny = exp(K/(300n)) and N; =
exp(40K/n). Withs =1+ n+it, we have for all K <k <2K,

k ’ N
e (o)< [ NZM oM
Proof

By computing the kth derivative of the Dirichlet series for LT/(S, ), we find
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T (L/ (k)‘ _ ‘Z Az (m)A(n) (nlogn)¥ ‘

nltntiz k!

Put ji(u) = e *u*/k!, and split the sum over n into the ranges n € [Ny, N;] and
n ¢ [Ng, N1]. For n ¢ [Ny, N1], we estimate trivially using the triangle inequality, and
use partial summation in the range n € [Ny, N1]. Thus, the above is

[An (n)ll\(n)

Az (n)|An) .
< Y F——j(logn)+ > ———"ji(nlog Ny)
né¢[No,N1] No<n<N;
Noa o Ax (m)A(n)
+/ d—Jk(nlogu)H > ”IT(du. (4.3)
No u No<n<u n
Now | (jx(nlogu))| = | — jk(nlogu) + jk—1(nlogu))|(n/u) < n/u, and so the

integral in (4.3) is

Az (n)A(n) du
Z At et

nl-Hr u

Ny
wf
No

Suppose that n < Ny, in which case nlogn < K/300. Since k € [K,2K] and
k!> (k/e)*, we observe that

No<n=u

n~"(nlogn)k - (enlogn )k

-n/2 -k
a < . <n (110)7".

Jk(nlogn) =

Next suppose that n > Nj, in which case nlogn > 40K. Since e */2u* /k! is
decreasing in the range u > 2k, we see that for n > N;

nlOgn(T]IOgl’l) n/ze—ZOK(4OK)k
k! - k!

< n—"/ze—ZOK(—40;K)k <n7"2(110)7%.

2
je(rlogn) = n~12 %

The last estimate also implies that, for the sum over Ny < n < Nj, one has
Jjk(nlog Ny) <« n~"/2(110)~%. Therefore the sums appearing in (4.3) are bounded
by

1 Az (n)|A(n) mlog(C(m)T)
(110)"2 nl+n/2 < (110)%

using (1.9). O

We now combine Lemma 4.2 and Lemma 4.3 to prove Theorem 1.2.
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Proof of Theorem 1.2

We combine Lemma 4.2 and Lemma 4.3 to detect zeros near the line 0 = 1. Let
and t be real numbers with 1/1log(C(7)T) <n < 1/(200m) and 2001 < |7| <T.In
keeping with Lemma 4.2, we suppose that

K =10°m?nlog(C(x)T) + O(m?) (4.4)

is sufficiently large, and put (as in Lemma 4.3) Ny = exp(K/(3007)) and Ny =
exp(40K /7). Suppose that L(s, ) has a zero pg satisfying |1 + it — pg| < 1. Since
K satisfies (4.4) and is sufficiently large, combining (4.2) with Lemma 4.2 we obtain,
for some k € [K,2K],

k+1 1/ (k) k (C(x)T)
‘nk! <%(S’”)) ’2 (ﬁ) +1<1_0(nm10g25 .= )) = 2(10(l))k+1'

On the other hand, by Lemma 4.3, we obtain (for all k € [K,2K])

k+1 Ny

e (pom) 7= [

0 "No<n<u

nltit u 4(100)k+1’

Az(m)A(n)|du 1
Z LA i

where we bounded the error term O((110)~* (mnlog(C()T))) in Lemma 4.3 by
%(100)_"_1. Combining these two estimates, we conclude that if there is a zero pg
with |1 + it — pg| < n, then

Az(n)A(n) | du
Y AxA@) du

Ny
154(100)2K+1n2/ n1+ir ,

No

No<n<u

Squaring the above estimate and using Cauchy—Schwarz, we obtain

1< (100)4K;74(/NN1 i—”)(/NNI
0 0

Az(m)A(n)2du
Y Aa0A@) 2du

nl+it u

S AnAw)dny

n1+i1: u

No<n=u

Ny
< (101)4Kn3/

0 "No<n<u

since log(N1/Ny) < K/n. Because there are < mnlog(C(w)T) zeros that satisfy
|1 4+ it — p| <n, we may also recast the above estimate as (for 200n <|7| <T)

#Hp=B+iy:B=>1—n/2,|y —t|<n/2}

mnlog(C(m)T)
M Az(m)A(n)2du
4K 3 2 : T

No<n<u
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Integrating both sides above over 200 < |7| < T', we conclude that
#Hp=PB+iy:B>1-1/2,200n<|y| <T}

T W Az (m)A(n) 12 du
4K 3 1 C
< 101*% 9’ mlog(C(m)T) /_T /No E -

| o dr (49

No<n<u

We now work on bounding the right-hand side of (4.5), which is clearly

T
< 101*8 > m1og(C(7)T)log(N1/No) max (/_T) Z A”(H)A(n)‘zdt)

u€[No,N1] No<n<u nltit
T Az(n)A(n) |2
< 102K 2 mlog(C(x)T) max / ‘ ”4) dr). (4.6)
n g( () )ue[No,N.]( r N0§<u pltit

We bound the integral in the above display by an application of Plancherel, as in
Gallagher (see [9, Theorem 1]): for 7 > 1 and any sequence of complex numbers
{an}o2, one has

(= —it|? 2 [7
/_T";a,,n ’dt<<T/(; ‘ Z an

ne(w,wel/T]

Applying Gallagher’s bound, we deduce that for any u € [Ny, N1],

[]5 Smerf

No<n<u 0

o AxA®) P
| =T

x<n<xel/T
No<n<N>

N1 2dx
< T2/ ‘ > ‘/\ﬂ(n)’A(n)‘ =
No/e x<n<xel/T
Appealing now to (1.10) (which applies because of (4.4)), we find that the above is
, (M x%dx K
Lm T oy <Lm -
No/e T x n
Using this in (4.6), we conclude that this quantity is bounded by
< 102*K Knmlog(C()T) <« 105K,

Inserting the above bound in (4.5), and noting that there are < nm log(C(7)T) <
K zeros with B > 1 — /2 and |y| <2007, we obtain

No(1—=7/2,T) <« 105*K.
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This estimate implies our theorem in the range 1/log(C(7)T) <1 —o0 < 1/(400m).
In the range 1 — o < 1/log(C(x)T), we note that

Ny (0,T) < Nx(1—1/log(C(m)T).T).

In the range 1 — o > 1/(400m), the theorem is trivial as there are << mT log(C () T)
zeros with 8 € (0,1) and |y| <T. O

5. Proof of Theorem 1.1 and Corollary 1.3

Let L(s,7) € 8(m), and in proving the theorem, we may plainly suppose that
L(1/2,7) # 0. Our starting point is Heath-Brown’s argument to establish a sharp
convexity bound for L-functions. This begins with a variant of Jensen’s formula, con-
necting log|L(1/2, )| with zeros lying in the critical strip 0 < Re(s) < 1. The Jensen
formula that we need is

toel(1/27 L(/2.0] + Y toglear(F (o= 3))|

2
p=B+iy
0<B<1
14 ) 1
+ 30 togleor((e)+3))
Re(ur (5))<0
1/001 |L(+ it m)L(it, )" (1—it)"| i (5.1)
=— 0 it,m)L(it, & —it) | ———. .

2 ) g cosh(mt)

This may be established as in Heath-Brown [13], or applying [2, p. 207, Lemma 3.1]
with F(s) = (s — 1)" L(s,7) and x = 1/2. The proof is by conformally mapping the
strip z = x + iy with 0 < x < 1 onto the unit disk |{| < 1 by means of the substitution
¢ = (e™?% —i)/(e™*% + i), and then using the usual Jensen formula for the unit disc.

Now if z = x + iy is a complex number with |x| < 1/2, then a small calculation
gives

cosh(wy) + cos(nx)) - cos(mx)

1
1 t D =-1
og|c0 (z/ )| 2 Og(cosh(ﬂy) — cos(7x)

, 52
~ cosh(y) (5:2)
where the last inequality follows because %log((l +1)/0—=t)=tforl>t>0
by a Taylor expansion. From (5.2) and since Re(ur(j)) > —1, the terms
log|cot(m (i (j) + 1/2)/2)| appearing in (5.1) are all nonnegative. Bounding the
sum over zeros below using (5.2), we conclude that the left-hand side of (5.1) is at
least

sin(rrf)

log|L(1/2.m)|+ > :
p—p iy cosh(my)
0<pB<1

(5.3)
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Now we consider the right-hand side of (5.1). Using the functional equation to
connect L(it, ) with L(1 —it,7), and then using Stirling’s formula, we obtain

10g|L(it,n)| = 10g|L(1 —it,?f)| + %logN,,

b 3 tog| N 20N =)/

C((uz(j) +i1)/2) ‘Jr Otm)

1
=log|L(1+it, )|+ 51ogN,,

l\)l'—‘

Z og(1+ |/LH(J) +ll|) + 0(m?)

1 m
<log|L(1 +it,m)| + 51ogC(n) + E1og(1 + |t]) + O(m?).

Thus the right-hand side of (5.1) is bounded by

dt

l1ogC(n) + /Oo (1og|z’L(1 +it,m)|+ ﬂlog(l + 1)) + 0(m2))7
oo ’ 4 cosh(x?)

4

%logC(n)—i- O(m )+/ log|t"L(1 +it, n)| (5.4)

dt

osh(wt)’
Since |¢t" L(1 4 it, )| grows at most polynomially in |¢|, and 1/ cosh(x¢) decreases
exponentially in |z|, we may see that

f log|t" L(1 + it, n)|d7
- sh(rt)
* dt
= lim R log(t" L(1 i1, _—
n—1>r(r)1+ e(/—oo og( (rnti n))cosh(m)>
o0
. Az(m)A(n) [ _;, di
— lim Re(Y 22 i 4Ty L o),
n—1>%1+ e(; nltnlogn _oon cosh(nt))+ (m)

Now

© ., odt 1 B 2 _2 !
/_Oon cosh(r)  cosh((logn)/2)  Jn+1/Jn Jn + (m)’

and therefore

dt
/; log|t"L(1 +it, ﬂ)|7sh(nt)

:zRe(;Z_M”)A(")) (Z Ar ()] A () )

n3/2logn n3/2logn
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=2log|L(3/2,7)| + O(m).

Combining the above remarks with (5.3) and (5.4), we conclude that

sin(mrB)

1
log|L(1/2 < —logC(m) —
0g| 1/ ,7T)|_4 og C(n) Z cosh(wy)
p=B+iy
0<B<1

+2log|L(3/2,7)| + O(m?).

(5.5)

All this follows closely the work of Heath-Brown, except that we have kept a negative
contribution from the zeros of L(s, 7), which we shall now bound from below.

Proof of Theorem 1.1
Plainly for any positive real number 7', and any 1/2 > § > 0, we have

Z sin(7rB) - Z sin(7rB)

p—p iy cosh(wry) p—p iy cosh(nT)
0<p<1 lyl<T
in(7r§ 25
cosh(zT) p—ptiy cosh(zT) p—p iy
§<B=<1-48 §<B=<1-8
lyI<T lyI<T

The functional equation combined with complex conjugation shows that if 8 + iy is
a zero, then so is 1 — B + iy. Thus, choosing 7' = 6 and invoking (3.4), we obtain

4

Y 1=Ng(0.6)—2N(1-86.6) > 15102 C(m) = 2Nz (1-8,6) + O(m).
p=B+iy
§<B<1-46

lyl<6

Therefore,

3 sin(zf) _ 28 (ilogc(n)—zNﬂ(l—Sﬁ))+0(’")-

pptiy cosh(ry) ~ cosh(6mw) \15
0<pB<1
Inserting this lower bound into (5.5), we obtain Theorem 1.1. O

Proof of Corollary 1.3
Choose § = 10~ 8m 3 (loglog C(rr))/log C (). Then Theorem 1.2 gives

Nz (1-36,6) <pm 1ogC(m).

Inserting this bound in Theorem 1.1, the corollary follows. O
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6. Proof of Theorem 2.4
We fix a nonnegative smooth function ® supported in (-2, 2), say, and write

(o)
D(s) =/ D(y)e® dy. (6.1)

—00
Thus Cb(s) is an entire function of s, and by integrating by parts many times, we
obtain, for any integer k > 0,

2| Re(s)|

|D(s)| Kok T (6.2)

Let T > 1 be a real parameter, and note that by Mellin (or Fourier) inversion one has
(for any positive real number x, and any real c)

1 ctioco |
TO(Tlogx) = —/ O(s/T)x* ds. (6.3)
271 Je—ioo
Recall that
~ Az (n)
L(s, = E —_— L
(s,m XT) 2 1_[ p(8, 7T XTT),

with

Ly(s.m x7) = ]‘[]‘[( M) _1+Za”f—gﬂ). (6.4)

J1=1j2=1 Jj=1

The Rankin-Selberg L-function L(s, 7 X 7) has nonnegative coefficients, converges
in Re(s) > 1, and extends to the complex plane with a simple pole at s = 1.

Our proof of the Brun-Titchmarsh result Theorem 2.4 will be based on an appli-
cation of the Selberg sieve. To pave the way for this, given a square-free number d
we need an asymptotic formula for

Zanxﬁ(n)Cb(T log z),
dln X
which we establish in the following lemma.
LEMMA 6.1

Let m € A(m), and © be as above. Let d > 1 be a square-free integer. For any x > 0
and T > 1, we have

;anxﬁ(n)CD(Tlog ;) — Kg(d)%dVD(l/T) + O (x3C(r xT)d™ T™),
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where

K=RelsL(s,nxn), and g(d)=| |(1—Lp(1,n x 7).
s=
rld

Proof
Using (6.3), we may write (for any real number ¢ > 1)

n 1 c+ioo . R Clﬂx?f(l’l)
Zaﬂxfﬁ(n)dD(Tlog;)z 2niT/ _ D(s/T)x ZTd

dln €71 din

The Dirichlet series appearing above has nonnegative coefficients and converges in the
region Re(s) > 1, and matches the Rankin-Selberg L-function L(s, 7 X ) except for
the Euler factors at primes p dividing d. Indeed, by multiplicativity, we may write

Zanxn(n) HLP(S . X’J‘T’)H(Z Clnxn(P )) =L(s,m XT)ga(s,m xXT),

dln ptd pld j=1
where
L @ (p)
gals, T xX7T) = 1_[(1 —Ly(s,w x?f)_l) = H(l — 1_[ (1 — L;(”p))
pld pld Jrja=1 P
(6.5)
Thus the integral above equals
c+ioco |
- f O(s/T)L(s,m x7T)gq(s,m xT)x*ds. (6.6)
2niT 00

We evaluate (6.6) by moving the line of integration to Re(s) = 1/2. We encounter
a simple pole at s = 1, and the residue here is the main term appearing in our lemma
(note that g(d) = g4(1,7 x 7)). To bound the integral on the line Re(s) = 1/2,
using the Phragmén—Lindelof principle and Stirling’s formula (using that on the line
Re(s) =5/2 we have L(s, 7 x ) < 1), we find

)L(% it x??)‘ <L CaxD)2+ )™

Further, since |a},, j,,zx7(p)| < p for all ji, j, and p, from the definition (6.5) it
follows that

)gd(% +it,w x%)‘ < 1_[(1 +(1 +p1/2)m2) < Qd)™,
pld
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Thus the integral on the Re(s) = 1/2 line is

< gcw x%)(2d)m2/

—00

oo

2+ |t|)m2’é<%(% + it))’dt.

Using (6.2) with k = 0 for |t| < T, and k = m? + 2 for |t| > T, we see that the above
is

ﬁ —~ 2/00 m2 . Tm
m.d —C am 2+t 1, —————)dt
Lo~ Clw x70) _oo( + |t]) mm( o |t|)m2+2)
Em.o NXC(r xT)d™ T™ . O

From Lemma 6.1 and an application of the Selberg sieve, we shall obtain the
following proposition.

PROPOSITION 6.2
Keep the notations of Lemma 6.1. Then forany x >0, T > 1, and z >, C(m X7
we have

4

Z aﬂxﬁ(n)CD(Tlog ?c)

n
pln= p>z

<

~ Tlogz

O(1/T) + O (x2Clx x F)T™ 22 +3).

Proof

As mentioned already, this follows from a standard application of Selberg’s sieve and
Lemma 6.1; see, for example, Theorem 7.1 of [8]. Using Theorem 7.1 of [8] and (6.3)
there (with D = z2 in their notation), we find

Z a,,xﬁ(n)CD(Tlog%)

pln:n>p>z
<Xda/T) g(p) \7!
T (dlnézpﬂ —g(p))
d<z
+ Omo(¥ECEx T Y d™ (). 6.7)
d<z2

Here 73(d) is the number of ways of writing d as a product of three natural numbers.
Because 73 (d) K d*, Jwe may trivially bound the error term in inequality (6.7) by
L, @ X3 C(m x 7)™ z2m*+3,
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For the first sum, we observe from the definitions of g(p) and L, (s, w x 7) that

Z l_[ g(p) > Z l_[ Z anxn’(p ) > Z anxn(") (6.8)

dlllp<: prld 1-g(p) ~ n=z  plnj=1 n<z

d<z n square-free

Let ®; be a nonnegative smooth function supported on [0, 1], with ®;(¢) = 1 for
€<t<l—eand ®;(r) <1for0 <t <1.Then appealing to Lemma 6.1 with d =1
and T = 1 there, we obtain that

3 ) ] oy L ams ) (10g )

y<n<ey
1 1 ~
= g(e — 14+ 0(e))k + Om(y 2C( x 7).
Dividing the interval [/Z, z] into blocks of the form [y, ey], it follows that
Z dxz (1) > glogz + Om(z_iC(n X TT)).
Jz<n<z "
Therefore, if z >, C( x )%, then
i (1) anxz(n) _ 1
e A | — > (1 1 .
> 1+ ), == o(ltklogz)
n=z Jz<n<z

Using this bound in (6.8) and then in (6.7), and noting that for all ¥k > 0 one has
k/(1 4+ «klogz) <1/logz, the proposition follows. O

Proof of Theorem 2.4

Since Theorem 2.4 follows from (1.11) for m = 1, we may assume below that m > 2.
Suppose that x 3>, C(7r X 7 36m® andthat 1 < T < x1/9"% Take z = x1/9"% and
® to be a smooth nonnegative function supported in (—e, 1 + €) with &(¢) = 1 for
0 <t < 1. An application of Proposition 6.2 gives

Z anxz(n) Km

x<n<xel/T
pln= p>z

X
2C % Tm 2m?+3 )
Tlogz +x2C(r x7) m T logx

The left-hand side above includes all prime powers p¥ in (x,xe!/T] with p > z, and
so we conclude that

Y (P <m (6.9)

x<pk<xel/T
k<9m?

x
Tlogx’
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In Theorem 2.4, we are interested in bounding A, xz(p*) in place of @ xz(p*)
above. Note from (1.2) that for any given prime p, we have the formal identity

ex (i 7/\”Xﬁ(pk)Xk) =1+ ia #(pF) x*
P & = L axz\ P .

Expanding both sides and comparing coefficients, from the nonnegativity of
lnxﬁ(ﬁk) and anx?z‘(l?k), we deduce that

)Lnxﬁ(pk)

- (6.10)

anxﬁ(pk) >
From (6.9) and (6.10), it follows that

Y A @AM <n 5

x<n=pk<xel/T

k<9m?
To complete the proof of Theorem 2.4 it remains lastly to bound the contribution of
primes powers p* with k > 9m?2. Since there are very few such prime powers, it will
be enough to use a crude bound on Az (p¥). From (2.6), one obtains A,z (p*) <
mzpk(l_l/mz), and so

X
Do A A K x TN A ) K T
x<n=pk§xe1/T pkfex
k>9m? k>9m?
This finishes the proof of Theorem 2.4. O

Appendix. An inequality on Rankin—Selberg coefficients
Farrell Brumley'

Let m, n’ be irreducible unitary generic representations of GL,,(Q,) and
GL,/(Q,), respectively. Let L(s, = x 7r") be the local Rankin—Selberg L-factor. Write
its logarithm as

Azrxn’(Pf)

N —
logL(s,nxn)—Z I

f=1
Our aim is to prove the following inequality.

'Brumley’s work was supported by Agence Nationale de la Recherche grant 14-CE25. In addition, he would like
to thank Kannan Soundararajan and Jesse Thorner for allowing him to include this Appendix to their paper, and
for helpful discussions regarding the proof during a visit to Stanford.
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PROPOSITION A.1
For every f > 1, we have

s (0] = \ L (P (p7) = 5 (s () + A (p)

The model computation is when 7 and 7’ are both unramified. In this case,
the proposition is immediate from the well-known expression for the local Rankin—
Selberg L-factor

L xay =[] [T~ ex(p. ow (p.b)p~) " (A.D)
j=1k=1

in terms of the Satake parameters o, (p, j) and o,/ (p, k). From this, it follows that
the coefficients A xn/(p/) are given by

m m

A (p7) =YD " an(p, ) o (p.K) = A (p)) A (p7). (A2)

Jj=1k=1

Similarly, in the unramified situation, Azxz(p”) = [Ax(p7)|? and A yz (p) =

M?r’(pf)|2- Thus, |An><7r’(pf)| = \/Anxﬁ(]’f)ln’xﬁ’(pf)a and the proposition fol-
< |42+IBI?
— 2

lows from the inequality |AB)| of geometric and arithmetic means. The
proof of Proposition A.1 follows along the same lines, but we shall need a more
explicit description of the Rankin—Selberg local L-factors. The main issue is that,
contrary to the unramified case, the local roots of the Rankin—Selberg convolution are
not simply the products of the local roots of the standard L-function.

A.l. Description of local Rankin—Selberg factor
In this section, we describe the local Rankin—Selberg L-function L(s, 7 x ’) in terms
of representation theoretic data. The main identity is (A.6) below. We follow closely
the exposition in [27, Appendix A], where the case when 7’ >~ 7 was explicated.

We begin by realizing 7 as a Langlands quotient

n=J(G,P:to1],....t[0r]). (A.3)

Here G = GL,,(Q,), P is a standard parabolic of G corresponding to the partition
(my,...,my) of m, t; is a tempered representation of GLy, ; (Qp), the real numbers
o; satisfy o1 > --- > o,, and t[o] denotes the representation v ® |det|’. Similar
notation holds for 7z’. Then

ror

L(s,mxn')= l_[ l_[L(s—I—crj +0p.Tj X T7). (A4)
j=lk=1
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Next we use the fact that tempered representations of GL,, (Q ) are fully induced
representations from discrete series. Moreover, discrete series themselves can be con-
structed as generalized Speh representations, obtained through an induction procedure
from supercuspidals as follows. For any discrete series representation § on GL,, (Q,),
there is a divisor d | m and a unitary supercuspidal representation p on GL;(Q) such
that § is isomorphic to the unique square-integrable subquotient of the representation

>:<1 p[v—(n+1)/2]

induced from the standard Levi

GL4(Qp) x -+ x GL4(Qp),

n

wheren =m/d.

We apply this for every t; appearing in (A.3) to obtain integers d; |mj, n; =
mj/d; and unitary supercuspidals p; on GLg4, (Qp). We proceed similarly for '
Using induction by stages (to combine the reduction of tempered representations t to
discrete series § with the reduction of discrete series § to supercuspidals p), we obtain

7/ min(n ; ,n;()

r n;+n
L(s,nxn’)zl_[r[ l_[ L(s—i—aj —I—o,’c—i-%—v,pj xp}c). (A.5)
j=lk=1 v=1

We now organize the p; and p;_into twist-equivalence classes. Let
(D J =[J1,...,J4] be aset partition of {1,...,r};
2) K =[Kj,...,Kg] be a set partition of {1,...,r'};
3) {01,...,0L} be a set of unitary twist-inequivalent supercuspidal representa-
tions gy of a general linear group over Q,
with the property that
(1) foreverya €{l,..., A}, thereisal =£(a) €{l,...,L},and forevery j € J,,
there is #; € R such that p; ~ o,[it;];
(2) foreverybe{l,...,B}, thereisa{ =4{'(b) €{l,...,L}, and for every k €
Kp, there is t; € R such that pj ~ oy/[it;];
(3)  the assignments a — £(a) and b — £'(b) are injective.
In this way, for any a € {1, ..., A}, the set {p; : j € J,} consists of all those p;
appearing in (A.5) which are twist equivalent to some given g¢(,). We may assume, if
we wish, that the set {01, ..., 01} is minimal for this property. Setting s; = o; +it;,
s, =0; +it;, and
min(n ;1)

/

n;+n
L., =] [T TI L(S +55+ s+ % —V, 04(a) X Qef(b)),
J€Ja keKy, v=1



WEAK SUBCONVEXITY WITHOUT A RAMANUJAN HYPOTHESIS 1263

we obtain the following expression

A B

Ls.wxa’)y=[][]Lrxs®.

a=1p=1

Now, many of the factors in the above product are simply 1. Indeed, for supercus-
pidal representations ¢ on GL;(Q,) and ¢’ on GL4/(Q), the local factor L(s, 0 X 0")
is 1 unless o is twist equivalent to o’ (in which case d = d’). Otherwise, when
o = olo], we have

L(s,oxo[0]) = L(s +0,0x 0) = (1 — p~@+)~1,

where e is the torsion number for o. (The torsion number is the order of the finite
cyclic group of characters y = | det |¥ such that o ® y >~ 0.)
We deduce that

L(s,mxn')= 1_[ Ly, k,(5),
(a,b)eA

where
A= {(a,b)e{1,...,A}x{1,...,B}:€(a)=€’(b)}.

Let £ : A — {1,..., L} be the map sending (a,b) to £(a,b) := £(a) = £'(b); it is
injective. If e, denotes the torsion number of g;, then

B /
min(#n ; ,n
(7)) -

Lai@ =TT [T 1 (- peswotrsmis oo

Jj€Ja keKy v=1

Setting z; = p~%/ —n;/2 and z,/c = p_sl/c_”;f/z, we obtain the formula

min(n ; ,n}.)

L(s,mnxn')= 1_[ 1_[ l_[ 1_[ (1—(p"zjz,’{)e“%b)p_e““sb”)_l. (A.6)

(a,b)eA jeJ, keKy v=1

We now give some examples to show that formula (A.6) can be specialized to
recover known cases.

Example 6

When '’ = 7, wehave r =r’, J = K (so that A = B = L), and the subset A is the
diagonal copy of {1,..., A} inside {1,..., A} x {1,..., A}. Letting F = [Fy,..., FL]
denote the set partition J = K of {1,...,r}, we recover in this case the formula
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min(7 ; ,ng )

L(s.m x ) = 1_[ [T I (-@zzocps)™ (A7)

I=1j,keF, v=1

of [27, (A.12)].

Example 7

When 7 and 7’ are both principal series representations, we have r = m, r’ = m’, and
nj = n}c = 1. If, furthermore, 7 and 7" are both unramified, then J = [J1], where
Ji={l,...,m} and K = [K;], where K1 ={1,...,m’}. Thus A= B =L =1,
and £ sends (1,1) to 1. Set a(p, j) = p*/ and oy (p,k) = ps;c, so that pz;z; =
ax(p, j)og (p, k). Then (A.6) simplifies to the expression (A.1).

A.2. Proof of Proposition A. ]
Let £ denote the image of the injective map £ : A — {1,..., L}. Throughout this
section, we shall write (a, b) € A for the preimage of £ € £. We may rewrite (A.6) as

L(s,mxn')= 1_[ Ly(s,m x '),
let
where

Lg(snxn)—nl_[ 1_[ 1—(p"zjz;)%p egs)

v>1jel, keKy

n;>v, s
nAv

Axa (F)

Letting log L(s, m x ') = 3" 154 Sers Ve obtain
Ao (1) = 2 P (30 2507) (30 =), (A8)
v>1 jeJg kekKy
n;zv nj=v

Example 8
We let 7’ = 7, and we use the notation of Example 6. Then the identity (A.8) reduces
to
Meaxa(f) =) p | 2 (A9)
v>1 jeF,
n;>v

which recovers the same expression in the proof of [27, Lemma A.1].

Example 9
When 7 and 7/ are both unramified, formula (A.8) reduces to
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7 7

M () =07 D203 " =33 an(p. ) e (p. KT = A (p7).
Jj=1 k=1 j=1k=1

Applying the Cauchy—Schwarz inequality in (A.8) we get

Z Z;«@f‘z) (Zpe@vf Z Z]/Cezf‘Z)
v>1

Aesen (NI = (32 p7
v>1

j€Ja keK,
njzv nj=v
= A axa (A mxiw (). (A.10)
in view of (A.9).
Now from
p—
Z p_fs(—” n (P )) =log L(s,m x ')
f=1 f
= Zlong(s,n x 7'
lel
_ Z Z p—eefs(kf,nxn’(f)>
lel f>1 f
_ Z p_fs Z (Aé,nxn’(f/eﬁ))
=1 teg e
eelf
we deduce
Awxar(p7) = €A mxar (f/e0). (A.11)
lel
eol f

Using this and (A.10) we find, by Cauchy—Schwarz,

Mﬂxn/(pf)i = Z e£|lé,nxn’(f/e€)|

Lel
eel f
< (X eiremanttfen) (X echemna(tre0)
et lel
el f eol f

From (A.11) we recognize the right-hand side as v/A;xz(p/)Azxz (p7), proving
Proposition A.1. O
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