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Abstract
We describe a new method to obtain weak subconvexity bounds for L-functions with
mild hypotheses on the size of the Dirichlet coefficients. We verify these hypotheses
for all automorphic L-functions and (with mild restrictions) the Rankin–Selberg L-
functions attached to two automorphic representations. The proof relies on a new
unconditional log-free zero density estimate for Rankin–Selberg L-functions.

1. Statement of results
In [29], the first author obtained a weak subconvexity result bounding central values
of a large class of L-functions, assuming a weak Ramanujan hypothesis on the size
of Dirichlet series coefficients of the L-function. If C denotes the analytic conductor
of the L-function in question, then C 1=4 is the size of the convexity bound, and the
weak subconvexity bound established there was of the form C 1=4=.logC/1�� . In this
paper, we establish a weak subconvexity bound of the shape C 1=4=.logC/ı for some
small ı > 0, but with a much milder hypothesis on the size of the Dirichlet series
coefficients. In particular, our results will apply to all automorphic L-functions and
(with mild restrictions) to the Rankin–Selberg L-functions attached to two automor-
phic representations.

In order to make clear the scope and limitations of our results, we axiomatize the
properties of L-functions that we need. In Section 2, we shall discuss how automor-
phic L-functions and Rankin–Selberg L-functions fit into this framework. Let m� 1
be a natural number. We now describe axiomatically a class of L-functions, which we
shall denote by S.m/.
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1.1. Dirichlet series and Euler product
The functions L.s;�/ appearing in the class S.m/ will be given by a Dirichlet series
and Euler product
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with both the series and the product converging absolutely for Re.s/ > 1. It will also
be convenient for us to write
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Setting ��.n/D 0 if n is not a prime power, we have

�
L0

L
.s;�/D

1X
nD1

��.n/ƒ.n/

ns
; and logL.s;�/D

1X
nD2

��.n/ƒ.n/

ns logn
: (1.3)

1.2. Functional equation
Write
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where N� � 1 is known as the “conductor” of the L-function and the ��.j / are
complex numbers. We suppose that there is an integer 0� r D r� �m such that the
completed L-function sr .1 � s/rL.s;�/L1.s;�/ extends to an entire function of
order 1, and satisfies the functional equation

sr.1� s/rL.s;�/L1.s;�/D ��s
r.1� s/rL.1� s;e�/L1.1� s;e�/: (1.5)

Here �� is a complex number with j�� j D 1, and
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We suppose that r has been chosen such that the completed L-function does not
vanish at s D 1 and s D 0. Thus, if L.s;�/ has a pole at s D 1, then we are assuming
that the order of this pole is at most m, and r is taken to be the order of the pole. If
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L.s;�/ has no pole at s D 1, then we take r D 0 and are making the assumption that
the L.1;�/¤ 0. In our work, a key measure of the “complexity” of the L-function
L.s;�/ is the “analytic conductor,” which is defined to be

C.�/DN�

mY
jD1

�
1C

ˇ̌
��.j /

ˇ̌�
: (1.7)

1.3. Bounds toward the generalized Ramanujan and Selberg conjectures
The absolute convergence of the Euler product in (1.1) implicitly includes the assump-
tion that j˛j;�.p/j< p for all p and j . Further, the Euler product shows that L.s;�/
is nonzero in Re.s/ > 1, which implies that Re.��.j // > �1 for all j (otherwise,
there would be a trivial zero of L.s;�/ in Re.s/ > 1 to compensate for a pole of
�..s C ��.j //=2/). We impose a modest strengthening of these estimates. Namely,
we assume that for all 1� j �m,ˇ̌

˛j;�.p/
ˇ̌
� p1�1=m; Re

�
��.j /

�
��.1� 1=m/: (1.8)

The widely believed generalized Ramanujan and Selberg conjectures for auto-
morphic L-functions state that the bounds in (1.8) hold with 1� 1=m replaced by 0.
While these conjectures are still open, the weak bounds in (1.8) are known both for
the L-functions associated to automorphic representations and their Rankin–Selberg
convolutions. We could also weaken (1.8) further by replacing 1�1=m with 1� ı for
some ı > 0, but the present formulation is convenient and includes all L-functions of
interest to us.

1.4. Rankin–Selberg and Brun–Titchmarsh bounds on ��.n/
Our final hypothesis prescribes two mild average bounds on j��.n/j, which can be
verified by Rankin–Selberg theory for the class of L-functions associated to automor-
phic representations and their Rankin–Selberg convolutions. First, we assume that for
all � > 0,

1X
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�
Cm logC.�/CO.m2/: (1.9)

Second, we assume that, for all T � 1,X
x<n�xe1=T
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�
C.�/T

�144m3
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There is considerable latitude in formulating the conditions (1.9) and (1.10); for
example, we could have chosen the range for x in (1.10) differently. The specific
choice made here is based on the applicability of these conditions to automorphic
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L-functions. When T is of constant size, the criterion (1.10) may be viewed as a
Chebyshev-type estimate for j�.n/j (generalizing

P
n�xƒ.n/� x), while for larger

T the criterion (1.10) is an analogue of the classical Brun–Titchmarsh inequalityX
x<n�xCh

ƒ.n/�� h; for all x � h� x�: (1.11)

We denote by S.m/ the class of L-functions satisfying the properties laid out in
articles 1.1 to 1.4 above; see (1.1)–(1.10). Before stating our results, we introduce the
quantity

N�.�;T / WD #
®
	D ˇC i
 W L.	;�/D 0;ˇ > �; j
 j � T

¯
; (1.12)

which arises in the study of “zero density estimates.”

THEOREM 1.1
If L.s;�/ is an L-function in the class S.m/ and 0� ı < 1=2, then

log
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C 2 log
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ˇ̌
CO.m2/:

Theorem 1.1 adds to a long line of investigations relating the size of L-functions
to the distribution of their zeros. For example, it is well known that the generalized
Riemann hypothesis (GRH) implies the generalized Lindelöf hypothesis. One could
weaken the assumption of the GRH, and establish (as Backlund did originally for
�.s/) that if almost all the zeros of the L-function up to height 1 are in the region
Re.s/ < 1=2C �, then the Lindelöf bound L.1=2;�/� C.�/� would follow. In con-
trast, Theorem 1.1 states that the more modest assumption that not too many of the
zeros of L.s;�/ are very close to the line Re.s/D 1 leads to a subconvex bound for
L.1=2;�/ (which is a modest form of the Lindelöf bound). For recent related work in
the context of character sums and zeros of Dirichlet L-functions, see [12]. The proof
of Theorem 1.1 is a refinement of an argument of Heath-Brown [13] to prove sharp
convexity bounds for L-values.

To obtain from Theorem 1.1 a genuine subconvexity bound of the form
L.1=2;�/� C.�/1=4�ı for some ı > 0, we would need a zero density estimate
of the form N�.1� ı; 6/ � 10

�4 logC.�/, which we are unable to establish for any
fixed ı > 0. However, one can establish a “log-free” zero density estimate which will
permit values of ı of size .log logC.�//= logC.�/. This will then lead to the weak
subconvexity bound where a power of logC.�/ is saved over the convexity bound.
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THEOREM 1.2
Let L.s;�/ 2 S.m/ and T � 1. For all 1=2� � � 1,

N�.�;T /�m

�
C.�/T

�107m3.1��/
:

Log-free zero density estimates have a long history, going back to Linnik’s pio-
neering work on the least prime in arithmetic progressions. Our proof of Theorem 1.2
follows an argument of Gallagher, based on Turán’s power sum method. A key feature
is the formulation of hypotheses (1.9) and (1.10), which are L1-bounds that can be
verified for L-functions associated to automorphic representations and their Rankin–
Selberg convolutions. Thus, Theorem 1.2 applies to a larger class of L-functions
than the earlier log-free zero density estimates established by (for example) Kowalski
and Michel [18], Motohashi [24], Akbary and Trudgian [1], and Lemke Oliver and
Thorner [19]. We have not made any attempt to optimize the exponent 107m3, but
our argument does not seem to yield an exponent independent of m.

Combining Theorem 1.1 and Theorem 1.2, we deduce the following bound for
L.1=2;�/.

COROLLARY 1.3
Let L.s;�/ 2 S.m/. Then

ˇ̌
L.1=2;�/

ˇ̌
�m

ˇ̌
L.3=2;�/

ˇ̌2 C.�/1=4

.logC.�//1=.1017m3/
:

In the above corollary, one should expect the term jL.3=2;�/j (which is evalu-
ated in the region of absolute convergence) to be bounded, in which case the corollary
furnishes a weak subconvexity bound. The boundedness of jL.3=2;�/j would follow,
for example, from a stronger version of assumption (1.8), and we shall check that this
holds for automorphic L-functions. For Rankin–Selberg convolutions of automorphic
representations, we cannot give a satisfactory bound for the L-value at 3=2 in com-
plete generality. Compared to the work in [29], Corollary 1.3 extends considerably
the class of L-functions for which a weak subconvexity bound may be established,
but the power of logC.�/ saved is smaller than in [29].

2. Applications to automorphic L-functions
In this section, we describe how the framework and results described in Section 1
apply to automorphic L-functions. We restrict attention to automorphic represen-
tations over Q, and we let A.m/ denote the set of all cuspidal automorphic rep-
resentations of GLm over Q with unitary central character. Here we give a brief
description of the analytic properties of the standard L-functions associated to such
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automorphic representations. Our goal is twofold: we wish to show that elements of
A.m/ give rise to L-functions in the class S.m/, and also that if �1 2 A.m1/ and
�2 2A.m2/ then the Rankin–Selberg L-function L.s;�1 � �2/ fits into the frame-
work of S.m1m2/. For proofs and further discussion of the properties that we need,
we refer to [11], [15], [23], or the surveys in Michel [22, Lecture 1] or Brumley [5,
Section 1].

Properties 1.1 to 1.3 listed in Section 1 follow from the standard theory of auto-
morphic forms, while Property 1.4 will require further discussion. Thus, given � 2
A.m/, its standard L-function L.s;�/ has a Dirichlet series, Euler product, and sat-
isfies a functional equation, exactly as described in (1.1) to (1.6). Note also that heree� denotes the representation which is contragredient to � . Concerning Property 1.3,
for � 2A.m/, it is known thatˇ̌

˛j;�.p/
ˇ̌
� p�m ;

ˇ̌
Re
�
��.j /

�ˇ̌
� 
m; (2.1)

where


m D

8̂̂
<
ˆ̂:
0 if mD 1,

7=64 if mD 2,

1=2� 1=.m2C 1/ if m� 3.

(2.2)

The bounds follow from the work of Luo, Rudnick, and Sarnak [21] for m � 3 and
Kim and Sarnak [16, Appendix 2] for mD 2 in the unramified cases. The ramified
cases are handled by Müller and Speh [25, Proposition 3.3] for m � 3 and Brumley
and Blomer [3] formD 2. The generalized Ramanujan and Selberg conjectures assert
that 
m may be taken as 0 in (2.1).

Now we turn to Rankin–SelbergL-functions. If �1 2A.m1/ and �2 2A.m2/ are
two automorphic representations, then the Euler product and Dirichlet series expan-
sions of the Rankin–Selberg L-function L.s;�1 � �2/ are given by
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Here we may index the parameters ˛j1;j2;�1��2.p/ in such a way that, for all p �

N�1N�2 , one has

˛j1;j2;�1��2.p/D ˛j1;�1.p/˛j2;�2.p/: (2.3)

At the archimedean place, we write

L1.s;�1 � �2/DN
s=2
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��m1m2s=2
m1Y
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�
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If both �1 and �2 are unramified at infinity, one may write

��1��2.j1; j2/D ��1.j1/C��2.j2/: (2.5)

See Lemma 2.1 below for a complete description of ��1��2.j1; j2/ in the general
case. As part of the Langlands functoriality conjectures, one expects that �1 � �2
corresponds to an automorphic representation of GL.m1m2/ (not necessarily cuspi-
dal), but this remains unknown, apart from the work of Ramakrishnan [26] in the case
m1 Dm2 D 2 and the work of Kim and Shahidi [17] in the case m1 D 2 and m2 D 3.

Properties 1.1 and 1.2 may thus be verified for Rankin–Selberg L-functions. As
for Property 1.3, using (2.1) and (2.2), and proceeding as in [27, Appendix] (see also
[4, Section 3] and [5, Section 1]), we obtain for all primes p,ˇ̌

˛j1;j2;�1��2.p/
ˇ̌
� p�m1C�m2 ; Re

�
��1��2.j1; j2/

�
��
m1 � 
m2 : (2.6)

The reader may also consult the explicit description ofL1 given in Lemma 2.1 below,
and the explicit description of Lp given by (A.6) in the Appendix.

So far we have discussed how automorphic L-functions and Rankin–Selberg L-
functions satisfy Properties 1.1 and 1.3 of Section 1. To facilitate our discussion of
Property 1.4, we require two lemmas.

LEMMA 2.1
If �1 2A.m1/ and �2 2A.m2/, then

C.�1 � �2/� e
O.m1m2/C.�1/

m2C.�2/
m1 ;

and

C.�1 �e�1/m22C.�2 �e�2/m21 � eO..m1m2/2/C.�1 � �2/4m1m2 :
Proof
We write � 2A.m/ and � 0 2A.m0/ instead of �1 2A.m1/ and �2 2A.m2/ to avoid
having too many subscripts. Let

K� D

mY
jD1

�
1C

ˇ̌
��.j /

ˇ̌�
(2.7)

so that C.�/DN�K� . For a prime p, let ordp.N�/ be the exponent of p in the prime
factorization of N� ; in particular, ordp.N�/D 0 if and only if p �N� . Bushnell and
Henniart proved that (see [6, Theorem 1] or [7, Corollary C])

ordp.N��� 0/�m
0 �ordp.N�/Cm �ordp.N� 0/�min

®
ordp.N�/;ordp.N� 0/

¯
; (2.8)
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and also that (see [7, Corollary B])

ordp.N��� 0/

m0m
�
1

2

�ordp.N��e�/
m2

C
ordp.N� 0�e� 0/

.m0/2

�
:

These bounds imply
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and N��� 0 �N

m0
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��e�N
m
2m0

� 0�e� 0 :

We require corresponding bounds for K��� 0 . Brumley [14, Appendix] proved
that

K��� 0 � e
O.m0m/Km

0

� K
m
� 0 :

It remains to establish the bound

K��e�K� 0�e� 0 � eO..m0m/2/K4m0m��� 0 : (2.9)

In order to prove (2.9) regardless of the ramification at infinity, we use the
archimedean case of the local Langlands correspondence as described by Müller and
Speh [25, Proof of Lemma 3.1, F D R]. We give a brief account of the archimedean
factors. Langlands proved that there exist collections of irreducible representations
¹'iºi2I and ¹'0j ºj2J of the Weil group WR such that �1 and � 01 correspond to the
direct sums

L
i2I 'i and

L
j2J '

0
j , respectively. Each irreducible representation '

of WR is of dimension 1 or 2; furthermore, one has the factorizations

L1.s;�/D
Y
i2I

L.s;'i /; L1.s;�
0/D

Y
j2J

L.s;'0j /;

L1.s;� � �
0/D

Y
i2I
j2J

L.s;'i ˝ '
0
j /:

To describe further the L-functions above, it is convenient to define �R.s/ D

��s=2�.s=2/ and �C.s/D �R.s/�R.sC 1/D 2.2�/
�s�.s/.

(1) If ' is one-dimensional, then there exist � 2C and " 2 ¹0; 1º such that

L.s;'/D �R.sC �C "/:

We define K.'/D 1C j�C "j.
(2) If ' is two-dimensional, then there exist k 2 Z and � 2C such that

L.s;'/D �C

�
sC �C jkj=2

�
:

We define K.'/D .1C j�C jkj=2j/.1C j�C jkj=2C 1j/.
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In both of the above cases, Rudnick and Sarnak [27, Appendix A.3] proved thatˇ̌
Re.�/

ˇ̌
< 1=2: (2.10)

Müller and Speh also describe the L-functions associated to the tensor products
' ˝ '0.
(1) If both ' and '0 are one-dimensional, then ' ˝ '0 is one-dimensional and

L.s;' ˝ '0/D �R.sC �C �
0C "'˝'0/;

where "'˝'0 2 ¹0; 1º and "'˝'0 	 " C "0.mod 2/. In this case, we define
K.' ˝ '0/D 1C j�C �0C "'˝'0 j.

(2) If ' is one-dimensional and '0 is two-dimensional, then ' ˝ '0 is two-
dimensional and

L.s;' ˝ '0/D �C

�
sC �C �0C jk0j=2

�
:

In this case, we define

K.' ˝ '0/D
�
1C j�C �0C jk0j=2j

��
1C j�C �0C jk0j=2C 1j

�
:

(3) Suppose that ' and '0 are two-dimensional. Then ' ˝ '0 is the direct sum of
two two-dimensional representations and

L.s;' ˝ '0/D �C

�
sC �C �0C jkC k0j=2

�
�C

�
sC �C �0C jk � k0j=2

�
:

In this case, we define

K.' ˝ '0/D
�
1C j�C �0C jkC k0j=2j

��
1C j�C �0C jkC k0j=2C 1j

�
�
�
1C j�C �0C jk � k0j=2j

��
1C j�C �0C jk � k0j=2C 1j

�
:

These definitions give us a complete description of

K��� 0 D
Y
i2I
j2J

K.'i ˝ '
0
j /: (2.11)

We now address (2.9). First, assume that both � and � 0 are unramified at infinity,
in which case (2.5) holds. Suppose z1, z2,w1, andw2 are complex numbers all having
real part ��1=2. We claim that

.1C jz1Cw1j/.1C jz2Cw2j/

.1C jz1C z2j/.1C jz1Cw2j/.1C jw1C z2j/.1C jw1Cw2j/
� C (2.12)

for some absolute constant C . The triangle inequality gives
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1C jz1Cw1j D
ˇ̌
1C z1C z2 � .z2 �w1/

ˇ̌
� 1C jz1C z2j C jz2 �w1j

� 1C jz1C z2j C jz2Cw1j;

where the last estimate follows because the real parts of z1 and w1 are both bounded
below by �1=2 so that jz2 � w1j � O.1/ C jz2 C w1j. In the same way one sees
that 1C jz1 C w1j � 1C jw1 C w2j C jz1 C w2j, and two similar inequalities for
1Cjz2Cw2j hold. Multiplying these four estimates together and taking square roots
yields (2.12).

Apply (2.12) with z1 D ��.i1/, w1 D ��.i2/ and z2 D �� 0.j1/, w2 D �� 0.j2/,
where 1� i1, i2 �m and 1� j1, j2 �m0. Taking the product over all the inequalities
so obtained, we arrive at (2.9) in the case when both � and � 0 are unramified at
infinity.

If at least one of � and � 0 is ramified at infinity, then by (2.11), the bound (2.9)
is equivalent to the bound

Y
i12I
j12J

Y
i22I
j22J

K.'i1 ˝e'i2/K.'0j1 ˝e'0j2/
K.'i1 ˝ '

0
j1
/K.'i1 ˝ '

0
j2
/K.'i2 ˝ '

0
j1
/K.'i2 ˝ '

0
j2
/
� eO..m

0m/2/:

(2.13)

If each of 'i1 , 'i2 , '0j1 , and '0j2 is one-dimensional, then we are led to the quotient

.1C j�i1 C �i2 C "'i1˝e'i2 j/
.1C j�i1 C �

0
j1
C "'i1˝'

0
j1

j/.1C j�i1 C �
0
j2
C "'i1˝'

0
j2

j/

�
.1C j�0j1 C �

0
j2
C "'0

j1
˝e'0

j2

j/

.1C j�i2 C �
0
j1
C "'i2˝'

0
j1

j/.1C j�i2 C �
0
j2
C "'i2˝'

0
j2

j//
:

Recall that "'˝'0 2 ¹0; 1º. In light of (2.10), this quotient is a mild perturbation of
(2.12), and we conclude that it is absolutely bounded. Proceeding similarly for the
other cases, we observe that the product in (2.13) is a product of mild perturbations
of (2.12), each of which is absolutely bounded. This proves (2.13).

LEMMA 2.2
Let �1 2A.m1/ and �2 2A.m2/. With the notation

logL.s;�1 � �2/D
1X
nD2

��1��2.n/ƒ.n/

ns logn
;

for all prime powers n, we have
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ˇ̌
��1��2.n/

ˇ̌
�
p
��1�e�1.n/��2�e�2.n/� 12

�
��1�e�1.n/C ��2�e�2.n/

�
:

Further, for any � 2A.m/, we have

ˇ̌
��.n/

ˇ̌
�
p
���e�.n/� 1

2

�
1C ���e�.n/�:

If n is the power of an unramified prime p, then from (2.3) one may see that
��1��2.n/ D ��1.n/��2.n/, and that ��1�e�1.n/ D j��1.n/j2 and ��2�e�2.n/ D
j��2.n/j

2. In this situation, the bound of Lemma 2.2 follows readily by Cauchy–
Schwarz. The point of the lemma is that the same bound applies in the ramified case
also. We thank Farrell Brumley for supplying a proof of this fact in the Appendix.

We now discuss Property 1.4 with relation to automorphic L-functions, starting
with the estimate (1.9). In the next section, we shall establish the following lemma,
from which we can deduce (1.9).

LEMMA 2.3
If � 2A.m/ is a cuspidal automorphic representation then for any � > 0

1X
nD1

���e�.n/ƒ.n/
n1C�

�
1

�
C
1

2
logC.� �e�/CO.m2/: (2.14)

Verifying (1.9) for � 2A.m/

Applying Lemma 2.2, we find that

1X
nD1

j��.n/jƒ.n/

n1C�
�
1

2

� 1X
nD1

�
1C ���e�.n/�ƒ.n/

n1C�

�
�
1

�
C
1

4
logC.� �e�/CO.m2/;

by Lemma 2.3. Now applying Lemma 2.1, we see that logC.� �e�/� 2m logC.�/,
and therefore

1X
nD1

j��.n/jƒ.n/

n1C�
�
1

�
Cm logC.�/CO.m2/:

This verifies (1.9) for cuspidal automorphic representations.

Verifying (1.9) for �1 � �2
If �1 2A.m1/ and �2 2A.m2/ are two cuspidal automorphic representations, then
from Lemma 2.2 and Lemma 2.3, we see that
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1X
nD1

j��1��2.n/jƒ.n/

n1C�

�
1

2

1X
nD1

�
��1�e�1.n/C ��2�e�2.n/

�ƒ.n/
n1C�

�
1

�
C
1

4
logC.�1 �e�1/C 1

4
logC.�2 �e�2/CO.m21Cm22/:

Appealing now to Lemma 2.1, we conclude that, for any � > 0,

1X
nD1

j��1��2.n/jƒ.n/

n1C�
�
1

�
Cm1m2 logC.�1 � �2/CO

�
.m1m2/

2
�
:

This completes our verification of (1.9) for the Rankin–Selberg convolution �1 � �2.

In Section 6, we will prove the following theorem, from which we will deduce
(1.10) for L.s;�1/ and L.s;�1 � �2/.

THEOREM 2.4
Let � 2A.m/ be a cuspidal automorphic representation. If x�m C.��e�/36m2 and
1� T � x1=9m

2
, then X

x<n�xe1=T

���e�.n/ƒ.n/�m

x

T
:

Deducing (1.10) for L.s;�/
By Lemma 2.2

X
x<n�xe1=T

ˇ̌
��.n/

ˇ̌
ƒ.n/�

1

2

X
x<n�xe1=T

�
1C ���e�.n/�ƒ.n/: (2.15)

By Theorem 2.4, the second term in the right-hand side above contributes � x=T ,
provided 1� T � x1=9m

2
and x � C.��e�/36m2 . In view of Lemma 2.1, it suffices to

assume that x � .C.�/T /72m
3
. For the same range of x and T , the Brun–Titchmarsh

inequality (1.11) bounds the first term in the right side of (2.15) by � x=T , which
completes our deduction.

Deducing (1.10) for L.s;�1 � �2/
This follows similarly, appealing to Lemma 2.1, Lemma 2.2, and Theorem 2.4.
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Gathering together the observations made so far, we arrive at the following propo-
sition.

PROPOSITION 2.5
If � 2 A.m/ is a cuspidal automorphic representation, then L.s;�/ is in the class
S.m/. If �1 2 A.m1/ and �2 2 A.m2/ are two cuspidal automorphic representa-
tions, then L.s;�1 � �2/ is in the class S.m1m2/.

Therefore the results given in Section 1 apply in the context of automorphic L-
functions and yield the following corollaries.

COROLLARY 2.6
If � 2A.m/ is a cuspidal automorphic representation, then for all T � 1 and 1=2�
� � 1 we have

N�.�;T /�m

�
C.�/T

�107m3.1��/
:

Further, if �1 2A.m1/ and �2 2A.m2/ are two cuspidal automorphic representa-
tions, then for all T � 1 and 1=2� � � 1 we have

N�1��2.�;T /�m1;m2

�
C.�1 � �2/T

�107m3
1
m3
2
.1��/

:

Apart from the exponent, this corollary gives a general result which in special
situations (or with additional hypotheses) was given by a number of authors (see
Kowalski and Michel [18], Motohashi [24], Akbary and Trudgian [1], and Lemke
Oliver and Thorner [19]).

As a consequence of Corollary 1.3 we obtain the following weak subconvexity
results for automorphic L-functions.

COROLLARY 2.7
If � 2A.m/ is a cuspidal automorphic representation, then

ˇ̌
L.1=2;�/

ˇ̌
�m

C.�/1=4

.logC.�//1=.1017m3/
:

If �1 2A.m1/ and �2 2A.m2/ are two cuspidal automorphic representations then

ˇ̌
L.1=2;�1 � �2/

ˇ̌
�m1;m2

ˇ̌
L.3=2;�1 � �2/

ˇ̌2 C.�1 � �2/
1=4

.logC.�1 � �2//1=.10
17m3

1
m3
2
/
:

In the first part of Corollary 2.7, we dropped the term jL.3=2;�/j2. This is per-
missible because (2.1) and (2.2) give j��.n/j � n�m , so the bound jL.3=2;�/j �m 1
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follows from (1.3). For the general Rankin–Selberg L-function L.s;�1 ��2/, we are
not able to obtain the bound jL.3=2;�1 � �2/j � 1—without additional hypotheses,
the best known bound for jL.3=2;�1��2/j follows from Theorem 2 of [20], and this
is larger than any power of logC.�1 � �2/.

Nevertheless, in a number of special situations the term jL.3=2;�1 � �2/j2 may
be dropped, and we give a few such examples.

Example 1
If either �1 or �2 satisfies the Ramanujan conjecture, then using (2.1) and (2.2), we
obtain j��1��2.n/j � n1=2�ı for some ıD ı.m1;m2/ > 0. Therefore,

jL.3=2;�1 � �2/j �m1;m2 1

by (1.3).

Example 2
Since 
2 may be taken as 7=64 (see (2.2)), if �1 and �2 are both cuspidal automorphic
forms on GL.2/, then jL.3=2;�1 � �2/j � 1 and

ˇ̌
L.1=2;�1 � �2/

ˇ̌
�

C.�1 � �2/
1=4

.logC.�1 � �2//1=10
19
:

Alternatively, here we could use the work of Ramakrishnan [26] which shows that
�1 � �2 is an isobaric sum of cuspidal automorphic representations of dimension at
most 4, and then use our bound for each constituent.

Example 3
If �1 and �2 are cuspidal automorphic representations in A.2/, then Sym2�1 is an
automorphic representation on GL.3/ (by the work of Gelbart and Jacquet [10]).
Since 
2 D 7=64, we find that j�Sym2�1��2

.n/j � n21=64, and so

jL.3=2;Sym2�1 � �2/j � 1:

Therefore, if Sym2�1 is cuspidal, then

ˇ̌
L.1=2;Sym2�1 � �2/

ˇ̌
�

C.Sym2�1 � �2/
1=4

.logC.Sym2�1 � �2//1=10
20
:

The bound also applies when Sym2�1 is not cuspidal, upon decomposing this and
using our result for each component. Similarly, one can obtain

ˇ̌
L.1=2;Sym2�1 � Sym2�2/

ˇ̌
�

C.Sym2�1 � Sym2�2/
1=4

.logC.Sym2�1 � Sym2�2//1=10
20
:



WEAK SUBCONVEXITY WITHOUT A RAMANUJAN HYPOTHESIS 1245

Example 4
If �1 and �2 are in A.2/, then Sym3�1 is an automorphic form on GL.4/ by the
work of Kim and Shahidi [17]. As in Example 3, we can obtain a weak subconvexity
bound for L.1=2;Sym3�1 � �2/.

Example 5
While we have formulated our results for the L-values at the central point 1=2, with
trivial modifications the results apply equally to any point 1=2C i t on the critical
line. If �1 in A.m1/ and �2 in A.m2/ are considered fixed, then in the t -aspect our
work gives the weak subconvexity bound

ˇ̌
L.1=2C i t; �1 � �2/

ˇ̌
��1;�2

.2C jt j/m1m2=4

.log.2C jt j//1=.10
17m3

1
m3
2
/
:

Here we have used the absolute convergence of L.s;�1 � �2/ for Re.s/ > 1 (due
to Jacquet, Piatetski-Shapiro, and Shalika [15]) to bound jL.3=2C i t; �1 � �2/j by
��1;�2 1.

3. Preliminary lemmas
Let L.s;�/ 2 S.m/. Since the Euler product expansion of L.s;�/ converges abso-
lutely and L1.s;�/¤ 0 for Re.s/ > 1, there are no zeros of L.s;�/L1.s;�/ in this
region. By the functional equation, the same must be true in the region Re.s/ < 0.
Thus all of the zeros of L.s;�/L1.s;�/ lie in the critical strip 0 � Re.s/ � 1; we
call these zeros the nontrivial zeros of L.s;�/. On the other hand, L.s;�/might have
a zero corresponding to a pole of L1.s;�/; we call these zeros the trivial zeros of
L.s;�/. Because the Selberg eigenvalue conjecture is not yet resolved for all L.s;�/,
we might have trivial zeros in the critical strip. Unless specifically mentioned other-
wise, we will always use 	D ˇC i
 to denote a nontrivial zero of L.s;�/. Note that
neither 0 nor 1 can be a nontrivial zero of L.s;�/.

By hypothesis, sr .1 � s/rL.s;�/L1.s;�/ is an entire function of order 1, and
thus has a Hadamard product representation

sr.1� s/rL.s;�/L1.s;�/D e
a�Cb�s

Y
�

�
1�

s

	

�
es=�; (3.1)

where 	 runs through the nontrivial zeros ofL.s;�/. By taking the logarithmic deriva-
tive of both sides of (3.1), we see thatX

�

� 1

s � 	
C
1

	

�
C b� D

L0

L
.s;�/C

L01
L1

.s;�/C
r

s
C

r

s � 1
: (3.2)

Using (1.5) and the fact that sr.1� s/rL.s;�/L1.s;�/ is an entire function of order
1, one can prove that Re.b�/ equals the absolutely convergent sum �

P
� Re.	�1/. It
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follows that

X
�

Re
� 1

s � 	

�
D Re

�L0
L
.s;�1/C

L0

L
.s;�/C

r

s � 1
C
r

s

�
: (3.3)

LEMMA 3.1
We have

N�.0; 6/D #
®
	D ˇC i
 W j
 j � 6

¯
�
4

15
logC.�/CO.m/: (3.4)

Further, for any real number t , and any 0 < �� 1, we have

X
�

1C �� ˇ

j1C �C i t � 	j2
� 2m logC.�/Cm log

�
2C jt j

�
C 2

m

�
CO.m2/; (3.5)

so that

#
®
	 W
ˇ̌
	� .1C i t/

ˇ̌
� �

¯
� 10m� logC.�/C 5m� log

�
2C jt j

�
CO.m2/: (3.6)

Proof
These results all follow from the Hadamard formula (3.3). We start with (3.5) and
(3.6). Apply (3.3) with s D 1C �C i t . The left-hand side of (3.3) is

X
�

.1C �� ˇ/

.1C �� ˇ/2C .t � 
/2
�
1

5�
#
®
	 W
ˇ̌
	� .1C i t/

ˇ̌
� �

¯
: (3.7)

The right-hand side of (3.3) is

�
1

2
logN� C

1

2

mX
jD1

Re
� 0

�

�1C �C i t C��.j /
2

�
C

1X
nD1

j��.n/jƒ.n/

n1C�
C
r

�
C r;

which after using (1.9), Stirling’s formula, and the bound r �m, is

� 2m logC.�/Cm log
�
2C jt j

�
C 2

m

�
CO.m2/:

From this estimate and (3.7), we conclude (3.5) and (3.6).
To prove (3.4), we begin by applying (3.3) with s D � � 3. This gives

X
�

.� � ˇ/

.� � ˇ/2C 
2
D logC.�/CO.m/CO

� 1X
nD1

j��.n/jƒ.n/

n3

�

D logC.�/CO.m/:

Applying the above with � D 3 and � D 4, we obtain
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X
�

� .3� ˇ/

.3� ˇ/2C 
2
�
13

15

.4� ˇ/

.4� ˇ/2C 
2

�
D

2

15
logC.�/CO.m/:

A small calculation shows that when j
 j> 6 the terms on the left-hand side above are
negative, and when j
 j � 6, the corresponding term is � 1=.3� ˇ/� 1=2. From this,
(3.4) follows.

We end this section by establishing Lemma 2.3.

Proof of Lemma 2.3
The proof is standard, based on the Hadamard factorization formula (see [19, Lemma
3.5]). Rearranging the expression for the logarithmic derivative of the Hadamard fac-
torization formula for L.s;� �e�/ (see (3.3)), we must bound

Re
�
�
L0

L
.1C �;� �e�/�

D
1

�
C

1

1C �
CRe

�L01
L1

.1C �;� �e�/�� X
�¤0;1

Re
� 1

1C �� 	

�
;

where 	D ˇC i
 runs through the zeros of s.1� s/L.s;� �e�/L1.s;� �e�/. Since
0 < ˇ < 1, we have

Re
� 1

1C �� 	

�
D

1C �� ˇ

j1C �� 	j2
> 0;

so that the contribution from zeros is negative and may be discarded. Moreover, by
Stirling’s formula and (1.8),

Re
�L01
L1

.1C �;� �e�/�D� X
j1C�C���e� .j /j<1

Re
� 1

1C �C���e�.j /
�

C
1

2
logC.� �e�/CO.m2/

�
1

2
logC.� �e�/CO.m2/:

Therefore,

1X
nD1

���e�.n/ƒ.n/
n1C�

�
1

�
C
1

2
logC.� �e�/CO.m2/;

completing our proof.
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4. Proof of Theorem 1.2
We prove the log-free zero density estimate of Theorem 1.2 by following Gallagher’s
treatment in [9], which is based on Turán’s power sum method. For the sake of com-
pleteness, we show that the axiomatic framework given in (1.1) to (1.10) is sufficient
to establish such a log-free zero density estimate.

Let k � 1 be a natural number, and let � be a real number with 1= log.C.�/T / <
� � 1=.200m/. Let � be a real number with T � j� j � 200�. Differentiating (3.2) k
times we find, with s D 1C �C i� ,

�L0
L
.s;�/

�.k/
C
� mX
jD1

1

2

� 0

�

�sC��.j /
2

��.k/
C .�1/kkŠ

� r

skC1
C

r

.s � 1/kC1

�

D .�1/kkŠ
X
�

1

.s � 	/kC1
:

Since Re.��.j //��1C 1=m, we obtain

1

2

�� 0
�

�sC��.j /
2

��.k/
D
.�1/kC1kŠ

2kC1

1X
nD0

1

.nC .sC��.j //=2/kC1
�mkC1kŠ;

and, since j� j � 200� and r �m, clearly

.�1/kkŠ
� r

skC1
C

r

.s � 1/kC1

�
�

mkŠ

.200�/kC1
:

Thus, since m� 1=.200�/,

.�1/k

kŠ

�L0
L
.s;�/

�.k/
DO

� m

.200�/kC1

�
C
X
�

1

.s � 	/kC1
: (4.1)

Applying (3.5), we see that

ˇ̌̌ X
�

js��j�200�

1

.s � 	/kC1

ˇ̌̌
�

1

.200�/k�1

X
�

1

js � 	j2
�

1

.200�/k�1
1

�

X
�

.1C �� ˇ/

js � 	j2

�
1

.200�/k

�
m log

�
C.�/T

�
C
m

�

�
�
m log.C.�/T /

.200�/k
:

Since �� 1= log.C.�/T /, using this estimate in (4.1), we conclude that

.�1/k

kŠ

�L0
L
.s;�/

�.k/
DO

�m log.C.�/T /

.200�/k

�
C

X
�

js��j�200�

1

.s � 	/kC1
: (4.2)
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Equation (4.2) forms the starting point for the proof of Theorem 1.2. Using
Turán’s power sum method in [28], we shall obtain a lower bound for the right-hand
side of (4.2) for a suitable k (which will eventually be of size about � log.C.�/T /),
provided there is a zero 	 with j1C i� � 	j � �. On the other hand, we shall bound
from above the left-hand side of (4.2) in terms of Dirichlet polynomials over prime
powers. The interplay of these bounds will yield the theorem. We start with the lower
bound, which will use the following result from Turán’s method (see the Theorem in
[28]).

LEMMA 4.1
Let z1; : : : ; z	 2C. If K � �, then there exists an integer k 2 ŒK; 2K� such that

jzk1 C � � � C z
k
	 j � .jz1j=50/

k :

LEMMA 4.2
Let � and � be real numbers with 1= log.C.�/T / < � � 1=.200m/ and 200� �
j� j � T . Suppose that L.s;�/ has a zero 	0 satisfying j	0 � .1C i�/j � �. If K >

d2000m� log.C.�/T /CO.m2/e, then one has (recall s D 1C �C i� )ˇ̌̌ X
�

js��j�200�

1

.s � 	/kC1

ˇ̌̌
�
� 1

100�

�kC1
;

for some integer k 2 ŒK; 2K�.

Proof
By (3.6) we see that there are at most 2000m� log.C.�/T /CO.m2/ zeros 	 satisfy-
ing js � 	j � 200�. By applying Lemma 4.1 with z1 there being 1=.s � 	0/, which is
� 1=.2�/ in size, the lemma follows.

We now proceed to the upper bound.

LEMMA 4.3
Let � and � be real numbers with 1= log.C.�/T / < � � 1=.200m/ and 200� �
j� j � T . Let K � 1 be a natural number, and put N0 D exp.K=.300�// and N1 D
exp.40K=�/. With s D 1C �C i� , we have for all K � k � 2K ,ˇ̌̌�kC1
kŠ

�L0
L
.s;�/

�.k/ ˇ̌̌
� �2

Z N1

N0

ˇ̌̌ X
N0�n�u

��.n/ƒ.n/

n1Ci


ˇ̌̌du
u
CO

�m� log.C.�/T /

.110/k

�
:

Proof
By computing the kth derivative of the Dirichlet series for L

0

L
.s;�/, we find
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ˇ̌̌�k
kŠ

�L0
L
.s;�/

�.k/ ˇ̌̌
D
ˇ̌̌ 1X
nD1

��.n/ƒ.n/

n1C�Ci

.� logn/k

kŠ

ˇ̌̌
:

Put jk.u/ D e�uuk=kŠ, and split the sum over n into the ranges n 2 ŒN0;N1� and
n … ŒN0;N1�. For n … ŒN0;N1�, we estimate trivially using the triangle inequality, and
use partial summation in the range n 2 ŒN0;N1�. Thus, the above is

�
X

n…ŒN0;N1�

j��.n/jƒ.n/

n
jk.� logn/C

X
N0�n�N1

j��.n/jƒ.n/

n
jk.� logN1/

C

Z N1

N0

ˇ̌̌ d
du
jk.� logu/

ˇ̌̌ˇ̌̌ X
N0�n�u

��.n/ƒ.n/

n1Ci


ˇ̌̌
du: (4.3)

Now j d
du
.jk.� logu//j D j � jk.� logu/ C jk�1.� logu//j.�=u/ � �=u, and so the

integral in (4.3) is

� �

Z N1

N0

ˇ̌̌ X
N0�n�u

��.n/ƒ.n/

n1Ci


ˇ̌̌du
u
:

Suppose that n � N0, in which case � logn � K=300. Since k 2 ŒK; 2K� and
kŠ� .k=e/k , we observe that

jk.� logn/D
n��.� logn/k

kŠ
� n��

�e� logn

k

�k
� n��=2.110/�k:

Next suppose that n � N1, in which case � logn � 40K . Since e�u=2uk=kŠ is
decreasing in the range u > 2k, we see that for n�N1

jk.� logn/D n��=2
e�

1
2
� logn.� logn/k

kŠ
� n��=2

e�20K.40K/k

kŠ

� n��=2e�20K
�40eK

k

�k
� n��=2.110/�k:

The last estimate also implies that, for the sum over N0 � n � N1, one has
jk.� logN1/� n��=2.110/�k . Therefore the sums appearing in (4.3) are bounded
by

�
1

.110/k

1X
nD1

j��.n/jƒ.n/

n1C�=2
�
m log.C.�/T /

.110/k

using (1.9).

We now combine Lemma 4.2 and Lemma 4.3 to prove Theorem 1.2.
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Proof of Theorem 1.2
We combine Lemma 4.2 and Lemma 4.3 to detect zeros near the line � D 1. Let �
and � be real numbers with 1= log.C.�/T / < �� 1=.200m/ and 200�� j� j � T . In
keeping with Lemma 4.2, we suppose that

K D 105m3� log
�
C.�/T

�
CO.m2/ (4.4)

is sufficiently large, and put (as in Lemma 4.3) N0 D exp.K=.300�// and N1 D
exp.40K=�/. Suppose that L.s;�/ has a zero 	0 satisfying j1C i� � 	0j � �. Since
K satisfies (4.4) and is sufficiently large, combining (4.2) with Lemma 4.2 we obtain,
for some k 2 ŒK; 2K�,

ˇ̌̌�kC1
kŠ

�L0
L
.s;�/

�.k/ ˇ̌̌
�
� 1

100

�kC1�
1�O

��m log.C.�/T /

2k

��
�

1

2.100/kC1
:

On the other hand, by Lemma 4.3, we obtain (for all k 2 ŒK; 2K�)

ˇ̌̌�kC1
kŠ

�L0
L
.s;�/

�.k/ ˇ̌̌
� �2

Z N1

N0

ˇ̌̌ X
N0�n�u

��.n/ƒ.n/

n1Ci


ˇ̌̌du
u
C

1

4.100/kC1
;

where we bounded the error term O..110/�k.m� log.C.�/T /// in Lemma 4.3 by
1
4
.100/�k�1. Combining these two estimates, we conclude that if there is a zero 	0

with j1C i� � 	0j � �, then

1� 4.100/2KC1�2
Z N1

N0

ˇ̌̌ X
N0�n�u

��.n/ƒ.n/

n1Ci


ˇ̌̌du
u
:

Squaring the above estimate and using Cauchy–Schwarz, we obtain

1� .100/4K�4
�Z N1

N0

du

u

��Z N1

N0

ˇ̌̌ X
N0�n�u

��.n/ƒ.n/

n1Ci


ˇ̌̌2 du
u

�

� .101/4K�3
Z N1

N0

ˇ̌̌ X
N0�n�u

��.n/ƒ.n/

n1Ci


ˇ̌̌2 du
u
;

since log.N1=N0/� K=�. Because there are � m� log.C.�/T / zeros that satisfy
j1C i� � 	j � �, we may also recast the above estimate as (for 200�� j� j � T )

#¹	D ˇC i
 W ˇ � 1� �=2; j
 � � j � �=2º

m� log.C.�/T /

� 1014K�3
Z N1

N0

ˇ̌̌ X
N0�n�u

��.n/ƒ.n/

n1Ci


ˇ̌̌2 du
u
:
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Integrating both sides above over 200�� j� j � T , we conclude that

#
®
	D ˇC i
 W ˇ � 1� �=2; 200�� j
 j � T

¯
� 1014K�3m log

�
C.�/T

� Z T

�T

Z N1

N0

ˇ̌̌ X
N0�n�u

��.n/ƒ.n/

n1Ci


ˇ̌̌2 du
u
d�: (4.5)

We now work on bounding the right-hand side of (4.5), which is clearly

� 1014K�3m log
�
C.�/T

�
log.N1=N0/ max

u2ŒN0;N1�

�Z T

�T

ˇ̌̌ X
N0�n�u

��.n/ƒ.n/

n1Ci


ˇ̌̌2
d�
�

� 1024K�2m log
�
C.�/T

�
max

u2ŒN0;N1�

�Z T

�T

ˇ̌̌ X
N0�n�u

��.n/ƒ.n/

n1Ci


ˇ̌̌2
d�
�
: (4.6)

We bound the integral in the above display by an application of Plancherel, as in
Gallagher (see [9, Theorem 1]): for T � 1 and any sequence of complex numbers
¹anº

1
nD1, one has

Z T

�T

ˇ̌̌ 1X
nD1

ann
�it
ˇ̌̌2
dt� T 2

Z 1
0

ˇ̌̌ X
n2.w;we1=T �

an

ˇ̌̌2 dw
w
:

Applying Gallagher’s bound, we deduce that for any u 2 ŒN0;N1�,Z T

�T

ˇ̌̌ X
N0�n�u

��.n/ƒ.n/

n1Ci


ˇ̌̌2
d�� T 2

Z 1
0

ˇ̌̌ X
x<n�xe1=T

N0�n�N2

��.n/ƒ.n/

n

ˇ̌̌2 dx
x

� T 2
Z N1

N0=e

ˇ̌̌ X
x<n�xe1=T

ˇ̌
��.n/

ˇ̌
ƒ.n/

ˇ̌̌2 dx
x3
:

Appealing now to (1.10) (which applies because of (4.4)), we find that the above is

�m T
2

Z N1

N0=e

x2

T 2
dx

x3
�m

K

�
:

Using this in (4.6), we conclude that this quantity is bounded by

� 1024KK�m log
�
C.�/T

�
� 1054K :

Inserting the above bound in (4.5), and noting that there are� �m log.C.�/T /�
K zeros with ˇ > 1� �=2 and j
 j � 200� , we obtain

N�.1� �=2;T /� 1054K :
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This estimate implies our theorem in the range 1= log.C.�/T /� 1� � � 1=.400m/.
In the range 1� � � 1= log.C.�/T /, we note that

N�.�;T /�N�.1� 1= log.C.�/T /;T /:

In the range 1�� > 1=.400m/, the theorem is trivial as there are�mT log.C.�/T /
zeros with ˇ 2 .0; 1/ and j
 j � T .

5. Proof of Theorem 1.1 and Corollary 1.3
Let L.s;�/ 2 S.m/, and in proving the theorem, we may plainly suppose that
L.1=2;�/ ¤ 0. Our starting point is Heath-Brown’s argument to establish a sharp
convexity bound for L-functions. This begins with a variant of Jensen’s formula, con-
necting log jL.1=2;�/jwith zeros lying in the critical strip 0 < Re.s/ < 1. The Jensen
formula that we need is

log
ˇ̌
.1=2/rL.1=2;�/

ˇ̌
C

X
�DˇCi�
0<ˇ<1

log
ˇ̌̌
cot
��
2

�
	�

1

2

��ˇ̌̌

C
X

Re.�� .j //<0

log
ˇ̌̌
cot
��
2

�
��.j /C

1

2

��ˇ̌̌

D
1

2

Z 1
�1

log
ˇ̌
L.1C i t; �/L.it;�/t r.1� i t/r

ˇ̌ dt

cosh.�t/
: (5.1)

This may be established as in Heath-Brown [13], or applying [2, p. 207, Lemma 3.1]
with F.s/D .s � 1/rL.s;�/ and x D 1=2. The proof is by conformally mapping the
strip z D xC iy with 0 < x < 1 onto the unit disk j�j< 1 by means of the substitution
� D .e�iz � i/=.e�iz C i/, and then using the usual Jensen formula for the unit disc.

Now if z D xC iy is a complex number with jxj � 1=2, then a small calculation
gives

log
ˇ̌
cot.�z=2/

ˇ̌
D
1

2
log
�cosh.�y/C cos.�x/

cosh.�y/� cos.�x/

�
�

cos.�x/

cosh.�y/
; (5.2)

where the last inequality follows because 1
2

log..1C t /=.1 � t // � t for 1 > t � 0
by a Taylor expansion. From (5.2) and since Re.��.j // > �1, the terms
log j cot.�.��.j /C 1=2/=2/j appearing in (5.1) are all nonnegative. Bounding the
sum over zeros below using (5.2), we conclude that the left-hand side of (5.1) is at
least

log
ˇ̌
L.1=2;�/

ˇ̌
C

X
�DˇCi�
0<ˇ<1

sin.�ˇ/

cosh.�
/
: (5.3)
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Now we consider the right-hand side of (5.1). Using the functional equation to
connect L.it;�/ with L.1� i t;e�/, and then using Stirling’s formula, we obtain

log
ˇ̌
L.it;�/

ˇ̌
D log

ˇ̌
L.1� i t;e�/ˇ̌C 1

2
logN�

C

mX
jD1

log
ˇ̌̌�..1C�e�.j /� i t/=2/
�..��.j /C i t/=2/

ˇ̌̌
CO.m/

D log
ˇ̌
L.1C i t; �/

ˇ̌
C
1

2
logN�

C
1

2

mX
jD1

log
�
1C

ˇ̌
��.j /C i t

ˇ̌�
CO.m2/

� log
ˇ̌
L.1C i t; �/

ˇ̌
C
1

2
logC.�/C

m

2
log
�
1C jt j

�
CO.m2/:

Thus the right-hand side of (5.1) is bounded by

1

4
logC.�/C

Z 1
�1

�
log
ˇ̌
t rL.1C i t; �/

ˇ̌
C
m

4
log
�
1C jt j

�
CO.m2/

� dt

cosh.�t/

D
1

4
logC.�/CO.m2/C

Z 1
�1

log
ˇ̌
t rL.1C i t; �/

ˇ̌ dt

cosh.�t/
: (5.4)

Since jt rL.1C i t; �/j grows at most polynomially in jt j, and 1= cosh.�t/ decreases
exponentially in jt j, we may see thatZ 1

�1

log
ˇ̌
t rL.1C i t; �/

ˇ̌ dt

cosh.�t/

D lim
�!0C

Re
�Z 1
�1

log
�
t rL.1C �C i t; �/

� dt

cosh.�t/

�

D lim
�!0C

Re
� 1X
nD2

��.n/ƒ.n/

n1C� logn

Z 1
�1

n�it
dt

cosh.�t/

�
CO.m/:

NowZ 1
�1

n�it
dt

cosh.�t/
D

1

cosh..logn/=2/
D

2
p
nC 1=

p
n
D

2
p
n
CO

� 1

n3=2

�
;

and thereforeZ 1
�1

log
ˇ̌
t rL.1C i t; �/

ˇ̌ dt

cosh.�t/

D 2Re
� 1X
nD2

��.n/ƒ.n/

n3=2 logn

�
CO

� 1X
nD2

j��.n/jƒ.n/

n5=2 logn
Cm

�
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D 2 log
ˇ̌
L.3=2;�/

ˇ̌
CO.m/:

Combining the above remarks with (5.3) and (5.4), we conclude that

log
ˇ̌
L.1=2;�/

ˇ̌
�
1

4
logC.�/�

X
�DˇCi�
0<ˇ<1

sin.�ˇ/

cosh.�
/
C 2 log

ˇ̌
L.3=2;�/

ˇ̌
CO.m2/:

(5.5)

All this follows closely the work of Heath-Brown, except that we have kept a negative
contribution from the zeros of L.s;�/, which we shall now bound from below.

Proof of Theorem 1.1
Plainly for any positive real number T , and any 1=2� ı > 0, we have

X
�DˇCi�
0<ˇ<1

sin.�ˇ/

cosh.�
/
�

X
�DˇCi�
j� j�T

sin.�ˇ/

cosh.�T /

�
sin.�ı/

cosh.�T /

X
�DˇCi�
ı�ˇ�1�ı
j� j�T

1�
2ı

cosh.�T /

X
�DˇCi�
ı�ˇ�1�ı
j� j�T

1:

The functional equation combined with complex conjugation shows that if ˇC i
 is
a zero, then so is 1� ˇC i
 . Thus, choosing T D 6 and invoking (3.4), we obtain

X
�DˇCi�
ı�ˇ�1�ı
j� j�6

1DN�.0; 6/� 2N�.1� ı; 6/�
4

15
logC.�/� 2N�.1� ı; 6/CO.m/:

Therefore,

X
�DˇCi�
0<ˇ<1

sin.�ˇ/

cosh.�
/
�

2ı

cosh.6�/

� 4
15

logC.�/� 2N�.1� ı; 6/
�
CO.m/:

Inserting this lower bound into (5.5), we obtain Theorem 1.1.

Proof of Corollary 1.3
Choose ıD 10�8m�3.log logC.�//= logC.�/. Then Theorem 1.2 gives

N�.1� ı; 6/�m

p
logC.�/:

Inserting this bound in Theorem 1.1, the corollary follows.
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6. Proof of Theorem 2.4
We fix a nonnegative smooth function ˆ supported in .�2; 2/, say, and write

L̂ .s/D

Z 1
�1

ˆ.y/esy dy: (6.1)

Thus L̂ .s/ is an entire function of s, and by integrating by parts many times, we
obtain, for any integer k � 0,

ˇ̌
L̂ .s/

ˇ̌
�ˆ;k

e2jRe.s/j

jsjk
: (6.2)

Let T � 1 be a real parameter, and note that by Mellin (or Fourier) inversion one has
(for any positive real number x, and any real c)

Tˆ.T logx/D
1

2�i

Z cCi1

c�i1

L̂ .s=T /x�s ds: (6.3)

Recall that

L.s;� �e�/DX
n�1

a��e�.n/
ns

D
Y
p

Lp.s;� �e�/;
with

Lp.s;� �e�/D mY
j1D1

mY
j2D1

�
1�

˛j1;j2;��e�.p/
ps

��1
D 1C

1X
jD1

a��e�.pj /
pjs

: (6.4)

The Rankin–Selberg L-function L.s;� �e�/ has nonnegative coefficients, converges
in Re.s/ > 1, and extends to the complex plane with a simple pole at s D 1.

Our proof of the Brun–Titchmarsh result Theorem 2.4 will be based on an appli-
cation of the Selberg sieve. To pave the way for this, given a square-free number d
we need an asymptotic formula forX

d jn

a��e�.n/ˆ
�
T log

n

x

�
;

which we establish in the following lemma.

LEMMA 6.1
Let � 2A.m/, and ˆ be as above. Let d � 1 be a square-free integer. For any x > 0
and T � 1, we haveX

d jn

a��e�.n/ˆ
�
T log

n

x

�
D �g.d/

x

T
L̂ .1=T /COm

�
x
1
2C.� �e�/dm2Tm2�;
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where

� D Res
sD1

L.s;� �e�/; and g.d/D
Y
pjd

�
1�Lp.1;� �e�/�1�:

Proof
Using (6.3), we may write (for any real number c > 1)

X
d jn

a��e�.n/ˆ
�
T log

n

x

�
D

1

2�iT

Z cCi1

c�i1

L̂ .s=T /xs
X
d jn

a��e�.n/
ns

ds:

The Dirichlet series appearing above has nonnegative coefficients and converges in the
region Re.s/ > 1, and matches the Rankin–Selberg L-function L.s;� �e�/ except for
the Euler factors at primes p dividing d . Indeed, by multiplicativity, we may write

X
d jn

a��e�.n/
ns

D
Y
p�d

Lp.s;� �e�/Y
pjd

� 1X
jD1

a��e�.pj /
pjs

�
DL.s;� �e�/gd .s;� �e�/;

where

gd .s;� �e�/DY
pjd

�
1�Lp.s;� �e�/�1�DY

pjd

�
1�

mY
j1;j2D1

�
1�

˛j1;j2;��e�.p/
ps

��
:

(6.5)

Thus the integral above equals

1

2�iT

Z cCi1

c�i1

L̂ .s=T /L.s;� �e�/gd .s;� �e�/xs ds: (6.6)

We evaluate (6.6) by moving the line of integration to Re.s/D 1=2. We encounter
a simple pole at s D 1, and the residue here is the main term appearing in our lemma
(note that g.d/ D gd .1;� � e�/). To bound the integral on the line Re.s/ D 1=2,
using the Phragmén–Lindelöf principle and Stirling’s formula (using that on the line
Re.s/D 5=2 we have L.s;� �e�/� 1), we find

ˇ̌̌
L
�1
2
C i t; � �e��ˇ̌̌� C.� �e�/�2C jt j�m2 :

Further, since j˛j1;j2;��e�.p/j � p for all j1, j2 and p, from the definition (6.5) it
follows that ˇ̌̌

gd

�1
2
C i t; � �e��ˇ̌̌�Y

pjd

�
1C .1C p1=2/m

2�
� .2d/m

2

:
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Thus the integral on the Re.s/D 1=2 line is

�

p
x

T
C.� �e�/.2d/m2 Z 1

�1

�
2C jt j

�m2 ˇ̌̌ L̂ � 1
T

�1
2
C i t

��ˇ̌̌
dt:

Using (6.2) with k D 0 for jt j � T , and k Dm2C2 for jt j> T , we see that the above
is

�m;ˆ

p
x

T
C.� �e�/dm2 Z 1

�1

�
2C jt j

�m2
min

�
1;

Tm
2C2

.2C jt j/m
2C2

�
dt

�m;ˆ

p
xC.� �e�/dm2Tm2 :

From Lemma 6.1 and an application of the Selberg sieve, we shall obtain the
following proposition.

PROPOSITION 6.2
Keep the notations of Lemma 6.1. Then for any x > 0, T � 1, and z�m C.� �e�/4,
we have X

n
pjnH)p>z

a��e�.n/ˆ
�
T log

n

x

�

�
3x

T logz
L̂ .1=T /COm;ˆ

�
x
1
2C.� �e�/Tm2z2m2C3�:

Proof
As mentioned already, this follows from a standard application of Selberg’s sieve and
Lemma 6.1; see, for example, Theorem 7.1 of [8]. Using Theorem 7.1 of [8] and (6.3)
there (with D D z2 in their notation), we findX

n
pjnH)p>z

a��e�.n/ˆ
�
T log

n

x

�

� �
x

T
L̂ .1=T /

� X
d j
Q
p�z p

d�z

Y
pjd

g.p/

1� g.p/

��1

COm;ˆ

�
x
1
2C.� �e�/Tm2 X

d�z2

dm
2

�3.d/
�
: (6.7)

Here �3.d/ is the number of ways of writing d as a product of three natural numbers.
Because �3.d/�� d

� , we may trivially bound the error term in inequality (6.7) by
�m;ˆ x

1
2C.� �e�/Tm2z2m2C3.
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For the first sum, we observe from the definitions of g.p/ and Lp.s;� �e�/ that

X
d j
Q
p�z p

d�z

Y
pjd

g.p/

1� g.p/
�

X
n�z

n square-free

Y
pjn

1X
jD1

a��e�.pj /
pj

�
X
n�z

a��e�.n/
n

: (6.8)

Let ˆ1 be a nonnegative smooth function supported on Œ0; 1�, with ˆ1.t/ D 1 for
� � t � 1� � and ˆ1.t/� 1 for 0� t � 1. Then appealing to Lemma 6.1 with d D 1
and T D 1 there, we obtain that

X
y�n�ey

a��e�.n/
n

�
1

ey

X
n

a��e�.n/ˆ1
�

log
n

y

�

D
1

e

�
e � 1CO.�/

�
� COm

�
y�

1
2C.� �e�/�:

Dividing the interval Œ
p
z; z� into blocks of the form Œy; ey�, it follows that

X
p
z�n�z

a��e�.n/
n

�
�

3
logzCOm

�
z�

1
4C.� �e�/�:

Therefore, if z�m C.� � Q�/
4, then

X
n�z

a��e�.n/
n

� 1C
X

p
z<n�z

a��e�.n/
n

�
1

3
.1C � logz/:

Using this bound in (6.8) and then in (6.7), and noting that for all � > 0 one has
�=.1C � logz/� 1= logz, the proposition follows.

Proof of Theorem 2.4
Since Theorem 2.4 follows from (1.11) for mD 1, we may assume below that m� 2.
Suppose that x�m C.� �e�/36m2 , and that 1� T � x1=9m

2
. Take z D x1=9m

2
, and

ˆ to be a smooth nonnegative function supported in .��; 1C �/ with ˆ.t/D 1 for
0� t � 1. An application of Proposition 6.2 givesX

x<n�xe1=T

pjnH)p>z

a��e�.n/�m

x

T logz
C x

1
2C.� �e�/Tm2z2m2C3�m

x

T logx
:

The left-hand side above includes all prime powers pk in .x; xe1=T � with p > z, and
so we conclude that X

x<pk�xe1=T

k�9m2

a��e�.pk/�m

x

T logx
: (6.9)
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In Theorem 2.4, we are interested in bounding ���e�.pk/ in place of a��e�.pk/
above. Note from (1.2) that for any given prime p, we have the formal identity

exp
� 1X
kD1

���e�.pk/
k

Xk
�
D 1C

1X
kD1

a��e�.pk/Xk:

Expanding both sides and comparing coefficients, from the nonnegativity of
���e�.pk/ and a��e�.pk/, we deduce that

a��e�.pk/� ���e�.p
k/

k
: (6.10)

From (6.9) and (6.10), it follows thatX
x<nDpk�xe1=T

k�9m2

���e�.n/ƒ.n/�m

x

T
:

To complete the proof of Theorem 2.4 it remains lastly to bound the contribution of
primes powers pk with k > 9m2. Since there are very few such prime powers, it will
be enough to use a crude bound on ���e�.pk/. From (2.6), one obtains ���e�.pk/�
m2pk.1�1=m

2/, and soX
x<nDpk�xe1=T

k>9m2

���e�.n/ƒ.n/�m x
1�1=m2

X
pk�ex

k>9m2

ƒ.m/�m x
1�8=9m2�m

x

T
:

This finishes the proof of Theorem 2.4.

Appendix. An inequality on Rankin–Selberg coefficients

Farrell Brumley1

Let � , � 0 be irreducible unitary generic representations of GLm.Qp/ and
GLm0.Qp/, respectively. LetL.s;��� 0/ be the local Rankin–SelbergL-factor. Write
its logarithm as

logL.s;� � � 0/D
X
f�1

���� 0.p
f /

fpfs
:

Our aim is to prove the following inequality.

1Brumley’s work was supported by Agence Nationale de la Recherche grant 14-CE25. In addition, he would like
to thank Kannan Soundararajan and Jesse Thorner for allowing him to include this Appendix to their paper, and
for helpful discussions regarding the proof during a visit to Stanford.
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PROPOSITION A.1
For every f � 1, we have

ˇ̌
���� 0.p

f /
ˇ̌
�

q
���Q�.pf /�� 0�Q� 0.pf /�

1

2

�
���Q�.p

f /C �� 0�Q� 0.p
f /
�
:

The model computation is when � and � 0 are both unramified. In this case,
the proposition is immediate from the well-known expression for the local Rankin–
Selberg L-factor

L.s;� � � 0/D

mY
jD1

m0Y
kD1

�
1� ˛�.p; j /˛� 0.p; k/p

�s
��1

(A.1)

in terms of the Satake parameters ˛�.p; j / and ˛� 0.p; k/. From this, it follows that
the coefficients ���� 0.pf / are given by

���� 0.p
f /D

mX
jD1

m0X
kD1

˛�.p; j /
f ˛� 0.p; k/

f D ��.p
f /�� 0.p

f /: (A.2)

Similarly, in the unramified situation, ���Q�.pf / D j��.pf /j2 and �� 0�Q� 0.pf / D
j�� 0.p

f /j2. Thus, j���� 0.pf /j D
p
���Q�.pf /�� 0�Q� 0.pf /, and the proposition fol-

lows from the inequality jABj � jAj
2CjBj2

2
of geometric and arithmetic means. The

proof of Proposition A.1 follows along the same lines, but we shall need a more
explicit description of the Rankin–Selberg local L-factors. The main issue is that,
contrary to the unramified case, the local roots of the Rankin–Selberg convolution are
not simply the products of the local roots of the standard L-function.

A.1. Description of local Rankin–Selberg factor
In this section, we describe the local Rankin–SelbergL-functionL.s;��� 0/ in terms
of representation theoretic data. The main identity is (A.6) below. We follow closely
the exposition in [27, Appendix A], where the case when � 0 ' Q� was explicated.

We begin by realizing � as a Langlands quotient

� D J
�
G;P I �1Œ�1�; : : : ; �r Œ�r �

�
: (A.3)

Here G D GLm.Qp/, P is a standard parabolic of G corresponding to the partition
.m1; : : : ;mr/ of m, �j is a tempered representation of GLmj .Qp/, the real numbers
�j satisfy �1 � � � � � �r , and �Œ�� denotes the representation � ˝ jdet j� . Similar
notation holds for � 0. Then

L.s;� � � 0/D

rY
jD1

r 0Y
kD1

L.sC �j C �
0
k; �j � �

0
k/: (A.4)



1262 SOUNDARARAJAN and THORNER

Next we use the fact that tempered representations of GLm.Qp/ are fully induced
representations from discrete series. Moreover, discrete series themselves can be con-
structed as generalized Speh representations, obtained through an induction procedure
from supercuspidals as follows. For any discrete series representation ı on GLm.Qp/,
there is a divisor d jm and a unitary supercuspidal representation 	 on GLd .Qp/ such
that ı is isomorphic to the unique square-integrable subquotient of the representation

n

�
	D1

	
�
� � .nC 1/=2

�
induced from the standard Levi

GLd .Qp/� � � � �GLd .Qp/„ ƒ‚ …
n

;

where nDm=d .
We apply this for every �j appearing in (A.3) to obtain integers dj j mj , nj D

mj =dj and unitary supercuspidals 	j on GLdj .Qp/. We proceed similarly for � 0.
Using induction by stages (to combine the reduction of tempered representations � to
discrete series ı with the reduction of discrete series ı to supercuspidals 	), we obtain

L.s;� � � 0/D

rY
jD1

r 0Y
kD1

min.nj ;n
0
k
/Y

	D1

L
�
sC �j C �

0
k C

nj C n
0
k

2
� �; 	j � 	

0
k

�
: (A.5)

We now organize the 	j and 	0
k

into twist-equivalence classes. Let
(1) J D ŒJ1; : : : ; JA� be a set partition of ¹1; : : : ; rº;
(2) K D ŒK1; : : : ;KB � be a set partition of ¹1; : : : ; r 0º;
(3) ¹%1; : : : ; %Lº be a set of unitary twist-inequivalent supercuspidal representa-

tions %` of a general linear group over Qp ,
with the property that
(1) for every a 2 ¹1; : : : ;Aº, there is a `D `.a/ 2 ¹1; : : : ;Lº, and for every j 2 Ja,

there is tj 2R such that 	j ' %`Œi tj �;
(2) for every b 2 ¹1; : : : ;Bº, there is a `0 D `0.b/ 2 ¹1; : : : ;Lº, and for every k 2

Kb , there is t 0
k
2R such that 	0

k
' %`0 Œi t

0
k
�;

(3) the assignments a 7! `.a/ and b 7! `0.b/ are injective.
In this way, for any a 2 ¹1; : : : ;Aº, the set ¹	j W j 2 Jaº consists of all those 	j
appearing in (A.5) which are twist equivalent to some given %`.a/. We may assume, if
we wish, that the set ¹%1; : : : ; %Lº is minimal for this property. Setting sj D �j C i tj ,
s0
k
D � 0

k
C i t 0

k
, and

LJa;Kb .s/D
Y
j2Ja

Y
k2Kb

min.nj ;n
0
k
/Y

	D1

L
�
sC sj C s

0
k C

nj C n
0
k

2
� �;%`.a/ � %`0.b/

�
;
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we obtain the following expression

L.s;� � � 0/D

AY
aD1

BY
bD1

LJa;Kb .s/:

Now, many of the factors in the above product are simply 1. Indeed, for supercus-
pidal representations % on GLd .Qp/ and %0 on GLd 0.Qp/, the local factorL.s; %�%0/
is 1 unless % is twist equivalent to %0 (in which case d D d 0). Otherwise, when
%0 D %Œ��, we have

L
�
s; %� %Œ��

�
DL.sC �;%� %/D .1� p�e.�Cs//�1;

where e is the torsion number for %. (The torsion number is the order of the finite
cyclic group of characters �D jdet ju such that %˝ �' %.)

We deduce that

L.s;� � � 0/D
Y

.a;b/2


LJa;Kb .s/;

where

�D
®
.a; b/ 2 ¹1; : : : ;Aº � ¹1; : : : ;Bº W `.a/D `0.b/

¯
:

Let ` W �! ¹1; : : : ;Lº be the map sending .a; b/ to `.a; b/ WD `.a/ D `0.b/; it is
injective. If e` denotes the torsion number of %`, then

LJa;Kb .s/D
Y
j2Ja

Y
k2Kb

min.nj ;n
0
k
/Y

	D1

.1� p�e`.a;b/.sCsjCs
0
k
C
njCn

0
k

2 �	//�1:

Setting zj D p�sj�nj =2 and z0
k
D p�s

0
k
�n0
k
=2, we obtain the formula

L.s;� � � 0/D
Y

.a;b/2


Y
j2Ja

Y
k2Kb

min.nj ;n
0
k
/Y

	D1

�
1� .p	zj z

0
k/
e`.a;b/p�e`.a;b/s

��1
: (A.6)

We now give some examples to show that formula (A.6) can be specialized to
recover known cases.

Example 6
When � 0 D Q� , we have r D r 0, J DK (so that AD B DL), and the subset � is the
diagonal copy of ¹1; : : : ;Aº inside ¹1; : : : ;Aº � ¹1; : : : ;Aº. Letting F D ŒF1; : : : ;FL�
denote the set partition J DK of ¹1; : : : ; rº, we recover in this case the formula
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L.s;� � Q�/D

LY
lD1

Y
j;k2Fl

min.nj ;nk/Y
	D1

�
1� .p	zj zk/

elp�el s
��1

(A.7)

of [27, (A.12)].

Example 7
When � and � 0 are both principal series representations, we have r Dm, r 0 Dm0, and
nj 	 n

0
k
	 1. If, furthermore, � and � 0 are both unramified, then J D ŒJ1�, where

J1 D ¹1; : : : ;mº and K D ŒK1�, where K1 D ¹1; : : : ;m0º. Thus A D B D L D 1,
and ` sends .1; 1/ to 1. Set ˛�.p; j /D psj and ˛� 0.p; k/D ps

0
k , so that pzj z0k D

˛�.p; j /˛� 0.p; k/. Then (A.6) simplifies to the expression (A.1).

A.2. Proof of Proposition A.1
Let L denote the image of the injective map ` W �! ¹1; : : : ;Lº. Throughout this
section, we shall write .a; b/ 2� for the preimage of ` 2L. We may rewrite (A.6) as

L.s;� � � 0/D
Y
`2L

L`.s;� � �
0/;

where

L`.s;� � �
0/D

Y
	�1

Y
j2Ja
nj�	

Y
k2Kb
n0
k
�	

�
1� .p	zj z

0
k/
e`p�e`s

��1
:

Letting logL`.s;� � � 0/D
P
f�1

�`;���0 .f /

fpe`fs
, we obtain

�`;��� 0.f /D
X
	�1

pe`	f
�X
j2Ja
nj�	

z
e`f
j

�� X
k2Kb
n0
k
�	

z0k
e`f

�
: (A.8)

Example 8
We let � 0 D Q� , and we use the notation of Example 6. Then the identity (A.8) reduces
to

�`;��Q�.f /D
X
	�1

pe`	f
ˇ̌̌ X
j2F`
nj�	

z
e`f
j

ˇ̌̌2
; (A.9)

which recovers the same expression in the proof of [27, Lemma A.1].

Example 9
When � and � 0 are both unramified, formula (A.8) reduces to
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�`;��� 0.f /D p
f

mX
jD1

z
f
j

m0X
kD1

z0k
f
D

mX
jD1

m0X
kD1

˛�.p; j /
f ˛� 0.p; k/

f D ���� 0.p
f /:

Applying the Cauchy–Schwarz inequality in (A.8) we get

ˇ̌
�`;��� 0.f /

ˇ̌2
�
�X
	�1

pe`	f
ˇ̌̌ X
j2Ja
nj�	

z
e`f
j

ˇ̌̌2��X
	�1

pe`	f
ˇ̌̌ X
k2Ka
n0
k
�	

z0k
e`f

ˇ̌̌2�

D �`;��Q�.f /�`;� 0�Q� 0.f /; (A.10)

in view of (A.9).
Now from

X
f�1

p�fs
����� 0.pf /

f

�
D logL.s;� � � 0/

D
X
`2L

logL`.s;� � �
0/

D
X
`2L

X
f�1

p�e`fs
��`;��� 0.f /

f

�

D
X
f�1

p�fs
X
`2L
e`jf

��`;��� 0.f=e`/
f=e`

�
;

we deduce

���� 0.p
f /D

X
`2L
e`jf

e`�`;��� 0.f=e`/: (A.11)

Using this and (A.10) we find, by Cauchy–Schwarz,ˇ̌
���� 0.p

f /
ˇ̌
�
X
`2L
e`jf

e`
ˇ̌
�`;��� 0.f=e`/

ˇ̌

�
�X
`2L
e`jf

e`�`;��Q�.f=e`/
�1=2�X

`2L
e`jf

e`�`;� 0�Q� 0.f=e`/
�1=2

:

From (A.11) we recognize the right-hand side as
p
���Q�.pf /�� 0�Q� 0.pf /, proving

Proposition A.1.
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