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Abstract—The problem of allocating jobs to appropriate
servers in cloud computing is studied in this paper. We con-
sider that jobs of various types arrive in some unpredictable
pattern and the system is required to allocate a certain ratio
of jobs. In order to meet the hard allocation ratio require-
ment in the presence of unknown arrival patterns, one can
increase the capacity of servers by expanding the size of
data centers. We then aim to find the minimum capacity
needed to meet a given allocation ratio requirement.

We study this problem for both systems with persistent
jobs, such as video streaming, and systems with dynamic
jobs, such as database queries. For both systems, we pro-
pose online job allocation policies with low complexity. For
systems with persistent jobs, we prove that our policies can
achieve a given hard allocation ratio requirement with the
least capacity. For systems with dynamic jobs, the capacity
needed for our policies to achieve the hard allocation ratio
requirement is close to a theoretical lower bound. Two other
popular policies are studied, and we demonstrate that they
need at least an order higher capacity to meet the same hard
allocation ratio requirement. Simulation results demonstrate
that our policies remain far superior than the other two even
when jobs arrive according to some random process.

Index Terms—Job allocation; online algorithm; competi-
tive ratio; cloud computing

I. INTRODUCTION

In this paper, we discuss the problem of online job
allocation for cloud computing where each job can only
be served by a subset of servers. Such a problem exists
in many emerging Internet services, such as YouTube,
Netflix, etc. For example, in the case of YouTube, each
video is replicated only in a small number of servers,
and each server can only serve a limited number of
streams simultaneously. When a user accesses YouTube
and makes a request to watch a video, this request needs
to be allocated to one of the servers that not only stores
the video but also has remaining capacity to process
this request. If no server can process this request, the
request is dropped, which can significantly impact user
satisfaction.
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There are many studies on obtaining statistics about
user behaviors, video popularity, and access locality [2]-
[6]. These studies provide important insights about sys-
tem planning. However, they are not sufficient for job
allocation. It is usually difficult to predict which video
will go viral and generate most requests. Therefore, online
job allocation policy that makes decisions solely based on
current system state is needed.

The problem of online job allocation has attracted much
attention. Most current studies study the performance of
online policies by comparing the number of allocated jobs
under online policies against that of the an offline policy
with full knowledge about all future arrivals. For example,
Karp, Vazirani and Vazirani [7] propose an online policy
that is guaranteed 1 — 1 ~ 63% of jobs, given that the
offline policy allocates all jobs. They also show that no
online policy can guarantee to allocate more jobs than
their proposed policy.

These studies are still insufficient for many practical
scenarios. In particular, one can argue that most practical
applications demand a much higher ratio of allocated
jobs than 63%. In order to meet this demand, current
practice is to add redundancy and increase the capacity
of data centers to accommodate unpredictable patterns
of job arrivals. Motivated by this observation, we seek
to address the following question: How much capacity is
needed to guarantee the allocation of, say, 95% of jobs?

We address this problem for two different categories
of jobs: persistent jobs and dynamic jobs. Persistent jobs,
such as requests for video streaming, require immediate
service upon arrival, and need continuous service after
being allocated to a server. On the other hand, dynamic
jobs, such as database queries, have small execution time
and leave the system upon completion. Dynamic jobs can
also tolerate a small amount of delay, as long as they are
completed before their respective deadlines. For each of
these two categories of jobs, we formulate the problem
of job allocation as a linear programming problem. The
uncertainty in future job arrivals corresponds to the un-
certainty in some of the parameters. Also, increasing the
capacity of the servers corresponds to relaxing some of
the constraints in the linear programming problem.

For the allocation of persistent jobs, we propose two
simple online allocation policies and derive closed-form
expressions for their performance. Specifically, we prove
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that, in order to allocate at least 1 — 5 of jobs, the two



policies only need to increase the capacity by In 6 times.
We also prove that no online policy can guarantee to
allocate the same ratio of jobs with less capacity, and
hence our policies are optimal.

We further evaluate two popular online job allocation
policies for allocating persistent jobs. Surprisingly, we
prove that, to guarantee to allocate at least 1 — ; of jobs,
these two policies require at least § — 1 times capacity.
Therefore, they are both an order worse than our policies.

For the allocation of dynamic jobs, we also propose
a simple online allocation policy. We show that, when
the deadlines of all jobs are at most 7', and each server
is constrained by both its computation capacity and its
storage to buffer unfinished jobs, then our policy only
needs Inf + In(T + 1) times capacity to guarantee the
allocation of 1 — % of jobs. We also prove that the capacity
needed by our policy is at most In(7" + 1) larger than
a theoretical lower bound, regardless of . Further, we
show that our policy achieves the optimal performance
when each server has sufficiently large storage, and is
only constrained by its computation capacity.

The allocation ratio guarantees stated above need to
hold for every sample path. We also consider the scenario
where jobs arrivals are generated by some unknown
random process, and one only needs guarantees on the
expected value of allocation ratio. By both theoretical
analysis and numerical studies, we demonstrate that our
policies remain much better than the other existing poli-
cies for this scenario.

The rest of the paper is organized as follows: Sec-
tion II describes our system model for persistent jobs and
problem formulation. Section III introduces two online
job allocation policies for persistent jobs allocation and
studies their performance. Section IV derives a perfor-
mance bound for all online policies. Section V compares
our proposed policies with two widely used policies.
Section VI describes our model for dynamic jobs and
problem formulation. Section VII introduces an online
algorithm for dynamic jobs allocation as well as studies its
performance. Section VIII provides simulation comparison
of our policies with other commonly used policies. Sec-
tion IX reviews some previous work on online learning
and load balancing problem. Finally, Section X concludes
this paper.

II. SYSTEM MODEL FOR PERSISTENT JOBS

We first study the problem of job allocation for persis-
tent jobs. When a persistent job arrives at the system, it
needs to be allocated to a server for service immediately.
Further, once a job is allocated to a server, it stays in the
system for a long time. Examples of persistent jobs include
on-demand video streaming for movies, and live stream
services.

We consider a system with multiple non-identical
servers. Jobs arrive at the system sequentially. Jobs are
of different types, and each job can only be served by a
subset of the servers. For example, in the application of

on-demand video streaming, a job is a request for one
video, and can therefore only be served by servers that
possess the video. We assume that when a job enters the
system, it needs to be allocated to a server immediately.
Jobs that cannot be allocated upon arrivals are discarded
from the system. We also assume that jobs cannot be
moved once they are allocated to servers, as moving jobs
between servers cause additional costs on job migration.
A similar model has been used in [8].

We use J to denote the set of servers, and 7 =
{1,2,...} to denote the arrival sequence of jobs. Each job
1 can be served by a subset K; C J of servers. Upon its
arrival, job i reveals its K;, and the system either allocates
it to a server or discards it. Each job takes one unit of
capacity in the server to which the job is allocated to. A
server j has a total amount of C; units capacity, and can
therefore at most serve C; jobs. We use X;; to denote the
assignment of the jobs. If X;; = 1, then job i is assigned
to server j. If X;; =0, job ¢ is not assigned to server j.

We aim to maximize the number of jobs that can
be served. The problem of maximizing the number of
served jobs can be formulated as the following linear
programming problem for allocating persistent jobs:

AllocP:

MCLZC Z Xij (1)

ij:j€K;
s.t. Z Xij < Cj,Vj eJ, (2)

i:jGKi
> X <LViel, 3)

JijeK;
XijZO,VZ.EI,jEJ. 4@

Since X;; = 1 if job ¢ is served by j, (1) is the total
number of served jobs. On the other hand, (2) states that
each server j can at most serve C; jobs, and (3) states
that each job can be served by at most one server. In this
formulation, we allow X;; to be any real number between
0 and 1, while X;; needs to be either 0 or 1 according to
our model. Therefore, AllocP describes an upper-bound
of the number of jobs that can be allocated.

Solving AllocP is straightforward when one has knowl-
edge of all its parameters {K;} and {C;}. However,
as jobs arrive sequentially, the system needs to make
allocation decisions without knowledge of future jobs.
We say that an allocation policy is an online policy if it
makes allocation decisions only based on jobs that have
already arrived. On the other hand, an allocation policy
is an offline policy if it has full knowledge about all future
job arrivals, and can therefore find the optimal solution
to AllocP.

We consider that the service provider can increase
server capacity by, for example, purchasing more servers
as redundancy, to allocate more jobs. Suppose the service
provider purchases R times more servers so that each
server j has R identical copies. We can instead say
that the server j increases its capacity by R times, and



can now server RC; jobs. We can now formulate the
following linear programming problem:

AllocP(R):
MG,TZXZ'J' (5)
iJ

s.t. Z Xij < ROJ,V‘] eJ, (6)

ijEK;
Y Xy <1Viel, (7

JjEK;
XijZO,VZ'EI,jEJ. (8

We evaluate the performance of online policies by com-
paring the number of allocated jobs under online policies
with R times capacity against that under offline policy
with unit capacity. Specifically, given {K;} and {C,}, let
I'opt be the optimal value of ), ; X;; in AllocP, and I',,(R)
be the value of 3. X;; in AllocP(R) under policy n. We
define the competitive ratio per sample path as follows:

Definition 1: An online policy 7 is said to be (R, 6)-
competitive-per-sample-path if T, /T (R) < 6, for all {K;}
and {C;} with C; > Cyin, as Cryin — 00.

Definition 1 defines competitive ratio based on the
worst-case sample path. This definition may ignore effects
of statistic multiplexing. In practice, jobs may arrive ac-
cording to some random process. Therefore, the arrivals
of different types of jobs are likely to be interwined.

We can expand our model to accommodate the random
nature of job arrivals. Given {K;}, we can consider the
case where the actual arrival sequence is a random per-
mutation of Z = {1,2,...}. Let E[I';(R)] be the expected
number of allocated jobs under n with R times capacity
when the arrival sequence is a random permutation. We
then define the expected competitive ratio as follows

Definition 2: An online policy 7 is said to be (R, 6)-
competitive-in-expectation if T'o,/E[I',(R)] < 6, for all
{Kl} and {CJ} with Cj > Conin, aS Crin — 00.

It is obvious that the competitive ratio per sample path
cannot be better than the expected competitive ratio.

Lemma 1: A (R, 0)-competitive-per-sample-path policy
is (R, 0)-competitive-in-expectation.

ITI. Two ONLINE ALLOCATION POLICIES FOR PERSISTENT
JOBS AND THEIR COMPETITIVE RATIOS

In this section, we propose online policies and analyze
their competitive ratios. Our analysis is based on the
Weak Duality Theorem of linear programming [9]. The
dual problem of AllocP can be written as:

DualP:
MinZCjozj—i-Zﬂi, 9
j i
st.a;+ B >1,Viel,jeK; (10)
Q; 2 O,Vj, (11)

where each «; corresponds to a constraint in (2), and
each (3; corresponds to a constraint in (3). The following
lemma is then a direct result of the Weak Duality Theo-
rem.

Lemma 2: Given any vectors of {«;} and {8;} that
satisfy the constraints (10)-(12), we have Zj Cia; +
Zi Bi 2 1—‘opt-

We now introduce an online policy. This policy main-
tains a variable a; for each server j. When the system
starts, it sets a; = 0 initially. When a job ¢ arrives, the
policy checks the values of «; for all j € K;, and selects
j* as the one with the minimum value of «;. If o« < 1,
job i is assigned to server j*, and therefore X;;» = 1. The
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value of ;- is updated to be ;- (1+ Oj*)+ @ =10,
where we set d; = (1 + 1/C;)%%%, for all j. The value
of d; is chosen to achieve the optimal competitive ratio,
as will be shown in the proof of Lemma 3. On the other
hand, if a;+ > 1, job ¢ is discarded. The complete policy
is described in Algorithm 1.

Algorithm 1 PD Algorithm for Persistent Jobs
1: Initially, Qj = 0,3 =0, Xij = 0.
2: dj + (14 1/C;)FC% vj.
3: for each arriving job ¢ do

4:  j* < argminjeg, ;.

5. if o« < 1 then

7: a»*<—a‘*(1+i)+7l
' ’ ! Cj"  (dj» = 1)Cje

8: Xij* <+~ 1.

9: Job i is assigned to server j*.

10: else

11: Discard job 1.

We first need to show that the vector {X;;} produced
by this policy satisfies all constraints of AllocP(R), so that
the policy never assigns a job to a server that is already
fully utilized.

Lemma 3: Let oj[n] be the value of «; after n jobs have
been allocated to server j. Then,

1 n ;
ajln] = (=)} — 1), (13)
—
Proof: Here we prove (13) by induction.
Initially, when n = 0, o;[0] = 0 = (ﬁ)(dg —1) and

(13) holds.
Suppose (13) holds when n = k. When the (k + 1)-th
job is allocated server j, we have

1 1

aslk+ 1] =as k(1 + Z) + =756
B 1 k/RC; L :
@ g g oG

1 pgnrres gy

(dj — 1)



and (13) still holds for n = k+ 1. By induction, (13) holds
for all n. ]

With Lemma 3, o; = 1 when RC; jobs have been
allocated to server j. Since Algorithm 1 only allocates
jobs to servers with «; < 1, our policy does not violate
any constraints in AllocP(R).

Next, we study the competitive ratio of Algorithm 1.

Theorem 1: Algorithm 1 is (R, e;—:)-competitive-per-
sample-path.

Proof: We prove Theorem 1 by three steps:

First, we show that solutions {«;} and {5;} satisfy all
constraints in DualP. Initially, o; and j; are set to be 0.
By step 7 in Algorithm 1, «; is non-decreasing throughout
the execution of the policy, and hence (11) holds. Also, by
Lemma 3, o; < 1, for all j. When a job ¢ arrives, our policy

sets j* < argmin{«;}. If a;» = 1, we have a; =1 for all
JEK;
j € K; and 3; = 0. Hence, both constraints (10) and (12)

hold. On the other hand, if o« < 1, 8; =1 -+ > 1—ay,
for all j € K;. Both constraints (10) and (12) still hold.

Next, we derive the ratio between >, X;; and
>-;Cjay + >, Bi. Both formulas are initially 0. We now
consider the amounts of change of these two formulas
when a job i arrives. We use AP(R) to denote the
change of >, X;;, and AD to denote the change of
Z Ciaj +3; ﬂl

If job i is discarded, then {X;;}, {«;} and {3;} remain
unchanged, and therefore AP(R) = AD = 0.

On the other hand, consider the case when job i is
assigned to server j. We have X;; = 1 and AP(R) = 1.
We also have

AD

o 1
=AD=C;(ZL+——-—)+1—aq;
AP(R) OJ(CjJr(dj—l)Cj)Jr “
14
d—1 d;—1

(1 41/Cj)R%
S LCHRG T

When we imposes a lower bound on C; by requiring

C; > Cpin, for all j, and let C,;, — o0, we have
AD e . . .

APE T D whenever a job i is a.llocated to some

server. Therefore, we have, under Algorithm 1,

> Ciag+32,Bi el

>ij Xij TR 1 1
Flnally, by Lemma 2, we establish that Algorithm 1 is
(R, -&— 1) competitive-per-sample-path. [ |

This paper defines competitive ratios only for the lim-
iting case when C,,;,, — oo. As can be seen in the
above proof, the condition that C,;, — oo is only

RC
needed so that AIAD?R) = (1(J1rJlr/léC)) — = 65 - It is

straightforward to extend our deﬁnition on competitive
ratio per sample path for the general case where C,,;,, <
o0, and a similar proof yields that the competitive per
sample path is (14+1/Crmin) 7 Fig. 1 plots the value of

(1+1/Cpmin)Fmin —1° e
(1+1/Cmml) Cmin 1+1/C7n1n) min
AT/ i T It can be seen that 1O i —T

min

w

o
a W =

(

Competitive ratio

o

2 4 6 8 10
o
min
Fig. 1: Convergence of the competitive ratio per sample
path with finite C,,;,.

converges to —z— rapidly. Hence, our analysis still holds
well for practlcal systems with finite Ci,;r,.

Algorithm 1 relies on the usage of artificial variables
{a;} and {d;}. Below, we introduce a second online
policy that not only is simpler, but also conveys better
intuition. The policy is called Join-Least-Utilization (JLU)
policy. When a job arrives, JLU simply allocates the job
to the server with the smallest utilization ratio, which
is the number of allocated jobs at a server divided by
its capacity. Specifically, let n; be the number of jobs
that have already been allocated to server j. When job

i arrives, it is allocated to argmin;cg;, RC

The complete policy is described in Algorlthm 2. While
the algorithm still involves {«;}, {d;}, and {3;}, these
variables are introduced solely for the purpose of the
analysis of competitive ratio. They can be omitted in
actual implementation.

Algorithm 2 JLU
1: Inltlally, Q5 = 0, 8; =0, Xij =0, n; = 0.
2: dj + (1+1/C;)FC .
3: for each arriving job ¢ do

4 JF argminjeKi{Rn—éj}.

5: if N < RCJ* then

6: Xij* +— 1.

7: a»*<—a»*(1+i)+71
' ! ! Cj-"  (dj» = 1)Cje

8: nj* <— ’I’LJ* + 1
: Job i is assigned to server j*.

10: ﬂl —1- HliIljeKi Q.

11: else

12: Discard job 1.

Lemma 4: For any ¢ > 0, there exists a finite C,,;, such
that, by requiring C; > C,,;y, for all j, we have

Ty

RC;,’

o, — g, >0 = > (15)

RC'J1

for all ji,j» € J, throughout the execution of JLU.

Proof: The equation for updating «; in JLU is the
same as that in Algorithm 1. By Lemma 3, at any point



of time, we have

1 nj/RC;
a; = 4/ RC 4

(16)

(17)

“arijoyre - e =l
as dj = (1+1/C;)EC.

Note that a; — 8]1/?7]1*1 for a fixed R and all & < R,
as C; — oo. Thus, for any § > 0, there exist a finite
Cpmin such that, by requiring C; > Cp, for all j, we
have |a; — %| < ¢/2 for all j. Therefore, for any

elf—1
two servers j; and jo, we have

et /Ciy — 1 enjz/cjz -1

|(a.7'1 _ajz)_ eR 1 eR 1 | (18)
nj, /Ciy _ nj,/Cjiy _
ei1/ % 1 eliz/“iz 1
This implies that
ni, /Cjy _ njy/Chiy _
ei1/“i1 1 eNiz/“iz 1
CY.7'1_O‘J’2>§:> R_1 R _ 1 (20)
" s
= > s 21
RC;, = RCj, 21
and the proof is complete.
|

Theorem 2: JLU is ( ,eslil
path.

Proof: The proof is very similar to that of Theorem 1.

By Lemma 3, ch <1< a; < 1. Therefore, under JLU,
an arriving job 4 is allocated if and only if minjck, a; < 1.
For any § > 0, we pick a sufficiently large C,,;, so that
(15) holds.

We can establish that the solutions {X;;}, {o;}, and
{Bi} produced by JLU satisfy all constraints in AllocP(R)
and DualP using an argument that is virtually the same
as that in the proof of Theorem 1.

Next, we derive the ratio between ), X;; and
>-;Cjay + >, Bi. Both formulas are initially 0. We now
consider the amounts of change of these two formulas
when a job i arrives. We use AP(R) to denote the
change of >, X;;, and AD to denote the change of
Z Cjo; + 3 Bz

If]Ob i is discarded, then AP(R) = AD = 0.

On the other hand, consider the case when job i is
assigned to server j* = argminjcg, R"—é] By Lemma 4,
a; > o« — 6, for all j € K.

We now have

AD
AP(R)

Gy S S SV
! (Oj* e —11)Cj*)+
Qjx
& T @) T
_ (@+1/C)f
S (1+1/C )R —1

)-competitive-per-sample-

=AD

min o
JEK;

+ 0.

Let C,in — 00, and we have under JLU,

ZOaJ+Z Bz eR
>ij Xij _eR—l

+9, (22)

for any § > 0

Finally, by Lemma 2, we establish that JLU is (R, ;: )-
competitive-per-sample-path. [ |

By Lemma 1, we also have the following theorem.

Theorem 3: Both Algorithm 1 and JLU are (R, %)
competitive-in-expectation.

As a final remark, we note that the complexity of both
Alg. 1 and 2 is linear with the number of servers for
each job arrival, since each job i needs to find the server
that minimizes either «; or RC . Hence, the computation
overhead of our algorithms is small.

IV. LowER BOUNDS OF COMPETITIVE RATIOS

In Section III, we show that our online policies are both
(B,
we will study the lower bound for the competitive ratio
per sample path. We focus on a special class of systems
described below:

A system in this class has N servers with capacity C
each, where C' is chosen to be a multiple of N!. A total
number of NC jobs arrive in sequence, and they are
separated into N groups, where the k-th group contains
jobs {(k — 1)C + 1,(k — 1)C + 2,...,kC}. Jobs in the
same group can be served by the same subset of servers.
The subset of servers that can serve a job i, i.e., K; is
constructed as follows: Jobs in the first group {1,2,...,C}
can be served by all servers, i.e., K; = J. For each job
in the (k + 1)-th group, its K; is obtained by removing
one element from that for jobs in the k-th group. More
specifically, for a job i, in the k-th group and a job i, in the
(k+1)-th group, we have K;, C K;, and |K,,| = |K;,|—1
It is easy to verify that an offline policy can allocate all
NC jobs for all systems in this class.

We consider a policy, namely, EVEN, that evenly dis-
tributes jobs in the same group among all available
servers. We first establish the number of jobs that can
be allocated by EVEN, and then show that no policy can
guarantee to allocate more jobs than EVEN within this
class of systems.

Lemma 5: When the capacity is increased by R times,
EVEN serves at most (N — &4 4 2)C jobs.

Proof: Since EVEN allocates jobs evenly on all avail-
able servers, each server gets % jobs in the first group of
C jobs. Similarly, as jobs in the k-th group can be served
by N — k+ 1 servers, each server that can serve this group
gets + k — jobs in this group, unless the server is already
fully utlhzed

Consider the case when each server has RC capacity.
Suppose the system can only serve up to the (k + 1)-
th group, that is, servers are still not fully utilized after

)-competitive-per-sample-path. In this section,



serving the k-th group. We then have

1 1 1

C(N+N—1+N—2

1
+"'+7N—k+1

Y VO S S B
N+1
=log(N+1)—log(N—-k+1)=log——
og(N + 1) — log( 1) =log

N+1
eR

) < RC
)< R
<R

k< N+1-—

Since servers can serve up to the (k + 1)-th group and
become fully utilized after the arrival of this group, the
number of jobs served in the system is then at most (k +
1)C < (N - &8 +2)C |

Lemma 6: When the parameters R, N, and C are fixed,
no online policy can guarantee to allocate more jobs than
EVEN.

Proof: We consider an alternative policy ALT and
show that it cannot allocate more jobs than EVEN. Given
R, N, and C, we construct K iteratively as follows: The
first group can be served by all servers. Let j; be the
server with the least jobs. We then choose K; = J\{j1}
for the second group. Similarly, let j, be the server with
the least jobs among severs that can serve the k-th group.
We choose K; = J\{j1,J2 ..., Jir} for the (k+1)-th group.
Under this arrival sequence, the total amount of unused
capacity in all servers is at least (RC — <) + (RC — & —
%) + ..., which is the total amount of unused capacity
by EVEN. Therefore, ALT cannot allocate more jobs than
EVEN. |

Theorem 4: Any online policy forRallocating persistent

jobs cannot be better than (R, )-competitive-per-

e
et —1
sample-path.

Proof: This is a direct result of Lemmas 5 and 6. B

Section III has shown that our two online policies are
R

e

both (R, R—l)-competitive-per-sample-path. Therefore,
R _

Theorem 4 demonstrates that our online policies are

indeed optimal.

V. COMPETITIVE RATIOS OF OTHER WIDELY USED
POLICIES

In this section, we study the competitive ratios of two
widely used polices.

A. Join the Shortest Queue

The first policy is the join the shortest queue (JSQ) pol-
icy [10], which allocates jobs to servers with the smallest
number of jobs. Specifically, let n; be the number of jobs
that have already been allocated to server j. When a new
job i arrives, it is allocated to argmin, ek, {n;|n; < RC;},
if there exists a server j € K; with n; < RCj.

Theorem 5: JSQ cannot be better than (R,1 + &)-
competitive-per-sample-path.

Proof: Given R, we construct a system with two types
of servers, J1 and J2, and two types of jobs, I1 and I2.

Job Server
O Type JI server
O NC j1
MC of type Il jobs
O Type J2 server
C j2
A e
C ja
KC of type I2 jobs .
C Jk+1

Fig. 2: System illustration for the analysis of JSQ.

Type I1 jobs can be served by all servers, while type 12
jobs can only be served by type J2 severs.

The system is described as Fig 2. It has one type J1
server with capacity MC and K type J2 servers with
capacity C. The job arrival sequence is as follows: first
MC jobs of type Il arrive; then KC jobs of type I2
arrive. The values of M and K are chosen such that
R = M/(K +1). The jobs (or servers) of same type are
in the same square box. An arrow line indicates that the
job can be allocated to the server.

The optimal offline policy is to allocate all type I1 jobs
to the server of type J1, and allocate all type I2 jobs to
type J2 servers. This allocation can allocate all MC+ KC
jobs, and I'ppr = MC + KC.

Now, consider the performance of JSQ when the server
capacity is increased by R times. After the increase, the
type J1 server has RMC capacity, and all other servers
have RC capacity. The first M C arrivals are all type I1
jobs, who can be served by all servers. Therefore, JSQ
evenly distribute these jobs to all servers, and each server
gets MC/(K + 1) = RC jobs. Next, type I2 jobs arrive,
and they can only be served by type J2 servers. However,
at this point, all type J2 servers are fully utilized, and
no type I2 job can be served. The total number of served
jobs under JSQ is I'ysq(R) = MC.

We then have

MC+ KC
Fopt _ + (23)
M+ K 1
as K — oo, and M = R(K +1).
]

Theorem 6: JSQ cannot be better than (R, 1+ zzi55)-
competitive-in-expectation.

Proof: Given R, we use the same system as that in the
proof of Theorem 5, but consider that the actual arrival
sequence is a random permutation of all jobs. We still
have ',y = MC + KC. In this proof, we choose M and
K such that R = 2L,

Now, consider the performance of JSQ when the server
capacity is increased by R times. Type J2 servers can



serve all jobs, while the type J1 server can only serve
jobs of type Il. Under JSQ, whenever a type J2 server
has the least jobs among all servers, the next job will
be allocated to this server, regardless of the type of the
job. Therefore, under JSQ, all type J2 servers will have
at least one less job than the number of jobs at the J1
server before all type J2 servers are fully utilized. Hence,
after (K + 1)RC arrivals, all type J2 servers are fully
utilized. From then on, only type /1 jobs can be served.
Further, there are M C type 11 jobs and K C type I2 jobs.
Under a random permutation, the average number of type
I1 jobs that arrive after the first (K + 1)RC' arrivals is

FrdC —[MC + KC — (K +1)RC] = MC — MEIDEC
The expected number of jobs served by JSQ is then
M(K +1)RC
El <(K+1 MC— ——— (25
Lise(R)] <(K +1)RC +MC Tk @
K
=M K+1 —_— 2
C+ (K + )RCM+K’ (26)
and hence
I‘opt MC+KC
E[l;sq(R)] = MC + (K + 1)RC 5+
B RK + K
 RK + (K +1)RK/(RK + K)
(R+1)?
_) A —
R(R+1)+R
1
:1 _—
+ R?2 4 2R’
as K - oo and M = KR. [ |

B. Join the Most Residue Queue

It may seem that JSQ performs poorly only because it
makes decisions solely based on n;, and does not consider
C;. A straightforward extension of JSQ is the join the most
residue queue (JMQ) algorithm, which allocates jobs to
servers with most remaining space, which is the server
capacity minus the number of allocated jobs in this server.
Let RC; be the capacity of server j, n; be the number of
jobs that have already been allocated to j. The arriving job
i is allocated to server argmax;c g, { RC; —njln; < RC;},
if there exists a server j € K; with n; < RC;.

Theorem 7: Join the most residue queue policy cannot
be better than (R, 1+ %)-competitive-per-sample-path.

Proof: Given R, we construct a system with two types
of servers, J1 and J2, and two types of jobs, I1 and I2.
Type I1 jobs can only be served by type J1 servers, while
type 12 jobs can be served by all servers.

The system is shown in Fig. 3. It has one type J1 server
with capacity (M + 1)C, and K type J2 servers with
capacity C. The job arrival sequence is as follows: first
KC jobs of type I2 arrive; then (M + 1)C jobs of type
I1 arrive. The value of M and K are chose such that
R=K/M.

The optimal offline policy is to allocate all type I2 jobs
to servers of type J2 and all type /1 jobs to the type J1

Job Server

A Type JI server
WD C j1

KC of type I2 jobs A

A Type J2 server
C j2

O C J3

O C ja

(M+1)C of type II jobs .
O C Jr+1

Fig. 3: System illustration for the analysis of JMQ.

server. The total number of jobs allocated by this policy
is(M+1)C+KC,and T',,; = (M +1)C + KC.

When the server capacity is increased by R times, type
J1 server has R(M + 1)C capacity, and type J2 servers
have RC capacity. The first arriving KC = MRC jobs
are of type I2. They can be served by both type J1 and
J2 servers. JMQ allocates all these jobs to type J1 server.
Type J1 server can therefore serve only RC jobs of type
I1. The total number of jobs served is R(M + 1)C.

We then have

Lot  (M+1)C+KC @7)
Tyuo(R)  R(M+1)C
M 1 1
_M—|—1+]'_f_>1+]'_%’ (28)
as M — oo, and K = MR. [ |

Theorem 8: JMQ cannot be better than (R, 1+ m)—
competitive-in-expectation.

Proof: We use the system in the proof of Theorem 7
but consider that the actual arrival sequence is a random
permutation of all jobs. First, we have I',,; = (M +1)C'+
KC. Now we study E[I' sarq(R)]. In this proof, we choose
M and K such that K = MR — 1.

The type J1 server can serve all jobs and has M RC
more capacity than others. Thus, the first M RC jobs will
be allocated to the type J1 server, regardless of job types.
After the first M RC' arrivals, the type J1 server has RC
capacity left and hence at most RC more type I1 jobs
can be served. Since there are (M + 1)C type I1 jobs
and KC type I2 jobs, the average number of type I1
jobs among the first M RC arrivals is M RC'- ;255 The
expected number of allocated jobs is then no more than

RC + MRC MAf%J:K + KC. Therefore we have:
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Fig. 4: Capacity requirements of different policies.

Fopt
v (29)
El'ymq(R)]
MC+C+ KC
> — (30)
RC'+ MRC AL + KC
M+ MR
= ’ M+1 (31)
MR —1+ R+ MRy s
B M?*(R+1)?
(M +1)RM(R+1)—M(R+1)+ MR(M +1)
(32)
(R+1)?
—_— 33
R(R+1)+R (33)
1
t R (34)
as M —occand K = MR —1. [ |

C. Discussions

We have shown that our policies are (R, %)—
competitive-per-sample-path, while JSQ and JMR are no
better than (R, 1 + %)-competitive-per-sample-path, and
no better than (R, 1+ m)-competitive-in-expectation.
Suppose we are given a system where the offline policy
can allocate all jobs. In order to guarantee that at least
1-— % of the jobs are allocated, our policy only needs to
increase the capacity by R times so that eg: <1/(1-3).
Therefore, choosing R = In 6 is sufficient. In contrast, the
two commonly used policies, JSQ and JMQ, require to
increase the server capacity by at least (§ — 1) times. Even
when we consider that the arrival sequence is a random
permutation of all jobs, and only require JSQ and JMQ
to allocate 1 — % of the jobs on average, they still need to
increase the capacity by at least v/ — 1 times.

Fig. 4 plots the capacity requirement for different allo-
cation ratios. From the figure we can observe that as the
allocation ratio approaches 1, the capacity requirement
using JSQ or JMQ increases much faster than that using
PD or JLU. For example, if we need to allocate at least 95%

of the jobs, i.e., 8 = 20, our policies only require R = 3,
while JSQ and JMQ both require R > 19. Even when the
arrival sequence is a random permutation of all jobs, JSQ
and JMQ still need R > 3.5. Further, one may notice that
the expected competitive ratios of JSQ and JMQ seem to
outperform the competitive ratio per sample path of our
policies when the allocation ratio is low. However, the
comparison is not fair, since, by Lemma 1, the expected
competitive ratio is always better than the competitive
ratio per sample path for any policy. In Section VIII, we
will demonstrate that our policies still outperform JSQ
and JMQ when the actual arrival sequence is a random
permutation of all jobs.

VI. SYSTEM MODEL FOR DYNAMIC JOBS

We now turn our attention to the problem of allocating
dynamic jobs. Compared to persistent jobs, dynamic jobs
have two important features: First, dynamic jobs require
only a small amount of execution time, and they leave
the system once they are completed. Second, dynamic
jobs may not require immediate service. Rather, they
only require to be completed within their specified delay
bounds. Jobs that are not served immediately can be
stored in the buffer of a server, as long as there is enough
space in the buffer. Examples of dynamic jobs include web
searches and database queries.

We now formally describe our system model for dy-
namic jobs. We consider a system with multiple non-
identical servers with different service capacities and
buffer sizes. Time is slotted and indexed by ¢t = 0,1,2....
At the beginning of each time slot, some jobs arrive at the
system sequentially, and each job can only be served by
a subset of the servers. Each job specifies the subset of
servers that can serve it, and a hard delay bound, when
it arrives at the system. Upon the arrival of a job, the
system needs to immediately allocate it to a server, either
to be executed immediately or to be stored in the buffer.
Jobs that cannot be allocated immediately, or cannot be
completed within their delay bounds, are dropped from
the system.

We assume that all jobs require the same amount of
computation resource. A server j has a service capacity of
executing C; jobs per time slot, and a buffer that can store
B jobs that are yet to be completed. We use a(i) to denote
the arrival time of job i. When job i arrives, it reveals
its server subset K; and delay bound T'(i). We assume
that the delay bounds are upper-bounded by T'(i) < T, Vi.
We define k;;; as the indicator function that K; = 1 and
a(i) <t < a(i) + T(7). In other words, we have k;;; = 1
if job ¢ can be completed by server j at time ¢ without
violating its delay bound.

The decision of allocating a dynamic job consists of two
parts: deciding which server to serve this job, as well as
when to serve it. We use X,j;; to denote the allocation
decision for job . If X;;; = 1, then job i is served by
server j at time ¢. When a job is allocated to a server,
it waits in the buffer until it is completed. Therefore, at



each time slot 7, the jobs in the buffer of server j are
those that satisfy the following three conditions: (i) they
arrive on or before time 7, (ii) they are allocated to server
j, and (iii) they are scheduled to be executed on or after
time 7. The number of jobs in the buffer of server j at
time 7 can then be written as }_, ;.. ;)<< Kijt Xije-

We formulate the problem of maximizing the number
of completed dynamic jobs as the following linear pro-
gramming problem:

AllocD:

Max Z kithijt (35)

ijt
sty ki X < Cj, VG € T, (36)
Z kijiXij < B, V1,5 € T, (37)

it E[a(i),t]

ZXW <1,VieT, (38)

jt
Xijt >0,Viel jeJ,t. (39)

In the above problem, (35) is the total number of
completed jobs. (36) states that each server j can serve
at most C; jobs in each time slot. (37) states that at any
time, the total number of jobs in the buffer of server j
is at most B;. Finally, (38) states that each job can be
served at most once.

Similar to the previous case, we consider that the
service provider can increase both capacities to allocate
more jobs. When the capacities are increased by R times,
the service capacity becomes RC); and the buffer capacity
becomes RB;. We have our linear programming as fol-
lows:

AllocD(R):
Mazy ki X0 (40)

ijt
s.t. Z kije Xije < RC;,Vt,j € T, (41)
Z kijtXije < RB;, V1,5 € T, (42)

t:refd(i),t]

Y Xijp<1Vied, (43)

jt
Xije 20,VieZ,je J,t. (44

The definition of the competitive ratio per sample path
for persistent jobs in Section II can be naturally applied
to systems with dynamic jobs.

Before we proceed to the next section, we note that,
by setting B; = oo for all j, and making all jobs arrive at
the beginning of the first time slot with 7'(i) = 1 for all 4,
the problems of AlloecD and AllocD(R) become equivalent
to AllocP and AllocP(R), respectively. In other words,
the system with persistent jobs can be thought of as a
special case of a system with dynamic jobs. Hence, the
competitive ratio per sample path for dynamic jobs cannot

be better than that for persistent jobs, and we immediately
have the following lower bound:
Theorem 9: Any online policy fo}r% allocating dynamic

jobs cannot be better than (R, R—l)-competitive-per-
R _
sample-path.

Proof: This is a direct result of Theorem 4. [ ]

VII. AN ONLINE POLICY FOR DYNAMIC JOBS
A. Policy Design and Performance Analysis

This section proposes an online policy for allocating
dynamic jobs, and analyzes its competitive ratio. Many
proofs in this section are similar to those in Section III,
and hence we move all proofs to the appendix.

Similar to Section III, we first find the dual problem of
AllocD as:

DualD:

Mznz Cjaji ++ ZBj’er + Zﬁu
jt 5T i

s.t. kijrog + Z kijivir + B > kije, Vi€ L, j € J,t

(45)

r€la(i),t]

(46)
aj > 0,Vj e J,t, (47)
vir 2 0,Y5 € J,T, (48)
Bi >0,Viel. (49)

In DualD, each «;; corresponds to a constraint in (41),
each v, corresponds to a constraint in (42), and each g;
corresponds to a constraint in (43).

Now we introduce our online scheduling policy. The
policy maintains two sets of variables «;; and ~;,. They
can be seen as the monitors for the usage of service
capacity and buffer capacity, respectively. Initially, they
are both set to be 0.

When a job i arrives, the policy finds a server j* and a
time ¢* that maximizes k;ji (1 — e — >, c(q(s), 7)) for all
gand t. If kjjepe (1 — otjoy —ZTe[a(i),t*] ij*g > 0, then job
1 is scheduled to be executed by server j* at time ¢*, and
hence Xj;-¢+~ = 1. The job is dropped if k;jxs« (1 — atjes» —
2 refa(iy.tr) Vi) <0

When the job i is scheduled to be executed by server
j* at time t*, it consumes two kinds of resource: First, it
requires one unit of service capacity of server j* at time
t*. Second, it is stored in the buffer of server j* from
its arrival time, a(i), to time ¢. The corresponding dual
variables for these two kinds of resources are o~ and
v;+r, for T € [a(i),t*], and they are updated by

1 1
g = ingx (1 + —— T
oo g (14 Oj*) - (dj= —1)Cj~
(1+ 1)+ !
Yirr & Virr )+t ———

where d; = (1+1/C;)E% and f; = (1+1/B;)?5i, for all
j. The complete policy is described in Algorithm 3. It is
straightforward to check that the complexity of the policy
is O(JT).



Algorithm 3 PD Algorithm for Dynamic Jobs

1: Initially, ajy =0, v =0, X, = 0.
2 d; + (1+1/C;)E% vj.
3 fi+— 1+ 1/Bj)RBJ',Vj.
4: for each arriving job i do
500 (J7, 1) < argmax(jy) kije(1— e — D2 clay.g Vir)-
6 if Kjjeee (1 — ajous — D2 cpa(iy 4o Virr) > 0 then
7: Bi = 1= kijei= (1 — ajogs — i:re[a(i),t*] Yir+)
1

1
8 agere = e (14 Cj*) + (dj —1)Cj
1
9: Vire — i (1 + Bj*) + G — 1B, V7 €
la(i), t*]
10: Xij*t* +— 1.
11: Job i is assigned to server j*, to be served at ¢*.
12: else
13: Discard job 1.

We first need to show that the vector {X;;;} produced
by this policy satisfies all constraints of AllocD(R).

Lemma 7: Let a;[n] be the value of o, after n jobs are
scheduled to be served by j at ¢. Let ;- [n] be the value
of v;r when n jobs are waiting in server j at 7 and to be
served at a later time ¢. Then,

1 . w/RC,
ol = ()5 " ~1) (50)
1 . .n/RB
tieln) = (= - D). (51)
Proof: See Appendix A. [ |

With Lemma 7, oj; = 1 when RC; jobs have been
scheduled to be served by j at t, and 7;; = 1 when
RB; jobs are waiting in the buffer of server j at 7.
In Algorithm 3, jobs are only allocates to servers with
kijt(l_ajt_z-re[a(i),t] 7v;r) > 0, which guarantees a;; < 1
and v; < 1. Thus our policy does not violate any
constraints in AllocD(R).

Next, we study the competitive ratio of Algorithm 3.

Theorem 10: Algorithm 3 is (R, eeit:f)—competitive—per—
sample-path.

Proof: See Appendix B. [ |

B. Discussions and Performance Analysis for Infinite Buffers

We now discuss the practical implications of Theo-
rem 10. Suppose we are given a system where the offline
policy can allocate all jobs. In order to guarantee that at
least 1 — # of the jobs are allocated, Algorithm 3 needs to

increase the capacity by R times so that eeif:f <1/(1-3%).
We then have R = n(60T + 60 — T) < Inf + In(T + 1).
Meanwhile, Theorem 9 states that no online policy can be
better than (R, e;—:)-competitive. Therefore, any online
policy would require at least R > In# to ensure that at
least 1 — 4 of the jobs are allocated. This result shows
the amount of redundancy needed by Algorithm 3 is at
most In(7" + 1) larger than the theoretical lower-bound,

regardless of the service guarantee 1 — .

10

In the analysis of Theorem 10, we need to consider
constraints on both service capacity and buffer capacity.
In many applications, the major performance bottleneck is
service capacity. For such applications, we can assume that
the buffer size B; is infinite for all j. As a result, constraint
(42) in AllocD(R) and variables ~;; in DualD no longer
exist. We can then modify the design of Algorithm 3 by
simply removing all variables 7;,. The complete algorithm
is shown in Algorithm 4.

Algorithm 4 PD Algorithm for Infinite Buffers

1: Inltlally, Qg = 0, Xijt =0.

2: dj + (1+1/C;)FC% vj.

3: for each arriving job ¢ do

4 (J*,t7) < argmax(jy kije (1 — o).
5: if kij*t* (1 — aj*t*) > (0 then

1 1
6: Qingx $— Qingx (1 - TV R
e . Cj*)+ (dj» —1)Cy-
7: Job i is assigned to server j*, and to be served at
time t*.
8: else

A4

Discard job .

It is straightforward to show that Algorithm 4 achieves
the optimal competitive ratio per sample path.

Theorem 11: Algorithm 4 is (R, eg—:)—competitive—per—
sample-path.

VIII. SIMULATION

In this section, we evaluate the performance of both
persistent job model and dynamic job model.

A. Simulation of Persistent Job Model

We evaluate the performance of the four policies, in-
cluding PD, JLU, JSQ, and JMQ, discussed in this paper
by simulations. We consider three different scenarios:

In the first scenario, we construct a system with two
types of servers J1, J2; and two types of jobs I1, I2.
Type I1 job can be served by type J2 server, type 12 job
can be served by both J1 and J2 server. The number of
jobs and capacities of servers are shown in Table L. In the
second scenario, we construct a system with two types
of servers: J1, J2; and two types of jobs: I1, I2. The
setting for jobs and servers are shown in Table II. Last,
we construct a system with four types of servers: J1, J2,
J3, and J4; and four types of jobs: I1, 12, I3, I4. The
detailed setting for servers and jobs are listed in Table III,
which is a combination of the first two scenarios.

In each scenario, the arrival sequence is a random
permutation of all jobs. Simulation results are the average
of 10 runs. Under different R, we computer the allocation
ratio by the number of jobs allocated with online policy
dividing that with optimal offline policy.

Simulation results are shown in Fig. 5. We can see that
the allocation ratios of all four policies converge to 1 as R
increases. However, JSQ and JMQ converge much slower
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Fig. 5: Simulation results for the persistent job model.

TABLE IV: Server setting for dynamic job model.
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Server Number . Job Number Number Service Rate per
Type of Servers | P21 Type of Jobs K Server TP | of Servers | Time Slot b Buffer
J1 25000 | I1 2500 J2 J1 1 100 300
J2 50 50 12 25000 J1, J2 J2 S 5 15
T3 1 25 75
J4 20 5 15
TABLE II: System setting for the second scenario.
rsrel"’er Number Capacity | 3°P Number K, TABLE V: Jobs setting for dynamic job model.
ype of Servers Type of Jobs
J1 1 2550 11 2550 J1 Job Type Expected Number of K,
J2 500 50 12 25000 J1, J2 P Jobs per Time Slot !
1 25 T2
2 700 J1,72
T3 25 T3
than our proposed PD and JLU. Moreover, we notice that I4 100 J3,J4

our proposed PD and JLU policies almost have identical
performance.

In Section III we prove that PD and JLU are (R, %)—
competitive-in-expectation. In Secion V we prove that
both JSQ and JMQ are no better than (R,1 + zzi57)-
competitive-in-expectation. Although it looks like that the
competitive ratio in expectation of our policies is not as
good as that of the other two policies when R is small,
the simulation results show that our policies have better
allocation ratio even with small R. Thus with random
permutation of the jobs arrival sequence, the performance
of our policies are better than of JSQ and JMR policies.

B. Simulation of Dynamic Job Model

For the case of dynamic jobs, we will use Revised JSQ
(RJSQ), Revised JMQ (RJMQ), and Quincy as compar-
isons to our proposed policy.

The RJSQ (or RJMQ) policy always allocates jobs to
the buffer with the smallest number of jobs (or most re-
maining space). Then the system follows earliest deadline
first policy to serve jobs in the buffer. Quincy is the policy
proposed in [11]. In Quincy, when a job arrives, it joins
all servers that can serve it. The servers coordinate among

TABLE III: System setting for the third scenario.

Server Number . Job Number

Type of Servers Capacity Type of Jobs Ki
J1 10000 11 2500 J2
J2 50 50 12 10000 J1,J2
J3 1 2550 13 2550 J3
J4 200 50 14 10000 J3,J4

themselves so that when a server begins processing a
job, all other servers discard the job immediately. Obvi-
ously, Quincy would result in high coordination overhead
among servers. Moreover, as we will demonstrate below,
our policy still outperforms Quincy even when we ignore
the coordination overhead.

We consider the system constructed as below: there are
four types of servers: J1, J2, J3, and J4; and four types of
jobs I1, 12, I3, and I4. The setting of servers is shown in
Table IV. In each time slot, job arrival follows the Poisson
random process with expected number of each type of
job shown in Table V. The arrival sequence is a random
permutation of all these jobs. Each job has a end-to-end
deadline uniformly selected from 1 to 5. The system is run
for 60 time slots and there are jobs arriving the system
for the first 50 slots. Simulation results are shown in
Fig. 6. We can observe that our policy outperforms all
other policies.

IX. RELATED WORK

The online job allocation problem is an online matching
procedure which aim to make the best decision on job-
server pair to maximize the number of jobs get matched.
Many works have been done on persistent job allocation.
The problem of online bipartite matching was studied by
Karp, Vazirani, and Vazirani [7]. They use an adversary
model and studied GREEDY which achieves a matching
ratio of 1/2 and RANKING which achieves 1 — 1/e. They
further showed that no algorithm can achieve a better
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Fig. 6: Simulation results for the dynamic model.

ratio than 1 — 1/e. Other models, which are based on
further assumption on arrival pattern, have also been
studied. Random arrival model has been studied by Goel
and Mehta [12], and Karande, Mehta and Tripathi [13].
They show that GREEDY achieves a matching ratio of
1—1/e and RANKING achieves greater than 1—1/e. Known
distribution model was introduced by Feldman, Mehta,
Mirrokni, and Muthukrishnan [14]. They provide a two-
suggested-matching algorithm which achieves a ratio of
67%. Kalyanasundaram and Pruhs studied the online b-
matching problem [15] which can be seen as the job
allocation problem with server capacity b. They presented
BALANCE algorithm and proved that it approaches 1—1/e.
Applications of online matching to ad-words problem,
which is an allocation of bidders to key words within
the budget limit of each bidder, have been studied in
[12], [16]. However, none of these studies can precisely
quantify the amount of capacity needed to guarantee a
certain allocation ratio, which is the goal of this paper.

There are many studies on YouTube videos about their
statistical properties [6], [17], [18]. Studies on online
learning further investigate the possibility to predict the
future video requests. The problem of “learn from expert
advise” was first studied by Littlestone and Warmuth [19],
DeSantis, Markowsky, and Wegman [20]. Later “learn
from examples” was studied. The Winnow algorithm was
proposed and studied by Littlestone and Nicholas [21],
[22]. The algorithm applies well to practical tasks such as
on World Wide Web [23]. Other sequence prediciton re-
search also include the studies by Nicolo and Gabor [24],
Hutter [25]. These studies assume that the job arrivals
follow some well-defined random process, and, concep-
tually speaking, they aim to find policies that learn the
parameters of the random process on-the-fly.

Also, many studies have consider the online scheduling
with time constraints. Moharir, Sanghavi, and Shakkottai
[26] have extended the RANKING algorithm for schedul-
ing jobs with time constraints and shown that their policy
achieves a matching ratio of 1 —1/e. Koo, et al. [27] have
studied the case with uni-processor and the jobs to be
scheduled have tight deadlines and preemption is allowed
at no cost. The approach is to improve the processor’s
speed and the result shows that a processor O(1) times
faster is sufficient to guarantee a competitive ratio of 1 if
jobs have general value densities. Diirr, Jez, and Nguyen
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[28] have studied a problem with preemption where
jobs take different processing time and have different
deadlines. They aim to maximize the total weight of jobs
completed and show a competitive ratio of O(k/logk).
Liu et al. [29] have studied the preemptive scheduling
for Hadoop jobs with deadline and implemented the
first real preemptive job scheduler to meet deadlines on
Hadoop. Khalib, Ahmad, and Ong [30] have studied a
non-preemptive scheduling of jobs with soft real time
system which can tolerant some percentage of missing
deadline. They propose algorithms to group jobs with near
deadline together and then schedule jobs within a group
to improve the earliest deadline first (EDF) policy.

In addition to theoretical research, there have also
been many efforts on building systems for job alloca-
tion that perform well in practical scenarios. Babaioff,
et al. [31] have proposed a framework that allow the
implementations of both allocation algorithms and pricing
policies. Hindman, et al. [32] have proposed a platform
that enables resource sharing. Zaharia, et al. [33] have
proposed the concept of “delay scheduling” and shown
that it performs well when each jobs consists of a large
number of smaller tasks. While these studies demonstrate
good performance in practical settings, they lack the
theoretical guarantees on “worst-case” performance.

X. CONCLUSION

In this paper, we study the job allocation problem with
unknown job arriving pattern under hard allocation ratio
requirement. Given the capacity of current data center
which serves all jobs offline, we aim to find how much
capacity we need to expand to meet the allocation ratio
requirement for any unknown job arrival sequence.

We consider system models for both persistent jobs and
dynamic jobs. For the case of persistent jobs, we propose
two online policies PD and JLU which are both (R, _f—)-
competitive-per-sample-path. We also prove that our poli-
cies can achieve any allocation ratio requirement with
the least capacity. Next we study the performance of
two widely used policies, JSQ and JMQ. We prove that
both policies are no better than (R,1 + )-competitive-
per-sample-path. Therefore, they need an order higher
capacity to achieve the same allocation ratio requirement
than our policies. We further prove that JSQ and JMQ are
no better than (R, 1+ m)—competitive—in—expectation
by taking random permutation of the jobs in the arrival
sequence. For the case of dynamic jobs, we propose an on-
line policy PD which is (R, 6:.;’::f)—competitive—per—sample—
path. When buffers are not the bottleneck, the algorithm
is (R, 65—:)—competitive—per—sample—path, which achieves
the optimal competitive ratio per sample path. We also
demonstrate that our policies outperform other state-of-
the-art policies by simulations.

There are several important limitations in our current
model. For example, in the persistent model, we assume
that on-demand video streaming jobs never leave the sys-
tem. In practice, streaming jobs may terminate at arbitrary




times based on user behaviors. In the dynamic model, we
assume that all jobs require the same computation time,
while in practice different jobs obviously require different
times. Further, we only focus on the allocation ratio of
jobs, and ignore that different jobs may have different
values. Relaxing these assumptions to better capture the
behavior of real systems can be important future work.

APPENDIX
A. Proof of Lemma 7

Proof: Here we prove (50) and (51) by induction.
Initially, when n = 0, a;:[0] = 0 = ( )(d} — 1) and
(50) holds.
Suppose (50) holds when n = k. When the (k + 1)-th
job is scheduled to be served by j at ¢, we have

1 1
Fj) " (d; —1)C;
1 k/RC, 1 1
@@ TV E) e
1 (k+1)/RC;
m[d i - 1],

and (50) still holds for n = k+ 1. By induction, (50) holds
for all n.

Similarly, when n = 0, v;-[0] = 0 = (+
(51) holds.

Suppose (51) holds when n = k, i.e., there are k jobs
waiting for service in server j. When the (k + 1)-th job is
scheduled to be served by j at time ¢, where ¢ > 7, we
have

Qg [k + 1] :O[jt[k](l +

1 1
Yirlk +1] =y k]l + =—) + ———
joli+ 1 =9 W0+ ) + =y
1 k/RB; 1 1
(- 1)(fj DA+ Bj) - (fi —1)B;
1
(f 5l [f(kJrl)/RB _ 1,
J
and (51) still holds for n = k+ 1. By induction, (51) holds
for all n. [ |

B. Proof of Theorem 10

Proof: We prove Theorem 10 by three steps:

First, we show that solutions {«j:}, {v,;-} and {8;}
satisfy all constraints in DualD. Initially, a;; and ~;, are
set to be 0. By step 8 in Algorithm 3, a;; and ;, are non-
decreasing. Hence (47) and (48)holds. Also, by Lemma 7,
ajt <1, 5 <1, for all j. When a job ¢ arrives, our policy
selects (j*,t*) = argmax ;¢ Kije (1 — o5 — D2, clai)g Vir)
according to step 5. When (aj«- + ZTe[a(i))t*] Yire) <
1, we have kiji(aji + 3 cia@y,gVir) = Kigree (e +
ZTe[a(i))t*] vjr=) = 1 — f;, then (46) and (49) hold.

en (ajetr + 3 rea(iy v Virr) = 1, we have (aj +
ZTe[a(i)_’t] vj-) > 1 and 3; =0, (46) and (49) hold.
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Next, we derive the ratio between (45) and (40). Both
formulas are initially 0. When a job i arrives, we use
AP(R) to denote the change of Zijt kijt Xijt, and AD to
denote the change of >_ ., Cja;i ++ 3, Bjvjr + >, Bi-
If job i is discarded, both formulas remain unchanged,
therefore AP(R) = AD = 0. If job i is scheduled to be
serverd by j at ¢, then we have X;;; =1 and AP(R) = 1.
Also we have

AD
22 _AD
AP(R)
(677" 1
=Ci( + ) + Ba )
¢ et 2 P s,
+ 1-— ajt — Z ’ij
T€la(i),t]
1 .
dj - rela(i),f fi—
<1+ +
- dj —1 fi—1

When we imposes a lower bound on C; and B; by
requiring C; > C,p, and B > By, for all 7, and let
Conin — 00, Bmin — oo we have d; — (eft — 1) and
fi — (eff —1), and AP(R) — 861;*1, whenever a job i
is allocated to some server. Therefore, we have, under
Algorithm 3,
th Cioge ++ Z_j-r Bjvjr + >, Bi < e+ T
> ige kije Xije Toeff-17
Finally, by WeakR duality theorem, we establish that
Algorithm 3 is (R, < ;:{)—competitive per-sample-path. By
Lemma 1, Algorithm 3 is also (R, +T) -competitive-in-
expectation. |
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