
1

Optimal Capacity Provisioning for Online Job
Allocation with Hard Allocation Ratio

Requirement
Han Deng and I-Hong Hou

Abstract—The problem of allocating jobs to appropriate
servers in cloud computing is studied in this paper. We con-
sider that jobs of various types arrive in some unpredictable
pattern and the system is required to allocate a certain ratio
of jobs. In order to meet the hard allocation ratio require-
ment in the presence of unknown arrival patterns, one can
increase the capacity of servers by expanding the size of
data centers. We then aim to find the minimum capacity
needed to meet a given allocation ratio requirement.

We study this problem for both systems with persistent
jobs, such as video streaming, and systems with dynamic
jobs, such as database queries. For both systems, we pro-
pose online job allocation policies with low complexity. For
systems with persistent jobs, we prove that our policies can
achieve a given hard allocation ratio requirement with the
least capacity. For systems with dynamic jobs, the capacity
needed for our policies to achieve the hard allocation ratio
requirement is close to a theoretical lower bound. Two other
popular policies are studied, and we demonstrate that they
need at least an order higher capacity to meet the same hard
allocation ratio requirement. Simulation results demonstrate
that our policies remain far superior than the other two even
when jobs arrive according to some random process.

Index Terms—Job allocation; online algorithm; competi-
tive ratio; cloud computing

I. INTRODUCTION

In this paper, we discuss the problem of online job

allocation for cloud computing where each job can only

be served by a subset of servers. Such a problem exists
in many emerging Internet services, such as YouTube,

Netflix, etc. For example, in the case of YouTube, each

video is replicated only in a small number of servers,
and each server can only serve a limited number of

streams simultaneously. When a user accesses YouTube
and makes a request to watch a video, this request needs

to be allocated to one of the servers that not only stores

the video but also has remaining capacity to process
this request. If no server can process this request, the

request is dropped, which can significantly impact user

satisfaction.

Han Deng is with Houston Methodist Research Institute, Houston,
Texas, 77030, USA. Email: hdeng@houstonmethodist.org

I-Hong Hou is with Department of ECE, Texas A&M University, College
Station, Texas, 77843-3128, USA. Email: ihou@tamu.edu

This material is based upon work supported in part by NSF under
contract number CNS-1719384, and the U. S. Army Research Laboratory
and the U. S. Army Research Office under contract/grant number
W911NF-15-1-0279. Part of this work has been presented in IEEE
Infocom 2016 [1].

There are many studies on obtaining statistics about

user behaviors, video popularity, and access locality [2]–
[6]. These studies provide important insights about sys-

tem planning. However, they are not sufficient for job
allocation. It is usually difficult to predict which video

will go viral and generate most requests. Therefore, online

job allocation policy that makes decisions solely based on
current system state is needed.

The problem of online job allocation has attracted much

attention. Most current studies study the performance of
online policies by comparing the number of allocated jobs

under online policies against that of the an offline policy
with full knowledge about all future arrivals. For example,

Karp, Vazirani and Vazirani [7] propose an online policy

that is guaranteed 1 − 1
e ≈ 63% of jobs, given that the

offline policy allocates all jobs. They also show that no

online policy can guarantee to allocate more jobs than

their proposed policy.
These studies are still insufficient for many practical

scenarios. In particular, one can argue that most practical
applications demand a much higher ratio of allocated

jobs than 63%. In order to meet this demand, current

practice is to add redundancy and increase the capacity
of data centers to accommodate unpredictable patterns

of job arrivals. Motivated by this observation, we seek

to address the following question: How much capacity is
needed to guarantee the allocation of, say, 95% of jobs?

We address this problem for two different categories

of jobs: persistent jobs and dynamic jobs. Persistent jobs,
such as requests for video streaming, require immediate

service upon arrival, and need continuous service after
being allocated to a server. On the other hand, dynamic

jobs, such as database queries, have small execution time

and leave the system upon completion. Dynamic jobs can
also tolerate a small amount of delay, as long as they are

completed before their respective deadlines. For each of

these two categories of jobs, we formulate the problem
of job allocation as a linear programming problem. The

uncertainty in future job arrivals corresponds to the un-
certainty in some of the parameters. Also, increasing the

capacity of the servers corresponds to relaxing some of

the constraints in the linear programming problem.
For the allocation of persistent jobs, we propose two

simple online allocation policies and derive closed-form

expressions for their performance. Specifically, we prove
that, in order to allocate at least 1 − 1

θ of jobs, the two



2

policies only need to increase the capacity by ln θ times.

We also prove that no online policy can guarantee to

allocate the same ratio of jobs with less capacity, and
hence our policies are optimal.

We further evaluate two popular online job allocation

policies for allocating persistent jobs. Surprisingly, we

prove that, to guarantee to allocate at least 1− 1
θ of jobs,

these two policies require at least θ − 1 times capacity.

Therefore, they are both an order worse than our policies.

For the allocation of dynamic jobs, we also propose

a simple online allocation policy. We show that, when
the deadlines of all jobs are at most T , and each server

is constrained by both its computation capacity and its

storage to buffer unfinished jobs, then our policy only
needs ln θ + ln(T + 1) times capacity to guarantee the

allocation of 1− 1
θ of jobs. We also prove that the capacity

needed by our policy is at most ln(T + 1) larger than

a theoretical lower bound, regardless of θ. Further, we

show that our policy achieves the optimal performance
when each server has sufficiently large storage, and is

only constrained by its computation capacity.

The allocation ratio guarantees stated above need to

hold for every sample path. We also consider the scenario
where jobs arrivals are generated by some unknown

random process, and one only needs guarantees on the

expected value of allocation ratio. By both theoretical
analysis and numerical studies, we demonstrate that our

policies remain much better than the other existing poli-

cies for this scenario.

The rest of the paper is organized as follows: Sec-
tion II describes our system model for persistent jobs and

problem formulation. Section III introduces two online

job allocation policies for persistent jobs allocation and
studies their performance. Section IV derives a perfor-

mance bound for all online policies. Section V compares
our proposed policies with two widely used policies.

Section VI describes our model for dynamic jobs and

problem formulation. Section VII introduces an online
algorithm for dynamic jobs allocation as well as studies its

performance. Section VIII provides simulation comparison

of our policies with other commonly used policies. Sec-
tion IX reviews some previous work on online learning

and load balancing problem. Finally, Section X concludes
this paper.

II. SYSTEM MODEL FOR PERSISTENT JOBS

We first study the problem of job allocation for persis-

tent jobs. When a persistent job arrives at the system, it

needs to be allocated to a server for service immediately.
Further, once a job is allocated to a server, it stays in the

system for a long time. Examples of persistent jobs include

on-demand video streaming for movies, and live stream
services.

We consider a system with multiple non-identical

servers. Jobs arrive at the system sequentially. Jobs are

of different types, and each job can only be served by a
subset of the servers. For example, in the application of

on-demand video streaming, a job is a request for one

video, and can therefore only be served by servers that

possess the video. We assume that when a job enters the
system, it needs to be allocated to a server immediately.

Jobs that cannot be allocated upon arrivals are discarded

from the system. We also assume that jobs cannot be
moved once they are allocated to servers, as moving jobs

between servers cause additional costs on job migration.
A similar model has been used in [8].

We use J to denote the set of servers, and I =
{1, 2, . . .} to denote the arrival sequence of jobs. Each job

i can be served by a subset Ki ⊆ J of servers. Upon its

arrival, job i reveals its Ki, and the system either allocates
it to a server or discards it. Each job takes one unit of

capacity in the server to which the job is allocated to. A

server j has a total amount of Cj units capacity, and can
therefore at most serve Cj jobs. We use Xij to denote the

assignment of the jobs. If Xij = 1, then job i is assigned
to server j. If Xij = 0, job i is not assigned to server j.

We aim to maximize the number of jobs that can
be served. The problem of maximizing the number of

served jobs can be formulated as the following linear

programming problem for allocating persistent jobs:

AllocP:

Max
∑

ij:j∈Ki

Xij (1)

s.t.
∑

i:j∈Ki

Xij ≤ Cj , ∀j ∈ J , (2)

∑
j:j∈Ki

Xij ≤ 1, ∀i ∈ I, (3)

Xij ≥ 0, ∀i ∈ I, j ∈ J . (4)

Since Xij = 1 if job i is served by j, (1) is the total

number of served jobs. On the other hand, (2) states that

each server j can at most serve Cj jobs, and (3) states
that each job can be served by at most one server. In this

formulation, we allow Xij to be any real number between
0 and 1, while Xij needs to be either 0 or 1 according to

our model. Therefore, AllocP describes an upper-bound

of the number of jobs that can be allocated.

Solving AllocP is straightforward when one has knowl-

edge of all its parameters {Ki} and {Cj}. However,
as jobs arrive sequentially, the system needs to make

allocation decisions without knowledge of future jobs.

We say that an allocation policy is an online policy if it
makes allocation decisions only based on jobs that have

already arrived. On the other hand, an allocation policy
is an offline policy if it has full knowledge about all future

job arrivals, and can therefore find the optimal solution

to AllocP.

We consider that the service provider can increase

server capacity by, for example, purchasing more servers
as redundancy, to allocate more jobs. Suppose the service

provider purchases R times more servers so that each

server j has R identical copies. We can instead say
that the server j increases its capacity by R times, and



3

can now server RCj jobs. We can now formulate the

following linear programming problem:

AllocP(R):

Max
∑
ij

Xij (5)

s.t.
∑

i:j∈Ki

Xij ≤ RCj , ∀j ∈ J , (6)

∑
j:j∈Ki

Xij ≤ 1, ∀i ∈ I, (7)

Xij ≥ 0, ∀i ∈ I, j ∈ J . (8)

We evaluate the performance of online policies by com-

paring the number of allocated jobs under online policies

with R times capacity against that under offline policy
with unit capacity. Specifically, given {Ki} and {Cj}, let

Γopt be the optimal value of
∑

ij Xij in AllocP, and Γη(R)
be the value of

∑
ij Xij in AllocP(R) under policy η. We

define the competitive ratio per sample path as follows:

Definition 1: An online policy η is said to be (R, θ)-
competitive-per-sample-path if Γopt/Γη(R) ≤ θ, for all {Ki}
and {Cj} with Cj ≥ Cmin, as Cmin →∞.

Definition 1 defines competitive ratio based on the

worst-case sample path. This definition may ignore effects

of statistic multiplexing. In practice, jobs may arrive ac-
cording to some random process. Therefore, the arrivals

of different types of jobs are likely to be interwined.

We can expand our model to accommodate the random
nature of job arrivals. Given {Ki}, we can consider the

case where the actual arrival sequence is a random per-

mutation of I = {1, 2, . . .}. Let E[Γη(R)] be the expected
number of allocated jobs under η with R times capacity

when the arrival sequence is a random permutation. We

then define the expected competitive ratio as follows

Definition 2: An online policy η is said to be (R, θ)-
competitive-in-expectation if Γopt/E[Γη(R)] ≤ θ, for all

{Ki} and {Cj} with Cj ≥ Cmin, as Cmin →∞.

It is obvious that the competitive ratio per sample path
cannot be better than the expected competitive ratio.

Lemma 1: A (R, θ)-competitive-per-sample-path policy

is (R, θ)-competitive-in-expectation.

III. TWO ONLINE ALLOCATION POLICIES FOR PERSISTENT

JOBS AND THEIR COMPETITIVE RATIOS

In this section, we propose online policies and analyze
their competitive ratios. Our analysis is based on the

Weak Duality Theorem of linear programming [9]. The
dual problem of AllocP can be written as:

DualP:

Min
∑
j

Cjαj +
∑
i

βi, (9)

s.t. αj + βi ≥ 1, ∀i ∈ I, j ∈ Ki (10)

αj ≥ 0, ∀j, (11)

βi ≥ 0, ∀i, (12)

where each αj corresponds to a constraint in (2), and

each βi corresponds to a constraint in (3). The following

lemma is then a direct result of the Weak Duality Theo-
rem.

Lemma 2: Given any vectors of {αj} and {βi} that

satisfy the constraints (10)–(12), we have
∑

j Cjαj +∑
i βi ≥ Γopt.

We now introduce an online policy. This policy main-
tains a variable αj for each server j. When the system

starts, it sets αj ≡ 0 initially. When a job i arrives, the

policy checks the values of αj for all j ∈ Ki, and selects
j∗ as the one with the minimum value of αj . If αj∗ < 1,

job i is assigned to server j∗, and therefore Xij∗ = 1. The

value of αj∗ is updated to be αj∗(1+
1

Cj∗
)+

1

(dj∗ − 1)Cj∗
,

where we set dj = (1 + 1/Cj)
RCj , for all j. The value

of dj is chosen to achieve the optimal competitive ratio,

as will be shown in the proof of Lemma 3. On the other
hand, if αj∗ ≥ 1, job i is discarded. The complete policy

is described in Algorithm 1.

Algorithm 1 PD Algorithm for Persistent Jobs

1: Initially, αj = 0, βi = 0, Xij = 0.

2: dj ← (1 + 1/Cj)
RCj , ∀j.

3: for each arriving job i do
4: j∗ ← argminj∈Ki αj .
5: if αj∗ < 1 then
6: βi ← 1− αj∗ .

7: αj∗ ← αj∗(1 +
1

Cj∗
) +

1

(dj∗ − 1)Cj∗
.

8: Xij∗ ← 1.
9: Job i is assigned to server j∗.

10: else
11: Discard job i.

We first need to show that the vector {Xij} produced
by this policy satisfies all constraints of AllocP(R), so that

the policy never assigns a job to a server that is already

fully utilized.

Lemma 3: Let αj [n] be the value of αj after n jobs have
been allocated to server j. Then,

αj [n] = (
1

dj − 1
)(d

n/RCj

j − 1). (13)

Proof: Here we prove (13) by induction.

Initially, when n = 0, αj [0] = 0 = ( 1
dj−1 )(d

0
j − 1) and

(13) holds.

Suppose (13) holds when n = k. When the (k + 1)-th
job is allocated server j, we have

αj [k + 1] =αj [k](1 +
1

Cj
) +

1

(dj − 1)Cj

=
1

(dj − 1)
(d

k/RCj

j − 1)(1 +
1

Cj
) +

1

(dj − 1)Cj

=
1

(dj − 1)
[d

(k+1)/RCj

j − 1],



4

and (13) still holds for n = k+1. By induction, (13) holds

for all n.

With Lemma 3, αj = 1 when RCj jobs have been

allocated to server j. Since Algorithm 1 only allocates
jobs to servers with αj < 1, our policy does not violate

any constraints in AllocP(R).

Next, we study the competitive ratio of Algorithm 1.

Theorem 1: Algorithm 1 is (R, eR

eR−1 )-competitive-per-
sample-path.

Proof: We prove Theorem 1 by three steps:

First, we show that solutions {αj} and {βi} satisfy all
constraints in DualP. Initially, αj and βi are set to be 0.

By step 7 in Algorithm 1, αj is non-decreasing throughout

the execution of the policy, and hence (11) holds. Also, by
Lemma 3, αj ≤ 1, for all j. When a job i arrives, our policy

sets j∗ ← argmin
j∈Ki

{αj}. If αj∗ = 1, we have αj = 1 for all

j ∈ Ki and βi = 0. Hence, both constraints (10) and (12)
hold. On the other hand, if αj∗ < 1, βi = 1−αj∗ ≥ 1−αj,

for all j ∈ Ki. Both constraints (10) and (12) still hold.

Next, we derive the ratio between
∑

ij Xij and∑
j Cjαj +

∑
i βi. Both formulas are initially 0. We now

consider the amounts of change of these two formulas

when a job i arrives. We use ∆P (R) to denote the
change of

∑
ij Xij , and ∆D to denote the change of∑

j Cjαj +
∑

i βi.

If job i is discarded, then {Xij}, {αj} and {βi} remain

unchanged, and therefore ∆P (R) = ∆D = 0.

On the other hand, consider the case when job i is
assigned to server j. We have Xij = 1 and ∆P (R) = 1.

We also have

∆D

∆P (R)
= ∆D =Cj(

αj

Cj
+

1

(dj − 1)Cj
) + 1− αj

=1 +
1

dj − 1
=

dj
dj − 1

=
(1 + 1/Cj)

RCj

(1 + 1/Cj)RCj − 1
.

When we imposes a lower bound on Cj by requiring
Cj ≥ Cmin, for all j, and let Cmin → ∞, we have

∆D
∆P (R) → eR

eR−1 , whenever a job i is allocated to some

server. Therefore, we have, under Algorithm 1,∑
j Cjαj +

∑
i βi∑

ij Xij
=

eR

eR − 1
. (14)

Finally, by Lemma 2, we establish that Algorithm 1 is

(R, eR

eR−1 )-competitive-per-sample-path.

This paper defines competitive ratios only for the lim-

iting case when Cmin → ∞. As can be seen in the
above proof, the condition that Cmin → ∞ is only

needed so that ∆D
∆P (R) =

(1+1/Cj)
RCj

(1+1/Cj)
RCj−1

→ eR

eR−1 . It is

straightforward to extend our definition on competitive
ratio per sample path for the general case where Cmin <
∞, and a similar proof yields that the competitive per

sample path is
(1+1/Cmin)

RCmin

(1+1/Cmin)RCmin−1
. Fig. 1 plots the value of

(1+1/Cmin)
RCmin

(1+1/Cmin)RCmin−1
. It can be seen that

(1+1/Cmin)
RCmin

(1+1/Cmin)RCmin−1

C
min

2 4 6 8 10

C
om

pe
tit

iv
e 

ra
tio

0

1

2

3
R=1
R=3
R=5

Fig. 1: Convergence of the competitive ratio per sample
path with finite Cmin.

converges to eR

eR−1 rapidly. Hence, our analysis still holds
well for practical systems with finite Cmin.

Algorithm 1 relies on the usage of artificial variables
{αj} and {dj}. Below, we introduce a second online

policy that not only is simpler, but also conveys better
intuition. The policy is called Join-Least-Utilization (JLU)

policy. When a job arrives, JLU simply allocates the job

to the server with the smallest utilization ratio, which
is the number of allocated jobs at a server divided by

its capacity. Specifically, let nj be the number of jobs

that have already been allocated to server j. When job
i arrives, it is allocated to argminj∈Ki

nj

RCj
.

The complete policy is described in Algorithm 2. While

the algorithm still involves {αj}, {dj}, and {βi}, these

variables are introduced solely for the purpose of the
analysis of competitive ratio. They can be omitted in

actual implementation.

Algorithm 2 JLU

1: Initially, αj = 0, βi = 0, Xij = 0, nj = 0.
2: dj ← (1 + 1/Cj)

RCj , ∀j.
3: for each arriving job i do
4: j∗ ← argminj∈Ki{ nj

RCj
}.

5: if nj∗ < RCj∗ then
6: Xij∗ ← 1.

7: αj∗ ← αj∗(1 +
1

Cj∗
) +

1

(dj∗ − 1)Cj∗
.

8: nj∗ ← nj∗ + 1.
9: Job i is assigned to server j∗.

10: βi ← 1−minj∈Ki αj .
11: else
12: Discard job i.

Lemma 4: For any δ > 0, there exists a finite Cmin such

that, by requiring Cj > Cmin, for all j, we have

αj1 − αj2 > δ =⇒ nj1

RCj1

>
nj2

RCj2

, (15)

for all j1, j2 ∈ J , throughout the execution of JLU.

Proof: The equation for updating αj in JLU is the
same as that in Algorithm 1. By Lemma 3, at any point



5

of time, we have

αj =(
1

dj − 1
)(d

nj/RCj

j − 1) (16)

=
1

(1 + 1/Cj)RCj − 1
[(1 + 1/Cj)

nj − 1], (17)

as dj = (1 + 1/Cj)
RCj .

Note that αj → enj/Cj−1
eR−1 for a fixed R and all

nj

Cj
≤ R,

as Cj → ∞. Thus, for any δ > 0, there exist a finite

Cmin such that, by requiring Cj > Cmin for all j, we

have |αj − enj/Cj−1
eR−1

| < δ/2 for all j. Therefore, for any

two servers j1 and j2, we have

|(αj1 − αj2)− (
enj1/Cj1 − 1

eR − 1
− enj2/Cj2 − 1

eR − 1
)| (18)

<|αj1 −
enj1/Cj1 − 1

eR − 1
|+ |αj2 −

enj2/Cj2 − 1

eR − 1
| < δ. (19)

This implies that

αj1 − αj2 > δ =⇒enj1/Cj1 − 1

eR − 1
>

enj2/Cj2 − 1

eR − 1
(20)

=⇒ nj1

RCj1

>
nj2

RCj2

, (21)

and the proof is complete.

Theorem 2: JLU is (R, eR

eR−1)-competitive-per-sample-

path.

Proof: The proof is very similar to that of Theorem 1.

By Lemma 3,
nj

RCj
< 1⇔ αj < 1. Therefore, under JLU,

an arriving job i is allocated if and only if minj∈Ki αj < 1.

For any δ > 0, we pick a sufficiently large Cmin so that
(15) holds.

We can establish that the solutions {Xij}, {αj}, and

{βi} produced by JLU satisfy all constraints in AllocP(R)
and DualP using an argument that is virtually the same
as that in the proof of Theorem 1.

Next, we derive the ratio between
∑

ij Xij and∑
j Cjαj +

∑
i βi. Both formulas are initially 0. We now

consider the amounts of change of these two formulas
when a job i arrives. We use ∆P (R) to denote the

change of
∑

ij Xij , and ∆D to denote the change of∑
j Cjαj +

∑
i βi.

If job i is discarded, then ∆P (R) = ∆D = 0.

On the other hand, consider the case when job i is

assigned to server j∗ = argminj∈Ki

nj

RCj
. By Lemma 4,

αj ≥ αj∗ − δ, for all j ∈ Ki.

We now have

∆D

∆P (R)
= ∆D

=Cj∗(
αj∗

Cj∗
+

1

(dj∗ − 1)Cj∗
) + 1− min

j∈Ki

αj

≤Cj∗(
αj∗

Cj∗
+

1

(dj∗ − 1)Cj∗
) + 1− αj∗ + δ

=
(1 + 1/Cj∗)

RCj∗

(1 + 1/Cj∗)RCj∗ − 1
+ δ.

Let Cmin →∞, and we have under JLU,

∑
j Cjαj +

∑
i βi∑

ij Xij
≤ eR

eR − 1
+ δ, (22)

for any δ > 0

Finally, by Lemma 2, we establish that JLU is (R, eR

eR−1 )-
competitive-per-sample-path.

By Lemma 1, we also have the following theorem.

Theorem 3: Both Algorithm 1 and JLU are (R, eR

eR−1
)-

competitive-in-expectation.

As a final remark, we note that the complexity of both

Alg. 1 and 2 is linear with the number of servers for
each job arrival, since each job i needs to find the server

that minimizes either αj or
nj

RCj
. Hence, the computation

overhead of our algorithms is small.

IV. LOWER BOUNDS OF COMPETITIVE RATIOS

In Section III, we show that our online policies are both

(R,
eR

eR − 1
)-competitive-per-sample-path. In this section,

we will study the lower bound for the competitive ratio

per sample path. We focus on a special class of systems
described below:

A system in this class has N servers with capacity C
each, where C is chosen to be a multiple of N !. A total

number of NC jobs arrive in sequence, and they are
separated into N groups, where the k-th group contains

jobs {(k − 1)C + 1, (k − 1)C + 2, . . . , kC}. Jobs in the
same group can be served by the same subset of servers.

The subset of servers that can serve a job i, i.e., Ki is

constructed as follows: Jobs in the first group {1, 2, . . . , C}
can be served by all servers, i.e., Ki = J . For each job

in the (k + 1)-th group, its Ki is obtained by removing

one element from that for jobs in the k-th group. More
specifically, for a job i1 in the k-th group and a job i2 in the

(k+1)-th group, we have Ki2 ( Ki1 and |Ki2 | = |Ki1 |−1.

It is easy to verify that an offline policy can allocate all
NC jobs for all systems in this class.

We consider a policy, namely, EVEN, that evenly dis-

tributes jobs in the same group among all available
servers. We first establish the number of jobs that can

be allocated by EVEN, and then show that no policy can

guarantee to allocate more jobs than EVEN within this
class of systems.

Lemma 5: When the capacity is increased by R times,

EVEN serves at most (N − N+1
eR + 2)C jobs.

Proof: Since EVEN allocates jobs evenly on all avail-
able servers, each server gets C

N jobs in the first group of

C jobs. Similarly, as jobs in the k-th group can be served

by N−k+1 servers, each server that can serve this group
gets C

N−k+1 jobs in this group, unless the server is already

fully utilized.

Consider the case when each server has RC capacity.

Suppose the system can only serve up to the (k + 1)-
th group, that is, servers are still not fully utilized after



6

serving the k-th group. We then have

C(
1

N
+

1

N − 1
+

1

N − 2
+ . . .+

1

N − k + 1
) < RC

⇒
∫ N+1

N−k+1

1

x
dx < (

1

N
+

1

N − 1
+ . . .+

1

N − k + 1
) < R

⇒ log(N + 1)− log(N − k + 1) = log
N + 1

N − k + 1
< R

⇒k < N + 1− N + 1

eR

Since servers can serve up to the (k + 1)-th group and

become fully utilized after the arrival of this group, the

number of jobs served in the system is then at most (k +
1)C < (N − N+1

eR + 2)C
Lemma 6: When the parameters R, N , and C are fixed,

no online policy can guarantee to allocate more jobs than

EVEN.

Proof: We consider an alternative policy ALT and
show that it cannot allocate more jobs than EVEN. Given

R, N , and C, we construct Ki iteratively as follows: The

first group can be served by all servers. Let j1 be the
server with the least jobs. We then choose Ki = J \{j1}
for the second group. Similarly, let jk be the server with

the least jobs among severs that can serve the k-th group.
We choose Ki = J \{j1, j2 . . . , jk} for the (k+1)-th group.

Under this arrival sequence, the total amount of unused
capacity in all servers is at least (RC − C

N ) + (RC − C
N −

C
N−1 )+ . . . , which is the total amount of unused capacity

by EVEN. Therefore, ALT cannot allocate more jobs than

EVEN.

Theorem 4: Any online policy for allocating persistent

jobs cannot be better than (R,
eR

eR − 1
)-competitive-per-

sample-path.

Proof: This is a direct result of Lemmas 5 and 6.

Section III has shown that our two online policies are

both (R,
eR

eR − 1
)-competitive-per-sample-path. Therefore,

Theorem 4 demonstrates that our online policies are

indeed optimal.

V. COMPETITIVE RATIOS OF OTHER WIDELY USED

POLICIES

In this section, we study the competitive ratios of two

widely used polices.

A. Join the Shortest Queue

The first policy is the join the shortest queue (JSQ) pol-
icy [10], which allocates jobs to servers with the smallest

number of jobs. Specifically, let nj be the number of jobs
that have already been allocated to server j. When a new

job i arrives, it is allocated to argminj∈Ki{nj|nj < RCj},
if there exists a server j ∈ Ki with nj < RCj .

Theorem 5: JSQ cannot be better than (R, 1 + 1
R )-

competitive-per-sample-path.

Proof: Given R, we construct a system with two types
of servers, J1 and J2, and two types of jobs, I1 and I2.

 

 

 

 

 

Fig. 2: System illustration for the analysis of JSQ.

Type I1 jobs can be served by all servers, while type I2
jobs can only be served by type J2 severs.

The system is described as Fig 2. It has one type J1
server with capacity MC and K type J2 servers with
capacity C. The job arrival sequence is as follows: first

MC jobs of type I1 arrive; then KC jobs of type I2
arrive. The values of M and K are chosen such that
R = M/(K + 1). The jobs (or servers) of same type are

in the same square box. An arrow line indicates that the

job can be allocated to the server.

The optimal offline policy is to allocate all type I1 jobs
to the server of type J1, and allocate all type I2 jobs to

type J2 servers. This allocation can allocate all MC+KC
jobs, and Γopt = MC +KC.

Now, consider the performance of JSQ when the server

capacity is increased by R times. After the increase, the

type J1 server has RMC capacity, and all other servers
have RC capacity. The first MC arrivals are all type I1
jobs, who can be served by all servers. Therefore, JSQ

evenly distribute these jobs to all servers, and each server
gets MC/(K + 1) = RC jobs. Next, type I2 jobs arrive,

and they can only be served by type J2 servers. However,
at this point, all type J2 servers are fully utilized, and

no type I2 job can be served. The total number of served

jobs under JSQ is ΓJSQ(R) = MC.

We then have

Γopt

ΓJSQ(R)
=

MC +KC

MC
(23)

=
M +K

M
→ 1 +

1

R
, (24)

as K →∞, and M = R(K + 1).

Theorem 6: JSQ cannot be better than (R, 1 + 1
R2+2R )-

competitive-in-expectation.

Proof: Given R, we use the same system as that in the

proof of Theorem 5, but consider that the actual arrival
sequence is a random permutation of all jobs. We still

have Γopt = MC +KC. In this proof, we choose M and

K such that R = M
K .

Now, consider the performance of JSQ when the server
capacity is increased by R times. Type J2 servers can



7

serve all jobs, while the type J1 server can only serve

jobs of type I1. Under JSQ, whenever a type J2 server

has the least jobs among all servers, the next job will
be allocated to this server, regardless of the type of the

job. Therefore, under JSQ, all type J2 servers will have

at least one less job than the number of jobs at the J1
server before all type J2 servers are fully utilized. Hence,

after (K + 1)RC arrivals, all type J2 servers are fully
utilized. From then on, only type I1 jobs can be served.

Further, there are MC type I1 jobs and KC type I2 jobs.

Under a random permutation, the average number of type
I1 jobs that arrive after the first (K + 1)RC arrivals is

MC
MC+KC [MC + KC − (K + 1)RC] = MC − M(K+1)RC

M+K .

The expected number of jobs served by JSQ is then

E[ΓJSQ(R)] ≤(K + 1)RC +MC − M(K + 1)RC

M +K
(25)

=MC + (K + 1)RC
K

M +K
, (26)

and hence

Γopt

E[ΓJSQ(R)]
≥ MC +KC

MC + (K + 1)RC K
M+K

=
RK +K

RK + (K + 1)RK/(RK +K)

→ (R + 1)2

R(R+ 1) +R

= 1 +
1

R2 + 2R
,

as K →∞ and M = KR.

B. Join the Most Residue Queue

It may seem that JSQ performs poorly only because it

makes decisions solely based on nj , and does not consider
Cj . A straightforward extension of JSQ is the join the most

residue queue (JMQ) algorithm, which allocates jobs to

servers with most remaining space, which is the server
capacity minus the number of allocated jobs in this server.

Let RCj be the capacity of server j, nj be the number of
jobs that have already been allocated to j. The arriving job

i is allocated to server argmaxj∈Ki{RCj −nj |nj < RCj},
if there exists a server j ∈ Ki with nj < RCj .

Theorem 7: Join the most residue queue policy cannot
be better than (R, 1 + 1

R )-competitive-per-sample-path.

Proof: Given R, we construct a system with two types

of servers, J1 and J2, and two types of jobs, I1 and I2.

Type I1 jobs can only be served by type J1 servers, while
type I2 jobs can be served by all servers.

The system is shown in Fig. 3. It has one type J1 server

with capacity (M + 1)C, and K type J2 servers with

capacity C. The job arrival sequence is as follows: first
KC jobs of type I2 arrive; then (M + 1)C jobs of type

I1 arrive. The value of M and K are chose such that
R = K/M .

The optimal offline policy is to allocate all type I2 jobs
to servers of type J2 and all type I1 jobs to the type J1

 

 

 

 

 

Fig. 3: System illustration for the analysis of JMQ.

server. The total number of jobs allocated by this policy

is (M + 1)C +KC, and Γopt = (M + 1)C +KC.

When the server capacity is increased by R times, type

J1 server has R(M + 1)C capacity, and type J2 servers
have RC capacity. The first arriving KC = MRC jobs

are of type I2. They can be served by both type J1 and
J2 servers. JMQ allocates all these jobs to type J1 server.

Type J1 server can therefore serve only RC jobs of type

I1. The total number of jobs served is R(M + 1)C.

We then have

Γopt

ΓJMQ(R)
=

(M + 1)C +KC

R(M + 1)C
(27)

=
M

M + 1
+

1

R
→ 1 +

1

R
, (28)

as M →∞, and K = MR.

Theorem 8: JMQ cannot be better than (R, 1+ 1
R2+2R )-

competitive-in-expectation.

Proof: We use the system in the proof of Theorem 7
but consider that the actual arrival sequence is a random

permutation of all jobs. First, we have Γopt = (M +1)C+
KC. Now we study E[ΓJMQ(R)]. In this proof, we choose
M and K such that K = MR− 1.

The type J1 server can serve all jobs and has MRC
more capacity than others. Thus, the first MRC jobs will

be allocated to the type J1 server, regardless of job types.
After the first MRC arrivals, the type J1 server has RC
capacity left and hence at most RC more type I1 jobs

can be served. Since there are (M + 1)C type I1 jobs
and KC type I2 jobs, the average number of type I1
jobs among the first MRC arrivals is MRC · M+1

M+1+K . The

expected number of allocated jobs is then no more than
RC +MRC M+1

M+1+K +KC. Therefore we have:



8

0.8 0.85 0.9 0.95
0

2

4

6

8

10

12

14

16

18

20

Allocation ratio

R

 

 

PD, JLU
JSQ, JMR (per−sample−path)
JSQ, JMR (in−expectation)

Fig. 4: Capacity requirements of different policies.

Γopt

E[ΓJMQ(R)]
(29)

≥ MC + C +KC

RC +MRC M+1
M+1+K +KC

(30)

=
M +MR

MR− 1 +R+MR M+1
M+MR

(31)

=
M2(R+ 1)2

(M + 1)RM(R+ 1)−M(R+ 1) +MR(M + 1)
(32)

→ (R+ 1)2

R(R+ 1) +R
(33)

= 1+
1

R2 + 2R
(34)

as M →∞ and K = MR− 1.

C. Discussions

We have shown that our policies are (R, eR

eR−1 )-
competitive-per-sample-path, while JSQ and JMR are no
better than (R, 1 + 1

R )-competitive-per-sample-path, and

no better than (R, 1+ 1
R2+2R )-competitive-in-expectation.

Suppose we are given a system where the offline policy

can allocate all jobs. In order to guarantee that at least

1 − 1
θ of the jobs are allocated, our policy only needs to

increase the capacity by R times so that eR

eR−1
≤ 1/(1− 1

θ ).
Therefore, choosing R = ln θ is sufficient. In contrast, the

two commonly used policies, JSQ and JMQ, require to
increase the server capacity by at least (θ−1) times. Even

when we consider that the arrival sequence is a random

permutation of all jobs, and only require JSQ and JMQ
to allocate 1− 1

θ of the jobs on average, they still need to

increase the capacity by at least
√
θ − 1 times.

Fig. 4 plots the capacity requirement for different allo-
cation ratios. From the figure we can observe that as the

allocation ratio approaches 1, the capacity requirement

using JSQ or JMQ increases much faster than that using
PD or JLU. For example, if we need to allocate at least 95%

of the jobs, i.e., θ = 20, our policies only require R = 3,

while JSQ and JMQ both require R ≥ 19. Even when the

arrival sequence is a random permutation of all jobs, JSQ
and JMQ still need R ≥ 3.5. Further, one may notice that

the expected competitive ratios of JSQ and JMQ seem to

outperform the competitive ratio per sample path of our
policies when the allocation ratio is low. However, the

comparison is not fair, since, by Lemma 1, the expected
competitive ratio is always better than the competitive

ratio per sample path for any policy. In Section VIII, we

will demonstrate that our policies still outperform JSQ
and JMQ when the actual arrival sequence is a random

permutation of all jobs.

VI. SYSTEM MODEL FOR DYNAMIC JOBS

We now turn our attention to the problem of allocating

dynamic jobs. Compared to persistent jobs, dynamic jobs
have two important features: First, dynamic jobs require

only a small amount of execution time, and they leave

the system once they are completed. Second, dynamic
jobs may not require immediate service. Rather, they

only require to be completed within their specified delay

bounds. Jobs that are not served immediately can be
stored in the buffer of a server, as long as there is enough

space in the buffer. Examples of dynamic jobs include web
searches and database queries.

We now formally describe our system model for dy-
namic jobs. We consider a system with multiple non-

identical servers with different service capacities and

buffer sizes. Time is slotted and indexed by t = 0, 1, 2 . . . .
At the beginning of each time slot, some jobs arrive at the

system sequentially, and each job can only be served by

a subset of the servers. Each job specifies the subset of
servers that can serve it, and a hard delay bound, when

it arrives at the system. Upon the arrival of a job, the
system needs to immediately allocate it to a server, either

to be executed immediately or to be stored in the buffer.

Jobs that cannot be allocated immediately, or cannot be
completed within their delay bounds, are dropped from

the system.

We assume that all jobs require the same amount of

computation resource. A server j has a service capacity of

executing Cj jobs per time slot, and a buffer that can store
Bj jobs that are yet to be completed. We use a(i) to denote

the arrival time of job i. When job i arrives, it reveals
its server subset Ki and delay bound T (i). We assume

that the delay bounds are upper-bounded by T (i) ≤ T, ∀i.
We define kijt as the indicator function that Ki = 1 and
a(i) ≤ t ≤ a(i) + T (i). In other words, we have kijt = 1
if job i can be completed by server j at time t without

violating its delay bound.

The decision of allocating a dynamic job consists of two

parts: deciding which server to serve this job, as well as
when to serve it. We use Xijt to denote the allocation

decision for job i. If Xijt = 1, then job i is served by

server j at time t. When a job is allocated to a server,
it waits in the buffer until it is completed. Therefore, at



9

each time slot τ , the jobs in the buffer of server j are

those that satisfy the following three conditions: (i) they

arrive on or before time τ , (ii) they are allocated to server
j, and (iii) they are scheduled to be executed on or after

time τ . The number of jobs in the buffer of server j at

time τ can then be written as
∑

i,t:a(i)≤τ≤t kijtXijt.

We formulate the problem of maximizing the number

of completed dynamic jobs as the following linear pro-
gramming problem:

AllocD:

Max
∑
ijt

kijtXijt (35)

s.t.
∑
i

kijtXijt ≤ Cj , ∀t, j ∈ J , (36)

∑
i,t:τ∈[a(i),t]

kijtXijt ≤ Bj , ∀τ, j ∈ J , (37)

∑
jt

Xijt ≤ 1, ∀i ∈ I, (38)

Xijt ≥ 0, ∀i ∈ I, j ∈ J , t. (39)

In the above problem, (35) is the total number of

completed jobs. (36) states that each server j can serve

at most Cj jobs in each time slot. (37) states that at any
time, the total number of jobs in the buffer of server j
is at most Bj . Finally, (38) states that each job can be

served at most once.

Similar to the previous case, we consider that the
service provider can increase both capacities to allocate

more jobs. When the capacities are increased by R times,

the service capacity becomes RCj and the buffer capacity
becomes RBj. We have our linear programming as fol-

lows:

AllocD(R):

Max
∑
ijt

kijtXijt (40)

s.t.
∑
i

kijtXijt ≤ RCj , ∀t, j ∈ J , (41)

∑
i,

t:τ∈[a(i),t]

kijtXijt ≤ RBj, ∀τ, j ∈ J , (42)

∑
jt

Xijt ≤ 1, ∀i ∈ I, (43)

Xijt ≥ 0, ∀i ∈ I, j ∈ J , t. (44)

The definition of the competitive ratio per sample path

for persistent jobs in Section II can be naturally applied

to systems with dynamic jobs.

Before we proceed to the next section, we note that,
by setting Bj =∞ for all j, and making all jobs arrive at

the beginning of the first time slot with T (i) = 1 for all i,
the problems of AllocD and AllocD(R) become equivalent
to AllocP and AllocP(R), respectively. In other words,

the system with persistent jobs can be thought of as a

special case of a system with dynamic jobs. Hence, the
competitive ratio per sample path for dynamic jobs cannot

be better than that for persistent jobs, and we immediately

have the following lower bound:
Theorem 9: Any online policy for allocating dynamic

jobs cannot be better than (R,
eR

eR − 1
)-competitive-per-

sample-path.
Proof: This is a direct result of Theorem 4.

VII. AN ONLINE POLICY FOR DYNAMIC JOBS

A. Policy Design and Performance Analysis

This section proposes an online policy for allocating

dynamic jobs, and analyzes its competitive ratio. Many
proofs in this section are similar to those in Section III,

and hence we move all proofs to the appendix.
Similar to Section III, we first find the dual problem of

AllocD as:
DualD:

Min
∑
jt

Cjαjt ++
∑
jτ

Bjγjτ +
∑
i

βi, (45)

s.t. kijtαjt +
∑

τ∈[a(i),t]

kijtγjτ + βi ≥ kijt, ∀i ∈ I, j ∈ J , t

(46)

αjt ≥ 0, ∀j ∈ J , t, (47)

γjτ ≥ 0, ∀j ∈ J , τ, (48)

βi ≥ 0, ∀i ∈ I. (49)

In DualD, each αjt corresponds to a constraint in (41),

each γjτ corresponds to a constraint in (42), and each βi

corresponds to a constraint in (43).
Now we introduce our online scheduling policy. The

policy maintains two sets of variables αjt and γjτ . They

can be seen as the monitors for the usage of service

capacity and buffer capacity, respectively. Initially, they
are both set to be 0.

When a job i arrives, the policy finds a server j∗ and a

time t∗ that maximizes kijt(1−αjt−
∑

τ∈[a(i),t] γjτ ) for all

j and t. If kij∗t∗(1−αj∗t∗−
∑

τ∈[a(i),t∗] γjτ∗) > 0, then job

i is scheduled to be executed by server j∗ at time t∗, and

hence Xij∗t∗ = 1. The job is dropped if kij∗t∗(1− αj∗t∗ −∑
τ∈[a(i),t∗] γjτ∗) ≤ 0.
When the job i is scheduled to be executed by server

j∗ at time t∗, it consumes two kinds of resource: First, it

requires one unit of service capacity of server j∗ at time

t∗. Second, it is stored in the buffer of server j∗ from
its arrival time, a(i), to time t. The corresponding dual

variables for these two kinds of resources are αj∗t∗ and
γj∗τ , for τ ∈ [a(i), t∗], and they are updated by

αj∗t∗ ← αj∗t∗(1 +
1

Cj∗
) +

1

(dj∗ − 1)Cj∗
,

γj∗τ ← γj∗τ (1 +
1

Bj∗
) +

1

(fj∗ − 1)Bj∗
,

where dj = (1+1/Cj)
RCj and fj = (1+1/Bj)

RBj , for all

j. The complete policy is described in Algorithm 3. It is

straightforward to check that the complexity of the policy
is O(J T ).



10

Algorithm 3 PD Algorithm for Dynamic Jobs

1: Initially, αjt = 0, γjτ = 0, Xijt = 0.

2: dj ← (1 + 1/Cj)
RCj , ∀j.

3: fj ← (1 + 1/Bj)
RBj , ∀j.

4: for each arriving job i do
5: (j∗, t∗)← argmax(j,t) kijt(1−αjt−

∑
τ∈[a(i),t] γjτ ).

6: if kij∗t∗(1− αj∗t∗ −
∑

τ∈[a(i),t∗] γjτ∗) > 0 then

7: βi ← 1− kij∗t∗(1− αj∗t∗ −
∑

τ∈[a(i),t∗] γjτ∗)

8: αj∗t∗ ← αj∗t∗(1 +
1

Cj∗
) +

1

(dj∗ − 1)Cj∗
.

9: γjτ∗ ← γjτ∗(1 +
1

Bj∗
) +

1

(fj∗ − 1)Bj∗
, ∀τ ∈

[a(i), t∗]
10: Xij∗t∗ ← 1.
11: Job i is assigned to server j∗, to be served at t∗.
12: else
13: Discard job i.

We first need to show that the vector {Xijt} produced

by this policy satisfies all constraints of AllocD(R).
Lemma 7: Let αjt[n] be the value of αjt after n jobs are

scheduled to be served by j at t. Let γjτ [n] be the value
of γjτ when n jobs are waiting in server j at τ and to be

served at a later time t. Then,

αjt[n] = (
1

dj − 1
)(d

n/RCj

j − 1). (50)

γjτ [n] = (
1

fj − 1
)(f

n/RBj

j − 1). (51)

Proof: See Appendix A.
With Lemma 7, αjt = 1 when RCj jobs have been

scheduled to be served by j at t, and γjτ = 1 when

RBj jobs are waiting in the buffer of server j at τ .
In Algorithm 3, jobs are only allocates to servers with

kijt(1−αjt−
∑

τ∈[a(i),t] γjτ ) > 0, which guarantees αjt ≤ 1
and γjτ ≤ 1. Thus our policy does not violate any
constraints in AllocD(R).

Next, we study the competitive ratio of Algorithm 3.

Theorem 10: Algorithm 3 is (R, eR+T
eR−1 )-competitive-per-

sample-path.
Proof: See Appendix B.

B. Discussions and Performance Analysis for Infinite Buffers

We now discuss the practical implications of Theo-

rem 10. Suppose we are given a system where the offline
policy can allocate all jobs. In order to guarantee that at

least 1− 1
θ of the jobs are allocated, Algorithm 3 needs to

increase the capacity by R times so that eR+T
eR−1 ≤ 1/(1− 1

θ ).
We then have R = ln(θT + θ − T ) < ln θ + ln(T + 1).
Meanwhile, Theorem 9 states that no online policy can be

better than (R, eR

eR−1 )-competitive. Therefore, any online

policy would require at least R ≥ ln θ to ensure that at
least 1 − 1

θ of the jobs are allocated. This result shows

the amount of redundancy needed by Algorithm 3 is at

most ln(T + 1) larger than the theoretical lower-bound,
regardless of the service guarantee 1− 1

θ .

In the analysis of Theorem 10, we need to consider

constraints on both service capacity and buffer capacity.

In many applications, the major performance bottleneck is
service capacity. For such applications, we can assume that

the buffer size Bj is infinite for all j. As a result, constraint

(42) in AllocD(R) and variables γjt in DualD no longer
exist. We can then modify the design of Algorithm 3 by

simply removing all variables γjt. The complete algorithm
is shown in Algorithm 4.

Algorithm 4 PD Algorithm for Infinite Buffers

1: Initially, αjt = 0, Xijt = 0.

2: dj ← (1 + 1/Cj)
RCj , ∀j.

3: for each arriving job i do
4: (j∗, t∗)← argmax(j,t) kijt(1− αjt).
5: if kij∗t∗(1− αj∗t∗) > 0 then

6: αj∗t∗ ← αj∗t∗(1 +
1

Cj∗
) +

1

(dj∗ − 1)Cj∗
.

7: Job i is assigned to server j∗, and to be served at
time t∗.

8: else
9: Discard job i.

It is straightforward to show that Algorithm 4 achieves

the optimal competitive ratio per sample path.

Theorem 11: Algorithm 4 is (R, eR

eR−1 )-competitive-per-

sample-path.

VIII. SIMULATION

In this section, we evaluate the performance of both

persistent job model and dynamic job model.

A. Simulation of Persistent Job Model

We evaluate the performance of the four policies, in-
cluding PD, JLU, JSQ, and JMQ, discussed in this paper

by simulations. We consider three different scenarios:

In the first scenario, we construct a system with two

types of servers J1, J2; and two types of jobs I1, I2.

Type I1 job can be served by type J2 server, type I2 job
can be served by both J1 and J2 server. The number of

jobs and capacities of servers are shown in Table I. In the
second scenario, we construct a system with two types

of servers: J1, J2; and two types of jobs: I1, I2. The

setting for jobs and servers are shown in Table II. Last,
we construct a system with four types of servers: J1, J2,

J3, and J4; and four types of jobs: I1, I2, I3, I4. The

detailed setting for servers and jobs are listed in Table III,
which is a combination of the first two scenarios.

In each scenario, the arrival sequence is a random
permutation of all jobs. Simulation results are the average

of 10 runs. Under different R, we computer the allocation

ratio by the number of jobs allocated with online policy
dividing that with optimal offline policy.

Simulation results are shown in Fig. 5. We can see that

the allocation ratios of all four policies converge to 1 as R
increases. However, JSQ and JMQ converge much slower



11

R
2 4 6 8 10

A
llo

ca
tio

n 
R

at
io

0.92

0.94

0.96

0.98

1
PD
JMQ
JSQ
JLU

(a) First scenario

R
2 4 6 8 10

A
llo

ca
tio

n 
R

at
io

0.92

0.94

0.96

0.98

1
PD
JMQ
JSQ
JLU

(b) Second scenario

1 2 3 4 5 6
0.9

0.92

0.94

0.96

0.98

1

R

A
llo

ca
tio

n 
R

at
io

 

 

PD
JMQ
JSQ
JLU

(c) Third scenario

Fig. 5: Simulation results for the persistent job model.

TABLE I: System setting for the first scenario.

Server
Type

Number
of Servers

Capacity
Job
Type

Number
of Jobs

Ki

J1 1 25000 I1 2500 J2

J2 50 50 I2 25000 J1, J2

TABLE II: System setting for the second scenario.

Server
Type

Number
of Servers

Capacity
Job
Type

Number
of Jobs

Ki

J1 1 2550 I1 2550 J1

J2 500 50 I2 25000 J1, J2

than our proposed PD and JLU. Moreover, we notice that

our proposed PD and JLU policies almost have identical
performance.

In Section III we prove that PD and JLU are (R, eR

eR−1 )-
competitive-in-expectation. In Secion V we prove that

both JSQ and JMQ are no better than (R, 1 + 1
R2+2R )-

competitive-in-expectation. Although it looks like that the

competitive ratio in expectation of our policies is not as

good as that of the other two policies when R is small,
the simulation results show that our policies have better

allocation ratio even with small R. Thus with random

permutation of the jobs arrival sequence, the performance
of our policies are better than of JSQ and JMR policies.

B. Simulation of Dynamic Job Model

For the case of dynamic jobs, we will use Revised JSQ
(RJSQ), Revised JMQ (RJMQ), and Quincy as compar-

isons to our proposed policy.
The RJSQ (or RJMQ) policy always allocates jobs to

the buffer with the smallest number of jobs (or most re-

maining space). Then the system follows earliest deadline

first policy to serve jobs in the buffer. Quincy is the policy
proposed in [11]. In Quincy, when a job arrives, it joins

all servers that can serve it. The servers coordinate among

TABLE III: System setting for the third scenario.

Server
Type

Number
of Servers

Capacity
Job
Type

Number
of Jobs

Ki

J1 1 10000 I1 2500 J2

J2 50 50 I2 10000 J1,J2
J3 1 2550 I3 2550 J3

J4 200 50 I4 10000 J3,J4

TABLE IV: Server setting for dynamic job model.

Server Type Number
of Servers

Service Rate per
Time Slot

Buffer

J1 1 100 300
J2 5 5 15
J3 1 25 75
J4 20 5 15

TABLE V: Jobs setting for dynamic job model.

Job Type
Expected Number of
Jobs per Time Slot

Ki

I1 25 J2

I2 100 J1,J2
I3 25 J3

I4 100 J3,J4

themselves so that when a server begins processing a

job, all other servers discard the job immediately. Obvi-
ously, Quincy would result in high coordination overhead

among servers. Moreover, as we will demonstrate below,
our policy still outperforms Quincy even when we ignore

the coordination overhead.

We consider the system constructed as below: there are
four types of servers: J1, J2, J3, and J4; and four types of

jobs I1, I2, I3, and I4. The setting of servers is shown in
Table IV. In each time slot, job arrival follows the Poisson

random process with expected number of each type of

job shown in Table V. The arrival sequence is a random
permutation of all these jobs. Each job has a end-to-end

deadline uniformly selected from 1 to 5. The system is run

for 60 time slots and there are jobs arriving the system
for the first 50 slots. Simulation results are shown in

Fig. 6. We can observe that our policy outperforms all
other policies.

IX. RELATED WORK

The online job allocation problem is an online matching

procedure which aim to make the best decision on job-
server pair to maximize the number of jobs get matched.

Many works have been done on persistent job allocation.

The problem of online bipartite matching was studied by
Karp, Vazirani, and Vazirani [7]. They use an adversary

model and studied GREEDY which achieves a matching

ratio of 1/2 and RANKING which achieves 1− 1/e. They
further showed that no algorithm can achieve a better



12

R
1 2 3 4 5 6

A
llo

ca
tio

n 
R

at
io

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

PD
RJSQ
RJMQ
Quincy

Fig. 6: Simulation results for the dynamic model.

ratio than 1 − 1/e. Other models, which are based on
further assumption on arrival pattern, have also been

studied. Random arrival model has been studied by Goel

and Mehta [12], and Karande, Mehta and Tripathi [13].
They show that GREEDY achieves a matching ratio of

1−1/e and RANKING achieves greater than 1−1/e. Known
distribution model was introduced by Feldman, Mehta,

Mirrokni, and Muthukrishnan [14]. They provide a two-

suggested-matching algorithm which achieves a ratio of
67%. Kalyanasundaram and Pruhs studied the online b-

matching problem [15] which can be seen as the job

allocation problem with server capacity b. They presented
BALANCE algorithm and proved that it approaches 1−1/e.
Applications of online matching to ad-words problem,
which is an allocation of bidders to key words within

the budget limit of each bidder, have been studied in

[12], [16]. However, none of these studies can precisely
quantify the amount of capacity needed to guarantee a

certain allocation ratio, which is the goal of this paper.

There are many studies on YouTube videos about their

statistical properties [6], [17], [18]. Studies on online
learning further investigate the possibility to predict the

future video requests. The problem of “learn from expert

advise” was first studied by Littlestone and Warmuth [19],
DeSantis, Markowsky, and Wegman [20]. Later “learn

from examples” was studied. The Winnow algorithm was
proposed and studied by Littlestone and Nicholas [21],

[22]. The algorithm applies well to practical tasks such as

on World Wide Web [23]. Other sequence prediciton re-
search also include the studies by Nicolo and Gabor [24],

Hutter [25]. These studies assume that the job arrivals

follow some well-defined random process, and, concep-
tually speaking, they aim to find policies that learn the

parameters of the random process on-the-fly.

Also, many studies have consider the online scheduling

with time constraints. Moharir, Sanghavi, and Shakkottai
[26] have extended the RANKING algorithm for schedul-

ing jobs with time constraints and shown that their policy
achieves a matching ratio of 1−1/e. Koo, et al. [27] have

studied the case with uni-processor and the jobs to be

scheduled have tight deadlines and preemption is allowed
at no cost. The approach is to improve the processor’s

speed and the result shows that a processor O(1) times

faster is sufficient to guarantee a competitive ratio of 1 if
jobs have general value densities. Dürr, Jeż, and Nguyen

[28] have studied a problem with preemption where

jobs take different processing time and have different

deadlines. They aim to maximize the total weight of jobs
completed and show a competitive ratio of O(k/ log k).
Liu et al. [29] have studied the preemptive scheduling

for Hadoop jobs with deadline and implemented the
first real preemptive job scheduler to meet deadlines on

Hadoop. Khalib, Ahmad, and Ong [30] have studied a
non-preemptive scheduling of jobs with soft real time

system which can tolerant some percentage of missing

deadline. They propose algorithms to group jobs with near
deadline together and then schedule jobs within a group

to improve the earliest deadline first (EDF) policy.

In addition to theoretical research, there have also
been many efforts on building systems for job alloca-

tion that perform well in practical scenarios. Babaioff,
et al. [31] have proposed a framework that allow the

implementations of both allocation algorithms and pricing

policies. Hindman, et al. [32] have proposed a platform
that enables resource sharing. Zaharia, et al. [33] have

proposed the concept of “delay scheduling” and shown

that it performs well when each jobs consists of a large
number of smaller tasks. While these studies demonstrate

good performance in practical settings, they lack the

theoretical guarantees on “worst-case” performance.

X. CONCLUSION

In this paper, we study the job allocation problem with

unknown job arriving pattern under hard allocation ratio
requirement. Given the capacity of current data center

which serves all jobs offline, we aim to find how much

capacity we need to expand to meet the allocation ratio
requirement for any unknown job arrival sequence.

We consider system models for both persistent jobs and
dynamic jobs. For the case of persistent jobs, we propose

two online policies PD and JLU which are both (R, eR

eR−1 )-
competitive-per-sample-path. We also prove that our poli-

cies can achieve any allocation ratio requirement with

the least capacity. Next we study the performance of
two widely used policies, JSQ and JMQ. We prove that

both policies are no better than (R, 1 + 1
R )-competitive-

per-sample-path. Therefore, they need an order higher

capacity to achieve the same allocation ratio requirement

than our policies. We further prove that JSQ and JMQ are
no better than (R, 1 + 1

R2+2R )-competitive-in-expectation

by taking random permutation of the jobs in the arrival

sequence. For the case of dynamic jobs, we propose an on-

line policy PD which is (R, eR+T
eR−1 )-competitive-per-sample-

path. When buffers are not the bottleneck, the algorithm

is (R, eR

eR−1 )-competitive-per-sample-path, which achieves
the optimal competitive ratio per sample path. We also

demonstrate that our policies outperform other state-of-

the-art policies by simulations.

There are several important limitations in our current

model. For example, in the persistent model, we assume

that on-demand video streaming jobs never leave the sys-
tem. In practice, streaming jobs may terminate at arbitrary



13

times based on user behaviors. In the dynamic model, we

assume that all jobs require the same computation time,

while in practice different jobs obviously require different
times. Further, we only focus on the allocation ratio of

jobs, and ignore that different jobs may have different

values. Relaxing these assumptions to better capture the
behavior of real systems can be important future work.

APPENDIX

A. Proof of Lemma 7

Proof: Here we prove (50) and (51) by induction.

Initially, when n = 0, αjt[0] = 0 = ( 1
dj−1 )(d

0
j − 1) and

(50) holds.

Suppose (50) holds when n = k. When the (k + 1)-th
job is scheduled to be served by j at t, we have

αjt[k + 1] =αjt[k](1 +
1

Cj
) +

1

(dj − 1)Cj

=
1

(dj − 1)
(d

k/RCj

j − 1)(1 +
1

Cj
) +

1

(dj − 1)Cj

=
1

(dj − 1)
[d

(k+1)/RCj

j − 1],

and (50) still holds for n = k+1. By induction, (50) holds

for all n.

Similarly, when n = 0, γjτ [0] = 0 = ( 1
fj−1 )(f

0
j − 1) and

(51) holds.

Suppose (51) holds when n = k, i.e., there are k jobs

waiting for service in server j. When the (k+1)-th job is
scheduled to be served by j at time t, where t > τ , we

have

γjτ [k + 1] =γjτ [k](1 +
1

Bj
) +

1

(fj − 1)Bj

=
1

(fj − 1)
(f

k/RBj

j − 1)(1 +
1

Bj
) +

1

(fj − 1)Bj

=
1

(fj − 1)
[f

(k+1)/RBj

j − 1],

and (51) still holds for n = k+1. By induction, (51) holds

for all n.

B. Proof of Theorem 10

Proof: We prove Theorem 10 by three steps:

First, we show that solutions {αjt}, {γjτ} and {βi}
satisfy all constraints in DualD. Initially, αjt and γjτ are

set to be 0. By step 8 in Algorithm 3, αjt and γjτ are non-
decreasing. Hence (47) and (48)holds. Also, by Lemma 7,

αjt ≤ 1, γjτ ≤ 1, for all j. When a job i arrives, our policy

selects (j∗, t∗)← argmax(j,t) kijt(1− αjt −
∑

τ∈[a(i),t] γjτ )
according to step 5. When (αj∗t∗ +

∑
τ∈[a(i),t∗] γjτ∗) <

1, we have kijt(αjt +
∑

τ∈[a(i),t] γjτ ) ≥ kij∗t∗(αj∗t∗ +∑
τ∈[a(i),t∗] γjτ∗) = 1 − βi, then (46) and (49) hold.

When (αj∗t∗ +
∑

τ∈[a(i),t∗] γjτ∗) = 1, we have (αjt +∑
τ∈[a(i),t] γjτ ) ≥ 1 and βi = 0, (46) and (49) hold.

Next, we derive the ratio between (45) and (40). Both

formulas are initially 0. When a job i arrives, we use

∆P (R) to denote the change of
∑

ijt kijtXijt, and ∆D to
denote the change of

∑
jt Cjαjt + +

∑
jτ Bjγjτ +

∑
i βi.

If job i is discarded, both formulas remain unchanged,

therefore ∆P (R) = ∆D = 0. If job i is scheduled to be
serverd by j at t, then we have Xijt = 1 and ∆P (R) = 1.

Also we have

∆D

∆P (R)
= ∆D

=Cj(
αjt

Cj
+

1

(dj − 1)Cj
) +

∑
τ∈[a(i),t]

Bj(
γjτ
Bj

+
1

(fj − 1)Bj
)

+ 1− αjt −
∑

τ∈[a(i),t]

γjτ

=1 +
1

dj − 1
+

∑
τ∈[a(i),t]

1

fj − 1

≤1 + 1

dj − 1
+

T

fj − 1

When we imposes a lower bound on Cj and Bj by

requiring Cj ≥ Cmin and Bj ≥ Bmin, for all j, and let

Cmin → ∞, Bmin → ∞, we have dj → (eR − 1) and

fj → (eR − 1), and ∆D
∆P (R) → eR+T

eR−1
, whenever a job i

is allocated to some server. Therefore, we have, under

Algorithm 3,∑
jt Cjαjt ++

∑
jτ Bjγjτ +

∑
i βi∑

ijt kijtXijt
≤ eR + T

eR − 1
.

Finally, by weak duality theorem, we establish that

Algorithm 3 is (R, eR+T
eR−1 )-competitive-per-sample-path. By

Lemma 1, Algorithm 3 is also (R, eR+T
eR−1

)-competitive-in-

expectation.

REFERENCES

[1] H. Deng and I.-H. Hou, “Online job allocation with hard allocation
ratio requirement,” in Computer Communications, IEEE INFOCOM
2016-The 35th Annual IEEE International Conference on, pp. 1–9,
IEEE, 2016.

[2] H. Yu, D. Zheng, B. Y. Zhao, and W. Zheng, “Understanding user
behavior in large-scale video-on-demand systems,” in Proceedings
of the 1st ACM SIGOPS/EuroSys European Conference on Computer
Systems 2006, EuroSys ’06, (New York, NY, USA), pp. 333–344,
ACM, 2006.

[3] S. Acharya, B. P. Smith, and P. Parnes, “Characterizing user
access to videos on the world wide web,” in IS&T/SPIE Conference
on Multimedia Computing and Networking 2000: 24/01/2000-
26/01/2000, pp. 130–141, SPIE-International Society for Optical
Engineering, 1999.

[4] C. Huang, J. Li, and K. W. Ross, “Can internet video-on-demand
be profitable?,” ACM SIGCOMM Computer Communication Review,
vol. 37, no. 4, pp. 133–144, 2007.

[5] X. Cheng, C. Dale, and J. Liu, “Statistics and social network of
youtube videos,” in Quality of Service, 2008. IWQoS 2008. 16th
International Workshop on, pp. 229–238, June 2008.

[6] G. Chatzopoulou, C. Sheng, and M. Faloutsos, “A first step to-
wards understanding popularity in youtube,” in INFOCOM IEEE
Conference on Computer Communications Workshops , 2010, pp. 1–
6, March 2010.

[7] R. M. Karp, U. V. Vazirani, and V. V. Vazirani, “An optimal algorithm
for on-line bipartite matching,” in Proceedings of the Twenty-second
Annual ACM Symposium on Theory of Computing, STOC ’90, (New
York, NY, USA), pp. 352–358, ACM, 1990.



14

[8] S. Moharir and S. Sanghavi, “Online load balancing and correlated
randomness,” in Communication, Control, and Computing (Aller-
ton), 2012 50th Annual Allerton Conference on, pp. 746–753, Oct
2012.

[9] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization.
Athena Scientific series in optimization and neural computation,
Belmont, Mass. : Athena Scientific, c1997., 1997.

[10] W. Wang, K. Zhu, L. Ying, J. Tan, and L. Zhang, “Maptask schedul-
ing in mapreduce with data locality: Throughput and heavy-traffic
optimality,” IEEE/ACM Transactions on Networking, vol. 24, no. 1,
pp. 190–203, 2016.

[11] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg, “Quincy: fair scheduling for distributed computing
clusters,” in Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pp. 261–276, ACM, 2009.

[12] G. Goel and A. Mehta, “Online budgeted matching in random
input models with applications to adwords,” in Proceedings of the
Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’08, (Philadelphia, PA, USA), pp. 982–991, Society for
Industrial and Applied Mathematics, 2008.

[13] C. Karande, A. Mehta, and P. Tripathi, “Online bipartite matching
with unknown distributions,” in Proceedings of the forty-third
annual ACM symposium on Theory of computing, pp. 587–596,
ACM, 2011.

[14] J. Feldman, A. Mehta, V. Mirrokni, and S. Muthukrishnan, “Online
stochastic matching: Beating 1-1/e,” in Foundations of Computer
Science, 2009. FOCS’09. 50th Annual IEEE Symposium on, pp. 117–
126, IEEE, 2009.

[15] B. Kalyanasundaram and K. R. Pruhs, “An optimal deterministic
algorithm for online b-matching,” Theoretical Computer Science,
vol. 233, no. 1, pp. 319–325, 2000.

[16] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani, “Adwords and
generalized on-line matching,” in Foundations of Computer Science,
2005. FOCS 2005. 46th Annual IEEE Symposium on, pp. 264–273,
Oct 2005.

[17] X. Cheng, C. Dale, and J. Liu, “Statistics and social network of
youtube videos,” in Quality of Service, 2008. IWQoS 2008. 16th
International Workshop on, pp. 229–238, June 2008.

[18] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “Analyzing
the video popularity characteristics of large-scale user generated
content systems,” Networking, IEEE/ACM Transactions on, vol. 17,
pp. 1357–1370, Oct 2009.

[19] N. Littlestone and M. K. Warmuth, “The weighted majority algo-
rithm,” Information and computation, vol. 108, no. 2, pp. 212–261,
1994.

[20] A. DeSantis, G. Markowsky, and M. Wegman, “Learning proba-
bilistic prediction functions,” in Foundations of Computer Science,
1988., 29th Annual Symposium on, pp. 110–119, Oct 1988.

[21] N. Littlestone, “Learning quickly when irrelevant attributes
abound: A new linear-threshold algorithm,” Mach. Learn., vol. 2,
pp. 285–318, Apr. 1988.

[22] N. Littlestone, “Redundant noisy attributes, attribute errors, and
linear-threshold learning using winnow,” in Proceedings of the
Fourth Annual Workshop on Computational Learning Theory, COLT
’91, (San Francisco, CA, USA), pp. 147–156, Morgan Kaufmann
Publishers Inc., 1991.

[23] R. Armstrong, D. Freitag, T. Joachims, and T. Mitchell, “Web-
watcher: A learning apprentice for the world wide web,” pp. 6–12,
AAAI Press, 1995.

[24] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games.
New York, NY, USA: Cambridge University Press, 2006.

[25] M. Hutter, “On the foundations of universal sequence prediction,”
in International Conference on Theory and Applications of Models of
Computation, pp. 408–420, Springer, 2006.

[26] S. Moharir, S. Sanghavi, and S. Shakkottai, “Online load balancing

under graph constraints,” IEEE/ACM Transactions on Networking,
vol. 24, pp. 1690–1703, June 2016.

[27] C.-Y. Koo, T.-W. Lam, T.-W. Ngan, K. Sadakane, and K.-K. To, “On-
line scheduling with tight deadlines,” Theoretical Computer Science,
vol. 295, no. 1, pp. 251 – 261, 2003. Mathematical Foundations
of Computer Science.

[28] C. Dürr, Ł. Jeż, and K. T. Nguyen, Online Scheduling of Bounded
Length Jobs to Maximize Throughput, pp. 116–127. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2010.

[29] L. Liu, Y. Zhou, M. Liu, G. Xu, X. Chen, D. Fan, and Q. Wang,
“Preemptive hadoop jobs scheduling under a deadline,” in 2012
Eighth International Conference on Semantics, Knowledge and Grids,
pp. 72–79, Oct 2012.

[30] Z. I. A. Khalib, B. R. Ahmad, and O. B. L. Ong, “High deadline
meeting rate of non-preemptive dynamic soft real time schedul-
ing algorithm,” in 2012 IEEE International Conference on Control
System, Computing and Engineering, pp. 296–301, Nov 2012.

[31] M. Babaioff, Y. Mansour, N. Nisan, G. Noti, C. Curino, N. Gana-
pathy, I. Menache, O. Reingold, M. Tennenholtz, and E. Timnat,
“Era: A framework for economic resource allocation for the cloud,”
in Proceedings of the 26th International Conference on World Wide
Web Companion, pp. 635–642, International World Wide Web
Conferences Steering Committee, 2017.

[32] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-
grained resource sharing in the data center.,” in NSDI, vol. 11,
pp. 22–22, 2011.

[33] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: a simple technique for achieving
locality and fairness in cluster scheduling,” in Proceedings of the
5th European conference on Computer systems, pp. 265–278, ACM,
2010.

Han Deng received her Ph.D. in Computer En-
gineering from Texas A&M University in 2017,
M.S. in Electrical and Computer Engineering
from Oakland University, MI, USA in 2012 and
B.S. in Information Engineering in Beijing Insti-
tute of Technology, Beijing, China in 2009. She is
now a postdoctoral fellow at Houston Methodist
Research Institute, USA. Her research interests
are in optimization and machine learning.

I-Hong Hou (S10-M12) received the B.S. in
Electrical Engineering from National Taiwan
University in 2004, and his M.S. and Ph.D. in
Computer Science from University of Illinois,
Urbana-Champaign in 2008 and 2011, respec-
tively.

In 2012, he joined the department of Electrical
and Computer Engineering at the Texas A&M
University, where he is currently an assistant
professor. His research interests include wireless
networks, wireless sensor networks, real-time

systems, distributed systems, and vehicular ad hoc networks.
Dr. Hou received the Best Paper Award in ACM MobiHoc 2018,

the Best Student Paper Award in WiOpt 2018, and the C.W. Gear
Outstanding Graduate Student Award from the University of Illinois at
Urbana-Champaign.




