
Shielding Software From Privileged Side-Channel Attacks

Xiaowan Dong

University of Rochester

Zhuojia Shen

University of Rochester

John Criswell

University of Rochester

Alan L. Cox

Rice University

Sandhya Dwarkadas

University of Rochester

Abstract
Commodity operating system (OS) kernels, such as Win-

dows, Mac OS X, Linux, and FreeBSD, are suscepti-

ble to numerous security vulnerabilities. Their mono-

lithic design gives successful attackers complete access

to all application data and system resources. Shield-

ing systems such as InkTag, Haven, and Virtual Ghost

protect sensitive application data from compromised OS

kernels. However, such systems are still vulnerable to

side-channel attacks. Worse yet, compromised OS ker-

nels can leverage their control over privileged hardware

state to exacerbate existing side channels; recent work

has shown that a compromised OS kernel can steal entire

documents via side channels.

This paper presents defenses against page table and

last-level cache (LLC) side-channel attacks launched by

a compromised OS kernel. Our page table defenses re-

strict the OS kernel’s ability to read and write page table

pages and defend against page allocation attacks, and our

LLC defenses utilize the Intel Cache Allocation Technol-

ogy along with memory isolation primitives. We proto-

type our solution in a system we call Apparition, building

on an optimized version of Virtual Ghost. Our evalua-

tion shows that our side-channel defenses add 1% to 18%

(with up to 86% for one application) overhead to the op-

timized Virtual Ghost (relative to the native kernel) on

real-world applications.

1 Introduction

Bugs in commodity operating system (OS) kernels, such

as Windows [60], Mac OS X [64], Linux [15], and

FreeBSD [54], render them vulnerable to security attacks

such as buffer overflows and information leaks. Further-

more, their monolithic architecture provides high perfor-

mance but poor protection: a single vulnerability may

give an attacker control over the entire OS kernel, allow-

ing the attacker to steal and corrupt any data on the sys-

tem. To reduce the size of the trusted computing base

(TCB) on commodity systems, software solutions (such

as InkTag [40] and Virtual Ghost [26]) and hardware so-

lutions (such as Intel SGX [42], ARM TrustZone [11],

and Haven [12]) prevent the OS kernel from reading and

corrupting application data.

Despite these protections, attackers can steal applica-

tion data using side-channel attacks that exploit shared

hardware resources [38] or interactions between applica-

tion code and the OS kernel [73]. Worse yet, a compro-

mised OS kernel can exacerbate these side channels by

manipulating software state, e.g., via CPU scheduling,

and by configuring privileged hardware resources, e.g.,

the processor’s interrupt timer and memory management

unit (MMU) [38, 73]. Shielding systems must mitigate

side-channel attacks if they are to protect the confiden-

tiality of application data.

In this paper, we present methods to defend against

page table and last-level cache (LLC) side-channel at-

tacks launched by a compromised OS kernel. Our meth-

ods require no changes to existing processors. A mali-

cious OS kernel may infer victims’ memory access pat-

terns and in turn recover secret information via tracing

page table updates or page faults, or measuring the vic-

tims’ cache usage patterns [43, 52, 63, 73]. To eliminate

page table side channels, our key insight is that trusted

software should prevent the OS kernel from reading or

manipulating page table entries (PTEs) for memory hold-

ing application secrets. To thwart LLC side-channel at-

tacks, we leverage Intel’s Cache Allocation Technology

(CAT) [4] in concert with techniques that prevent physi-

cal memory sharing.

Since our solution must prevent physical memory

sharing, control configuration of the Intel CAT feature,

and prevent reading and writing of page table pages,

we implement our solution by enhancing Virtual Ghost.

Virtual Ghost [26] already controls an OS kernel’s ac-

cess to page tables and to privileged hardware regis-

ters. It also provides private memory in which an ap-

plication can store sensitive information and prevents

sharing of physical memory containing application se-

crets. As Virtual Ghost is based on Secure Virtual Ar-

chitecture (SVA) [28], we can combine our solution with

other security policies enforced by SVA (such as memory

safety [27,28]). Our solution does not change the Virtual

Ghost paravirtualization interface and therefore requires

no changes to existing SVA software and hardware.

We prototype our changes in a new version of Virtual

Ghost dubbed Apparition. Apparition is optimized rela-

tive to the original Virtual Ghost by using Intel Memory

Protection Extensions (MPX) [4] to reduce software fault

isolation (SFI) overheads and by eliminating serializing

instructions (which reduce instruction-level parallelism)

added by the original Virtual Ghost to control page table

access.

To summarize, our contributions are as follows:

• We show that using MPX for SFI and eliminating

serializing instructions when accessing page table

pages improves performance by up to 2× relative to

the original Virtual Ghost.

• We design, implement, and evaluate a defense

against page table side-channel attacks in Appari-

tion that leverages Apparition’s control over the

page table pages.

• We show how Apparition’s control over privileged

hardware state can partition the LLC to defeat cache

side-channel attacks. Our defense combines Intel’s

CAT feature [4] (which cannot securely partition

the cache by itself) with existing memory protec-

tions from Virtual Ghost [26] to prevent applica-

tions from sharing cache lines with other applica-

tions or the OS kernel.

• We present a design that eliminates side-channel at-

tacks that infer code memory accesses by control-

ling interrupt, trap, and system call dispatch, con-

text switching, and native code generation.

• We evaluate the performance of Apparition, study

the sources of its overheads, and compare it to the

performance of Virtual Ghost enhanced with our

new optimizations. Using native FreeBSD as the

baseline, we find that Apparition adds 1% to 18%

overhead to this version of Virtual Ghost on the real-

world applications we tested except for one real-

world program that experiences up to 86% addi-

tional overhead.

The rest of the paper is organized as follows. Section 2

describes our attack model. Section 3 provides back-

ground on memory management side channels along

with potential/possible attacks. Section 4 provides back-

ground on Virtual Ghost and explains how we improved

its performance. Section 5 describes the design of our

mitigations against page table and cache-based side-

channel attacks, and Section 6 discusses how our work

mitigates some of the recent speculative execution side-

channel attacks. Section 7 describes our prototype im-

plementation. Section 8 presents the results of our ex-

perimental evaluation. Section 9 discusses related work,

and Section 10 summarizes our contributions.

2 Attack Model

Our attack model assumes a strong attacker that controls

the OS kernel and wishes to steal application data. Due to

defenses like Virtual Ghost [26], this attacker cannot di-

rectly read application memory. We assume that the ap-

plication and the libraries that it uses are part of the TCB

for that application’s security policy; that the application

author has taken measures to ensure that the application

and its libraries are safe from direct attack, e.g., by using

security hardening tools [33, 56] or type-safe program-

ming languages, and that the application and its libraries

protect themselves from Iago attacks [17] by distrusting

return values from the OS. We also assume that the at-

tacker cannot gain physical access to the machine. Under

such conditions, side-channel attacks become attractive.

We assume that the attacker will attempt to use side

channels, either via a malicious user-space process or

via malicious code within the OS kernel itself. We fo-

cus on page table side-channel [63, 73] and LLC side

channel [13, 43, 52, 76, 79] attacks launched by software

because of their practicality. These side channels may

leak information on the program’s accesses to data and/or

code memory. Speculative execution side channels are

outside our attack model’s scope, but we discuss how

our system can mitigate some of the Meltdown [49] and

Spectre [46] side channels in Section 6. Side-channel at-

tacks launched by hardware are outside the scope of our

attack model.

3 Side-Channel Attacks

Side-channel attacks exploit implicit information flows

within modern processors [36–38, 43, 52, 58, 63, 69, 73]

to steal sensitive application data. The memory manage-

ment side channels fall into two categories: ones result-

ing from shared architectural states and ones due to the

OS’s control of memory management.

Modern systems share architectural states across pro-

cesses, including translation lookaside buffers (TLBs),

translation caches, CPU caches, memory controllers,

memory channels, DIMMs, and DRAM ranks and banks.

The shared state allows one process to indirectly infer an-

other process’s behavior without direct access to the vic-

tim process’s data. Observing which code or data a vic-

tim process accesses allows attackers to infer protected

application data [37, 38, 58, 69].

A compromised OS can leverage its complete control

over privileged processor state to create additional side

channels. For example, the OS can steal a victim pro-

cess’s secret information by tracing page faults, page ta-

ble updates, and cache activities [38, 73]. It can control

system events to alleviate noise and use a side channel to

steal an application’s secret data with a single execution

of the victim’s code [38, 63, 73].

Systems that protect applications from the OS kernel

like Virtual Ghost [26], Overshadow [20], InkTag [40],

and Haven [12] do not mitigate these side channels; the

architectural states are still shared among processes, and

the OS kernel has access to or even controls the page ta-

ble on these systems. In this section, we explain the page

table [63, 73], LLC [43, 52], and instruction tracing [73]

side-channel attacks that Apparition mitigates.

3.1 Page Table Side Channels

Commodity OS kernels can configure page tables, inter-

cept and process page faults, and query the virtual ad-

dress causing a page fault [15, 54, 60, 64]. With these

abilities, a compromised OS can monitor which virtual

addresses a victim process accesses and, with knowledge

of the application’s source code, infer its secret informa-

tion [73]. Recent research [63, 73] shows that a compro-

mised OS can use its ability to configure the page table

to launch page fault side-channel attacks to acquire sen-

sitive application data protected by Intel SGX [23, 42].

The attack is powerful enough to steal a document and

outlines of JPEG images from a single execution of ap-

plications protected by InkTag [40] and Haven [12].

More specifically, the OS kernel can use the methods

below to infer information about an application’s mem-

ory access patterns via the virtual-to-physical address

translation mechanism:

Swapping If the OS kernel cannot directly modify the

PTEs for pages containing private application data, it can

indirectly mark the pages inaccessible if the shielding

system provides the OS with a mechanism to swap pages

out and back in. The OS can use the mechanism to swap

a page out and then infer the memory access patterns of

applications by monitoring when the shielding system re-

quests the OS to swap the page back in. Systems such as

InkTag [40] and Virtual Ghost [26] provide mechanisms

for swapping that prevent direct data theft via encryption

but do not mitigate swapping side channels.

Reading PTEs If the OS kernel cannot modify PTEs

and cannot swap out pages, it can still infer an applica-

tion’s memory access patterns by reading PTEs as the

application executes. Many processors set a dirty bit in

the PTE when they write to a page. Processors may also

set an accessed bit when they read from or write to a

page. By continually examining PTEs, the OS can learn

when an application first reads from and writes to various

memory locations [67]. On multi-processor and multi-

core systems, the compromised OS can scan the page

tables (which reside in memory) on one core while the

application executes on another core.

Inferring Caching of Translations A compromised

OS can potentially infer a victim’s memory access pat-

terns using PRIME+PROBE [8–10, 38, 58, 66, 78] and

FLUSH+RELOAD [13,76,79] cache side-channel attacks

on caches holding virtual-to-physical address transla-

tions. Processors cache virtual-to-physical address trans-

lations in TLBs [3, 4], on-chip translation caches [4, 14],

and CPU caches in the memory hierarchy [2,3]. If a com-

promised OS can use the same virtual-to-physical trans-

lation caches as the application or determine if a PTE

is already cached in the processor’s memory caches, it

can infer information on whether the application has used

that page.

We observe that successfully mitigating page table

side channels requires protecting both the confidentiality

and integrity of virtual-to-physical address translations.

3.2 Cache Side Channels

Cache side-channel attacks infer secret data by measur-

ing the cache usage patterns of the victim [36–38,43,52,

58, 76, 79]. Two common cache side-channel attacks are

PRIME+PROBE [58] and FLUSH+RELOAD [76], both of

which can be applied on private caches [58] and shared

LLC [43, 52].

The PRIME+PROBE attack [58] fills the monitored

cache set with its own cache lines, busy-waits for a

set time, and measures the time it takes to access its

cache lines again. A longer access time indicates that

the attacker’s cache line has been evicted by a vic-

tim’s access to data mapping to the same cache set.

The FLUSH+RELOAD attack [76] is a variant of the

PRIME+PROBE attack that relies on the victim and the

attacker sharing pages containing target cache lines.

Page sharing is common for shared libraries. The at-

tacker first flushes the target cache line e.g., with the

clflush instruction, busy-waits for a set time, and mea-

sures the time it takes to access the target cache line. A

shorter access time indicates that the victim has already

reloaded this target cache line.

LLC side-channel attacks can achieve a high attack

resolution without requiring the attacker and the victim

to share the same core [52]. Cache partitioning [35, 44,

50, 61, 70, 71, 80] can mitigate cache side channels by

preventing the attacker from evicting the victim’s cache

lines. However, existing work assumes an unprivileged

user-space attacker [70, 71, 80] or a virtual machine at-

tacking its neighbors [35,44,50,61,80] and relies on priv-

ileged code to configure and manage the partitioning.

These defenses are ineffective against a compromised

OS kernel. A compromised OS kernel can assign the

same page color to the attacker and the victim or con-

figure the hardware so that the attacker and the victim

share the same cache partition. The OS kernel could even

launch cache side-channel attacks itself. Therefore, our

cache partitioning defenses must prevent malicious priv-

ileged code from manipulating cache partitions as well

as from sharing partitions with protected applications.

3.3 Instruction Tracing Side Channels

We have so far presented side-channel attacks that at-

tempt to infer data memory accesses. However, the in-

struction sequence executed by a program may also leak

information about application secrets if there is a con-

trol dependence on data that the application wishes to

keep secret i.e., an implicit flow [32]. A compromised

OS could exploit side channels to trace instruction ex-

ecution in a number of ways. If the shielding system

neglects to hide an application’s saved program counter

when an interrupt, trap, or system call occurs, the OS

could configure the processor timer to mimic single-step

execution [38] and read the program counter as each in-

struction is executed. If that is not possible, the OS could

use a page fault or cache side-channel attack on applica-

tion code memory instead of (or in addition to) appli-

cation data memory. Previous work has used page fault

side channels [73] to infer when instructions are executed

and, from that, to infer secret data from an application.

4 Virtual Ghost Improvements

Apparition extends Virtual Ghost. As Figure 1 shows,

Virtual Ghost [26] is a compiler-based virtual machine,

built from SVA [28], interposed between the software

stack and the hardware. We present Virtual Ghost’s de-

sign and then describe two performance improvements

we made to Virtual Ghost that are present in Apparition.

4.1 Design

The OS kernel on a Virtual Ghost system is compiled to

a virtual instruction set (V-ISA) [26]. The Virtual Ghost

Virtual Machine translates virtual instructions to the na-

tive instruction set (N-ISA) for execution. Virtual Ghost

can sign and cache native code translations to provide

Figure 1: Virtual Ghost Architecture

ahead-of-time compilation, or it can translate code at sys-

tem install time, boot time, or just-in-time. Virtual Ghost

forces all OS kernel code to be in V-ISA form. Applica-

tion code can be in either V-ISA or N-ISA form.

The V-ISA consists of two sets of instructions [26].

The SVA-Core instructions are based on the LLVM Inter-

mediate Representation (IR) [47], which uses static sin-

gle assignment (SSA) form [30] to enable efficient static

analysis of code. However, the original LLVM IR cannot

support a complete OS kernel, so SVA provides a sec-

ond set of instructions, SVA-OS [29], which allows the

OS kernel to configure privileged hardware state, e.g.,

the MMU, and manipulate program state, e.g., context

switching. The SVA V-ISA enables Virtual Ghost [26]

to use compiler techniques to enforce security policies.

Virtual Ghost can add run-time checks while translat-

ing code from the V-ISA to the N-ISA; the SVA-OS in-

structions can help enforce security policies by restrict-

ing hardware configuration and state manipulation.

Via compiler instrumentation and run-time checks,

Virtual Ghost can provide applications with the func-

tionality they need to protect themselves from a compro-

mised OS kernel [26]. One such feature is ghost memory.

For each process, Virtual Ghost divides the virtual ad-

dress space into four regions as Figure 2 depicts. There

is user-space memory that an application and the OS ker-

nel can use to communicate; both can read and modify

it. There is also kernel memory, which the OS kernel can

read and write. Unlike existing systems, Virtual Ghost

prevents user-space memory and kernel memory from

being executable; they do not contain executable native

code. Virtual Ghost adds a new ghost memory region that

only the application can read and modify and can there-

fore use to hold sensitive data. Finally, there is the Vir-

tual Ghost VM memory region in which Virtual Ghost

stores its own data structures, the native code transla-

tions it creates for V-ISA code, and the code segments

of N-ISA application code. Pages containing native code

are mapped as execute-only while all other Virtual Ghost

VM memory regions are inaccessible to applications and

the kernel.

With these features, programmers can write ghosting

applications for Virtual Ghost systems that actively pro-

tect themselves from the OS kernel: applications can

Figure 2: Virtual Ghost Address Space Layout

store all their data and encryption keys inside ghost mem-

ory to prevent theft and tampering, and they can use en-

cryption and digital signatures to maintain data confiden-

tiality and integrity when sending data into or receiving

data from the operating system’s I/O systems [26]. Since

Virtual Ghost generates all the native code that is exe-

cuted on the system [26], it can place that code into the

Virtual Ghost VM memory and protect its integrity from

both the OS kernel and errant applications.

Virtual Ghost employs SFI [68] to protect the con-

fidentiality and integrity of ghost memory and Virtual

Ghost VM memory [26]. It adds a set of bit-masking

and predicated instructions before every load and store

within the OS code to ensure that every pointer used in a

load or store operation points into either user- or kernel-

space memory. Additionally, by placing interrupted pro-

gram state in the Virtual Ghost VM memory during in-

terrupt, trap, and system call dispatch, Virtual Ghost can

protect saved processor state using SFI. However, as Vir-

tual Ghost allows the OS kernel to read page tables, it

does not place them in Virtual Ghost VM memory. In-

stead, it maps page table pages as read-only memory by

the OS and makes the OS use SVA-OS instructions to

modify them, thereby preserving the integrity of the page

table pages. Finally, Virtual Ghost employs control flow

integrity (CFI) [7] to ensure that the SFI instrumentation

is not bypassed.

We have enhanced the performance of Virtual Ghost

with two new optimizations, which we include in Ap-

parition. First, our prototype uses the Intel MPX bounds

checking instructions [4] to implement faster SFI. Sec-

ond, we refactored how Virtual Ghost protects page table

pages to reduce the number of serializing instructions.

4.2 Intel Memory Protection Extensions

Intel’s MPX [4] was originally designed to accelerate

memory safety enforcement via hardware support. MPX

enhances the processor with four bounds registers, each

of which maintains the lower and upper bounds of a sin-

gle memory object. Bounds checking instructions check

a virtual address against either the lower or upper bound

of the specified bounds register and generate a trap if the

virtual address does not reside within the bounds.

Virtual Ghost uses SFI to ensure that the kernel does

not access ghost memory and VM memory regions while

allowing access to user- and kernel-memory regions. To

Figure 3: Address Space Layout Seen by Intel MPX

implement SFI using MPX, we treat the combined user-

and kernel-space regions as a single large memory ob-

ject; the Virtual Ghost VM can then replace SFI’s bit-

masking and predicated instructions before every load

and store within the kernel with MPX bounds checking

instructions.

One challenge with efficiently using MPX is that the

user- and kernel-memory regions are not contiguous.

Furthermore, since their current placement enables the

compiler to use more efficient addressing modes on x86-

64, moving them to make them contiguous could nega-

tively impact performance.

To address this issue, each run-time check before

a load or store first subtracts the length of user-space

memory (denoted gstart) from the address that is to be

checked. This makes the user- and kernel-space regions

appear contiguous (as Figure 3 shows). MPX bounds

checks can then be used by setting the base and bound

registers to the remapped values of the start of kernel-

space and the end of user-space memory. If the access

is outside of kernel and user space, the processor gener-

ates a trap into the Virtual Ghost VM which handles the

out-of-bounds error.

4.3 SVA Internal Direct Map

A direct map is a range of virtual pages that are mapped

to consecutive physical addresses, i.e., the first page to

the first physical frame of memory, the second page to

the second physical frame, and so forth. With a strate-

gically placed direct map, an OS kernel can quickly find

a virtual address mapped to a specific physical address

by applying a simple bitwise OR operation to the phys-

ical address [15]. Operating systems such as Linux and

FreeBSD use the direct map to write to page table pages.

Since Virtual Ghost must control how the processor’s

MMU is configured [26], it originally mapped page ta-

ble pages in the OS kernel’s direct map for read-only ac-

cess, and when an SVA-OS instruction needed to update

the page tables, it temporarily cleared the x86 CR0.WP

bit to disable the MMU’s enforcement of write protec-

tion, thereby allowing the Virtual Ghost VM to modify

the page table.

We have found that this method incurs significant

overhead as flipping CR0.WP is a serializing operation

that interferes with instruction-level parallelism [4]. This

caused Virtual Ghost’s page table updates to be much

slower than those of a conventional OS kernel, decreas-

ing the speed of process creation and termination, de-

mand paging, and the execution of new programs.

Apparition eliminates the need for modifying

CR0.WP by placing a direct map of physical memory

within the Virtual Ghost VM memory that provides write

access to all physical frames, including page table pages.

When Virtual Ghost needs to update a PTE, it simply

modifies the entry via its internal direct map instead of

flipping CR0.WP to toggle the write protection on the

OS kernel’s direct map. Since this internal direct map

is within Virtual Ghost VM memory, the existing SFI

mechanism prevents the OS kernel from altering it.

5 Side-Channel Mitigations

We now present our design for mitigating page table,

LLC, and instruction tracing side-channel attacks.

5.1 Page Table Side Channels

To mitigate the page table side-channel attacks described

in Section 3.1, a system must protect both the confiden-

tiality and integrity of the page table pages. Apparition

must therefore enforce several restrictions.

Page Table Restrictions Apparition must prevent the

OS from modifying PTEs that map ghost memory. Oth-

erwise, the OS can unmap ghost memory to track the

program’s memory accesses via page faults. Likewise,

Apparition must ensure that page frames used for ghost

memory are not mapped into virtual memory regions that

the OS can access; Virtual Ghost already enforces these

constraints [26].

Apparition must additionally prevent the OS from

reading PTEs (and therefore the corresponding page ta-

ble pages) that map ghost memory. This prevents the OS

from observing updates to PTEs caused by ghost mem-

ory allocation, deallocation, and swapping and from in-

ferring information when the processor sets the accessed

or dirty bits in PTEs for ghost memory.

To enforce these restrictions, we exploit the hier-

archical, tree-like structure of x86 page tables. Vir-

tual Ghost allows the OS kernel to directly read all

PTEs but forces the kernel to modify PTEs with the

sva update mapping() SVA-OS instruction [26]. This

ensures that the OS does not gain access to ghost mem-

ory by altering the page table. Apparition disables all

OS accesses to the subtree of the page table that maps

ghost memory by removing read/write permission to the

page table pages in this subtree from the OS’s direct

map; only the Apparition MMU instructions can read

and write PTEs mapping ghost memory via the new SVA

internal direct map described in Section 4.3. This ensures

the integrity and confidentiality of ghost memory.

Swapping Apparition’s ghost memory swapping in-

structions must prevent the OS from selecting which

ghost memory pages to swap out and in. Instead, the se-

cure swap-out instruction should randomly select a page

to encrypt and swap out. The secure swap-in instruc-

tion should swap in all the pages that have been swapped

out for that process (as opposed to swapping in a sin-

gle page). This prevents the OS from learning which

pages the process accesses. However, it also restricts

the size of any single application’s ghost memory to a

fraction of physical memory; otherwise, it may be im-

possible to swap in all swapped-out ghost pages, caus-

ing the process to fail to make forward progress. Since

the OS retains control over user-space memory, it should

swap that memory out first before swapping out ghost

memory; swapping out user-space memory imposes no

restrictions on the OS.

5.2 Page Allocation Side Channels

By protecting the confidentiality and integrity of page ta-

ble pages, our Apparition design protects applications

from side channels that flow through the page table

pages. However, in addition to these protections, our Ap-

parition design must ensure that the application does not

leak information through its ghost memory allocation be-

havior. Otherwise, a compromised OS can use this new

side channel in lieu of existing page table side channels.

Virtual Ghost [26] requires the OS to provide a call-

back function that the Virtual Ghost VM can use to re-

quest physical frames from the OS kernel. This design

decouples resource management from protection: the OS

decides how much physical memory each process uses

while Virtual Ghost protects the integrity and confiden-

tiality of the memory. However, Virtual Ghost imposes

no restrictions on when the Virtual Ghost VM requests

physical memory from the OS. As a result, a compro-

mised OS kernel can use the physical memory callback

like a paging side channel. For example, if the Virtual

Ghost VM lazily maps physical memory to ghost vir-

tual addresses on demand and requests a single memory

frame from the OS when it needs to map a ghost page,

then the OS can infer the application’s paging behavior.

To mitigate this side channel, in Apparition we dis-

able demand paging on ghost memory. By doing so, we

convert this side channel into a memory allocation side

channel from which the OS can only infer memory al-

location size; this leaks much less information about an

application’s secret data. To the best of our knowledge,

no existing work exploits such memory allocation side

Name Description

void allocmem(int num, uintptr t frames[]) Allocate num physical memory frames and store the addresses to them in

the specified array.

void freemem(int num, uintptr t frames[]) Free num physical memory frames whose addresses are stored within the

specified array.

Table 1: Physical Memory Allocation Callbacks

channels. To obfuscate the memory allocation size in-

formation, we redesign the physical memory allocation

callback and impose new restrictions on how Apparition

uses it. Table 1 shows the new design. The Apparition

VM calls allocmem() to request a specified number of

frames and freemem() to free frames. In our design, the

Apparition VM will request a random number of frames

from the OS when it needs more physical memory; these

frames will be stored within an internal cache of free

frames that it can use to fulfill ghost memory requests.

When the internal cache of free frames becomes suffi-

ciently large, the Apparition VM will return frames to

the OS so that they can be used for other purposes. This

design obscures ghost memory allocation patterns from

the OS while still giving the OS some control over how

much physical memory is used for ghost memory across

all processes running on the system. We can create Ap-

parition VM APIs for applications to disable these two

protections if the application is not concerned about page

allocation side-channel attacks.

5.3 Code Translation Side Channels

As Section 3.3 explains, attackers can use side channels

on code memory accesses in addition to data memory

accesses. Since Virtual Ghost places native code trans-

lations and N-ISA application code into Virtual Ghost

VM memory [26], Apparition’s page table (Section 5.1)

and page allocation (Section 5.2) defenses eliminate code

memory side channels. However, for V-ISA applica-

tions, Apparition must translate V-ISA code to N-ISA

code without creating new side channels. When the OS

loads an application in memory for execution, it loads the

V-ISA code into either user-space or kernel-space mem-

ory and then asks Apparition to verify the integrity of the

code and to create the native code for the application in

Virtual Ghost VM memory. Apparition must ensure that

its accesses to the V-ISA code do not leak information

about the application’s execution.

Two simple methods can eliminate this side channel.

If the Apparition implementation does not employ run-

time optimizations (such as lazy code translation), it

must simply ensure that it translates all the V-ISA code

of an application to native code when the OS requests

translation via the sva translate() SVA-OS instruc-

tion; so long as it does not read V-ISA code on demand

as the program executes e.g., for lazy compilation, then

no side channel exists.

If the Apparition VM performs run-time optimizations

such as lazy code translation, it must copy the entire V-

ISA code into Apparition VM memory first and use that

copy to perform these run-time optimizations. In this

way, both the V-ISA code and N-ISA code are protected

from side channels.

5.4 LLC Side Channels

Our LLC side-channel defenses must prevent an appli-

cation from sharing ghost memory with a compromised

OS and other applications and ensure that cache lines for

physical memory mapped to ghost memory will not be

read or evicted by the OS or other applications.

Preventing Page Sharing Virtual Ghost [26] already

ensures that an application’s ghost memory cannot be ac-

cessed by the OS or other applications. As Sections 4.1

and 5.1 describe, the SFI instrumentation prevents the

OS kernel from accessing ghost memory and from map-

ping ghost memory into regions that the OS kernel can

access. Likewise, Virtual Ghost ensures that applications

have their own private ghost memory that is not shared

with other applications. This not only prevents data theft

by applications and compromised OS kernels, but, as we

discuss next, allows our Apparition design to utilize Intel

CAT [4] to defend against LLC side-channel attacks.

Cache Partitioning Our defense against LLC side-

channel attacks combines Virtual Ghost’s existing mem-

ory protection mechanisms [26] with static cache par-

titioning implemented using Intel’s CAT processor fea-

ture [4]. Intel CAT enables way-partitioning of the LLC

into several subsets of smaller associativities [4]. A

processor can switch among multiple classes of service

(COS, or resource control tag with associated resource

capacity bitmap indicating the subset of LLC ways as-

signed to the COS) at runtime. Privileged code can

switch the COS and configure the bitmaps of each COS

by writing to model-specific registers. The number of

COSs supported depends on the processor type. In addi-

tion, Intel imposes two constraints [50]: the bitmap must

contain at least 2 ways, and the ways allocated must be

contiguous. Once CAT is configured, the processor can

only load cache lines into its subset of the cache; code

running in one COS cannot evict cache lines in another

COS. However, software in one COS can read data from

all cache lines in the LLC, allowing software running in

different COSs to read the same cache lines if they are

sharing physical memory e.g., read-only mapped shared

library code.

Our design requires one partition for kernel code and

non-ghosting applications not using ghost memory, one

for Apparition VM code, and one for each ghosting ap-

plication. The processor in our experiments (Section 8)

has four partitions. If there are more ghosting applica-

tions executing than partitions available, then the Ap-

parition VM will need to multiplex one or more parti-

tions between ghosting applications and flush the cache

on context switches. Partitioning ghosting applications

from both the kernel and non-ghosting applications elim-

inates side channels between these two domains, pre-

venting the kernel from inferring information by measur-

ing cache access time. Partitioning also eliminates costly

cache flushes when control flow moves between ghosting

application, Apparition VM, and OS kernel/untrusted ap-

plication code. Additionally, partitioning the Apparition

VM from the kernel and from ghosting applications en-

sures that any secrets held within Apparition VM mem-

ory (such as page tables) do not leak to either applica-

tions or the OS kernel.

Unfortunately, Intel CAT allows data reads from cache

lines outside of the current COS [4]. However, since Ap-

parition ensures that there is no sharing of ghost memory

or native code between a ghosting application and the

OS kernel (or other applications), and since the MPX

SFI protections prevent the OS kernel from accessing

ghost memory and Apparition VM memory, such cross-

COS reads will never occur. Hence, the memory protec-

tions in Virtual Ghost coupled with Intel CAT can defend

against LLC side-channel attacks.

Cache Partitioning Configuration The Apparition

VM configures the cache partitions on boot and uses

several mechanisms which, together, ensure that the OS

kernel cannot reconfigure or disable the cache partition-

ing. First, the SVA virtual instruction set has no instruc-

tions for changing the cache partitions. Second, Virtual

Ghost’s MMU protections prevent the OS kernel from

loading new native code into memory that was not trans-

lated and instrumented by the Virtual Ghost VM [26].

Third, Virtual Ghost enforces CFI on kernel code, ensur-

ing that the OS kernel can only execute its own code and

cannot jump into the middle of variable-length x86 in-

structions within the kernel [26] that might reconfigure

cache partitioning.

On an interrupt, trap, or system call, the processor

transfers control to the Apparition VM which switches

the cache partition in use to the Apparition VM’s parti-

tion. After saving the interrupted processor state in Ap-

parition VM memory, the Apparition VM switches to the

kernel’s cache partition before calling the kernel’s inter-

rupt, trap or system call handler. Likewise, SVA-OS in-

structions switch to the Apparition VM’s partition on en-

try and back to the kernel’s partition on exit.

Our design also protects distrusting applications from

each other by giving each application needing protection

from LLC side channels its own cache partition. Initially,

the Apparition VM assigns one cache partition to the first

application using ghost memory. This cache partition

will be divided into more cache partitions when more ap-

plications needing protection are scheduled. Apparition

can either divide the cache space evenly between applica-

tions or employ quality-of-service policies based on the

applications’ LLC working sets. The only restriction is

that each application’s partition must have at least two

ways. On current Intel processors, the Apparition VM

must flush the entire cache when dividing a cache par-

tition. Similarly, the Apparition VM will need to flush

the cache on context switches if the number of distrust-

ing ghosting applications exceeds the number of COSs

provided by the processor.

If a process wants to create a cooperating thread with

which to share its ghost memory or a child process which

it trusts to use the same cache partition, the process can

provide an option to the fork() system call indicating

that the new process or thread should use the same cache

partition as the parent process. Virtual Ghost (and hence

Apparition) dispatches all system calls and creates all

new processes and threads [26]. It can therefore deter-

mine whether the new process or thread that it creates

should use the same cache partition as its parent.

5.5 Instruction Tracing Side Channels

As Section 3.3 discusses, inferring the dynamic order in

which a program executes its instructions can leak infor-

mation about data if the program counter depends upon

secret data [32]. Existing attacks exploit such implicit

flows within programs by tracing code memory page

faults [73] or via timer-based interrupts [38].

Virtual Ghost [26] saves interrupted program state

within the Virtual Ghost VM memory, forcing the OS

kernel to use SVA-OS instructions to read or modify in-

terrupted program state. The SVA-OS instruction set

does not provide an instruction for retrieving the program

counter stored within interrupted program state [25, 26].

As a result, while a compromised OS can interrupt an

application as frequently as it wants, it cannot infer the

program counter from interrupted program state. Com-

bined with the virtual instruction set code and native code

memory mitigations described in Section 5.3, Apparition

mitigates attacks that infer a ghosting application’s pro-

gram counter.

6 Impact on Speculation Side Channels

Recently, there has been much press about two classes of

attacks, Meltdown [49] and Spectre [46], in which user-

space code leverages speculative execution side chan-

nels in the processor to steal data and then exfiltrates the

stolen data via existing side channels. While speculation

side channels are outside the scope of our attack model

in Section 2, our defenses mitigate some variants of these

attacks that use cache side channels.

Spectre [46] is an attack in which one user-space pro-

cess attempts to infer information about another user-

space process. It utilizes the existence of shared branch

prediction tables and branch target buffers to force the

victim to speculatively execute code that loads sensitive

data into the cache. Since our defenses partition the LLC

and prevent the sharing of ghost memory, values in ghost

memory will not become visible to attackers in the LLC.

However, in order to mitigate speculation side-channel

attacks, Apparition will need to prevent the sharing of all

physical memory between untrusted processes, includ-

ing native code pages and traditional user-space mem-

ory. Failure to do so would allow a Spectre attack to

communicate information across the Intel CAT partitions

through shared physical memory.

With several enhancements, Apparition could mitigate

other forms of these attacks. To mitigate Meltdown [49]

and Spectre [46] attacks that speculatively access out-

of-bounds memory, Apparition could use speculation-

resistant SFI instrumentation on both application and

kernel code [34] to protect large memory regions; in par-

ticular, we show in [34] that SFI instrumentation using

instruction sequences to stall speculative execution us-

ing a data dependence so that the SFI instructions must

complete before the protected memory read instruction

begins execution. To provide finer granularity protec-

tion, e.g., at the granularity of individual memory ob-

jects, Apparition could place lfence instructions before

memory read instructions that have a control dependence

on a branch to ensure that all instructions performing ar-

ray bounds checks have committed before the load com-

mences execution [6].

To mitigate Meltdown attacks [49], Apparition could

transparently use a different set of page tables and PCIDs

for user-space code, OS kernel code, and Apparition VM

code [34], building off the suggestions from Intel [6].

Since Apparition uses a virtual instruction set to ab-

stract away hardware details and controls native code

generation, it can employ any or all of these mitigations

without changing application or OS kernel source code.

Component Source Lines of Code

SVA-OS 5,823

SFI Pass 292

CFI Pass 726

Total 6,841

Table 2: Apparition Physical Source Lines of Code

The virtual instruction set remains unchanged; Appari-

tion can employ these solutions by enhancing its com-

piler transformations and native code generation.

7 Implementation

We implemented Apparition by modifying the Virtual

Ghost prototype for 64-bit x86 systems [26]. Appari-

tion uses the FreeBSD 9.0 kernel ported to the SVA-OS

virtual instruction set and is compiled with the LLVM

3.1 compiler. The Apparition prototype only supports

single-processor execution, so our evaluation focuses on

single-core overheads.

We used sloccount [72] to measure the source lines

of code (which excludes whitespace and comments) of

the SVA-OS instructions, the SFI compiler pass, and the

CFI compiler pass comprising Apparition; Table 2 shows

the results. Apparition’s TCB contains 6,841 source lines

of code which includes all of Virtual Ghost’s old func-

tionality [26], Apparition’s functionality, and configura-

tion options to enable and disable the new Apparition

features. The original Virtual Ghost prototype contained

5,344 source lines of code [26] in comparison.

We implemented the MPX SFI optimization in Ap-

parition by changing the existing LLVM IR-level SFI

pass in Virtual Ghost [26] to insert inline assembly code

utilizing MPX instructions instead of LLVM IR bit-

masking instructions. We also implemented the SVA di-

rect map by enhancing the SVA-OS instructions within

Apparition. While Virtual Ghost is designed to restrict

Direct Memory Access (DMA) operations to memory

with an I/O MMU [26], neither the original Virtual Ghost

prototype nor our prototype implements this feature.

To implement our paging protections in Sections 5.1

and 5.2, we modified the ghost memory allocator within

the Apparition VM so that it requests all physical mem-

ory frames from the OS when the application uses the

hypercall to request ghost memory. The previous imple-

mentation [26] would delay allocation of physical mem-

ory until the application read or wrote the ghost memory;

the Virtual Ghost VM would then request a frame from

the OS and map it on demand. Our ghost memory alloca-

tor also implements randomization; it maintains a set of

memory frames within the Apparition VM and requests a

random number of frames from the OS kernel when this

reserve becomes empty. Additionally, the FreeBSD 9.0

malloc() implementation always requests ghost mem-

ory in constant-sized chunks from the Apparition VM,

further obscuring the application’s actual memory allo-

cation information from the OS kernel. As neither the

Virtual Ghost prototype [26] nor our new prototype im-

plement virtual-to-native code translation, we did not im-

plement the mitigations in Section 5.3. Additionally, nei-

ther prototype supports swapping out of ghost memory to

persistent storage.

Our prototype also implements the LLC side-channel

mitigation features in Section 5.4. As our test machines

support 4 cache partitions, we reserved one for the Ap-

parition VM (dubbed VM COS), one for the OS kernel

and non-ghosting applications (dubbed kernel COS), and

one for a ghosting application (dubbed ghosting COS).

We modified all of the SVA-OS instructions to switch

between the kernel COS and the VM COS upon entry

and exit. Our prototype switches between the ghosting

COS and the kernel COS on context switches between

ghosting and non-ghosting applications. It also multi-

plexes the ghosting COS by flushing the cache on context

switches between two ghosting applications.

8 Evaluation

We first evaluate the performance optimizations de-

scribed in Section 4. We then evaluate the performance

overheads of our page table and LLC side-channel de-

fenses.

8.1 Methodology

For our experiments, we used a Dell Precision T3620

workstation with an Intel R© CoreTM i7-6700 hyper-

threading quad-core processor at 3.40 GHz with an 8 MB

16-way LLC, 16 GB of RAM, and an Intel E1000 net-

work card. The machine has both a 256 GB Solid State

Drive (SSD) and a 7,200 RPM 500 GB hard disk. We

stored all the files for our experiments on the SSD. For

the network experiments, we used a dedicated Gigabit

Ethernet network and a Dell T1700 Precision worksta-

tion as the remote system. The T1700 runs FreeBSD

9.3 and has an Intel R© CoreTM i7-4770 hyper-threading

quad-core processor at 3.40 GHz and 16 GB of RAM.

We perform our experiments with the OS running in

single-user mode to reduce noise from other processes

on the system. We use a high-resolution timer (reading

rdtsc directly) to measure time, and we report the aver-

age (arithmetic mean of) execution time of multiple runs.

Our evaluation needed benchmarks and applications

that rely heavily on OS kernel services e.g., the file sys-

tem and network stack. Our evaluation therefore used the

following programs:

LMBench: We used the LMBench benchmark

suite [55] to measure the latency of various system calls

on Virtual Ghost with and without the new optimizations.

For the benchmarks for which we can specify the num-

ber of repetitions to run, we used 1,000 repetitions. LM-

Bench reports the median result of the number of repe-

titions specified. We configured lat select to use lo-

cal files. In lat ctx, we measured context switch time

between two processes; each process does nothing but

passes a token to the other process via a pipe. For all the

other workloads, we used the default configurations.

OpenSSH Client: We used the preinstalled

OpenSSH [65] Secure Shell client and server to

evaluate the Virtual Ghost optimizations. We ran the

OpenSSH client on our FreeBSD 9.0 machine and

the server on the FreeBSD 9.3 machine to measure

bandwidth. We generated the contents of each file by

collecting random numbers from the /dev/random

device on our FreeBSD 9.0 machine and transferred the

files to the FreeBSD 9.3 machine.

Ghosting OpenSSH Client: We evaluated our de-

fenses on the ssh and ssh-keygen programs of the

OpenSSH 6.2p1 application suite modified by Criswell

et al. to use ghost memory to store heap objects [26]:

ssh-keygen generates public and private key pairs for

ssh to use for password-less authentication. Criswell et

al. enhanced these two programs to share a hard-coded

AES private application key that they use to encrypt pri-

vate authentication keys. The ssh-keygen program en-

crypts all the private authentication key files it generates

with this private application key. The ssh client decrypts

these keys and puts them, as well as all other heap ob-

jects, into ghost memory. For these experiments, we ran

the ghosting OpenSSH client on the Virtual Ghost and

Apparition machine and the server on the machine run-

ning native FreeBSD 9.3. We collected the bandwidth

reported in the ssh client’s debug output when transfer-

ring 1 KB to 512 MB files using the modified ssh client.

We transferred the files by having the ssh client run the

cat command on the files on the server.

Ghosting Bzip2: We compiled Bzip2 1.0.6, a data

compression program [16], with a new C library that can,

at run-time, be configured to allocate heap objects in ei-

ther traditional user-space memory or in ghost memory.

We measure the time for Bzip2 to compress the 32 MB

file we used in the OpenSSH experiments.

Ghosting GnuPG: We compiled GnuPG 2.0.18, a

cryptography program [45], with our C library that can,

at run-time, be configured to allocate heap objects in ei-

ther traditional user-space memory or in ghost memory.

We evaluate encrypting, decrypting, signing, and verify-

ing signatures of files ranging from 1 KB to 32 MB in

size. Due to space, we only report overheads for sign-

ing files. Encryption, decryption, and verification have

Test Native Std. VG Opt-VG

(µs) Dev. Overhead Overhead

null syscall 0.1 0.0 2.9× 2.6×

open/close 1.8 0.0 2.3× 1.8×

mmap 5.6 0.1 5.1× 3.4×

page fault 36.3 1.3 1.0× 1.0×

fork + exit 49.2 0.1 4.1× 2.0×

fork + exec 54.4 0.1 3.9× 1.9×

fork + /bin/sh -c 515.4 1.0 2.2× 1.5×

signal handler install 0.2 0.0 2.3× 2.1×

signal handler delivery 1.1 0.0 0.9× 0.8×

read 0.1 0.0 2.7× 2.3×

write 0.1 0.0 2.9× 2.5×

stat 1.2 0.0 2.1× 1.8×

select 2.8 0.0 1.9× 1.6×

fcntl lock 2.8 0.0 1.9× 1.6×

context switch 0.5 0.0 1.2× 1.0×

pipe 1.6 0.0 1.7× 1.5×

Table 3: LMBench Latency Results

similar overheads.

Ghosting RandomAccess: We created a microbench-

mark named RandomAccess which modifies an 8 MB ar-

ray of 64 B elements in the heap in random order 20,000

times. Specifically, it first generates a random order in

which to access all the array elements, ensuring that ev-

ery element in the array is accessed once. It then iterates

over the array in the random order, replacing the contents

of the current element with the index of the previously

accessed element. The first iteration warms up the cache

and is not used in measuring performance; RandomAc-

cess records the execution time of the next 20,000 itera-

tions and reports the average latency of an iteration. By

seeding the pseudo-random number generator with the

same seed, RandomAccess can exhibit deterministic re-

sults. We link RandomAccess with our C library so that

we can configure it to allocate heap objects in traditional

user-space memory or in ghost memory as needed.

Ghosting Clang: We compiled Clang 3.0, a C/C++

compiler [1], with our C library that can, at run-time,

be configured to allocate heap objects in either tradi-

tional user-space memory or in ghost memory. We

measured the time to compile a C source file named

gcc-smaller.c from SPEC CPU 2017 [5] into assem-

bly code by using Clang. We used the -O3 and -pipe

command-line options.

Besides the native FreeBSD 9.0 kernel, we have

conducted our experiments on the FreeBSD SVA

kernels with the following configurations of Virtual

Ghost/Apparition:

1. VG: Virtual Ghost without the new optimizations

described in Section 4 and without our new de-

fenses. This version of Virtual Ghost is a faster and

more robust implementation of the original proto-

type [26].

2. Opt-VG: Virtual Ghost with the optimizations de-

scribed in Section 4.

Test Native Std. VG Opt-VG

(MB/s) Dev. Overhead Overhead

pipe 14,865.2 29.7 1.3× 1.2×

Table 4: LMBench Bandwidth Results

3. Opt-VG-PG: The optimized Virtual Ghost en-

hanced with only our defenses to the page table

side-channel attacks.

4. Opt-VG-LLCPart: The optimized Virtual Ghost

enhanced with only our mitigations to the LLC side-

channel attacks.

5. Apparition: The optimized Virtual Ghost enhanced

with the defenses to both the page table and LLC

side-channel attacks (in other words, the full Ap-

parition system).

8.2 Virtual Ghost Optimizations

We evaluate the overheads of the optimized version of

Virtual Ghost’s SFI enforcement and SVA-OS MMU in-

structions (described in Section 4) relative to the orig-

inal Virtual Ghost and to native x86-64 FreeBSD. For

the baseline kernel, we used a native x86-64 FreeBSD

9.0 kernel configured with the same options as the Vir-

tual Ghost FreeBSD kernels and compiled with the same

compiler and compilation options. We focus here on

evaluating the overheads of Virtual Ghost on traditional

non-ghosting applications, i.e., applications that do not

use ghost memory but still need to run on the Virtual

Ghost system. Our microbenchmarks and benchmark ap-

plications therefore do not use ghost memory when run-

ning on Virtual Ghost.

As shown below, our optimizations always improve

performance for the benchmarks we tested.

Microbenchmarks: We used the LMBench bench-

mark suite [55] to measure the latency of various system

calls on Virtual Ghost with and without the new opti-

mizations. Tables 3 and 4 show the performance of the

Figure 4: LMBench File Creation/Deletion Rate

native FreeBSD 9.0 kernel and the overheads of Virtual

Ghost, with and without the optimizations, normalized to

the native FreeBSD 9.0 kernel. While the overheads in

Table 3 may seem high, we note that the performance of

real-world applications (shown subsequently) are much

better as applications only spend a portion of their time

executing kernel code.

As Tables 3 and 4 show, Virtual Ghost incurs 2.4×

overhead on average while our optimizations reduce the

overhead to 1.8× on average. In particular, elimina-

tion of serializing instructions improves system calls that

perform many page table updates. For example, fork

+ exit overhead drops from 4.1× to 2.0×, and fork

+ exec drops from 3.9× to 1.9×. On FreeBSD, the

mmap() system call premaps some amount of physical

memory to the newly mapped region, so our optimiza-

tions also improve its overhead from 5.1× to 3.4×.

Signal handler function dispatch shows a slight perfor-

mance improvement on Virtual Ghost compared to native

FreeBSD. The FreeBSD kernel on Virtual Ghost cannot

read the register state saved on interrupts, traps, and sys-

tem calls [26] and therefore does not copy this informa-

tion into the user-space stack for signal handlers to in-

spect like the FreeBSD kernel does. We believe this is

why Virtual Ghost shows a slight performance benefit

for signal handler dispatch.

Figure 4 reports the performance of the file cre-

ation/deletion workload of LMBench on native FreeBSD

and Virtual Ghost with and without the new optimiza-

tions. Virtual Ghost slows down the file creation and

deletion rates by 2.2× and 2.1×, respectively, on average

across all file sizes, and the optimizations reduce both of

the overheads to 1.7×. The standard deviation is 0% for

all file sizes tested.

Applications: Table 5 lists the average CPU time spent

for OpenSSH client file transfers on the native FreeBSD

kernel over 20 rounds of execution. We measured the

CPU time by recording the number of unhalted clock

cycles used while executing the ssh client with the

pmcstat utility and then converted this number into mil-

liseconds based on the CPU’s clock speed. We made the

same measurements for the OpenSSH client on Virtual

Ghost with and without optimizations; the VG and Opt-

VG lines in Figure 6 show the results. For files from

1 KB to 8 MB, the original Virtual Ghost incurs over-

heads of 3% to 12% with a 1% average standard devi-

ation. The optimizations reduce the overhead to 2% to

10%. For files larger than 8 MB, the overheads of Vir-

tual Ghost with or without the optimizations are negli-

gible. Additionally, the differences between the results

of 128 KB, 256 KB and 512 KB are within the standard

deviation.

Figure 5 shows the average OpenSSH client file trans-

Size CPU Time Std. Dev. Size CPU Time Std. Dev.

1 13.7 0.3 1,024 26.9 0.4

2 13.8 0.2 2,048 37.1 0.4

4 13.9 0.2 4,096 57.3 0.3

8 14.5 0.3 8,192 97.8 0.4

16 15.2 0.3 16,384 178.4 0.4

32 16.8 0.3 32,768 339.9 0.5

64 17.1 0.4 65,536 662.2 0.3

128 18.1 0.3 131,072 1,306.8 0.6

256 19.0 0.5 262,144 2,596.0 1.2

512 21.5 0.4 524,288 5,171.1 2.5

Table 5: OpenSSH Client Average File Transfer CPU

Time. Time in miliseconds. Size in KB.

Figure 5: OpenSSH Client Average File Transfer Rate

on Native FreeBSD

fer bandwidth on the native FreeBSD kernel over 10

rounds. For files between 1 KB and 2 MB in size, the

original Virtual Ghost incurs negligible overheads rang-

ing from 1% to 3% with up to 1% standard deviations.

With the optimizations, the overheads on bandwidth re-

main similar.

Table 6 shows the overhead of Virtual Ghost with and

without the new optimizations on Bzip2 compression and

GnuPG when signing 2 MB files. For this experiment,

ghost memory is disabled, so heap objects are allocated

in traditional user-space memory, and physical memory

is mapped on demand. We use a small file size here as

Figure 6: OpenSSH Client Average File Transfer CPU

Time Normalized to Native FreeBSD

Bzip2 GnuPG Signing

Native (ms) 183.20 54.71

VG Overhead (×) 1.05 1.06

Opt-VG Overhead (×) 1.04 1.03

Table 6: Bzip2 and GnuPG Results for 2 MB Files

RandomAccess Bzip2 Clang

Native FreeBSD 643.23 µs 2.89 s 28.36 s

std. dev. 0.64 µs 0.00 s 0.63 s

Opt-VG Overhead (×) 1.28 1.04 1.03

Opt-VG-PG Overhead (×) 1.32 1.04 1.03

Opt-VG-LLCPart Overhead (×) 2.09 1.04 1.03

Apparition Overhead (×) 2.11 1.05 1.05

Table 7: RandomAccess, Bzip2 and Clang Results

Virtual Ghost has higher overhead on GnuPG when com-

pressing 2 MB files than when compressing larger files.

Virtual Ghost adds 5% overhead to Bzip2, which is re-

duced to 4% with the optimizations. It incurs a 6% over-

head to the overall performance for GnuPG signing; the

optimizations reduce the overhead to 3%. The standard

deviations for both Bzip2 and GnuPG is 0%.

8.3 Page Table Side-Channel Defenses

We now evaluate the performance of our page table side-

channel defenses in Sections 5.1 and 5.2.

Ghosting RandomAccess: The second column of Ta-

ble 7 reports the average latency of each iteration over 20

rounds of execution for the RandomAccess microbench-

mark. The overheads on Virtual Ghost with our new op-

timizations without (Opt-VG) and with our page table

side-channel defenses enabled (Opt-VG-PG) show that

the page table side-channel defenses add no additional

overhead to Opt-VG (when accounting for the standard

deviation of 4%). This is because the only OS kernel

operations incurred during the loop in RandomAccess

are context switches, and our page table defenses add

no overhead to context switching. We believe that Opt-

VG and Opt-VG-PG add overhead to native FreeBSD be-

cause Opt-VG and Opt-VG-PG map ghost memory with

4 KB pages while native FreeBSD maps traditional user-

space memory using super pages whenever possible [57].

Ghosting Bzip2: We enabled ghost memory for Bzip2

for all systems except the native FreeBSD kernel. The

third column of Table 7 reports the average of 10 rounds

of this experiment and shows that our page table defenses

do not affect the overall performance of Bzip2 compres-

sion relative to Opt-VG. The standard deviation is 0%.

Since Bzip2 accesses all the heap memory that it allo-

cates when compressing the 32 MB file, our page table

defenses do not incur any overhead by disabling demand

paging of ghost memory.

Figure 7: Ghosting OpenSSH Client File Transfer Band-

width Normalized to Native FreeBSD

Ghosting OpenSSH Client: The Opt-VG-PG-

Ghosting line in Figure 6 shows the overhead of our

page table defenses on the unhalted CPU clock cycles

(converted into time using the processor’s clock fre-

quency) of the ssh client transferring files. Each data

point is the average of 20 rounds of execution. For 1 KB

to 4 MB files, page table defenses increase the overhead

of Opt-VG (denoted by the Opt-VG-ghosting line in

Figure 6) by 1% to 10% with a 2% standard deviation.

For large files, page table defenses add no overhead to

the CPU time.

Figure 7 shows the overheads of our page table de-

fenses on the client file transfer bandwidth. Page table

defenses add no overhead to the optimized Virtual Ghost

across all file sizes (differences are within the range of

standard deviation).

Ghosting GnuPG: We enabled ghost memory for

GnuPG for all systems except the native FreeBSD ker-

nel. Table 8 shows the performance of signing files with

GnuPG. The page table defenses incur a constant over-

head of around 14 ms across all file sizes. This overhead

File

Size

(KB)

Native Std.

Dev.

Opt-

VG

Opt-

VG-

PG

Opt-

VG-

LLCPart

Apparition

1 8.6 0.1 9.5 23.7 12.1 25.2

2 8.6 0.1 9.5 23.8 12.1 24.9

4 8.6 0.1 9.5 23.9 12.2 25.5

8 8.7 0.2 9.6 23.9 12.1 25.1

16 8.9 0.1 9.8 23.9 12.5 25.4

32 9.2 0.1 10.1 24.4 12.9 25.6

64 9.9 0.1 10.9 25.4 13.6 27.0

128 11.4 0.1 12.4 26.8 15.2 28.4

256 14.3 0.1 15.4 29.7 18.3 31.5

512 20.1 0.1 21.3 35.6 24.4 37.4

1024 31.6 0.1 33.2 47.7 36.4 49.4

2048 54.8 0.0 56.8 71.2 60.5 73.6

4096 100.9 0.1 103.9 118.2 108.0 121.1

8192 193.3 0.1 198.6 212.9 203.6 217.0

16384 377.8 0.2 386.2 400.1 394.6 407.3

32768 746.6 0.5 761.8 776.1 776.6 789.2

Table 8: GnuPG Signing Results. Time in milliseconds.

occurs because our page allocation defenses disable de-

mand paging of ghost memory. malloc() attempts to

fulfill allocation requests by allocating memory chunks

with 4 MB alignment from the OS. This alignment con-

straint may cause malloc() to map a larger virtual mem-

ory region for the heap and return a pointer to an aligned

4 MB block within it. Although GnuPG only uses the

aligned portion of memory, the page table defenses still

allocate and map physical memory for the remaining un-

aligned 8 MB portion, incurring the 14 ms overhead. The

overhead becomes negligible as the file size increases, as

Table 8 shows. The standard deviation is 3% on average.

Ghosting Clang: As the fourth column of Table 7

shows, the page table defenses do not add any overhead

to Clang relative to Opt-VG. This indicates that Clang

uses most of the heap memory it allocates. Therefore,

allocating and mapping physical memory at allocation

time as opposed to on demand incurs no overhead.

8.4 LLC Side-Channel Defenses

We have compared the performance of various cache par-

tition sizes with the baseline where the ghosting appli-

cation, the kernel and the Apparition VM can all use

the entire LLC. Our results indicate that the Appari-

tion VM needs only 2 LLC ways to avoid performance

degradation. We also experimentally determined that as-

signing 12, 2, and 2 LLC ways to the ghosting appli-

cation, the kernel, and the Apparition VM, respectively,

best achieves performance similar to the baseline. This

provides ghosting applications the maximum number of

LLC ways possible. While we use static partitions, we

could leverage dynamic cache partitioning techniques

e.g., SecDCP [70], to improve performance.

Ghosting RandomAccess: We use the RandomAccess

microbenchmark in Section 8.1 to evaluate the impact of

LLC partitioning when an application’s working set is

small enough to fit in the LLC but exceeds the capacity of

the assigned partition. Since the 8 MB array is larger than

the capacity of the 12-way partition of the 16-way 8 MB

LLC, LLC partitioning increases the overhead of Opt-

VG from 1.28× to 2.09× with a 3% standard deviation.

Ghosting Bzip2: We enabled ghost memory for Bzip2

for all systems except the native FreeBSD kernel. Table 7

shows the overhead of LLC partitioning on Bzip2 com-

pressing a 32 MB file as Section 8.1 describes. LLC par-

titioning does not affect the performance of Bzip2, which

indicates the capacity of the 12-way LLC partition is suf-

ficient for the cache lines frequently accessed by Bzip2.

The standard deviation is 0%.

Ghosting OpenSSH Client: We evaluate the overhead

of LLC partitioning on OpenSSH client CPU time and

bandwidth when transferring files of varying sizes; Fig-

ure 6 shows the file transfer CPU time normalized to the

native FreeBSD 9.0 averaged over 20 rounds of execu-

tion. Opt-VG-LLCPart-ghosting (Opt-VG with LLC par-

titioning enabled) is 1.18× (on average with a worst case

of 1.27×) across all file sizes (where Opt-VG is 1.09×

on average) when normalized to FreeBSD. The overhead

of LLC partitioning mainly comes from the LLC parti-

tion switches among the ghosting application, the ker-

nel and the Apparition VM in the runtime, which slows

down the performance by 1.16× on average across all

file sizes. The standard deviation is 1% on average across

all file sizes.

Figure 7 illustrates the performance impact of LLC

partitioning on client file transfer bandwidth. The re-

sults are averaged over 20 rounds of execution. Opt-

VG-LLCPart-ghosting reduces bandwidth to 0.91 that of

native FreeBSD on average across all file sizes with a

worst case of 0.85 (compared to 0.92 for Opt-VG). The

standard deviation ranges from 0% to 1% across all file

sizes.

Ghosting GnuPG: We enabled ghost memory for

GnuPG for all systems except the native FreeBSD ker-

nel. Table 8 shows the performance impact of LLC

partitioning on GnuPG as Section 8.1 describes. For

1 KB to 4 MB files, LLC partitioning incurs a 3 ms to

4 ms overhead which is the overhead for maintaining i.e.,

switching among, different LLC partitions. For 8 MB to

32 MB files, although their sizes exceed the capacity of

the 6 MB ghost memory LLC partition and the absolute

additional execution time incurred by LLC partitioning

is longer, the overhead to the overall performance is neg-

ligible. The execution time of Opt-VG-LLCPart for sign-

ing 8 MB to 32 MB files is 1.05× (Opt-VG is 1.02×) that

for native FreeBSD on average. The standard deviation

is 1.2% on average across all file sizes.

Ghosting Clang: Tables 7 and 9 show that our LLC

side-channel defenses incur a negligible 3% overhead

when assigning 12, 2 and 2 LLC ways to the ghosting

Clang, the kernel, and the Apparition VM, respectively.

However, when we shrink the number of LLC ways as-

signed to the ghosting Clang to 6, 4, and 2 while the

LLC partition sizes of the kernel and the Apparition VM

remain the same, we observe that the execution time for

Opt-VG-LLCPart is as much as 1.1×, 1.3×, and 1.6×

that of native FreeBSD. This is because the working set

of Clang exceeds the capacity of the cache partition.

We also evaluated the overhead of LLC partitioning

when executing more ghosting applications than the pro-

cessor has partitions. As Section 7 describes, our pro-

of LLC Ways Overhead (×) # of LLC Ways Overhead (×)

2 1.64 8 1.08

4 1.30 10 1.05

6 1.14 12 1.03

Table 9: Overhead of Opt-VG with Varying Sizes of

LLC partition for Ghosting Clang. Normalized to Native

FreeBSD.

totype shares a single partition among multiple ghosting

applications and flushes the cache on context switches

between two ghosting applications. We run two ghost-

ing Clang processes in parallel in the background, where

each compiles either gcc-smaller.c or gcc-pp.c

from SPEC CPU 2017 [5]. On native FreeBSD, it takes

57.3 seconds to compile gcc-smaller.c in this sce-

nario; Compilation on Opt-VG-LLCPart takes 1.06×

(1.03× for Opt-VG) the time on native FreeBSD, with

a 0.4% standard deviation.

8.5 Evaluation of Combined Defenses

We now evaluate the combined overheads of our page

table and LLC side-channel defenses using RandomAc-

cess, Bzip2, the OpenSSH client, GnuPG, and Clang.

RandomAccess executes in 2.11× the time taken by

native FreeBSD when executing on Apparition, as Ta-

ble 7 shows; the standard deviation is 2%. The overhead

mainly comes from the mitigations to LLC side-channel

attacks. Table 7 also shows that Apparition with all de-

fenses enabled on Bzip2 only adds 5% overhead (com-

pared to Opt-VG’s 4%) relative to native FreeBSD with

0% standard deviation.

Figure 6 shows the performance impact of all defenses

on the OpenSSH client file transfer CPU time. The over-

head of Apparition ranges from 16% to 33% relative to

native FreeBSD, with a 1% standard deviation across all

file sizes, which is a combination of the slow down in-

curred by page table and LLC side-channel defenses in

addition to the overhead of Opt-VG. Figure 7 illustrates

the performance impact of all defenses on the client file

transfer rate. Apparition reduces the file transfer rate to

0.91 that of native FreeBSD on average across all file

sizes with a worst case of 0.85 (compared to 0.92 for

Opt-VG).

Table 8 shows that Apparition incurs a constant over-

head of around 16 ms relative to Opt-VG on GnuPG

across 1 KB to 4 MB files, 14 ms of which comes from

the page table side-channel with the remaining from the

LLC partitioning defenses. As Table 8 shows, the over-

head of both defenses becomes negligible as the file size

increases. The standard deviation is 3.0% on average

across all file sizes.

Table 7 shows that the ghosting Clang compiler incurs

5% overhead relative to native FreeBSD with a standard

deviation of 2% when running on Apparition.

9 Related Work

Recent work removes commodity OS kernels from

the TCB. SP3 [75], Overshadow [20], InkTag [40],

CHAOS [18], and AppShield [21] build on commercial

hypervisors and protect entire applications by providing

an encrypted view of application memory to the OS and

detect corruption of physical memory frames by the OS

using digital signatures. Virtual Ghost [26] uses com-

piler instrumentation to insert run-time checks and can

also protect entire applications. Hardware such as In-

tel SGX [23, 42] and AMD SEV [31, 39] protect un-

privileged applications and virtual machines from mali-

cious privileged code such as the OS and hypervisors.

Haven [12] uses Intel SGX [23, 42] to isolate entire un-

modified legacy applications from the OS. All of these

shielding systems are vulnerable to side-channel attacks.

Page table side-channel attacks can steal secret appli-

cation data on Intel SGX and InkTag [63, 67, 73]. T-

SGX [62] transforms SGX applications to thwart page

fault side channels by executing computations within In-

tel TSX transactions. TSX aborts transactions upon ex-

ceptions and interrupts, ensuring no page fault sequence

leaks to the OS. However, its overhead ranges from 4%

to 118% with a geometric mean of 50%. DÉJÀ VU [19]

builds a software reference clock protected by Intel TSX

transactions within SGX enclaves. It detects privileged

side-channel attacks that trigger frequent traps and inter-

rupts and aborts the application if an attack is detected.

Cache side-channel attacks are a known problem [36–

38,43,52,58,76,79]. Several defenses partition the cache

but generally assume an unprivileged attacker e.g., an

unprivileged process [70, 71, 80] or a virtual machine

attacking its neighbors [35, 44, 50, 61, 80]. These de-

fenses cannot mitigate attacks by privileged code. Still,

we can leverage techniques such as dynamic partitioning

in SecDCP [70] to improve the performance of our cache

partitioning scheme but, unlike SecDCP, ensure that the

OS does not reconfigure or disable the partitioning.

Other mechanisms can mitigate cache side-channel

attacks, but they also assume unprivileged attackers.

SHARP [74] alters a shared cache’s replacement pol-

icy to prevent the attacker from learning the victim’s

memory access patterns by cache evictions. It prioritizes

evicting LLC cache lines that are not in any private L1

cache and the LLC cache lines of the current process.

However, a compromised OS can still evict the cache

lines of the victim as it can run on the victim’s behalf.

The Random Fill Cache Architecture [51] breaks the cor-

relation between demand memory access and L1 cache

fills to defend against reuse-based side-channel attacks.

Wang and Lee [71] proposed that memory-to-cache map-

pings in L1 cache be dynamically randomized. Both ap-

proaches focus on L1 cache and may incur high perfor-

mance overhead on much larger LLCs. Additionally, all

three approaches require hardware modifications. Fuzzy-

Time [41] and TimeWarp [53] introduce noise to the sys-

tem clock to disrupt attackers’ time measurements but

hurt programs needing a high-precision clock.

Some approaches detect, rather than prevent, cache

side-channel attacks. Chiappetta et al. [22] detect cache

side channels by finding correlations between the LLC

accesses of the attacker and the victim. HexPADS [59]

detects cache side channels based on the frequent cache

misses of the attacker. However, both approaches tend to

suffer from high false positives and false negatives.

A final approach is to design hardware without side

channels and formally verify that they are correct.

SecVerilog [77] and Sapper [48] present new hardware

description languages with information flow tracking

that processor designers can use to design processors

without timing-channel exploits. Sanctum [24] is an

isolation framework similar to Intel SGX that mitigates

page table and cache side-channel attacks by maintain-

ing a per-enclave page table in addition to the traditional

page table managed by the OS with extra registers and

logic. It also isolates the enclaves in both DRAM and

cache using page coloring maintained by the TCB. How-

ever, these defenses require hardware modifications.

10 Conclusions

Despite defenses such as InkTag [40], Virtual Ghost [26],

and Haven [12], compromised OS kernels can steal ap-

plication data via side-channel attacks. We present Ap-

parition, an enhanced Virtual Ghost system that protects

applications from page table and LLC side-channel at-

tacks. Apparition improves the performance of the orig-

inal Virtual Ghost by up to 2× by eliminating unneces-

sary serializing instructions and by utilizing Intel MPX.

Apparition also enhances Virtual Ghost’s memory pro-

tection features to thwart page table side-channel attacks

and combines its memory protection features with Intel’s

CAT hardware to defeat LLC side-channel attacks. Ap-

parition requires no changes to the processor or OS ker-

nels running on SVA. We compared Apparition’s perfor-

mance to Virtual Ghost enhanced with our optimizations;

it adds 1% to 18% overhead (relative to native FreeBSD)

to most of the real-world applications we tested but adds

up to 86% additional overhead to GnuPG.

Acknowledgements

The authors thank the anonymous reviewers for their in-

sightful feedback. This work was supported by NSF

Awards CNS-1319353, CNS-1618497, CNS-1618588,

CNS-1629770, and CNS-1652280.

References

[1] clang: a C language family frontend for LLVM. https://

clang.llvm.org.

[2] ARM Architecture Reference Manual: ARMv7-A and ARMv7-R

Edition. 2011.

[3] ARM Architecture Reference Manual: ARMv8, for ARMv8-A Ar-

chitecture Profile. 2014.

[4] Intel 64 and IA-32 Architectures Software Developer’s Manual,

vol. 3. Intel, September 2016.

[5] SPEC CPU R© 2017. https://www.spec.org/cpu2017, 2017.

[6] Intel analysis of speculative execution side channels. Tech. Rep.

336983-003, May 2018.

[7] ABADI, M., BUDIU, M., ERLINGSSON, U., AND LIGATTI, J.

Control-flow integrity principles, implementations, and applica-

tions. ACM Transactions on Information Systems Security 13

(November 2009), 4:1–4:40.

[8] ACIIÇMEZ, O. Yet another microarchitectural attack: Exploiting

I-cache. In Proceedings of the 2007 ACM Workshop on Computer

Security Architecture (2007), CSAW’07, pp. 11–18.

[9] ACIIÇMEZ, O., BRUMLEY, B. B., AND GRABHER, P. New re-

sults on instruction cache attacks. In Proceedings of the 12th

International Conference on Cryptographic Hardware and Em-

bedded Systems (2010), CHES’10, pp. 110–124.

[10] ACIIÇMEZ, O., AND SCHINDLER, W. A vulnerability in RSA

implementations due to instruction cache analysis and its demon-

stration on OpenSSL. In Proceedings of the 2008 The Cryptop-

graphers’ Track at the RSA Conference on Topics in Cryptology

(2008), CT-RSA’08, pp. 256–273.

[11] ARM LIMITED. ARM security technology: Building a secure

system using TrustZone technology, 2009.

[12] BAUMANN, A., PEINADO, M., AND HUNT, G. Shielding appli-

cations from an untrusted cloud with Haven. In Proceedings of

the 11th USENIX Conference on Operating Systems Design and

Implementation (2014), OSDI’14, pp. 267–283.

[13] BENGER, N., POL, J., SMART, N. P., AND YAROM, Y. “ooh

aah... just a little bit”: A small amount of side channel can go

a long way. In Proceedings of the 16th International Work-

shop on Cryptographic Hardware and Embedded Systems (2014),

CHES’14, pp. 75–92.

[14] BHARGAVA, R., SEREBRIN, B., SPADINI, F., AND MANNE,

S. Accelerating two-dimensional page walks for virtualized sys-

tems. In Proceedings of the 13th International Conference on

Architectural Support for Programming Languages and Operat-

ing Systems (2008), ASPLOS’08, pp. 26–35.

[15] BOVET, D. P., AND CESATI, M. Understanding the LINUX Ker-

nel, 3rd ed. O’Reilly, Sebastopol, CA, 2006.

[16] BZIP2. bzip2 and libbzip2, 1996. http://www.bzip.org.

[17] CHECKOWAY, S., AND SHACHAM, H. Iago attacks: why the sys-

tem call API is a bad untrusted RPC interface. In Proceedings of

the 18th International Conference on Architectural Support for

Programming Languages and Operating Systems (2013), ASP-

LOS’13, pp. 253–264.

[18] CHEN, H., ZHANG, F., CHEN, C., YANG, Z., CHEN, R.,

ZANG, B., AND MAO, W. Tamper-resistant execution in an un-

trusted operating system using a virtual machine monitor. Tech.

rep., Fudan University, Parallel Processing Insitute, 2007.

[19] CHEN, S., ZHANG, X., REITER, M. K., AND ZHANG, Y. De-

tecting privileged side-channel attacks in shielded execution with

DÉJÀ VU. In Proceedings of the 2017 ACM Asia Conference on

Computer and Communications Security (2017), ASIA CCS’17,

pp. 7–18.

[20] CHEN, X., GARFINKEL, T., LEWIS, E. C., SUBRAHMANYAM,

P., WALDSPURGER, C. A., BONEH, D., DWOSKIN, J., AND

PORTS, D. R. Overshadow: a virtualization-based approach

to retrofitting protection in commodity operating systems. In

Proceedings of the 13th International Conference on Architec-

tural Support for Programming Languages and Operating Sys-

tems (2008), ASPLOS’08, pp. 2–13.

[21] CHENG, Y., DING, X., AND DENG, R. H. Efficient

virtualization-based application protection against untrusted op-

erating system. In Proceedings of the 10th ACM Symposium

on Information, Computer and Communications Security (2015),

ASIA CCS’15, pp. 345–356.

[22] CHIAPPETTA, M., SAVAS, E., AND YILMAZ, C. Real time de-

tection of cache-based side-channel attacks using hardware per-

formance counters. Appl. Soft Comput. 49, C (Dec. 2016), 1162–

1174.

[23] COSTAN, V., AND DEVADAS, S. Intel SGX explained. IACR

Cryptology ePrint Archive 2016 (2016), 86.

[24] COSTAN, V., LEBEDEV, I., AND DEVADAS, S. Sanctum:

Minimal hardware extensions for strong software isolation. In

Proceedings of the 25th USENIX Security Symposium (2016),

SEC’16, pp. 857–874.

[25] CRISWELL, J. Secure Virtual Architecture: Security for Com-

modity Software Systems. PhD thesis, Computer Science Depart-

ment, University of Illinois at Urbana-Champaign, Urbana, IL,

August 2014.

[26] CRISWELL, J., DAUTENHAHN, N., AND ADVE, V. Virtual

Ghost: Protecting applications from hostile operating systems.

In Proceedings of the 19th International Conference on Architec-

tural Support for Programming Languages and Operating Sys-

tems (2014), ASPLOS’14.

[27] CRISWELL, J., GEOFFRAY, N., AND ADVE, V. Memory safety

for low-level software/hardware interactions. In Proceedings of

the 18th Usenix Security Symposium (2009), SEC’09.

[28] CRISWELL, J., LENHARTH, A., DHURJATI, D., AND ADVE,

V. Secure Virtual Architecture: A safe execution environment

for commodity operating systems. In Proceedings of the ACM

Symposium on Operating System Principles (2007), SOSP’07.

[29] CRISWELL, J., MONROE, B., AND ADVE, V. A virtual instruc-

tion set interface for operating system kernels. In Workshop on

the Interaction between Operating Systems and Computer Archi-

tecture (2006), WIOSCA’06, pp. 26–33.

[30] CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N.,

AND ZADECK, F. K. Efficiently computing static single assign-

ment form and the control dependence graph. ACM Transac-

tions on Programming Languages and Systems (October 1991),

13(4):451–490.

[31] D. KAPLAN, J. P., AND WOLLER, T. White Paper AMD Memory

Encryption. AMD, 4 2016.

[32] DENNING, D. E. A lattice model of secure information flow.

Commun. ACM 19, 5 (May 1976), 236–243.

[33] DHURJATI, D., KOWSHIK, S., AND ADVE, V. SAFECode: En-

forcing alias analysis for weakly typed languages. In ACM Con-

ference on Programming Language Design and Implementation

(2006), PLDI’06.

[34] DONG, X., SHEN, Z., CRISWELL, J., COX, A., AND

DWARKADAS, S. Spectres, Virtual Ghosts, and hardware sup-

port. In Proceedings of the 7th International Workshop on Hard-

ware and Architectural Support for Security and Privacy (2018),

HASP’18, pp. 5:1–5:9.

[35] GODFREY, M. On the prevention of cache-based side-channel at-

tacks in a cloud environment. Master’s thesis, School of Comput-

ing, Queen’s University, Kingston, Ontario, Canada, Sept 2013.

[36] GRUSS, D., SPREITZER, R., AND MANGARD, S. Cache tem-

plate attacks: Automating attacks on inclusive last-level caches.

In Proceedings of the 24th USENIX Security Symposium (2015),

SEC’15, pp. 897–912.

[37] GULLASCH, D., BANGERTER, E., AND KRENN, S. Cache

games – bringing access-based cache attacks on AES to prac-

tice. In Proceedings of the 2011 IEEE Symposium on Security

and Privacy (2011), SP ’11, pp. 490–505.

[38] HÄHNEL, M., CUI, W., AND PEINADO, M. High-resolution

side channels for untrusted operating systems. In Proceedings of

the 2017 USENIX Annual Technical Conference (2017), pp. 299–

312.

[39] HETZELT, F., AND BUHREN, R. Security analysis of encrypted

virtual machines. In Proceedings of the 13th ACM International

Conference on Virtual Execution Environments (2017), VEE’17,

pp. 129–142.

[40] HOFMANN, O. S., KIM, S., DUNN, A. M., LEE, M. Z., AND

WITCHEL, E. InkTag: secure applications on an untrusted op-

erating system. In Proceedings of the 18th International Confer-

ence on Architectural Support for Programming Languages and

Operating Systems (2013), ASPLOS’13, pp. 265–278.

[41] HU, W.-M. Reducing timing channels with fuzzy time. J. Com-

put. Secur. 1, 3-4 (May 1992), 233–254.

[42] INTEL. Software Guard Extensions Programming Reference, Oc-

tober 2014. Document Number: 3329298-002.

[43] IRAZOQUI, G., EISENBARTH, T., AND SUNAR, B. S$A: A

shared cache attack that works across cores and defies VM sand-

boxing – and its application to AES. In Proceedings of the 2015

IEEE Symposium on Security and Privacy (May 2015), SP’15,

pp. 591–604.

[44] KIM, T., PEINADO, M., AND MAINAR-RUIZ, G. STEALTH-

MEM: System-level protection against cache-based side channel

attacks in the cloud. In Presented as part of the 21st USENIX

Security Symposium (2012), pp. 189–204.

[45] KOCH, W. GnuPG, 2017. https://gnupg.org.

[46] KOCHER, P., GENKIN, D., GRUSS, D., HAAS, W., HAMBURG,

M., LIPP, M., MANGARD, S., PRESCHER, T., SCHWARZ, M.,

AND YAROM, Y. Spectre attacks: Exploiting speculative execu-

tion.

[47] LATTNER, C., AND ADVE, V. LLVM: A compilation framework

for lifelong program analysis and transformation. In Proceedings

of the Conference on Code Generation and Optimization (2004),

CGO’04, pp. 75–88.

[48] LI, X., KASHYAP, V., OBERG, J. K., TIWARI, M., RAJARATHI-

NAM, V. R., KASTNER, R., SHERWOOD, T., HARDEKOPF, B.,

AND CHONG, F. T. Sapper: A language for hardware-level

security policy enforcement. In Proceedings of the 19th Inter-

national Conference on Architectural Support for Programming

Languages and Operating Systems (2014), ASPLOS’14, pp. 97–

112.

[49] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T., HAAS,

W., MANGARD, S., KOCHER, P., GENKIN, D., YAROMN, Y.,

AND HAMBURG, M. Meltdown.

[50] LIU, F., GE, Q., YAROM, Y., MCKEEN, F., ROZAS, C.,

HEISER, G., AND LEE, R. B. CATalyst: Defeating last-level

cache side channel attacks in cloud computing. In Proceedings

of the 2016 IEEE International Symposium on High Performance

Computer Architecture (2016), HPCA’16, pp. 406–418.

[51] LIU, F., AND LEE, R. B. Random fill cache architecture. In Pro-

ceedings of the 47th Annual IEEE/ACM International Symposium

on Microarchitecture (2014), MICRO’14, pp. 203–215.

[52] LIU, F., YAROM, Y., GE, Q., HEISER, G., AND LEE, R. B.

Last-level cache side-channel attacks are practical. In Pro-

ceedings of the 2015 IEEE Symposium on Security and Privacy

(2015), SP’15, pp. 605–622.

[53] MARTIN, R., DEMME, J., AND SETHUMADHAVAN, S. Time-

Warp: Rethinking timekeeping and performance monitoring

mechanisms to mitigate side-channel attacks. In Proceedings of

the 39th Annual International Symposium on Computer Architec-

ture (2012), ISCA’12, pp. 118–129.

[54] MCKUSICK, M. K., NEVILLE-NEIL, G. V., AND WATSON, R.

N. M. The Design and Implementation of the FreeBSD Operating

System, second ed. Pearson Education, 2015.

[55] MCVOY, L., AND STAELIN, C. lmbench: portable tools for per-

formance analysis. In Proceedings of the 1996 USENIX Annual

Technical Conference (1996), ATC’96, pp. 23–23.

[56] NAGARAKATTE, S., ZHAO, J., MARTIN, M. M., AND

ZDANCEWIC, S. SoftBound: Highly compatible and complete

spatial memory safety for C. In Proceedings of the 2009 ACM

Conference on Programming Language Design and Implementa-

tion (2009), PLDI’09, pp. 245–258.

[57] NAVARRO, J., IYER, S., DRUSCHEL, P., AND COX, A.

Practical, transparent operating system support for superpages.

SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002), 89–104.

[58] OSVIK, D. A., SHAMIR, A., AND TROMER, E. Cache attacks

and countermeasures: The case of AES. In Proceedings of the

2006 The Cryptographers’ Track at the RSA Conference on Top-

ics in Cryptology (2006), CT-RSA’06, pp. 1–20.

[59] PAYER, M. HexPADS: A platform to detect “stealth” attacks. In

Proceedings of the 8th International Symposium on Engineering

Secure Software and Systems - Volume 9639 (2016), ESSoS’16,

pp. 138–154.

[60] RUSSINOVICH, M. E., AND SOLOMON, D. A. Microsoft Win-

dows Internals, Fourth Edition: Microsoft Windows Server(TM)

2003, Windows XP, and Windows 2000 (Pro-Developer). Mi-

crosoft Press, Redmond, WA, USA, 2004.

[61] SHI, J., SONG, X., CHEN, H., AND ZANG, B. Limiting cache-

based side-channel in multi-tenant cloud using dynamic page col-

oring. In Proceedings of the 2011 IEEE/IFIP 41st International

Conference on Dependable Systems and Networks Workshops

(2011), DSN-W’11, pp. 194–199.

[62] SHIH, M.-W., LEE, S., KIM, T., AND PEINADO, M. T-SGX:

Eradicating controlled-channel attacks against enclave programs.

In Proceedings of the Network Distributed Security Symposium.

[63] SHINDE, S., CHUA, Z. L., NARAYANAN, V., AND SAXENA, P.

Preventing page faults from telling your secrets. In Proceedings

of the 11th ACM Asia Conference on Computer and Communica-

tions Security (2016), ASIA CCS’16, pp. 317–328.

[64] SINGH, A. Mac OS X Internals. Addison-Wesley Professional,

2006.

[65] THE OPENBSD PROJECT. OpenSSH, 2014. https://www.

openssh.com.

[66] TROMER, E., OSVIK, D. A., AND SHAMIR, A. Efficient cache

attacks on AES, and countermeasures. J. Cryptol. 23, 1 (Jan.

2010), 37–71.

[67] VAN BULCK, J., WEICHBRODT, N., KAPITZA, R., PIESSENS,

F., AND STRACKX, R. Telling your secrets without page faults:

Stealthy page table-based attacks on enclaved execution. In

Proceedings of the 26th USENIX Security Symposium (2017),

SEC’17, pp. 1041–1056.

[68] WAHBE, R., LUCCO, S., ANDERSON, T. E., AND GRAHAM,

S. L. Efficient software-based fault isolation. In Proceedings

of the 14th ACM Symposium on Operating Systems Principles

(1993), SOSP’93.

[69] WANG, W., CHEN, G., PAN, X., ZHANG, Y., WANG, X.,

BINDSCHAEDLER, V., TANG, H., AND GUNTER, C. A. Leaky

cauldron on the dark land: Understanding memory side-channel

hazards in SGX. In Proceedings of the 2017 ACM Conference

on Computer and Communications Security (2017), CCS’17,

pp. 2421–2434.

[70] WANG, Y., FERRAIUOLO, A., ZHANG, D., MYERS, A. C.,

AND SUH, G. E. SecDCP: Secure dynamic cache partitioning

for efficient timing channel protection. In Proceedings of the

53rd Annual Design Automation Conference (2016), DAC’16,

pp. 74:1–74:6.

[71] WANG, Z., AND LEE, R. B. New cache designs for thwarting

software cache-based side channel attacks. In Proceedings of the

34th Annual International Symposium on Computer Architecture

(2007), ISCA’07, pp. 494–505.

[72] WHEELER, D. A. SLOCCount Version 2.26, 2004.

[73] XU, Y., CUI, W., AND PEINADO, M. Controlled-channel at-

tacks: Deterministic side channels for untrusted operating sys-

tems. In Proceedings of the 2015 IEEE Symposium on Security

and Privacy (2015), pp. 640–656.

[74] YAN, M., GOPIREDDY, B., SHULL, T., AND TORRELLAS, J.

Secure hierarchy-aware cache replacement policy (SHARP): De-

fending against cache-based side channel atacks. In Proceedings

of the 44th Annual International Symposium on Computer Archi-

tecture (2017), ISCA’17, pp. 347–360.

[75] YANG, J., AND SHIN, K. G. Using hypervisor to provide data

secrecy for user applications on a per-page basis. In Proceedings

of the 4th ACM International Conference on Virtual Execution

Environments (2008), VEE’08, pp. 71–80.

[76] YAROM, Y., AND FALKNER, K. FLUSH+RELOAD: A high reso-

lution, low noise, L3 cache side-channel attack. In Proceedings of

the 23rd USENIX Security Symposium (2014), SEC’14, pp. 719–

732.

[77] ZHANG, D., WANG, Y., SUH, G. E., AND MYERS, A. C. A

hardware design language for timing-sensitive information-flow

security. In Proceedings of the 20th International Conference on

Architectural Support for Programming Languages and Operat-

ing Systems (2015), ASPLOS’15, pp. 503–516.

[78] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART,

T. Cross-VM side channels and their use to extract private keys.

In Proceedings of the 2012 ACM Conference on Computer and

Communications Security (2012), CCS’12, pp. 305–316.

[79] ZHANG, Y., JUELS, A., REITER, M. K., AND RISTENPART, T.

Cross-tenant side-channel attacks in PaaS clouds. In Proceedings

of the 2014 ACM Conference on Computer and Communications

Security (2014), CCS’14, pp. 990–1003.

[80] ZHOU, Z., REITER, M. K., AND ZHANG, Y. A software ap-

proach to defeating side channels in last-level caches. In Pro-

ceedings of the 2016 ACM Conference on Computer and Com-

munications Security (2016), CCS’16, pp. 871–882.

