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Abstract—This paper proposes online scheduling policies to
optimize quality of experience (QoE) for video-on-demand ap-
plications in wireless networks. We consider wireless systems
where an access point (AP) transmits video content to clients
over fading channels. The QoE of each flow is measured by
its duration of video playback interruption. We are specifically
interested in systems operating in the heavy-traffic regime. We
first consider a special case of ON-OFF channels plus constant-
bit-rate videos and establish a scheduling policy that achieves
every point in the capacity region under heavy-traffic conditions.
This policy is then extended for more general fading channels and
variable-bit-rate videos, and we prove that it remains optimal
under some mild conditions. We then formulate a network
utility maximization problem based on the QoE of each flow.
We demonstrate that our policies achieve the optimal overall
utility when their parameters are chosen properly. Finally, we
compare our policies against three popular policies. Simulation
and experimental results validate that the proposed policies
indeed outperform existing policies.

Index Terms—Heavy traffic; Quality of experience; Video
streaming; Wireless networks; Scheduling.

I. INTRODUCTION

In recent years, video streaming applications have been
demanding more and more resource in wireless networks.
According to the latest report from Cisco [2], video-centric
services are projected to increase 13-fold and occupy nearly
three-fourths of global mobile data traffic in the near future.
However, upgrade of wireless network capacity can hardly
catch up with the explosive mobile data traffic. Therefore,
better scheduling algorithms are required for service providers
to serve more customers without sacrificing user satisfaction.

From the perspective of service providers, scheduling poli-
cies are conventionally designed to meet the performance
requirement of a general wireless network, such as average
throughput, latency, delay jitter, etc. However, these statistics
fail to directly characterize real user experience in enjoying
video service. Hence, various research works have been carried
out to study quality of experience (QoE) in video streaming
applications. Much effort has been dedicated to quantifying
subjective user experience and constructing analytical models
based on different experiment setups, such as [3]–[5]. In
general, QoE can be affected by several factors, such as
playback smoothness, mean video quality, temporal variation
in quality, etc. Among these elements, playback interruption
has been shown to be the dominant factor of QoE performance
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[4], [5]. Therefore, we define QoE by the duration of video
interruption during playback process for wireless on-demand
video streams.

Playback interruption of a single video stream has been
studied extensively in recent literature. In [6], the probability
of interruption-free video playback is analyzed for variable bit-
rate video over wireless channels with variable data rate. By
modelling a playback buffer as a M/D/1 queue, [7] provides
a bound on interruption probability for media streams over
Markovian channels. Likewise, Xu et al. [8] and Anttonen et
al. [9] provide explicit results of the distribution of video in-
terruption based on different queueing models. Similarly, [10]
presents an online algorithm to adaptively control playback
buffer underflow and overflow based on large deviation theory.
Moreover, by applying diffusion approximation to a G/G/1
queue, Luan et al. [11] characterize the dynamics of a video
playback buffer under a threshold-based buffer management
scheme. The common focus of these works is to provide an
indicator to make the best tradeoff between initial prefetching
delay and playback buffer emptiness. However, these results
only work for a single video stream and thus can hardly be
applied to a wireless network.

Regarding scheduling for QoE of multiple video streams,
[12] and [13] provide a flow-level analytical framework to
study the effect of flow dynamics on playback interruption and
average throughput. [14] proposes an online algorithm based
on Proportional-Fair scheduling to achieve fairness among
video users while maintaining required throughput. In [15],
a modified version of Proportional-Fair scheduling has been
presented to reduce video inter-frame delay for wireless LTE
networks. To offer better average rate guarantees, Bhatia et
al. [16] design a scheduling policy which exploits slow-
fading variation of wireless channels. In a multi-cast wireless
network, [17] proves by dynamic programming that a Max-
Weight like policy is throughput optimal. To improve video-
rate-based QoE, Li et al. [18] design a scheduling policy
based on the head-of-line packet delay and packet deadlines. In
[19], a resource allocation algorithm is proposed to maximize
video-rate-based utility while maintaining fairness in term of
buffer level. In [20], Li et al. propose a joint rate control and
scheduling algorithm to optimize rate-based network utility
for scalable videos in a multi-cast wireless network. In [21],
Anand and de Veciana propose a scheduling policy that
achieves asymptotically optimal delay-based QoE. In [22],
Joseph and de Veciana consider a more comprehensive QoE
metric and propose the NOVA algorithm to asymptotically
optimize QoE for a wireless network. Based on a similar
decomposition approach as [22], Xiao et al. [23] propose an
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online algorithm to optimize QoE specifically for OFDMA
wireless networks. One common feature of the above policies
is that they aim to optimize QoE in the sense of long-
term average performance, such as average video quality and
average playback interruption. Moreover, [24] considers the
short-term QoE performance by studying the diffusion limit.
However, it only considers constant-bit-rate video streams in
wireless networks where the channel qualities are static.

In this paper, we address QoE optimality and propose online
scheduling policies for wireless on-demand video streams. We
are particularly interested in QoE performance under heavy-
traffic conditions. Different from the prior efforts of [12]–[23],
this paper addresses not only long-term average performance
but also short-term QoE performance by studying diffusion
limits. Different from the study of diffusion limit for a single
video stream without scheduling in [11], we study diffusion
limits for a network of multiple video streams and propose
online scheduling policies. In [11], diffusion approximation
for a G/G/1 queue is directly applicable since the arrival
and departure processes of a playback buffer are given and
completely independent of the buffer management scheme. By
contrast, for a network of video streams, the arrival process of
each video buffer is controlled by the scheduling policy, and
hence it is not immediately clear how to apply diffusion limits.
Despite this challenge, we are able to characterize the capacity
region for QoE and show that the proposed policies achieve
the whole capacity region based on diffusion limits. Instead of
assuming static channel qualities and constant-bit-rate videos
as in [24], we study the dynamic behavior of playback process
of variable-bit-rate videos over time-varying channels. This
paper can be summarized as follows:

• For ease of presentation, we start from a special case of
constant-bit-rate videos over ON-OFF channels. We first
consider long-term average playback interruption by study-
ing the stability region and providing a polynomial-time
algorithm for checking the stabilizability when channels are
independent (Section III).

• We study short-term QoE performance of playback interrup-
tion by applying diffusion limits. Specifically, we start by
deriving a lower bound for total playback interruption for all
scheduling policies and providing necessary conditions for
the capacity region for QoE (Section IV-C). We then propose
an online scheduling policy and explicitly characterize the
distribution of playback interruption at any given time under
the proposed policy (Section IV-D). We thereby show that
the proposed policy achieves every interior point in the
capacity region for QoE.

• The policy and the heavy-traffic analysis are then general-
ized for general i.i.d. fading channels and variable-bit-rate
videos. The proposed policies are proved to remain optimal
under some mild assumptions.

• We formulate a network utility maximization problem based
on the QoE of each client. We show that our policy can
achieve the optimal network utility by selecting proper
parameters.

• We compare the proposed policies against three popular
policies and show by simulation that our policy surpasses

other three policies by a large margin in short-term QoE,
despite that the long-term average duration of video inter-
ruption approaches zero asymptotically for all these policies.
Moreover, we also implement the proposed policy on a
software-defined wireless testbed and demonstrate the per-
formance via real video streaming applications.
Through analysis and extensive evaluation of the proposed

policies, we thereby demonstrate the essential difference be-
tween QoE and the conventional QoS metrics for wireless
networks.

The rest of the paper is organized as follows. Section II
describes the network model for analyzing QoE of on-demand
video streams. Section III discusses the stability region and an
algorithm for checking stabilizability for ON-OFF channels. In
Section IV, we present an online scheduling policy for ON-
OFF channels plus constant-bit-rate videos and prove that it
is optimal in heavy traffic. We then extend the policy for
fading channels and variable-bit-rate videos in Section V.
In Section VI, we formulate a network utility maximization
problem based on QoE. Simulation and experimental results
of the proposed policies as well as the counterparts are shown
in Section VII and VIII, respectively. Finally, Section IX
concludes the paper.

II. SYSTEM MODEL

We consider a time-slotted wireless network consisting of
a wireless access point (AP) and a group of N mobile clients
denoted by Stot = {1, 2, ..., N}. Each client is downloading an
on-demand video which has been pre-stored by video service
providers. The video content is partitioned into packets and
streamed to clients via the AP and the wireless links. On
the AP’s side, we assume that the AP always has packets
at hand for transmission to each video client. In other words,
the throughput for the AP to acquire video content from video
providers is assumed to be much larger than that between the
AP and the mobile clients. We also assume that there is no
network coding mechanism involved in the system. Thus, in
each time slot, the AP can transmit data to at most one client.

In a wireless network, the quality of a wireless channel
usually changes with time. To capture the variation of wireless
channels, we model the wireless link of each client n as a
discrete-time random process rn(t), which is i.i.d. across time
and takes only non-negative integer values in a finite data
rate space denoted by R. If the AP schedules a transmission
for client n at time t, it can deliver exactly rn(t) bits.
For example, the IEEE 802.11a standard has a maximum
physical data rate of 54 Mbit/s, and the data rate can also
be adaptively reduced by applying different modulation and
coding, depending on channel conditions. In this model, we
make no assumption about the relationship between different
wireless links. Therefore, unless stated otherwise, the channels
of different clients are not required to be independent.

On the mobile clients’ side, the received packets are first
decoded and queued in a playback buffer, whose size is
assumed to be infinite. For each client n, let An(t) denote
the total amount of received video content in bits until time
t, and Bn(t) be the amount of video content in bits stored in
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the playback buffer at time t. Next, we consider the playback
process of variable-bit-rate videos. Specifically, each client n
plays one video frame every kn slots, and different frames of
the same video may contain different number of bits. Suppose
for client n, the j-th frame contains Fn(j) bits for every
j ≥ 1. We assume that Fn(j) are i.i.d. across j with mean q∗n
and variance σ2

q,n. We define qn := q∗n/kn to be the average
video playback rate per slot, which reflects the desired video
resolution. Moreover, we assume that Fn(j) is upper bounded
by qn,max for every frame j. Let Cn(J) be the sum of the
frame size up to the J-th frame, i.e. Cn(J) :=

∑J
j=1 Fn(j).

Let Sn(t) be the total number of frames that the client n
plays up to t. Therefore, the total bits played up to time t is
Cn(Sn(t)). At time slot t, the number of bits in the playback
buffer of client n is

Bn(t) = An(t)− Cn(Sn(t)), (1)

where we assume that Bn(0) = 0 for every client.
When the client is about to play a new video frame from the

playback buffer, playback interruption might occur if there is
no enough video content in the playback buffer. To check this
condition, it is equivalent to check if the buffer Bn(t) becomes
negative after the video frame about to play is taken out of
the buffer. Let Dn(t) be the total number of slots in which
video is interrupted by time t. Given Dn(t− 1), b t−Dn(t−1)kn

c
is the total number of video frames that client n would play
up to time t if video interruption does not happen at time t.
Hence, Cn(b t−Dn(t−1)kn

c) represents the total number of bits
played up to t if video interruption does not happen at time t.
Then, Dn(t) can be updated recursively by

Dn(t)

=

{
Dn(t− 1) + 1, if An(t)− Cn(b t−Dn(t−1)kn

c) < 0

Dn(t− 1), otherwise
(2)

From (2), we know that in each slot, Dn(t) either stays
unchanged or increases by 1. Define B∗n(t) := qn,maxb Bn(t)qn,max

c
to be the quantized version of Bn(t) and let en(t) := B∗n(t)−
Bn(t) be the quantization error of Bn(t) with respect to
qn,max. Note that en(t) is bounded, i.e. |en(t)| < qn,max,
for all t ≥ 0. After the above manipulation, we know that
B∗n(t) = 0 if Dn(t+ 1)−Dn(t) = 1. Therefore, we have

B∗n(t) = An(t)− Cn(Sn(t)) + en(t) (3)
= (An(t)− qnt) + qnDn(t) (4)
− [Cn(Sn(t))− qn(t−Dn(t))− en(t)]. (5)

Define

Yn(t) := Cn(Sn(t))− qn(t−Dn(t))− en(t). (6)

Since t−Dn(t) is the total playback time with no interruption,
then on average client n should already play qn(t−Dn(t)) bits
by time t. Since Cn(Sn(t)) is the total number of bits played
up to time t, Yn(t) therefore reflects whether the amount of
played video content matches the average playback rate of the
variable-bit-rate videos. We also define that

Xn(t) :=An(t)− qnt. (7)

Since on average client n plays qn bits per time slot, then
Xn(t) reflects whether the amount of received data matches
the average video playback rate. Now, we can summarize the
basic properties as follows.

B∗n(t) = Xn(t)− Yn(t) + qnDn(t) ≥ 0 (8)
[Dn(t+ 1)−Dn(t)] ∈ {0, 1}, Dn(0) = 0, (9)
B∗n(t)[Dn(t+ 1)−Dn(t)] = 0 (10)

Based on (8)-(10), we can further connect Dn(t) with Xn(t)
as follows.

Theorem 1 Given Xn(t) and Yn(t), there exists a unique pair
of B∗n(t) and Dn(t) that satisfies (8)-(10). Moreover, we have

Dn(t) = sup
0≤τ≤t

(max{0,−Xn(τ)− Yn(τ)

qn
}). (11)

Proof This is a direct result of Theorem 6.1 in [25]. 2

Remark 1 We know that Xn(t) reflects whether the total
amount of received data An(t) matches the total number of
played bits qnt. Moreover, Yn(t) captures the fluctuation in
video frame size. Xn(t) and Yn(t) are sufficient to determine
the buffer status and video interruption. Therefore, it is not
surprising that there exists a unique pair of B∗n(t) and Dn(t)
that satisfies (8)-(11) as stated in Theorem 1.

Remark 2 To intuitively understand (11), consider an ex-
ample where a client n receives an bits from the AP in
every time slot and the video has a constant bit rate. Then,
Xn(t) = (an−qn)t, and |Yn(t)| ≤ qnkn+ |en(t)| is bounded.
• If an > qn, then Xn(t) grows linearly with t and by (11)

we know Dn(t) remains 0 for all t. In other words, there is
no video interruption at all if the amount of received data
per slot is always greater than the playback rate.

• If an < qn, then Xn(t) is always non-positive and decreases
linearly with t. By (11) we know Dn(t) grows almost lin-
early with t with some minor fluctuation due to the bounded
term Yn(t). This corresponds to the fact that the video gets
continually interrupted when the amount of received data
per slot is always less than the required playback rate.

• If an = qn, then both Xn(t) and Yn(t) are 0 for all t. Thus,
Dn(t) = 0 for all t.

In this paper, QoE of each video stream is measured by
its total duration of playback interruption. One usual way to
assess QoE of a wireless network is through long-term average
performance which is formally defined as follows.

Definition 1 A video streaming system is said to be sta-
bilizable if there exists a scheduling policy η such that
lim supt→∞

Dn(t)
t = 0 for all n, almost surely. Moreover,

η is a stabilizing scheduling policy for QoE. 2

In other words, a wireless video-streaming system is sta-
bilizable if the total duration of video interruption grows
sublinearly after some finite time. We first consider the long-
term average behavior of Yn(t). Since the frame sizes are
i.i.d. with mean q∗n, then by the Strong Law of Large Num-
bers for i.i.d. random variables, it can be easily shown that
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TABLE I
MAIN NOTATIONS USED IN THE PAPER.

Notation Description
q∗n average frame size of client n
kn interval between two consecutive frames (if no interruption)
qn q∗n/kn, i.e. video playback rate of client n

An(t) total number of bits received by client n up to time t
Sn(t) total number of frames that client n plays up to t
Cn(J) sum of the frame size of client n up to frame J
Xn(t) An(t)− qnt (reflects if the arrival rate matches qn)
Yn(t) Cn(Sn(t))− qn(t−Dn(t))− en(t),

where en(t) denotes a small bounded error
Dn(t) total amount of video interruption seen by client n up to t

X̂n(t), Ŷn(t) diffusion limits of Xn(t) and Yn(t)
D̂n(t) diffusion limits of Dn(t)
X(t) sum of Xn(t) of all client n
X̂(t) diffusion limit of X(t)

D̂(t) sup0≤τ≤t(max{0,−X̂(τ)})
rn(t) data rate of client n at time t
R(t, S) max{rn(t) : n ∈ S}
R(t) highest data rate among all the clients at time t
Zn(t) Cn(b tkn c)− qnt
Z(t) sum of Zn(t) of all client n

Ẑn(t), Ẑ(t) diffusion limits of Zn(t) and Z(t)

limt→∞
Yn(t)
t = 0, almost surely, regardless of the scheduling

policy. By (8), this implies that the fluctuation in video frame
size does not affect the long-term average video interruption.
Then, it can be easily shown that lim supt→∞

Dn(t)
t = 0 if

and only if the long-term average throughput of each client
is at least qn [24]. If lim inft→∞

An(t)
t < qn, then Xn(t)

will go to negative infinity as t → ∞, almost surely. By (8),
since B∗n(t) is always nonnegative, lim inft→∞

An(t)
t < qn

implies that Dn(t) goes to infinity as t → ∞, almost
surely. Therefore, studying whether a system is stabilizable
is equivalent to studying the capacity region of achievable
throughput. However, this definition fails to characterize the
behavior of the system in the heavy-traffic regime.

To fully characterize the growth of playback interruption
with time, we study the dynamic behavior by using diffusion
limits in the following parts of the paper. Moreover, in Section
VII, we will compare the proposed policy with other popular
scheduling policies that are all stabilizing for QoE but are
rather different in short-term performance.

To study the behavior of video interruption in the heavy-
traffic regime, we consider the diffusion limit of Dn(t), which
is defined as

D̂n(t) := lim
k→∞

Dn(kt)√
k

, 0 ≤ t ≤ 1. (12)

Similarly, we define

X̂n(t) := lim
k→∞

Xn(kt)√
k

, (13)

Ŷn(t) := lim
k→∞

Yn(kt)√
k

, (14)

B̂∗n(t) := lim
k→∞

B∗n(kt)√
k

. (15)

Given the properties in (7)–(10), we then have the following
useful results.

Theorem 2 Given X̂n(t) and Ŷn(t), there exists a unique pair
of (B̂∗n(t), D̂n(t)) that satisfies

B̂∗n(t) = X̂n(t)− Ŷn(t) + qnD̂n(t) ≥ 0 (16)

dD̂n(t)

dt
≥ 0, D̂n(0) = 0 (17)

B̂∗n(t)
dD̂n(t)

dt
= 0. (18)

Moreover, D̂n(t) can be expressed as

D̂n(t) = sup
0≤τ≤t

(max{0,−X̂n(t)− Ŷn(t)

qn
}) (19)

Proof This is a direct result of Theorem 1 in [24]. 2

Remark 3 (19) can be viewed as the diffusion limit version
of (11).

Theorem 2 suggests a general recipe on how to study video
interruption in the diffusion limit:
• Characterize X̂n(t) based on the channel model and the

scheduling policy.
• Characterize Ŷn(t) based on the dynamics of video bit rate.
• Combine X̂n(t) and Ŷn(t) to derive D̂n(t) based on (19).

For ease of presentation, we start from a special case of
constant-bit-rate videos over ON-OFF channels in Section III
and IV, and then extend the analysis for fading channels and
variable-bit-rate videos in Section V.

In order to distinguish the analysis on lim supt→∞
Dn(t)
t

and that on D̂n(t), we use stability region to denote the set
of stabilizable systems, and capacity region to denote the set
of achievable vectors of D̂n(t). A more formal definition of
capacity region is introduced in Section IV.

For convenience, we summarize the main notations used in
this paper in Table I.

III. STABILITY REGION FOR ON-OFF CHANNELS

We first consider a special case of ON-OFF channels, where
transmission rate of each client can only be either zero or a
positive value r∗, and therefore R = {0, r∗}.

Recall that the AP can transmit data to at most one client
in each time slot. In this case, the stability region for ON-
OFF channels has been shown to be associated with a set of
necessary and sufficient conditions [26], [27]. We summarize
the results as follows.

Lemma 1 [26, Theorem 1] Let Wn be the event that client n
has an ON channel, i.e., rn(t) = r∗. A video streaming system
with ON-OFF channels is stabilizable if and only if the video
playback rates {qn} satisfy the following equations:

Pr

[⋃
n∈S

Wn

]
≥ 1

r∗

∑
n∈S

qn, ∀S ⊆ Stot. (20)

Remark 4 For a given subset S, (20) indicates that the total
demand of the subset S should not exceed the maximum total
channel resource of the subset S.
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The above condition requires checking (20) for all subsets,
which can be intractable. However, for the special case where
the channel conditions of different clients are independent,
we can derive a polynomial-time algorithm to check whether
a system is stabilizable. The algorithm is described in the
following theorem.

Theorem 3 Let pn be the probability that client n has an ON
channel, and pn > 0, ∀n. Suppose that the clients are sorted
based on qn

pn
in descending order, i.e. q1

p1
≥ q2

p2
≥ · · · ≥ qN

pN
.

Denote by Sk the subset {1, ..., k} of all clients. Then, the
system is stabilizable if and only if

1−
∏
n∈Sk

(1− pn) ≥ 1

r∗

∑
n∈Sk

qn, 1 ≤ k ≤ N. (21)

Moreover, the complexity of checking this condition is
O(N logN). 2

Proof The proof can be found in Theorem 2 of [1]. 2

IV. HEAVY-TRAFFIC ANALYSIS FOR ON-OFF CHANNELS
AND CONSTANT-BIT-RATE VIDEOS

We are particularly interested in the situation where the set
of video playback rates {qn} is on the boundary of the stability
region, that is, under the heavy-traffic condition.

A. Heavy-Traffic Conditions for ON-OFF Channels
Recall that Wn denotes the event that client n has ON

channel. In this section, we assume that,

Pr

[
N⋃
n=1

Wn

]
=

1

r∗

N∑
n=1

qn, (22)

while for any subset S ⊂ {1, ..., N},

Pr

[⋃
n∈S

Wn

]
>

1

r∗

∑
n∈S

qn. (23)

The constraint (23) corresponds to the complete resource
pooling condition in [28]. The complete resource pooling con-
dition guarantees that there is enough overlap in the channel
resources of different clients. This technical condition enables
us to characterize the system using one-dimensional Brownian
motion as in [28].

B. Constant-Bit-Rate Videos
For constant-bit-rate videos, all the frames of the same

video have exactly the same size q∗n, for each client n. From
Remark 2, we know that |Yn(t)| ≤ qnkn+ |en(t)| is bounded,
regardless of the scheduling policy. Therefore, by the definition
of diffusion limit, we have Ŷn(t) = 0, for all t, under any
scheduling policy. By Theorem 2, we have

D̂n(t) = sup
0≤τ≤t

(max{0,−X̂n(t)

qn
}). (24)

This implies that for constant-bit-rate video streams, X̂n(t)
fully characterizes the behavior of video playback interruption
in the diffusion limit. Therefore, we can focus on characteriz-
ing X̂n(t) in the rest of this section.

C. A Lower-Bound of Capacity Region for QoE

We derive fundamental properties of Dn(t) with ON-OFF
channels under the heavy-traffic conditions. Let us define a
random process

X(t) :=

N∑
n=1

Xn(t) =

N∑
n=1

(An(t)− qnt). (25)

Let ∆X(t+ 1) := X(t+ 1)−X(t) be the amount of change
in X(t), for all t ≥ 0. Regardless of the scheduling policy, the
AP can deliver exactly r∗ bits to some client n if at least one
client in Stot has an ON channel. Let γ := Pr

[⋃N
n=1Wn

]
be the probability of the event that at least one client has an
ON channel. Then, in each time slot t,

∑N
n=1An(t) increases

by r∗ with probability γ and stays the same with probability
1−γ, regardless of the scheduling policy. Therefore, we have

∆X(t+ 1) =

 −
∑N
n=1 qn, with probability 1− γ

r∗ −
∑N
n=1 qn, with probability γ

(26)

Since the channels are i.i.d. across time, the equations in (26)
hold regardless of time and thus ∆X(t) is i.i.d. across all time
slots. Due to the heavy-traffic assumption given by (22), we
further have

E[∆X(t)] = γ(r∗ −
N∑
n=1

qn) + (1− γ)(−
N∑
n=1

qn) = 0

Var[∆X(t)] = γ(r∗ − r∗γ)2 + (1− γ)(r∗γ)2 = γ(1− γ)(r∗)2.

By the functional central limit theorem for i.i.d. random
variables [25], we have the following important properties
regarding the diffusion limit of X(t).

Theorem 4 Let X̂(t) := limk→∞
X(kt)√

k
. Then X̂(t) is a

driftless Brownian motion with variance σ2
x, where σx =

r∗
√

(γ(1− γ)). Moreover, given X̂(τ), for any τ, t ≥ 0 with
τ + t ≤ 1, X̂(τ + t) − X̂(τ) is a Gaussian random variable
with zero mean and variance σ2

xt. 2

Remark 5 By Theorem 4, we are able to fully characterize
the distribution of X̂(t) while the original process X(t) can
be difficult to analyze. This manifests the benefit of taking the
diffusion limit of the original process.

Similar to (24), we define

D̂(t) := sup
0≤τ≤t

(max{0,−X̂(τ)}) (27)

Since X̂(t) is a Brownian motion, we can thereby derive
the distribution and important statistics of D̂(t) based on the
following lemma.

Lemma 2 [29, Section 1.6] Let Φ(x) be the cumulative
distribution function (CDF) of a standard Gaussian random
variable with zero mean and unit variance. The CDF of D̂(t)
is given by

Pr[D̂(t) ≤ x] = Φ(
x√
σ2
xt

)− Φ(
−x√
σ2
xt

)
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for all x ≥ 0, t ≥ 0. The expected value of D̂(t) is given by

E[D̂(t)] =

∫ ∞
0

x

√
2

πσ2
xt

exp(− x2

2σ2
xt

)dx =

√
2tσ2

x

π
. 2

Given the characteristics of D̂(t), we obtain a lower bound
for dynamics of video interruption seen by the clients. We first
introduce the concept of stochastic ordering as follows [25].

Definition 2 Let D̂η1(t) and D̂η2(t) be two real-valued ran-
dom processes under policies η1 and η2, respectively. We say
that D̂η1(t) ≤st D̂η2(t) if

Pr[D̂η1(t) ≥ x] ≤ Pr[D̂η2(t) ≥ x], (28)

for all x ∈ R and for any t ∈ [0, 1]. 2

Then, we further build the relationship between D̂(t) and
D̂n(t) by using of X̂(t) and X̂n(t):

D̂(t) = sup
0≤τ≤t

(max{0,−X̂(t)}) (29)

= sup
0≤τ≤t

(max{0,−
N∑
n=1

X̂n(τ)}) (30)

≤st
N∑
n=1

sup
0≤τ≤t

(max{0,−X̂n(t)}) =

N∑
n=1

qnD̂n(t).

(31)

Motivated by (29)-(31), we define the capacity region for QoE
in terms of the diffusion limits D̂(t) and D̂n(t) as follows.

Definition 3 A N -tuple vector λ = [λ1, λ2, ..., λN ] is said to
be feasible if there exists a scheduling policy such that

D̂n(t) ≤st
λn
qn
D̂(t), n = 1, 2, ..., N. (32)

Then, the capacity region for QoE, denoted by Λ, is defined
as the set of all feasible vectors λ. 2

Remark 6 Note that the capacity region for QoE is defined
in terms of the diffusion limits of video interruption time,
instead of the arrival rate region considered in many studies
on long-term average throughput (such as [30]). Regarding the
capacity analysis of long-term average throughput in classical
queueing theory, it has been widely known that the capacity
region can be characterized by using stationary randomized
policies. By contrast, in the capacity analysis for QoE studied
in this paper, it is not immediately clear how to characterize
the capacity region based on diffusion limits or how to achieve
the whole capacity region. This also manifests the difference
between our study on QoE and the conventional studies on
long-term average throughput.

Theorem 5 A feasible vector λ = [λ1, λ2, ..., λN ] with λn ≥
0, for all n, must satisfy

∑N
n=1 λn ≥ 1. 2

Proof By Definition 3, if λ is feasible, then qnD̂n(t) ≤st
λnD̂(t), for every client n. Therefore,

∑N
n=1 qnD̂n(t) ≤st∑N

n=1 λnD̂(t). By (29)-(31), we have
∑N
n=1 λn ≥ 1. 2

D. Scheduling Policy

Now, we introduce a scheduling policy for constant-bit-rate
videos over ON-OFF channels and show that it achieves every
point in the interior of the capacity region for QoE.
Joint Channel-Deficit Policy (JCD):

In each time slot, the AP schedules the client n with the
smallest value of wnXn(t) among those clients with rn(t) =
r∗, where wn is a predetermined weight factor. 2

To prove that JCD policy achieves every point in the interior
of the capacity region for QoE, we first establish the state
space collapse property to characterize the diffusion limit
X̂n(t) of each individual client.

Theorem 6 Let wn be the weight for client n which is
predetermined by the AP. For any pair of clients n,m in Stot,
we have wnX̂n(t) = wmX̂m(t). Moreover, we can obtain that

X̂n(t) =
1
wn∑N

m=1
1
wm

X̂(t) = βnX̂(t), (33)

where βn :=
1
wn∑N

m=1
1
wm

and
∑N
n=1 βn = 1. 2

Proof To show state-space collapse, we start from a fluid
system induced by Xn(t). Next, we consider a Lyapunov
function and show the random process of the fluid system
is positive recurrent. The complete proof can be found in
Theorem 5 of [1]. 2

Based on Theorem 6, we show that the JCD policy achieves
every point in the capacity region by choosing proper {wn}.

Theorem 7 Given any vector λ = [λ1, λ2, ..., λN ] which
satisfies λn > 0, ∀n, and

∑N
n=1 λn ≥ 1, JCD policy achieves

D̂n(t) = βn
qn
D̂(t) ≤st λn

qn
D̂(t) with βn :=

1
wn∑N

m=1
1
wm

and∑N
n=1 βn = 1, and thus the vector λ is feasible. Moreover,

E[D̂n(t)] =

√
2tσ2

x

π

βn
qn

=

√
2tσ2

x

π

1
qnwn∑N
m=1

1
wm

. (34)

Proof From (24) and (33), we know that

D̂n(t) = sup
0≤τ≤t

(max{0,−X̂n(t)

qn
}) (35)

= sup
0≤τ≤t

(max{0,−βnX̂(t)

qn
}) =

βn
qn
D̂(t). (36)

By assigning wn = 1
λn

for all n, we have βn =
1
wn∑N

m=1
1
wm

=

λn∑N
m=1 λm

≤ λn, where the last inequality holds since∑N
m=1 λm ≥ 1. Therefore, we conclude that D̂n(t) =

βn
qn
D̂(t) ≤st λn

qn
D̂(t). Moreover, (34) follows directly from

(36) and Lemma 2. 2

Remark 7 From an engineering point of view, by choosing
wn for each client, we can control the total playback in-
terruption seen by each client and hence differentiate levels
of service among all clients. In real applications, {wn} can
be determined by a proper pricing scheme given by service
providers. One simple example is paid VIP membership:
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choose a proper pair µ1, µ2 > 0 with µ1 > µ2, assign
wn = µ1 if client n is a VIP member; otherwise, assign
wn = µ2. This scheme enables differentiated service in QoE.

Here, we do not consider the boundary points which have
λn = 0 for some n. In practice, we can get as close as possible
to the boundary points by technically assigning extremely large
wn to our policy. Theorem 7 also characterizes a sufficient
condition for the capacity region.

Theorem 8 Given a vector [λ1, λ2, . . . ] with λn > 0,∀n, the
vector is feasible if and only if

∑N
n=1 λn ≥ 1. 2

V. HEAVY-TRAFFIC ANALYSIS FOR GENERAL FADING
CHANNELS AND VARIABLE-BIT-RATE VIDEOS

In this section, we further relax the assumptions that chan-
nels are ON-OFF and videos have constant bit rates in every
frame, and study the playback process with general i.i.d. fading
channels and variable-bit-rate videos.

A. General Fading Channels and Heavy-Traffic Conditions

We consider general i.i.d. fading channels where the data
rate space R can consist of any number of different rates, as
described in Section II. Recall that the AP can transmit data
to at most one client in each time slot. Unlike the case of
ON-OFF channels, the stability region cannot be determined
by a simple set of conditions as those in Lemma 1. Instead,
we impose the following conditions to simplify the analysis.

Recall that q∗n and qn are the mean frame size and the
mean video consumption rate in bits per slot, respectively. Let
R(t, S) := max{rn(t) : n ∈ S} and R(t) be the shorthand for
R(t, Stot). In other words, R(t) represents the highest data rate
at time t among all the clients. We assume that

E [R(t)] =

N∑
n=1

qn, (37)

and

E [R(t) · I {R(t, S) = R(t)}] >
∑
n∈S

qn, (38)

for all S ( Stot, where I{·} is an indicator function.
(37) serves as the heavy-traffic condition for general fading
channels, i.e. the condition where the maximum system-wide
channel resource exactly matches the total video playback rate.
Besides, similar to (23), (38) corresponds to the complete
resource pooling condition for general fading channels. We
also note that these conditions reduce to (22) and (23) when
R = {0, r∗}, i.e. ON-OFF channels. It is easy to check these
two conditions are sufficient for a system to be stabilizable.
Further, it characterizes a portion of the boundary of the
stability region, as it is not possible to increase qn for any
client n without making the system unstabilizable.

Similar to Section IV, we define X(t) :=
∑N
n=1Xn(t) =∑N

n=1(An(t)− qnt) and ∆X(t) := X(t)−X(t− 1). Under
the heavy-traffic condition given by (37), ∀t > 0 we have

E[∆X(t)] =

N∑
n=1

E[An(t)−An(t− 1)]−
N∑
n=1

qn (39)

≤ E[R(t)]−
N∑
n=1

qn ≤ 0, (40)

regardless of the scheduling policy. To obtain a lower bound
of capacity region as in Section IV, we first consider a special
class of policies, denoted by Π∗, which only schedule clients
with the largest rn(t) at any time t > 0. This class of policies
still need to determine which client to schedule when there
are multiple clients with the same largest rn(t). Let Xπ(t)
denote the random process of X(t) under a scheduling policy
π ∈ Π∗. Then, given any scheduling policy π ∈ Π∗,

Xπ(t) ≥ Xη(t), ∀t ≥ 0, (41)

for every sample path, for any scheduling policy η. Let
∆Xπ(t+ 1) := Xπ(t+ 1)−Xπ(t). Since R(t) is i.i.d. across
all time slots, ∆Xπ(t) is also i.i.d. for all t > 0. Moreover,

E[∆Xπ(t)] = E[R(t)]−
N∑
n=1

qn = 0 (42)

Var[∆Xπ(t)] = Var[R(t)] = E[(R(t))2]−

(
N∑
n=1

qn

)2

(43)

Then, by the functional central limit theorem for i.i.d. random
variables [25], we summarize the fundamental properties of
the diffusion limit of Xπ(t) as follows.

Theorem 9 For any scheduling policy π ∈ Π∗, define
X̂π(t) := limk→∞

Xπ(kt)√
k

and σ2 := E[(R(t))2] −(∑N
n=1 qn

)2
. Then, X̂π(t) is a driftless Brownian motion with

variance σ2. Furthermore, given X̂π(τ), for any τ, t ≥ 0 with
τ + t ≤ 1, X̂π(τ + t)− X̂π(τ) is a Gaussian random variable
with zero mean and variance σ2t. 2

By Theorem 9, we know that X̂π(t) has the same behavior for
all scheduling policy π ∈ Π∗. For simplicity, we use X̂∗(t) to
denote the diffusion limit of Xπ(t) for any policy π ∈ Π∗.

B. Variable-Bit-Rate Videos

Next, we study the dynamics of variable-bit-rate videos to
characterize the behavior of Ŷn(t). Define

Zn(t) := Cn(b t
kn
c)− qnt. (44)

Note that Cn(b tkn c) is the total number of frames played up
to t if Dn(t) = 0. Similar to Yn(t), Zn(t) aims to capture
the dynamics of video frame size but without taking video
interruption into account. We consider Zn(t) for two reasons:
• Zn(t) and Yn(t) behave the same in the diffusion limit. This

will be shown later in Lemma 3.
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• Using Zn(t) instead of Yn(t) greatly simplifies the design
and implementation of scheduling policy. This will become
more clear in Section V-D (see Remark 9).

Consider the diffusion limits of Zn(t) and Cn(t) as
Ẑn(t) := limk→∞

Zn(kt)√
k

and Ĉn(t) := limk→∞
Cn(kt)−q∗nkt√

k
.

We state a useful property in the following lemma.

Lemma 3 For any client n, at any t, we have

Ŷn(t) = Ẑn(t) = Ĉn

( t

kn

)
, (45)

where Ĉn(t) is a driftless Brownian motion with variance σ2
q,n.

Therefore, both Ẑn(t) and Ŷn(t) are driftless Brownian motion
with variance σ2

z,n =
σ2
q,n

kn
, regardless of scheduling policy. 2

Proof The proof is provided in Appendix A. 2

By Lemma 3, we are able to fully characterize the distribu-
tion of Ŷn(t) and Ẑn(t), regardless of the scheduling policy.

C. A Lower Bound of Capacity Region
By Lemma 3, (19) can be written as D̂n(t) =

sup0≤τ≤t(max{0,− X̂n(t)−Ẑn(t)qn
}). Define

Z(t) :=

N∑
n=1

Zn(t) =

N∑
n=1

Cn(b t
kn
c)−

N∑
n=1

qnt. (46)

Since Ẑn(t) is a driftless Brownian motion and Ẑn(t) are inde-
pendent among different n, then Ẑ(t) := limk→∞

Z(kt)√
k

is also

a driftless Brownian motion with variance σ2
z :=

∑N
n=1 σ

2
z,n.

Similar to (27), we define

D̂∗(t) := sup
0≤τ≤t

(max{0,−(X̂∗(τ)− Ẑ(τ))}). (47)

Note that X̂∗(τ) + (−Ẑ(τ)) is the sum of two independent
driftless Brownian motion and therefore is also a driftless
Brownian motion with variance (σ2 +σ2

z). By using a similar
argument as (29)-(31), we further have

D̂∗(t) ≤st
N∑
n=1

qnD̂n(t), (48)

under any such scheduling policy.

Definition 4 For a system with fading channels and variable-
bit-rate videos, a vector λ = [λ1, λ2, ..., λN ] is said to be
feasible if there exists a scheduling policy such that

D̂n(t) ≤st
λn
qn
D̂∗(t), n = 1, 2, ..., N. (49)

Then, the capacity region for QoE is defined as the set of all
feasible vectors λ. 2

Again, we obtain a lower bound of capacity region as follows.

Theorem 10 For a system with fading channels and variable-
bit-rate videos, a feasible vector λ = [λ1, λ2, ..., λN ] with
λn ≥ 0, for all n, must satisfy

∑N
n=1 λn ≥ 1. 2

Proof Similar to the proof of Theorem 5, this can be proved
by using (48) and Definition 4. 2

D. Scheduling Policy
For fading channels and variable-bit-rate videos, we propose

the following extended version of the JCD policy.
Highest Data Rate Policy For Variable-Bit-Rate Videos
(HDR-VBR):

In each time slot t, the AP schedules a client with the
largest rn(t) and break ties by choosing the one with the
smallest wn(Xn(t) − Zn(t)), where wn is a predetermined
weight factor. 2

Remark 8 Note that Xn(t) − Zn(t) = (An(t) − qnt) −
(Cn(b tkn c)) − qnt) = An(t) − Cn(b tkn c), which reflects the
difference between the total received video content and the
total video content that should have been played if there is no
video interruption at all. Hence, Xn(t) − Zn(t) still loosely
reflects the status of the playback buffer of client n.

Remark 9 Under the HDR-VBR policy, the AP requires the
information of An(t) and Cn(b tkn c). In wireless networks,
An(t) can be obtained by collecting ACKs from the clients.
For Cn(b tkn c), since the AP has the video files, the AP can
simply refer to the accumulative size of the frames that should
have been played up to current time t. Hence, the HDR-VBR
policy can be easily implemented on the AP.

Remark 10 For the special case of constant-bit-rate videos,
the HDR-VBR policy degenerates to the HDR policy studied
in [1]. Under the HDR policy, the AP schedules a client with
the largest rn(t) and break ties by choosing the one with the
smallest wnXn(t) in each time slot t.

Theorem 11 Let wn be the predetermined weight for client
n. For variable-bit-rate video, under the HDR-VBR policy
and conditions (37) and (38), we have wn(X̂n(t)− Ẑn(t)) =
wm(X̂m(t)− Ẑm(t)), for any pair of clients n,m. 2

Proof The proof is provided in Appendix B. 2

Given the state-space collapse property, the HDR-VBR can
achieve every interior point in the capacity region. The key
results are summarized in the following theorem.

Theorem 12 Given any vector λ = [λ1, λ2, ..., λN ] which
satisfies λn > 0, ∀n, and

∑N
n=1 λn ≥ 1, HDR-VBR policy

can achieve D̂n(t) =
1
wn

qn
∑N
m=1

1
wm

D̂∗(t) ≤st λn
qn
D̂∗∗(t) by

assigning wn = 1
λn

for all n. Moreover, we have

E[D̂n(t)] =

√
2t(σ2 + σ2

z)

π

1
qnwn∑N
m=1

1
wm

. (50)

Remark 11 In (50), we see that video interruption arises from
two factors: σ2 due to the randomness in fading channels and
σ2
z due to the randomness in variable-bit-rate videos.

Based on Theorems 10 and 12, we characterize the capacity
region for fading channels and variable-bit-rate videos.

Theorem 13 For a system with fading channels and variable-
bit-rate videos, a vector [λ1, λ2, . . . ] with λn > 0, ∀n is
feasible if and only if

∑N
n=1 λn ≥ 1. 2
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VI. NETWORK UTILITY MAXIMIZATION FOR QOE

In this section, we propose a network utility maximization
(NUM) problem for QoE, and obtain tractable solutions for
special cases. Given D̂n(t) and T , we assume that each client
n suffers from some penalty fn(E[D̂n(T )]), where fn(·) is
an increasing, differentiable, and convex function. Note that
the expectation E[D̂n(T )] is taken over all sample paths for
t ∈ [0, T ]. Here we use E[D̂n(T )] to approximate the short-
term playback interruption Dn(T ). We then aim to minimize
the total penalty in the system, which can be expressed as∑
n fn(E[D̂n(T )]).
By Theorems 8 and 13, we have

∑
n qnE[D̂n(T )] ≥

E[D̂(T )] for ON-OFF channels and
∑
n qnE[D̂n(T )] ≥

E[D̂∗(T )] for fading channels and variable-bit-rate videos.
Further, if we have the additional condition of E[D̂n(T )] > 0,
the JCD policy and the HDR-VBR policy can achieve any set
of {E[D̂n(T )]} by properly assigning the weight {wn} to each
client. Since the formulation of the NUM problem is the same
for ON-OFF channels and fading channels plus variable-bit-
rate videos, we consider the more general case in the rest of
this section.

Below, we study an example of NUM problem which aims
to minimize the sum of polynomial penalty functions.

NUM with Polynomial Penalty Functions:
Given the distribution of r(t), T > 0, α ≥ 1, and a vector

[δ1, δ2, . . . ] with δn > 0, for all n,

Min.
N∑
n=1

δn · (E[D̂n(T )])α

s.t. q1E[D̂1(T )] + · · ·+ qNE[D̂N (T )] ≥ E[D̂∗(T )]. 2

To minimize the total penalty, we define a function L1 with
a Lagrange multiplier µ1 as

L1 =

N∑
n=1

δn(E[D̂n(T )])α − µ1

( N∑
n=1

qnE[D̂n(T )]− E[D̂∗(T )]
)
.

Next, we take the partial derivative of L1 with respect to
each E[D̂n(T )] and set them to zero, i.e. ∂L1

∂E[D̂n(T )]
=

δnα(E[D̂n(T )])α−1 − µ1qn = 0, ∀n. If α > 1, an optimal

solution occurs when E[D̂n(T )]

E[D̂m(T )]
=
(
qn/δn
qm/δm

) 1
α−1

, for any pair

n,m. From (50), it is equivalent to have βn
βm

= q
α
α−1
n ·δ

−1
α−1
n

q
α
α−1
m ·δ

−1
α−1
m

.

Then, we can simply assign wn = δ
1

α−1
n q

−α
α−1
n for each client

so that HDR-VBR achieves an optimal solution. If α = 1, the
problem degenerates to a linear program. An optimal solution
is obtained by assigning almost all the video interruption time
to a client with the smallest δnqn . Without loss of generality, we
may assume that δ1

q1
≤ δ2

q2
≤ ... ≤ δN

qN
. Then, we just assign

w1 = 1 and let wn be extremely large for the other clients.

VII. SIMULATION RESULTS

We evaluate the proposed policies through ns-2 simulation.
Following the IEEE 802.11a standard, we simulate a wireless
network that allows data transmission at 54, 48, 36, 18, and 6
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Fig. 1. Comparisons of the five policies in a fully symmetric system with
constant-bit-rate videos.

Mbit/s. The time to transmit a packet and to receive an ACK
is set to be 500 µs, which is short enough so that the channel
quality stays almost the same in a time slot. We thereby obtain
the corresponding packet size for each data rate: 2340, 2080,
1560, 750, 220 bytes. The frame rate of each video stream is
30 frames per second, and thus each client plays one frame
every 33.3 milliseconds (equivalent to about 66 time slots).
All the results presented in this section are the average of 50
simulation trials. We compare HDR-VBR policy against four
policies: HDR policy, Max-Weight policy (MW), weighted
Proportional-Fair policy (WPF), and NOVA algorithm. In MW
policy, the AP schedules the one with the largest (−rnXn(t))
and breaks tie by choosing the one with the largest (−Xn(t)).
To further explore the difference between HDR-VBR and MW,
we also consider the Max-Weight-α policy (MW-α), which
schedules the client with the largest rn(max(0,−Xn(t)))

1
α .

When α > 1, the instantaneous data rate becomes more
influential than Xn(t). In the following simulations, we assign
α = 10. For WPF policy, the scheduled client at time t is the
one that maximizes qn(rn(t)/An(t − 1)) [31]. For NOVA,
we choose the same objective function as that in [22] with a
slight change in the initial condition (bi0 in [22]) to fit in our
simulation scenario.

A. Constant-Bit-Rate Videos

For the special case of constant-bit-rate videos, HDR-VBR
is exactly the same as the HDR policy. Therefore, we merge
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the results of HDR and HDR-VBR for constant-bit-rate videos.
We consider a fully symmetric system of 20 clients under the
heavy-traffic condition given by (37) and (38). The channel
distribution of each client is the same and evenly distributed,
i.e. the probability of each data rate is 0.2. Under this setting,
E[R(t)] ≈ 2340. Therefore, qn is chosen to be 117 byte/slot
for every client. We study a quadratic QoE objective function
given by

∑
n δn(E[D̂n(T )])2, where δn = 1 for all n. Since

the system is fully-symmetric, we choose wn = 1 for all the
clients. Fig. 1 shows the results of the symmetric system. In
Fig. 1(a), HDR has the smallest Dn(t) among all the policies,
while MW and NOVA perform rather poorly. As expected,
MW-10 policy has a moderate Dn(t) since MW-10 serves
as an intermediate between MW and HDR. Moreover, it is
noticeable that WPF has similar performance to HDR. The
main reason is that in the symmetric case, An(t) of each
client grows almost at the same speed and thus maximizing
qn(rn(t)/An(t − 1)) is equivalent to maximizing rn(t) in
each slot. Moreover, Fig. 1(b) shows the total penalty of MW-
10, WPF, and HDR policy to further compare the difference
between these three policies.

B. Variable-Bit-Rate Videos

Following the same simulation setup as that of constant-bit-
rate videos, we evaluate the HDR-VBR policy against HDR
as well as other popular policies with variable-bit-rate videos.
First, we consider a fully-symmetric system as that in Section
VII-A but with variable-bit-rate videos. We assume that the
frame size of each video is uniformly distributed between 100
bytes and 15344 bytes with average frame size of 7722 bytes.
This corresponds to an average playback rate of 117 bytes
per slot for every client. Fig. 2(a) shows the average playback
interruption of the fully-symmetric system. As expected, the
HDR-VBR has the smallest Dn(t) among all the policies.
More importantly, with variable-bit-rate videos, the HDR-VBR
policy outperforms the HDR policy since the original HDR
does not include the information about variable playback rates.
Besides, Fig. 2(b) demonstrates the total penalty incurred by
playback interruption. It is also noticeable that the total penalty
is larger in Fig. 2(b) than that in Fig. 1(b) due to the fluctuation
in video playback rates.

Next, we turn to the asymmetric case. We divide the clients
equally into two classes. We assign δn = 10 to Class 1 and
δn = 1 to Class 2, with the result that Class 1 dominates the
overall QoE performance. In addition, we assume that the two
classes have the same evenly-distributed channel but different
playback rates. Suppose the clients in Class 1 and Class 2
watch videos with resolution of 480p and 720p, respectively.
According to the recommended bitrates for YouTube videos in
[32], we choose qn = 156 and 78 bytes/slot for 720p and 480p
videos, respectively. To include randomness in frame sizes, we
assume that each client in Class 1 plays a video with frame
size uniformly distributed between a minimum 100 bytes and
maximum 10196 bytes with average playback rate of 78 bytes
per slot. Similarly, each client in Class 2 plays a video with
frame size uniformly distributed between 100 bytes and 20492
bytes with average playback rate of 156 bytes per slot. By
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Fig. 2. Comparisons of the six policies in a fully symmetric system with
variable-bit-rate videos.

TABLE II
INFORMATION OF THE VIDEOS IN THE EXPERIMENTS.

Video # Video Name Avg. Bitrate
(Mbps)

Frame
Rate

1 The Simpsons (Official Trailer) 2.04 24
2 Serenity (Official Trailer) 2.25 24
3 Toy Story 3 (Official Trailer) 0.71 30
4 Angry Birds (Official Trailer) 0.65 24
5 The Simpsons (Official Trailer, HD) 3.42 24

the discussion in Section VI, we assign wn = 40 to Class 1
and wn = 1 to Class 2 to optimize the network utility under
the HDR-VBR policy. Fig. 3 shows the playback interruption
and the total penalty of the asymmetric system. Clearly, the
HDR-VBR still achieves the smallest playback interruption for
both clients in Class 1 and Class 2 by taking the fluctuation
in video frame size into account. Moreover, the HDR-VBR
policy intelligently allocates Dn(t) among the two classes by
assigning proper weights wn so that it can achieve the smallest
total penalty.

From simulation, we note that all of the five policies are
stabilizing since the duration of video interruption grows sub-
linearly. However, the short-term performance of these policies
are rather different in the heavy-traffic regime. Therefore,
diffusion limit indeed provides more detailed information on
the playback process.
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Fig. 3. Comparisons of the five policies in a system with the same channel distribution but heterogeneous playback rates.

TABLE III
EXPERIMENTAL RESULTS UNDER HEAVY-TRAFFIC CONDITION.

Policy Trial D1(t)
(sec)

D2(t)
(sec)

D3(t)
(sec)

D4(t)
(sec)

D5(t)
(sec)

RX
Thruput
(Mbps)

HDR-VBR

#1 3.12 9.14 4.06 4.11 0.00 8.39
#2 3.41 9.29 4.27 4.09 0.00 8.40
#3 2.72 9.01 3.80 3.46 0.00 8.55
#4 2.36 7.48 3.88 3.83 0.00 8.57
#5 0.29 7.32 1.24 1.06 0.00 9.47
#6 0.19 7.33 1.21 1.02 0.00 9.36

WPF

#1 9.78 9.61 10.36 8.96 0.00 8.47
#2 9.36 9.46 9.99 8.62 0.00 8.51
#3 9.26 9.38 9.85 8.46 0.00 8.59
#4 6.56 7.59 6.77 5.21 0.00 9.46
#5 8.33 8.59 8.61 7.54 0.00 8.85
#6 7.10 8.17 7.30 6.00 0.00 9.19

TABLE IV
EXPERIMENTAL RESULTS UNDER NON-HEAVY-TRAFFIC CONDITION.

Policy Trial D1(t)
(sec)

D2(t)
(sec)

D3(t)
(sec)

D4(t)
(sec)

D5(t)
(sec)

RX
Thruput
(Mbps)

HDR-VBR

#1 0.00 4.02 0.00 0.00 0.00 11.93
#2 0.00 3.59 0.00 0.00 0.00 11.98
#3 0.00 3.56 0.00 0.00 0.00 12.30
#4 0.00 3.48 0.00 0.00 0.00 12.43
#5 0.00 3.64 0.00 0.00 0.00 12.38
#6 0.00 3.53 0.00 0.00 0.00 12.44

WPF

#1 2.54 4.00 1.42 1.57 0.00 11.88
#2 1.99 3.37 0.72 1.03 0.00 12.62
#3 2.03 3.41 0.78 1.08 0.00 12.55
#4 2.15 3.50 0.91 1.22 0.00 12.48
#5 1.97 3.37 0.71 1.03 0.00 12.54
#6 2.07 3.43 0.81 1.12 0.00 12.41

VIII. EXPERIMENTAL RESULTS WITH REAL VIDEOS

We further evaluate the performance of the proposed poli-
cies with real videos on a software-defined wireless testbed.
The experiments are done on WiMAC, which is a FPGA-
based wireless platform introduced by Yau et al. in [33]. With
the clean separation between software and hardware, WiMAC
allows us to quickly prototype the proposed scheduling poli-
cies completely in the software domain. We consider five on-
demand videos streams from an AP to five different clients
using real video files. Table II shows the basic information

about the videos played in the experiments. For simplicity,
we consider symmetric wireless channels for all the clients
by having the five clients co-located at the same station.
For the MAC and PHY specification, the AP and the clients
follow the IEEE 802.11a standard. Suppose the AP aims to
minimize a linear objective function as

∑
n δnE[Dn(t)] with

δ1 = δ5 = 10 and δ2 = δ3 = δ4 = 1. This implies that client
1 and client 5 should expect better QoE than the other three
clients. By the results in Section VI, since client 2 has the
smallest δn

qn
, we choose wn = 1 for client 2 and wn = 1000

for the rest of the clients. We compare the HDR-VBR policy
with the WPF policy, which has already been shown to have
better performance than MW and NOVA policy in simulations.

A. Heavy-Traffic Case

We first run experiments under heavy-traffic condition, i.e.
the total receiver throughput is about the same as total video
playback rate. By using a fixed 16-QAM modulation and
coding rate 1/2, the total receiver throughput is about 9 Mbps.
Figure 4 shows the experimental results under the HDR-VBR

and WPF policy. Compared to the WPF policy, the HDR-VBR
indeed significantly reduces playback interruption by keeping
track of the variation in video bit rates. Moreover, Table III
provides the accumulated playback interruption at 40 second
and the average receiver throughput of each experiment trial.
From Table III, we know that HDR-VBR performs much better
than WPF while the receiver throughput under both policies
are almost the same.

B. Non-Heavy-Traffic Case

We increase the receiver throughput by using 64-QAM
modulation and coding rate 3/4. Under this setting, the receiver
throughput is about 12 Mbps, which corresponds to roughly
75% system load. Figure 5 shows the video interruption of
each client and the total penalty under the HDR-VBR and
WPF policy. Due to the increase in throughput, both policies
achieve much less video interruption than in the heavy-traffic
case. In this case, HDR-VBR achieves zero video interruption
for client 1, 3, 4, and 5 while still maintaining about the
same amount of video interruption for client 2 as that under
WPF. Table IV further verifies this result through multiple
experimental trials.
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Fig. 4. Experimental results with five real video streams under heavy-traffic condition.

Hence, the experiments demonstrate that HDR-VBR outper-
forms its counterparts with real videos under both heavy-traffic
and non-heavy-traffic conditions.

IX. CONCLUSIONS

In this paper, we study dynamic behavior of QoE in heavy
traffic by using diffusion approximation. We characterize
the capacity region for QoE and propose online scheduling
policies to optimize QoE. Simulation and experimental results
show that the proposed policies outperform existing popular
policies. In the future, we intend to further study the effect of
adaptive video bit rates and user engagement on QoE.
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Fig. 5. Experimental results with five real video streams under non-heavy-traffic condition.
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APPENDIX A
PROOF OF LEMMA3

Proof Define C̃n(j) := Cn(j) − jq∗n and ∆C̃n(j + 1) :=
C̃n(j + 1) − C̃n(j). By the i.i.d. assumption on frame size,
∆C̃n(j) is i.i.d. across all time slots. Moreover,

E[∆C̃n(j)] = E[Fn(j)− q∗n] = E[Fn(j)]− q∗n = 0,

Var[∆C̃n(t)] = Var[Fn(j)− q∗n] = Var[Fn(j)] = σ2
q,n.

By the functional central limit theorem for i.i.d. random
variables, we know Ĉn(t) is a driftless Brownian motion with
variance σ2

q,n. Hence, Ĉn( t
kn

) is a driftless Brownian motion
with variance σ2

q,n/kn. Next, consider Ẑn(t) as

Ẑn(t) = lim
k→∞

Cn(b ktkn c)− qnkt√
k

(51)

= lim
k→∞

Cn(k
b ktkn c
k )− q∗nk t

kn√
k

= Ĉn

( t

kn

)
. (52)

Finally, we consider Ŷn(t) as

Ŷn(t) = lim
k→∞

Cn(Sn(kt))− qn(kt−Dn(kt)) + en(kt)√
k

(53)

= lim
k→∞

Cn(bkt−Dn(kt)kn
c)− qn(kt−Dn(kt)) + en(kt)

√
k

(54)

= lim
k→∞

Cn(k
b kt−Dn(kt)

kn
c

k )− qn(k(t− Dn(kt)
k )) + en(kt)

√
k

.

(55)
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By the Random Time-Change Theorem (Theorem 5.3 in [25])
and (52)-(55), we conclude Ŷn(t) = Ĉn

(
t
kn

)
= Ẑn(t). 2

APPENDIX B
PROOF OF THEOREM 11

We prove the state space collapse property by introducing
a fluid system. First, define

Qn(t) = −wn(Xn(t)− Zn(t)) +

∑N
m=1(Xm(t)− Zm(t))∑N

m=1
1
wm

.

Two important facts of the above definition:
• At any time t, the client n with the largest Qn(t) also

has the largest −wn(Xn(t)− Zn(t)).
• Since

∑N
m=1(Xm(t)−Zm(t))∑N

m=1
1
wm

is the weighted average of

wn(Xn(t)− Zn(t)), we have max1≤m≤N Qm ≥ 0.
Next, we study the fluid limit of Qn(t) defined as

Q̄n(t) : = lim
k→∞

Qn(kt)

k
(56)

Similarly, define X̄n(t) := limk→∞
Xn(kt)
k and Z̄n(t) :=

limk→∞
Zn(kt)
k to be the fluid limits of Xn(t) and Zn(t),

respectively. Since Zn(t) := Cn(b tkn c)− qnt, we thus have

Z̄n(t) = lim
k→∞

Cn(b ktkn c)− qnkt
k

= lim
k→∞

Cn(k
b ktkn c
k )

k
− qnt

(57)

Since limk→∞
b ktkn c
k = t

kn
, then by the Random

Time-Change Theorem (Theorem 5.3 in [25]), we have

limk→∞
Cn(k

b kt
kn
c

k )

k = q∗n
t
kn

= qnt. Hence, Z̄n(t) = 0, for
any t ≥ 0, for every client n. Thus, Q̄n(t) can be written as

Q̄n(t) = −wn(X̄n(t)− Z̄n(t)) +

∑N
m=1(X̄m(t)− Z̄m(t))∑N

m=1
1
wm

(58)

= −wnX̄n(t) +

∑N
m=1 X̄m(t)∑N
m=1

1
wm

. (59)

The rest of the proof is to show that the random process
{Qn(t)} is positive recurrent for all n. Define a Lyapunov
function

LQ(t) =

N∑
n=1

1

2wn
[Q̄n(t)]2. (60)

We again assume that fluid limits of Qm(t) are sorted in
descending order, i.e. Q̄1(t) ≥ Q̄2(t) ≥ · · · ≥ Q̄N (t). Let
Un be the event that rn(t) equals R(t) at some given time t.
Since Xn(t) = An(t)− qnt, under the HDR-VBR policy we
have

dX̄n(t)

dt
= E

[
R(t) · I

{(
n−1⋂
k=1

U ck

)
∩ Un

}]
− qn, (61)

where {
(⋂n−1

k=1 U
c
k

)
∩ Un} represents the event that client

n is the only client in {1, 2, ..., n} which has the largest

transmission rate among all clients. Now, let r̃n :=

E
[
R(t) · I

{(⋂n−1
k=1 U

c
k

)
∩ Un

}]
. Then, we define hk :=∑k

j=1(r̃j − qj) = E
[
R(t) · I

{⋃k
j=1 Uj

}]
−
∑k
j=1 qj , where

{
⋃k
j=1 Uj} represents the event that at least one client in

{1, 2, .., k} has the largest transmission rate among all clients.
By using the conditions in (37) and (38), we obtain that{

hk > 0, if k = 1, 2, ..., N − 1
hk = 0, if k = N

(62)

where the last equality holds since
∑N
m=1(r̃m − qm) = hN

and should be zero. For convenience, let h0 = 0. Thus,

dQ̄n(t)

dt
= −wn(r̃n−qn)+

∑N
m=1(r̃m − qm)∑N

m=1
1
wm

= −wn(r̃n−qn),

Finally, the Lyapunov drift is given by

dLQ
dt

= −
N∑
n=1

(r̃n − qn) · Q̄n(t)

= −
N∑
n=1

(hn − hn−1) · Q̄n(t)

= −

[(
N−1∑
n=1

hn
(
Q̄n(t)− Q̄n+1(t)

))
+ hN Q̄N (t)

]
≤ 0.

Note that the drift is zero only if Q̄1(t) = Q̄2(t) = · · · =
Q̄N (t) = 0. Hence, the random process {Qn(t)} is positive
recurrent. Therefore, Q̂n(t) = 0, for every n. This result
implies that wn(X̂n(t)− Ẑn(t)) = wm(X̂m(t)− Ẑm(t)), for
every pair n,m. 2
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