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AUTOMATING SECURITY TASKS WITH DEEP LEARNING

How Deep Learning 
Is Making Information Security 
More Intelligent
Ankush Singla and Elisa Bertino | Purdue University

Manually analyzing vast amounts of newly released malware is a significant problem for the security 
community. Deep-learning techniques have recently been employed to automate security tasks such as 
malware analysis, intrusion detection, and botnet detection. We look at such techniques and investigate 
how practical and secure they are.

A ccording to U.S. law,1 information security is 
defined as “protecting information and infor-

mation systems from unauthorized access, use, dis-
closure, disruption, modification, or destruction.” It 
is well established among information security com-
munities that there is no system that can be 100% 
secure from all adversaries. Critical systems, proto-
cols, and software considered secure are constantly 
analyzed by intelligent adversaries with sufficient 
resources, leading to the identification of vulnerabil-
ities and allowing them to craft exploits that break 
into systems by taking advantage of those vulnera-
bilities. Vulnerabilities, unknown to the creators 
or users of a system, are called zero-day vulnerabili-
ties, and the exploits that take advantage of them 
are called zero-day exploits. Members of the security 
community, e.g., antivirus vendors and research-
ers, find such an exploit in the wild, disassemble 
and analyze the code/working for the exploit, and 
flag the signature of the exploit into their products 
so that it can be instantly flagged on user machines. 
Typically, they also provide this information to the 
creators or users of exploited systems so that the vul-
nerability can be patched.

Problem
With the exponential increase in the number of Inter-
net users, cloud services, and Internet of Things (IoT) 
devices, the attack surface has increased substantially. 
The number of adversaries attempting to find new 
ways of breaking into these systems has therefore sky-
rocketed. The involvement of state actors trying to gain 
an upper hand in the cybersecurity arms race has also 
increased the frequency of new attacks and malware. 
McAfee Labs reports that the amount of new malware 
identified reached an all-time high of 57.3 million sam-
ples in Q3 of 2017.2 Conventional methods based on 
the manual inspection of suspicious code, reverse engi-
neering, and manual vulnerability identification are too 
slow to compete against new adversarial capabilities.

Solution
Deep learning (DL) is a promising approach that 
addresses the shortcomings of these conventional meth-
ods. Vaguely inspired by the biological neural networks 
(NNs) in the human brain, DL is a branch of machine 
learning (ML) that tries to learn various characteristics 
from data and uses them for decision making on similar 
unseen data. In the last five years, DL techniques have 
gained interest because of the increased amount of data 
available and its various algorithmic innovations as well 
as significant improvements in computing capabilities 
enabled by GPUs, which have made the fast training 

Digital Object Identifier 10.1109/MSEC.2019.2902347
Date of publication: 14 May 2109



www.computer.org/security� 57

and deployment of DL models possible.3 Previously, 
DL has been tremendously successful at tasks such 
as image classification, object detection, and text and 
voice recognition.

Recently, approaches have been proposed that use 
DL for various information security tasks such as mal-
ware analysis, intrusion detection, botnet detection, and 
software analysis. For example, DL-based techniques can 
learn from the patterns and features of training data sets 
that contain various malware samples and can then be 
used in antivirus software or intrusion detection systems 
(IDS) to detect similar malware during an actual attack. 
Additionally, DL-based techniques can also be trained 
to learn the features that allow them to identify malware 
that has not yet been reported, such as zero-day malware, 
which makes them a great choice for security tasks.

Contributions
Although broader ML techniques are being used for var-
ious security tasks, we focus mainly on DL techniques 
for this article. We analyze in detail the security tasks for 
which DL techniques have been used, including mal-
ware analysis, intrusion detection, and botnet detec-
tion. We provide a comparison and critical analysis of 
research work in these specific categories, the benefits of 
DL-based approaches over traditional mechanisms, and 
the areas with respect to which DL-based techniques are 
lacking. One critical issue that has emerged from recent 
research is the reliability of DL-based approaches and 
whether they can be bypassed by attackers with knowl-
edge of the detection model through something known 
as adversarial examples. We discuss the recent body of 
research that has investigated this problem as well as 
the efforts at making DL models more resilient to such 
attacks. We also discuss open research areas in the use of 
DL techniques for security.

Terminology
AI is defined by John McCarthy, a pioneer of AI 
research, as “the science and engineering of making 
intelligent machines, especially intelligent computer 
programs.”4 In simpler terms, it can be thought of as 
intelligence demonstrated by machines to mimic or 
even surpass human intelligence. Intelligence can be 
expressed in a number of ways, including decision mak-
ing and learning complex tasks. ML is a branch of AI 
that enables computers to learn and make decisions 
using statistical techniques without manual program-
ming.5 ML involves training a model to use input data 
and then making predictions on new data using the 
learned model. ML is broadly classified into two cat-
egories: 1) supervised learning, i.e., the ML system is 
provided with labeled data consisting of pairs of input 
and the desired output and learns mappings between 

those pairs to make intelligent decisions on new data, 
e.g., image classification and speech recognition; and 
2) unsupervised learning, i.e., the ML algorithm is pro-
vided only with unlabeled data as input and learns the 
structure and relationships within the input data, mak-
ing decisions based on learned patterns, e.g., data clus-
tering and anomaly detection. Popular ML algorithms 
include decision trees,6 support vector machines,7 
Bayesian networks,8 and logistic regression.9

Artificial NNs (ANNs), sometimes loosely called 
NNs, are a family of models inspired by the human brain 
and how the network of neurons process information 
and perform computations.10 The building blocks of 
those networks are called neurons, which are grouped 
in different layers. Each layer of neurons receives inputs 
from the previous layer of neurons and passes its out-
put to the next layer. Each neuron has its own activation 
functions, weights, and biases, which it tunes and opti-
mizes during the training phase depending on the cost 
function, to minimize total error between the predicted 
and provided values.

A deep NN (DNN) is an NN with multiple hidden 
layers in addition to the input and output layers; any 
NN with fewer layers than that is called a shallow NN. 
DL is a subfield of ML, based on the use of DNNs. We 
describe two specific kinds of DNNs, known as convolu-
tional NNs (CNNs) and recurrent NNs (RNNs), because 
they are the most widely researched and used.11

CNNs are primarily used for computer vision tasks, 
such as image classification, object recognition, and nat-
ural language processing, because they are designed to 
mimic the behavior of the animal visual cortex. CNNs 
use convolution layers involving filters that apply con-
volution operations to the inputs and pass them to the 
next layers. CNNs require minimal preprocessing when 
compared to other image recognition algorithms. The 
success of CNNs at performing computer vision tasks 
is one of the primary reasons that interest in DL resur-
faced after being nonexistent for many years.

RNNs, on the other hand, are algorithms used for 
processing sequential data, such as time series or natu-
ral language.12 In addition to the inputs, RNNs store an 
internal state that calculates outputs. RNNs include a 
feedback loop, where the output from the previous step 
is fed back to affect the output of the current step, and 
so on. Feedforward networks such as CNNs can receive 
and work on only one input at a time and thus produce 
one output, whereas RNNs can receive multiple inputs 
and vary their predictions based on the previous inputs. 
For example, for natural language processing, CNNs 
can translate or predict only one letter at a time, whereas 
RNNs can use the letters in the beginning of the word to 
affect the prediction of the next letters of the words or 
use previous words to build sentences.



58	 IEEE Security & Privacy� May/June 2019

AUTOMATING SECURITY TASKS WITH DEEP LEARNING

One of the first ML algorithms, called perceptron,13 
was defined as a linear/binary classifier that can divide 
input into two categories with a straight line. In 1957, 
Rosenblatt introduced the single-layer perceptron, 
which was unable to perform nonlinear classifications. 
Multilayer perceptrons (MLPs)14 were also introduced 
to capture more complex nonlinear functions. An MLP 
consists of at least three layers of nodes, and all of the 
neurons, except those in the input and output lay-
ers, use a nonlinear activation function. MLPs utilize 
a supervised learning technique called back propaga-
tion for learning. The training phase consists of steps 
in turn consisting of forward and backward passes that 
minimize the error until it can no longer decrease, also 
known as the state of convergence.

An autoencoder is an NN that learns by using unsu-
pervised learning, which is generally for dimensionality 
reduction.15 It reduces the input data to a short code, 
then expands it back to look similar to the input data. 
Dilated convolutional autoencoders (DCAEs) are quite 
similar to regular autoencoders but use dilated con-
volutions, and feature maps of the hidden layers are 
mapped into the reconstruction through a transposed 
convolution.16

Malware Analysis
There are two widely used approaches for malware 
analysis: static and dynamic. Static malware analysis is 
carried out by reverse engineering the malware binary 
to its assembly code and then analyzing the instructions 
without actually executing it. Such an approach can, 
however, be easily defeated by evasion techniques such 
as obfuscation and embedding of syntactic code errors. 
Dynamic malware analysis is conducted by executing 
the malware in a controlled sandbox environment to 
study its behavior and effect on the host system. Sophis-
ticated malwares can evade dynamic analysis by deter-
mining whether they are being run inside a sandbox or 
a controlled environment and, based on this determi-
nation, can decide to not exhibit any malicious behav-
ior. Both of these techniques are time-consuming and 
require a manual component, which makes them hard 
to scale because the number, complexity, and sophisti-
cation of the malwares increase. ML-based techniques 
have been proposed that address scalability by automat-
ing various steps of malware detection processes. How-
ever, their effectiveness is limited by high false-positive 
rates (FPRs), which make them unreliable. Research-
ers have recently demonstrated better results with 
DL-based systems.

DL-based techniques have been shown to clas-
sify malware at a much better speed than human ana-
lysts with high accuracy rates. These techniques can 
be applied to malware analysis to flag the suspicious 

binaries, which can then be analyzed and verified by 
a human in the loop. DL-based techniques have also 
proven to be much better at detecting newer malware 
with similar characteristics of other existing malware 
that has already been analyzed and categorized.

In 1995, Kephart et al.17 proposed biologically inspired 
antivirus techniques designed to tackle existing and new 
viruses for the first time. They proposed an NN-based 
virus detector that learns to discriminate between 
infected and uninfected programs, and a computer 
immune system that identifies and analyzes new viruses 
automatically. Their detector extracts a set of three-byte 
strings, or “trigrams,” appearing frequently in viral boot 
sectors but infrequently in legitimate ones. They, how-
ever, used just 350 samples with 100 negative samples 
and thus the FPR was too small to measure. This was 
the first attempt at using NNs for malware detection; 
however, they looked only at a small set of boot viruses 
and failed to execute the malware for detection.

Dahl et al.18, in their 2013 paper, introduced a major 
improvement in this area. They argued that the number 
of input features for malware classification can be too 
large to be used by complex algorithms such as NNs, 
thus preventing the use of NN-based algorithms for 
malware detection. They proposed using random pro-
jections that reduce the dimensionality of the original 
input space by a factor of 45. Their approach extracts 
three types of features, including null-terminated pat-
terns observed in the process’ memory, trigrams of 
system API calls, and the distinct combinations of a 
single-system API call and one input parameter. Their 
approach achieves a classification result with a two-class 
error rate of 0.49%, i.e., detecting whether or not the 
binary is a malware and had an FPR of roughly 0.83%. 
Their approach, however, still had a high test-error rate 
of 10–12% when detecting the particular class to which 
the malware belongs.

In 2015, Saxe and Berlin19 proposed a DNN-based 
malware detection system that achieves a 95% detec-
tion rate at a 0.1% FPR, based on more than 400,000 
software binaries, which is much better than previous 
approaches. For input features, their system calculates 
the byte entropy histogram of the binary that models 
the file’s byte distribution. Their system also gathers 
features from the program-executable import address 
table and packaging metadata and uses a DNN consist-
ing of four layers. This is one of the only static malware 
analysis approaches that we found with good detection 
rates, and it was deployed in Invincea Labs’ cloud secu-
rity analytics platform, as shown in (Table 1).

Kolosnjaji et al.20 built upon the previous approaches 
and proposed a malware classification method based on 
NNs comprised of both convolutional and recurrent 
network layers and applied it to system call sequences. 
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Their method requires system call traces obtained by 
executing the malware in a protected environment. 
Using this combined NN architecture achieves an aver-
age of 85.6 and 89.4% on precision and recall, respec-
tively, and is shown to be much better than simple 
feedforward NNs at malware detection.

Pascanu et al.21 use echo state networks and RNNs 
for extracting malware features. These features are 
then used as inputs to a standard classifier that detects 
malicious files. Their approach achieves true-positive 
and FPRs of 98.3 and 0.1%, respectively. Huang and 
Stokes22 propose a DL architecture, called MtNet, 
for malware binary classification (i.e., malware versus 
benign) and for categorizing different malware families 
with 100 classes. They show that DNNs offer a mod-
est improvement over shallow learning models. Their 
approach achieves binary malware and family error 
rates of 0.358 and 2.94%, respectively. Binary malware 
error rate refers to the error rate when detecting whether 
the file is malware or benign, whereas the family error 
rate refers to the error rate when detecting the actual 
family of the malware.

All of the previously discussed methods demon-
strate that DL-based techniques can provide signifi-
cant help with identifying and categorizing malware. 
However, most of those techniques are dynamic anal-
ysis approaches because they rely on features such as 
boot-sector trigrams, sequence of system API calls, 
and process memory, which are obtained by running 
the binary. Static analysis approaches may be better in 
terms of identifying zero-day malware without actually 
running it on a system. This enables the malware detec-
tors to be better integrated with consumer antivirus sys-
tems and work on end-user machines to detect malware 
binaries before they can cause any harm. Thus, more 
work needs to be done to identify useful static binary 
features that would allow NN models to reliably classify 
the malware.

Furthermore, several of these detection approaches 
focus on malwares that have already been detected and 
analyzed. An interesting research direction is to deter-
mine how effective these techniques are in identifying 
newer malware families and variants being released into 
the wild, based on models trained on older classified 
malware. Another important aspect that has not been 
investigated by previous research is related to analyzing 
the memory requirements and execution times of those 
techniques. To be deployed on end-user machines, in 
addition to being resource efficient, these techniques 
should be able to classify new binaries in real time so 
that no delays are introduced that are noticeable by end 
users. The trained models should also be smaller in size 
so that they are easier to deploy on small systems, such 
as IoT devices.

Intrusion Detection
IDS monitor a network or system for malicious attacks 
or policy violations. Buczak and Guven23 describe the 
different types of analytic techniques used for IDS; they 
can be broadly classified into misuse based and anom-
aly based. Misuse-based techniques look for specific 
patterns or signatures of attacks in network traffic, sys-
tem calls, and so on. These techniques, however, require 
constant updates to databases containing rules and sig-
natures and are, therefore, not effective against zero-day 
attacks. Anomaly-based techniques establish the nor-
mal network behavior and can then identify abnor-
malities, i.e., deviations in the traffic. They can detect 
newer attacks, and it is very difficult for attackers to 
bypass them because the normal activity is customized 
for the particular user, network, and applications being 
used. Anomaly-based techniques, however, may have 
high FPRs because they flag any unseen yet benign traf-
fic or system use as a potential malicious attack. They 
also must be trained individually for every deployment. 
DL techniques that assist various traditional intrusion 

Table 1. A comparison of DL approaches used for malware analysis.

Reference Analysis type Training data Input features Accuracy (%) FPR 

Kephart et al.17 Dynamic Custom (viral boot sectors) Three-byte strings from boot sectors 100 —

Dahl et al.18 Dynamic Custom (Microsoft/CERT) Process memory and system API call 99.51 0.83%

Saxe and Berlin19 Static Custom (Invincea) Binary’s distribution of bytes 95 0.1% 

Kolosnjaji et al.20 Dynamic Custom (VirusShare/Maltrieve) Kernel API call sequences 89.4 —

Pascanu et al.21 Dynamic Custom (Microsoft) Event streams from malware binaries 98.3 0.1% 

Huang and Stokes22 Dynamic Custom (Microsoft) Raw data from antimalware engines 99.64 —

CERT: Computer Emergency Response Team.
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detection deployments have been proposed (Table 2). 
In the case of misuse detection, an NN model can learn 
from a training data set containing examples from all of 
the misuse classes. It can then be used on new testing 
data to classify them as “belonging to one of the misuse 
classes” or as “normal.” In the case of anomaly detection, 
the model can learn the defined normal traffic behavior; 
it can then be used to differentiate between normal and 
anomalous behavior.

Cannady24 was one of the first to propose using NNs 
for misuse-based intrusion detection. He demonstrated 
that NNs can be used for misuse detection based on 
captured IP packet data. Single simulated attack events 
(e.g., ISS scans, Satan scans, SYNFlood, and so on) were 
used to test the NNs. This approach can be deployed 
alongside host-based or network-based IDS. Cannady’s 
prototype uses an MLP architecture that consists of 
four fully connected layers with nine input and two 
output nodes. Their approach achieves a very low error 
rate of 0.06% on data generated using the RealSecure 
network monitor from Internet Security Systems, Inc. 
However, they pointed out that their NN takes 26.13 h 
to complete training/testing, which renders it unusable 
for real-time intrusion detection.

Palagiri25 later introduced another approach using 
NNs for misuse-based intrusion detection. He explored 
network-based intrusion detection using a perceptron- 
based feedforward NN and a system based on classify-
ing self-organizing maps. Palagiri used a feedforward 
NN with back propagation, called meta neural, and used 
tcpdump binaries from the DARPA 1999 training data 
set for their experiments. His system takes the follow-
ing parameters at the command line: the configuration 
file, destination, known ports, number of extra ports, 
architectural learning interval, time interval, number 
of training samples, number of test samples, fraction of 
normal data, number of clusters, and maximum hits.

Palagiri’s experiments showed a prediction rate of 
100% but had a very high FPR, which makes his system 
unusable in real-world IDS deployments.

Hodo et al.26 focus on IoT networks and suggest 
the use of NNs as an offline IDS to gather and analyze 
information from the network and identify attempts 
of denial-of-service (DoS)/distributed DoS (DDoS) 
attacks. They use an MLP that is trained using Inter-
net packet traces from hosts in the network as well as 
an MLP architecture with a three-layer feedforward 
NN. The network has a unipolar sigmoid transfer func-
tion in each of the hidden and output layers’ neurons. 
Experiments demonstrate that the approach achieves 
an overall accuracy of 99.4% in the binary classifica-
tion of DoD/DDoS attacks and normal traffic. This 
approach, however, requires a server deployment to 
run the NN models.

Tuor et al.27 propose an online unsupervised DL 
approach that detected anomalous network activity 
from system logs in real time. They train DNNs to 
learn to recognize anomalous user activities and then 
deploy them to classify user behavior as “anomalous” 
or “benign.” For the DNNs and RNNs, they tune the 
number of hidden layers (between one and six) and 
the hidden-layer dimension (between 20 and 500) 
using a random hyperparameter search. These tech-
niques have been evaluated with respect to the Com-
puter Emergency Response Team Insider Threat v6.2 
data set. The evaluation suggests that the techniques 
achieve an average anomaly score in the 95.53 percen-
tile. However, this approach does not take into account 
the activity patterns of individual users and requires 
human intervention to review the anomaly scores and 
make further decisions.

Katherios et al.28 propose a real-time network 
anomaly-detection system that greatly reduces the man-
ual workload by coupling two learning stages. The first 

Table 2. A comparison of DL approaches used for intrusion detection.

References Type Detection method Training data Input features Accuracy (%)

Cannady24 Host based Misuse based Custom Network data packets (e.g., port, IP 
address, raw data, and so on)

100

Palagiri25 Network based Misuse based DARPA 1999 Number of packets in a time 
interval to a specific port 

100 

Hodo et al.26 Network based Misuse based Custom Internet packet traces 99.4 

Tuor et al.27 Network based Anomaly based CERT Insider 
Threat v6.2 data set

User system logs 95.53 

Katherios et al.28 Network based Anomaly based Real world Extracted from flow-aggregating 
network packets 

98.5 
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stage performs adaptive unsupervised anomaly detec-
tion using a shallow autoencoder, while the second stage 
uses a custom nearest-neighbor classifier to filter the 
false positives by modeling the manual classification. 
The experiments have been carried out on real-world 
data from the network of the National Information 
Infrastructure Development Institute of Hungary. The 
experiments show that the techniques achieve 98.5 and 
1.3% for true-positive rates and FPRs, respectively, while 
reducing the human intervention rate by a factor of five. 
This approach also shows very good detection latency of 
a few seconds from the start of the attack.

From the approaches discussed in this section, 
it is evident DL-based techniques can significantly 
enhance traditional IDS deployments. However, most 
approaches have not been evaluated with respect to 
latency and resource costs. These metrics are very 
important for the real-world deployment of these tech-
niques because an IDS with high latency cannot reli-
ably detect attacks in real time. Additionally, their high 
resource costs make it difficult, if not impossible, to 
deploy these techniques in host-based IDS, especially 
for IoT devices with low processing capability. Fur-
thermore, Sommer and Paxson29 argued that the task 
of finding attacks is fundamentally different from other 
applications, making it significantly harder for the intru-
sion detection community to employ ML effectively. 
They mention various challenges, such as the diversity 
of network traffic, evaluation difficulties, and high error 
cost, all of which must be addressed for ML techniques 
to effectively detect intrusion.

Botnet Detection
Botnets are defined as a network of computers infected 
with malicious software and controlled as a group 
without the computer owners’ knowledge. Botnets 
are used to orchestrate DDoS attacks, send spam, and 
enable attackers to access and control impacted devices 
remotely. Botnets have been increasingly targeting IoT 
devices;30 recently discovered IoT botnets, such as Mirai 

and Reaper, have proved that the heterogeneity and 
weak security of these devices make them easily exploit-
able. Traditional security mechanisms have failed to stop 
the growth of IoT botnets because they typically require 
many resources and do not consider the heterogeneity 
of IoT networks; however, DL techniques have proven 
useful for detecting and disrupting botnets.

Nogueira et al.31 first proposed using NNs as a bot-
net detection methodology by uniquely identifying 
characteristic traffic patterns and identifying the ones 
generated by zombie devices (Table 3). They argue that 
all Internet applications (e.g., file sharing, HTTP brows-
ing, and VoIP) have a specific traffic profile that can be 
used to train different NNs for particular applications, 
as modules. They achieved a detection performance of 
more than 87% for eight different traffic profiles. This 
approach is a good starting point, but it is not scalable 
because each application requires a separate NN for 
detection purposes.

Karim et al.32 proposed a framework, called 
SMARTbot, which uses NNs to detect botnet binaries 
on mobile devices. For testing, they used their classifier 
to differentiate among botnet and other malware. Their 
system achieves 99.49% accuracy in detecting botnet 
applications; however, their work does not report any 
assessments about memory requirements and execu-
tion times. These assessments are critical for determin-
ing whether such a system can actually be deployed in 
IoT systems.

Arnaldo et al.33 introduce a framework that identifies 
advanced, persistent threats by using log data generated 
by enterprise-grade security devices. This framework is 
applied to detect the communication channel between 
the compromised host and the botnet command and 
control, which is necessary for controlling the botnet. 
They train various DL models, including CNNs, RNNs, 
and autoencoders using features extracted from the ISCX 
botnet data set.34 Their framework can detect previously 
unseen botnets with high accuracy; however, it requires 
using multiple days of log data to detect a botnet.

Table 3. A comparison of DL approaches used for botnet detection.

Publication Network type Data set Botnets detected Detection rate (%)

Nogueira et al.31 Any network Custom (self generated) Simple port scanning 87 

Karim et al.32 Mobile devices Custom Botnet mobile apps 99.49 

Arnaldo et al.33 Any network ISCX botnet data set34 Neris, Rbot, and so on —

Meidan et al.35 IoT networks Custom (self generated) Mirai and Bashlite 100 

Yu et al.36 Any network CTU-UNB and Contagio-CTU-
UNB

Neris, Rbot, and so on 98.98 
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Meidan et al.35 propose the use of deep autoencoders 
to detect anomalous network traffic generated by compro-
mised IoT devices. They suggest using a network-based 
anomaly-detection method, which extracts behavior 
snapshots of the network and trains each device’s deep 
autoencoders to learn the IoT’s normal behaviors. Such 
an approach can then detect when the device is compro-
mised and whether it exhibits anomalous behavior. They 
use the context of the network packets by extracting 115 
traffic statistics from several temporal windows to sum-
marize the traffic. They have evaluated their approach on 
the Bashlite and Mirai botnet families, and their experi-
ments produced a detection rate of 100% and an FPR of 
0.007. This approach achieves a very high detection rate; 
however, the scalability of this approach is questionable 
because it requires a separate NN for modeling each IoT’s 
device-type behavior.

Yu et al.36 propose a model created by stacking DCAEs, 
which can learn directly from unlabeled raw traffic data. 
They divide the training process into unsupervised 
pretraining and supervised fine-tuning. Their model 
achieves 99.59% accuracy for binary classification. 
Other relevant approaches include those introduced by 
Wang et al.37 and Kant et al.38 that use CNNs for mal-
ware and botnet classification by converting traffic data 
into images. Maimo et al.39 recently suggested using DL 
in 5G networks for botnet detection by detecting anom-
alies in the network.

Many of the techniques used for detecting botnets 
focus on IoT devices and mobile devices. IoT devices 
are attractive to attackers because they have weak 
defenses and inadequate built-in security due to their 
limited computing power. Similar to DL techniques 
involving malware analysis and intrusion detection, 
DL-based techniques for botnet detection have not 
been assessed for memory requirements and latency. 
This is even more crucial in the case of mobile and 
IoT devices, which already have minimal computa-
tional power. DL-based solutions for detecting botnets 
are often network-based because the DL algorithms 
have resource requirements that are too high for direct 
deployment to the devices themselves. Further research 
must be devoted to enhancing the resource efficiency 
of DL algorithms deployed to individual devices and 
to exploiting the additional information available at 
the device itself. It is important that DL-based tech-
niques for botnet detection be able to detect previ-
ously unknown botnets in real time, so that any attack 
can be promptly identified and addressed. Many pro-
posed techniques deal only with botnets encountered 
in training; however, techniques that do identify unseen 
botnets must be individually trained on IoT devices to 
identify their benign behavior, which can be a problem 
for real-world deployment.

Attacks Against NNs
As previously discussed, recent research has shown that 
NNs can be very effective for various security tasks. 
However, it is critical that they be proved resilient to 
tampering and adversarial compromise. As the use of DL 
in image recognition, object detection, speech recogni-
tion, translation, and so on has grown, many researchers 
have explored methods that deceive NN-based models 
by slightly modifying the inputs to achieve different 
output results. These inputs are called adversarial exam-
ples. This remains a major problem in moving toward 
fully automated NN-based techniques for various tasks 
in information security because they do not have any 
proper security guarantees in adversarial settings.

Szegedy et al.40 were the first to point out that cer-
tain barely perceptible perturbations in the input 
images caused NN-based image classifiers to misclas-
sify with a high probability. Papernot et al.41 show how 
to generate inputs that are misclassified by a DNN with 
a 97% success rate, while modifying only, on average, 
4.02% of the input features per sample. Such an attack 
requires knowledge of the DNN architecture, which is 
a reasonable requirement. One of the key assumptions 
they make is that the DNNs are feedforward and there-
fore do not consider RNNs in their experiments. There 
are several papers that suggest methods for generating 
adversarial examples against NNs.42–44

Significant research efforts have been devoted to 
enhancing the robustness of NNs to make them resil-
ient to adversarial examples. Huang et al.45 propose 
improving classifiers by generating adversarial examples 
as an intermediate step and learning from them. Many 
researchers espouse the use of defensive distillation to 
prevent adversarial examples;46,47 however, Carlini and 
Wagner48 have proven these approaches to be inade-
quate. Others have recommended using feature squeez-
ing as a defense mechanism.49,50 Bhagoji et al.51 advise 
using dimensionality reduction via principal compo-
nent analysis and data “antiwhitening” to prevent eva-
sion attacks. Madry et al.52 suggest that to capture the 
notion of security against adversarial attacks in a prin-
cipled manner, we should formally define the proper 
security guarantees. Yuan et al.53 introduced methods 
for generating adversarial examples and related counter-
measures. Many other approaches have also been pro-
posed to protect NNs from attacks.54–57

The aforementioned research efforts have mainly 
focused on mainstream NN applications, such as image 
classification and speech and text recognition, and have 
not yet addressed NN applications relative to secu-
rity. However, because adversarial examples question 
the reliability of NNs, any application that uses them is 
potentially affected. This lack of reliability is particularly 
critical when NNs are used as part of information security 
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systems and tools because attackers are always looking for 
ways to exploit system weaknesses. It is also very difficult 
to verify whether the trained model has been tampered 
with because there are thousands of parameters that are 
learned and stored within an NN model. Furthermore, 
NNs lack the necessary formal security guarantees to 
be considered resilient against adversarial attacks. The 
results should be consistent enough, and it should not be 
easy for attackers to make small, undetectable changes to 
the input and bypass security checks.

D L techniques have proven to be successful with 
helping security professionals tackle the problem 

of new, ever-increasing malware attacks. However, most 
of the DL-based approaches for information security 
tasks merely focus on using NNs to provide the high-
est detection accuracy, but there is very little analysis 
about the resource costs of these methods. This may 
be primarily due to the nascent stage of the research in 
this area as well as the characteristics of DL and NNs 
themselves. However, if these techniques are to be suc-
cessfully deployed in real-world networks and security 
products, their resource requirements must be ana-
lyzed and optimized. The system requirements of most 
DL methods make them unsuitable for IoT and edge 
devices because these devices often have limited com-
puting capacity. Most DL techniques require server 
machines, possibly with general-purpose GPUs having 
thousands of cores, to efficiently carry out DL work-
loads. IoT and edge devices, however, have lower-power 
GPUs or no GPUs at all; as a result, they are very slow 
to service DL workloads. The solution to this problem 
is twofold: 1) DL and NN algorithms, implementa-
tions, and frameworks must be better implemented and 
engineered to be more efficient on small devices, and 
2) the DL techniques being developed for security tasks 
should have lightweight NNs and efficient steps for pre-
processing the input data. Acceleration at the edge using 
network pruning can also be explored by using pruning 
techniques such as those proposed by Tang and Han58 
and Narang et al.59 Network pruning has been shown 
to greatly reduce the model size and thus the latency 
of CNNs by up to five times mainly in image recogni-
tion tasks, while at the same time maintaining the same 
accuracy levels as the nonpruned CNNs. However, the 
use of pruning techniques has not yet been explored in 
NNs used for security tasks.

Additionally, with many anomaly-based IDS imple-
mentations focusing on the traffic patterns of specific 
devices, it is difficult and time-consuming to capture 
the usage characteristics for new but similar devices and 
then retrain the NN models from scratch. Transfer learn-
ing can address this requirement because it enables the 

transfer of learned features and knowledge from a trained 
source model to a target model with minimal new train-
ing data. Some interesting research directions related 
to the use of DL, specifically in the case of IoT devices, 
include investigating whether an anomaly-detection 
model trained on a specific type of IoT device transfers 
to other device types with similar or different functional-
ities. For example, an anomaly-detection model trained 
on smart locks could be used as a source model for a 
smart lock from a different vendor or for a completely 
different IoT device, such as a thermostat. Those two 
types of transfer (i.e., to devices with similar functional-
ities and to devices with different functionalities) can be 
combined to obtain a general NN for anomaly detection 
in devices. Past research has shown that the traffic pat-
terns for different devices vary significantly, so a general 
network may not be highly accurate (i.e., a high FPR), 
but it is still worth exploring. 
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