
56 May/June 2019 Copublished by the IEEE Computer and Reliability Societies 1540-7993/19©2019IEEE

AUTOMATING SECURITY TASKS WITH DEEP LEARNING

How Deep Learning
Is Making Information Security
More Intelligent
Ankush Singla and Elisa Bertino | Purdue University

Manually analyzing vast amounts of newly released malware is a significant problem for the security
community. Deep-learning techniques have recently been employed to automate security tasks such as
malware analysis, intrusion detection, and botnet detection. We look at such techniques and investigate
how practical and secure they are.

A ccording to U.S. law,1 information security is
defined as “protecting information and infor-

mation systems from unauthorized access, use, dis-
closure, disruption, modification, or destruction.” It
is well established among information security com-
munities that there is no system that can be 100%
secure from all adversaries. Critical systems, proto-
cols, and software considered secure are constantly
analyzed by intelligent adversaries with sufficient
resources, leading to the identification of vulnerabil-
ities and allowing them to craft exploits that break
into systems by taking advantage of those vulnera-
bilities. Vulnerabilities, unknown to the creators
or users of a system, are called zero-day vulnerabili-
ties, and the exploits that take advantage of them
are called zero-day exploits. Members of the security
community, e.g., antivirus vendors and research-
ers, find such an exploit in the wild, disassemble
and analyze the code/working for the exploit, and
flag the signature of the exploit into their products
so that it can be instantly flagged on user machines.
Typically, they also provide this information to the
creators or users of exploited systems so that the vul-
nerability can be patched.

Problem
With the exponential increase in the number of Inter-
net users, cloud services, and Internet of Things (IoT)
devices, the attack surface has increased substantially.
The number of adversaries attempting to find new
ways of breaking into these systems has therefore sky-
rocketed. The involvement of state actors trying to gain
an upper hand in the cybersecurity arms race has also
increased the frequency of new attacks and malware.
McAfee Labs reports that the amount of new malware
identified reached an all-time high of 57.3 million sam-
ples in Q3 of 2017.2 Conventional methods based on
the manual inspection of suspicious code, reverse engi-
neering, and manual vulnerability identification are too
slow to compete against new adversarial capabilities.

Solution
Deep learning (DL) is a promising approach that
addresses the shortcomings of these conventional meth-
ods. Vaguely inspired by the biological neural networks
(NNs) in the human brain, DL is a branch of machine
learning (ML) that tries to learn various characteristics
from data and uses them for decision making on similar
unseen data. In the last five years, DL techniques have
gained interest because of the increased amount of data
available and its various algorithmic innovations as well
as significant improvements in computing capabilities
enabled by GPUs, which have made the fast training

Digital Object Identifier 10.1109/MSEC.2019.2902347
Date of publication: 14 May 2109

www.computer.org/security� 57

and deployment of DL models possible.3 Previously,
DL has been tremendously successful at tasks such
as image classification, object detection, and text and
voice recognition.

Recently, approaches have been proposed that use
DL for various information security tasks such as mal-
ware analysis, intrusion detection, botnet detection, and
software analysis. For example, DL-based techniques can
learn from the patterns and features of training data sets
that contain various malware samples and can then be
used in antivirus software or intrusion detection systems
(IDS) to detect similar malware during an actual attack.
Additionally, DL-based techniques can also be trained
to learn the features that allow them to identify malware
that has not yet been reported, such as zero-day malware,
which makes them a great choice for security tasks.

Contributions
Although broader ML techniques are being used for var-
ious security tasks, we focus mainly on DL techniques
for this article. We analyze in detail the security tasks for
which DL techniques have been used, including mal-
ware analysis, intrusion detection, and botnet detec-
tion. We provide a comparison and critical analysis of
research work in these specific categories, the benefits of
DL-based approaches over traditional mechanisms, and
the areas with respect to which DL-based techniques are
lacking. One critical issue that has emerged from recent
research is the reliability of DL-based approaches and
whether they can be bypassed by attackers with knowl-
edge of the detection model through something known
as adversarial examples. We discuss the recent body of
research that has investigated this problem as well as
the efforts at making DL models more resilient to such
attacks. We also discuss open research areas in the use of
DL techniques for security.

Terminology
AI is defined by John McCarthy, a pioneer of AI
research, as “the science and engineering of making
intelligent machines, especially intelligent computer
programs.”4 In simpler terms, it can be thought of as
intelligence demonstrated by machines to mimic or
even surpass human intelligence. Intelligence can be
expressed in a number of ways, including decision mak-
ing and learning complex tasks. ML is a branch of AI
that enables computers to learn and make decisions
using statistical techniques without manual program-
ming.5 ML involves training a model to use input data
and then making predictions on new data using the
learned model. ML is broadly classified into two cat-
egories: 1) supervised learning, i.e., the ML system is
provided with labeled data consisting of pairs of input
and the desired output and learns mappings between

those pairs to make intelligent decisions on new data,
e.g., image classification and speech recognition; and
2) unsupervised learning, i.e., the ML algorithm is pro-
vided only with unlabeled data as input and learns the
structure and relationships within the input data, mak-
ing decisions based on learned patterns, e.g., data clus-
tering and anomaly detection. Popular ML algorithms
include decision trees,6 support vector machines,7
Bayesian networks,8 and logistic regression.9

Artificial NNs (ANNs), sometimes loosely called
NNs, are a family of models inspired by the human brain
and how the network of neurons process information
and perform computations.10 The building blocks of
those networks are called neurons, which are grouped
in different layers. Each layer of neurons receives inputs
from the previous layer of neurons and passes its out-
put to the next layer. Each neuron has its own activation
functions, weights, and biases, which it tunes and opti-
mizes during the training phase depending on the cost
function, to minimize total error between the predicted
and provided values.

A deep NN (DNN) is an NN with multiple hidden
layers in addition to the input and output layers; any
NN with fewer layers than that is called a shallow NN.
DL is a subfield of ML, based on the use of DNNs. We
describe two specific kinds of DNNs, known as convolu-
tional NNs (CNNs) and recurrent NNs (RNNs), because
they are the most widely researched and used.11

CNNs are primarily used for computer vision tasks,
such as image classification, object recognition, and nat-
ural language processing, because they are designed to
mimic the behavior of the animal visual cortex. CNNs
use convolution layers involving filters that apply con-
volution operations to the inputs and pass them to the
next layers. CNNs require minimal preprocessing when
compared to other image recognition algorithms. The
success of CNNs at performing computer vision tasks
is one of the primary reasons that interest in DL resur-
faced after being nonexistent for many years.

RNNs, on the other hand, are algorithms used for
processing sequential data, such as time series or natu-
ral language.12 In addition to the inputs, RNNs store an
internal state that calculates outputs. RNNs include a
feedback loop, where the output from the previous step
is fed back to affect the output of the current step, and
so on. Feedforward networks such as CNNs can receive
and work on only one input at a time and thus produce
one output, whereas RNNs can receive multiple inputs
and vary their predictions based on the previous inputs.
For example, for natural language processing, CNNs
can translate or predict only one letter at a time, whereas
RNNs can use the letters in the beginning of the word to
affect the prediction of the next letters of the words or
use previous words to build sentences.

58	 IEEE Security & Privacy� May/June 2019

AUTOMATING SECURITY TASKS WITH DEEP LEARNING

One of the first ML algorithms, called perceptron,13
was defined as a linear/binary classifier that can divide
input into two categories with a straight line. In 1957,
Rosenblatt introduced the single-layer perceptron,
which was unable to perform nonlinear classifications.
Multilayer perceptrons (MLPs)14 were also introduced
to capture more complex nonlinear functions. An MLP
consists of at least three layers of nodes, and all of the
neurons, except those in the input and output lay-
ers, use a nonlinear activation function. MLPs utilize
a supervised learning technique called back propaga-
tion for learning. The training phase consists of steps
in turn consisting of forward and backward passes that
minimize the error until it can no longer decrease, also
known as the state of convergence.

An autoencoder is an NN that learns by using unsu-
pervised learning, which is generally for dimensionality
reduction.15 It reduces the input data to a short code,
then expands it back to look similar to the input data.
Dilated convolutional autoencoders (DCAEs) are quite
similar to regular autoencoders but use dilated con-
volutions, and feature maps of the hidden layers are
mapped into the reconstruction through a transposed
convolution.16

Malware Analysis
There are two widely used approaches for malware
analysis: static and dynamic. Static malware analysis is
carried out by reverse engineering the malware binary
to its assembly code and then analyzing the instructions
without actually executing it. Such an approach can,
however, be easily defeated by evasion techniques such
as obfuscation and embedding of syntactic code errors.
Dynamic malware analysis is conducted by executing
the malware in a controlled sandbox environment to
study its behavior and effect on the host system. Sophis-
ticated malwares can evade dynamic analysis by deter-
mining whether they are being run inside a sandbox or
a controlled environment and, based on this determi-
nation, can decide to not exhibit any malicious behav-
ior. Both of these techniques are time-consuming and
require a manual component, which makes them hard
to scale because the number, complexity, and sophisti-
cation of the malwares increase. ML-based techniques
have been proposed that address scalability by automat-
ing various steps of malware detection processes. How-
ever, their effectiveness is limited by high false-positive
rates (FPRs), which make them unreliable. Research-
ers have recently demonstrated better results with
DL-based systems.

DL-based techniques have been shown to clas-
sify malware at a much better speed than human ana-
lysts with high accuracy rates. These techniques can
be applied to malware analysis to flag the suspicious

binaries, which can then be analyzed and verified by
a human in the loop. DL-based techniques have also
proven to be much better at detecting newer malware
with similar characteristics of other existing malware
that has already been analyzed and categorized.

In 1995, Kephart et al.17 proposed biologically inspired
antivirus techniques designed to tackle existing and new
viruses for the first time. They proposed an NN-based
virus detector that learns to discriminate between
infected and uninfected programs, and a computer
immune system that identifies and analyzes new viruses
automatically. Their detector extracts a set of three-byte
strings, or “trigrams,” appearing frequently in viral boot
sectors but infrequently in legitimate ones. They, how-
ever, used just 350 samples with 100 negative samples
and thus the FPR was too small to measure. This was
the first attempt at using NNs for malware detection;
however, they looked only at a small set of boot viruses
and failed to execute the malware for detection.

Dahl et al.18, in their 2013 paper, introduced a major
improvement in this area. They argued that the number
of input features for malware classification can be too
large to be used by complex algorithms such as NNs,
thus preventing the use of NN-based algorithms for
malware detection. They proposed using random pro-
jections that reduce the dimensionality of the original
input space by a factor of 45. Their approach extracts
three types of features, including null-terminated pat-
terns observed in the process’ memory, trigrams of
system API calls, and the distinct combinations of a
single-system API call and one input parameter. Their
approach achieves a classification result with a two-class
error rate of 0.49%, i.e., detecting whether or not the
binary is a malware and had an FPR of roughly 0.83%.
Their approach, however, still had a high test-error rate
of 10–12% when detecting the particular class to which
the malware belongs.

In 2015, Saxe and Berlin19 proposed a DNN-based
malware detection system that achieves a 95% detec-
tion rate at a 0.1% FPR, based on more than 400,000
software binaries, which is much better than previous
approaches. For input features, their system calculates
the byte entropy histogram of the binary that models
the file’s byte distribution. Their system also gathers
features from the program-executable import address
table and packaging metadata and uses a DNN consist-
ing of four layers. This is one of the only static malware
analysis approaches that we found with good detection
rates, and it was deployed in Invincea Labs’ cloud secu-
rity analytics platform, as shown in (Table 1).

Kolosnjaji et al.20 built upon the previous approaches
and proposed a malware classification method based on
NNs comprised of both convolutional and recurrent
network layers and applied it to system call sequences.

www.computer.org/security� 59

Their method requires system call traces obtained by
executing the malware in a protected environment.
Using this combined NN architecture achieves an aver-
age of 85.6 and 89.4% on precision and recall, respec-
tively, and is shown to be much better than simple
feedforward NNs at malware detection.

Pascanu et al.21 use echo state networks and RNNs
for extracting malware features. These features are
then used as inputs to a standard classifier that detects
malicious files. Their approach achieves true-positive
and FPRs of 98.3 and 0.1%, respectively. Huang and
Stokes22 propose a DL architecture, called MtNet,
for malware binary classification (i.e., malware versus
benign) and for categorizing different malware families
with 100 classes. They show that DNNs offer a mod-
est improvement over shallow learning models. Their
approach achieves binary malware and family error
rates of 0.358 and 2.94%, respectively. Binary malware
error rate refers to the error rate when detecting whether
the file is malware or benign, whereas the family error
rate refers to the error rate when detecting the actual
family of the malware.

All of the previously discussed methods demon-
strate that DL-based techniques can provide signifi-
cant help with identifying and categorizing malware.
However, most of those techniques are dynamic anal-
ysis approaches because they rely on features such as
boot-sector trigrams, sequence of system API calls,
and process memory, which are obtained by running
the binary. Static analysis approaches may be better in
terms of identifying zero-day malware without actually
running it on a system. This enables the malware detec-
tors to be better integrated with consumer antivirus sys-
tems and work on end-user machines to detect malware
binaries before they can cause any harm. Thus, more
work needs to be done to identify useful static binary
features that would allow NN models to reliably classify
the malware.

Furthermore, several of these detection approaches
focus on malwares that have already been detected and
analyzed. An interesting research direction is to deter-
mine how effective these techniques are in identifying
newer malware families and variants being released into
the wild, based on models trained on older classified
malware. Another important aspect that has not been
investigated by previous research is related to analyzing
the memory requirements and execution times of those
techniques. To be deployed on end-user machines, in
addition to being resource efficient, these techniques
should be able to classify new binaries in real time so
that no delays are introduced that are noticeable by end
users. The trained models should also be smaller in size
so that they are easier to deploy on small systems, such
as IoT devices.

Intrusion Detection
IDS monitor a network or system for malicious attacks
or policy violations. Buczak and Guven23 describe the
different types of analytic techniques used for IDS; they
can be broadly classified into misuse based and anom-
aly based. Misuse-based techniques look for specific
patterns or signatures of attacks in network traffic, sys-
tem calls, and so on. These techniques, however, require
constant updates to databases containing rules and sig-
natures and are, therefore, not effective against zero-day
attacks. Anomaly-based techniques establish the nor-
mal network behavior and can then identify abnor-
malities, i.e., deviations in the traffic. They can detect
newer attacks, and it is very difficult for attackers to
bypass them because the normal activity is customized
for the particular user, network, and applications being
used. Anomaly-based techniques, however, may have
high FPRs because they flag any unseen yet benign traf-
fic or system use as a potential malicious attack. They
also must be trained individually for every deployment.
DL techniques that assist various traditional intrusion

Table 1. A comparison of DL approaches used for malware analysis.

Reference Analysis type Training data Input features Accuracy (%) FPR

Kephart et al.17 Dynamic Custom (viral boot sectors) Three-byte strings from boot sectors 100 —

Dahl et al.18 Dynamic Custom (Microsoft/CERT) Process memory and system API call 99.51 0.83%

Saxe and Berlin19 Static Custom (Invincea) Binary’s distribution of bytes 95 0.1%

Kolosnjaji et al.20 Dynamic Custom (VirusShare/Maltrieve) Kernel API call sequences 89.4 —

Pascanu et al.21 Dynamic Custom (Microsoft) Event streams from malware binaries 98.3 0.1%

Huang and Stokes22 Dynamic Custom (Microsoft) Raw data from antimalware engines 99.64 —

CERT: Computer Emergency Response Team.

60	 IEEE Security & Privacy� May/June 2019

AUTOMATING SECURITY TASKS WITH DEEP LEARNING

detection deployments have been proposed (Table 2).
In the case of misuse detection, an NN model can learn
from a training data set containing examples from all of
the misuse classes. It can then be used on new testing
data to classify them as “belonging to one of the misuse
classes” or as “normal.” In the case of anomaly detection,
the model can learn the defined normal traffic behavior;
it can then be used to differentiate between normal and
anomalous behavior.

Cannady24 was one of the first to propose using NNs
for misuse-based intrusion detection. He demonstrated
that NNs can be used for misuse detection based on
captured IP packet data. Single simulated attack events
(e.g., ISS scans, Satan scans, SYNFlood, and so on) were
used to test the NNs. This approach can be deployed
alongside host-based or network-based IDS. Cannady’s
prototype uses an MLP architecture that consists of
four fully connected layers with nine input and two
output nodes. Their approach achieves a very low error
rate of 0.06% on data generated using the RealSecure
network monitor from Internet Security Systems, Inc.
However, they pointed out that their NN takes 26.13 h
to complete training/testing, which renders it unusable
for real-time intrusion detection.

Palagiri25 later introduced another approach using
NNs for misuse-based intrusion detection. He explored
network-based intrusion detection using a perceptron-
based feedforward NN and a system based on classify-
ing self-organizing maps. Palagiri used a feedforward
NN with back propagation, called meta neural, and used
tcpdump binaries from the DARPA 1999 training data
set for their experiments. His system takes the follow-
ing parameters at the command line: the configuration
file, destination, known ports, number of extra ports,
architectural learning interval, time interval, number
of training samples, number of test samples, fraction of
normal data, number of clusters, and maximum hits.

Palagiri’s experiments showed a prediction rate of
100% but had a very high FPR, which makes his system
unusable in real-world IDS deployments.

Hodo et al.26 focus on IoT networks and suggest
the use of NNs as an offline IDS to gather and analyze
information from the network and identify attempts
of denial-of-service (DoS)/distributed DoS (DDoS)
attacks. They use an MLP that is trained using Inter-
net packet traces from hosts in the network as well as
an MLP architecture with a three-layer feedforward
NN. The network has a unipolar sigmoid transfer func-
tion in each of the hidden and output layers’ neurons.
Experiments demonstrate that the approach achieves
an overall accuracy of 99.4% in the binary classifica-
tion of DoD/DDoS attacks and normal traffic. This
approach, however, requires a server deployment to
run the NN models.

Tuor et al.27 propose an online unsupervised DL
approach that detected anomalous network activity
from system logs in real time. They train DNNs to
learn to recognize anomalous user activities and then
deploy them to classify user behavior as “anomalous”
or “benign.” For the DNNs and RNNs, they tune the
number of hidden layers (between one and six) and
the hidden-layer dimension (between 20 and 500)
using a random hyperparameter search. These tech-
niques have been evaluated with respect to the Com-
puter Emergency Response Team Insider Threat v6.2
data set. The evaluation suggests that the techniques
achieve an average anomaly score in the 95.53 percen-
tile. However, this approach does not take into account
the activity patterns of individual users and requires
human intervention to review the anomaly scores and
make further decisions.

Katherios et al.28 propose a real-time network
anomaly-detection system that greatly reduces the man-
ual workload by coupling two learning stages. The first

Table 2. A comparison of DL approaches used for intrusion detection.

References Type Detection method Training data Input features Accuracy (%)

Cannady24 Host based Misuse based Custom Network data packets (e.g., port, IP
address, raw data, and so on)

100

Palagiri25 Network based Misuse based DARPA 1999 Number of packets in a time
interval to a specific port

100

Hodo et al.26 Network based Misuse based Custom Internet packet traces 99.4

Tuor et al.27 Network based Anomaly based CERT Insider
Threat v6.2 data set

User system logs 95.53

Katherios et al.28 Network based Anomaly based Real world Extracted from flow-aggregating
network packets

98.5

www.computer.org/security� 61

stage performs adaptive unsupervised anomaly detec-
tion using a shallow autoencoder, while the second stage
uses a custom nearest-neighbor classifier to filter the
false positives by modeling the manual classification.
The experiments have been carried out on real-world
data from the network of the National Information
Infrastructure Development Institute of Hungary. The
experiments show that the techniques achieve 98.5 and
1.3% for true-positive rates and FPRs, respectively, while
reducing the human intervention rate by a factor of five.
This approach also shows very good detection latency of
a few seconds from the start of the attack.

From the approaches discussed in this section,
it is evident DL-based techniques can significantly
enhance traditional IDS deployments. However, most
approaches have not been evaluated with respect to
latency and resource costs. These metrics are very
important for the real-world deployment of these tech-
niques because an IDS with high latency cannot reli-
ably detect attacks in real time. Additionally, their high
resource costs make it difficult, if not impossible, to
deploy these techniques in host-based IDS, especially
for IoT devices with low processing capability. Fur-
thermore, Sommer and Paxson29 argued that the task
of finding attacks is fundamentally different from other
applications, making it significantly harder for the intru-
sion detection community to employ ML effectively.
They mention various challenges, such as the diversity
of network traffic, evaluation difficulties, and high error
cost, all of which must be addressed for ML techniques
to effectively detect intrusion.

Botnet Detection
Botnets are defined as a network of computers infected
with malicious software and controlled as a group
without the computer owners’ knowledge. Botnets
are used to orchestrate DDoS attacks, send spam, and
enable attackers to access and control impacted devices
remotely. Botnets have been increasingly targeting IoT
devices;30 recently discovered IoT botnets, such as Mirai

and Reaper, have proved that the heterogeneity and
weak security of these devices make them easily exploit-
able. Traditional security mechanisms have failed to stop
the growth of IoT botnets because they typically require
many resources and do not consider the heterogeneity
of IoT networks; however, DL techniques have proven
useful for detecting and disrupting botnets.

Nogueira et al.31 first proposed using NNs as a bot-
net detection methodology by uniquely identifying
characteristic traffic patterns and identifying the ones
generated by zombie devices (Table 3). They argue that
all Internet applications (e.g., file sharing, HTTP brows-
ing, and VoIP) have a specific traffic profile that can be
used to train different NNs for particular applications,
as modules. They achieved a detection performance of
more than 87% for eight different traffic profiles. This
approach is a good starting point, but it is not scalable
because each application requires a separate NN for
detection purposes.

Karim et al.32 proposed a framework, called
SMARTbot, which uses NNs to detect botnet binaries
on mobile devices. For testing, they used their classifier
to differentiate among botnet and other malware. Their
system achieves 99.49% accuracy in detecting botnet
applications; however, their work does not report any
assessments about memory requirements and execu-
tion times. These assessments are critical for determin-
ing whether such a system can actually be deployed in
IoT systems.

Arnaldo et al.33 introduce a framework that identifies
advanced, persistent threats by using log data generated
by enterprise-grade security devices. This framework is
applied to detect the communication channel between
the compromised host and the botnet command and
control, which is necessary for controlling the botnet.
They train various DL models, including CNNs, RNNs,
and autoencoders using features extracted from the ISCX
botnet data set.34 Their framework can detect previously
unseen botnets with high accuracy; however, it requires
using multiple days of log data to detect a botnet.

Table 3. A comparison of DL approaches used for botnet detection.

Publication Network type Data set Botnets detected Detection rate (%)

Nogueira et al.31 Any network Custom (self generated) Simple port scanning 87

Karim et al.32 Mobile devices Custom Botnet mobile apps 99.49

Arnaldo et al.33 Any network ISCX botnet data set34 Neris, Rbot, and so on —

Meidan et al.35 IoT networks Custom (self generated) Mirai and Bashlite 100

Yu et al.36 Any network CTU-UNB and Contagio-CTU-
UNB

Neris, Rbot, and so on 98.98

62	 IEEE Security & Privacy� May/June 2019

AUTOMATING SECURITY TASKS WITH DEEP LEARNING

Meidan et al.35 propose the use of deep autoencoders
to detect anomalous network traffic generated by compro-
mised IoT devices. They suggest using a network-based
anomaly-detection method, which extracts behavior
snapshots of the network and trains each device’s deep
autoencoders to learn the IoT’s normal behaviors. Such
an approach can then detect when the device is compro-
mised and whether it exhibits anomalous behavior. They
use the context of the network packets by extracting 115
traffic statistics from several temporal windows to sum-
marize the traffic. They have evaluated their approach on
the Bashlite and Mirai botnet families, and their experi-
ments produced a detection rate of 100% and an FPR of
0.007. This approach achieves a very high detection rate;
however, the scalability of this approach is questionable
because it requires a separate NN for modeling each IoT’s
device-type behavior.

Yu et al.36 propose a model created by stacking DCAEs,
which can learn directly from unlabeled raw traffic data.
They divide the training process into unsupervised
pretraining and supervised fine-tuning. Their model
achieves 99.59% accuracy for binary classification.
Other relevant approaches include those introduced by
Wang et al.37 and Kant et al.38 that use CNNs for mal-
ware and botnet classification by converting traffic data
into images. Maimo et al.39 recently suggested using DL
in 5G networks for botnet detection by detecting anom-
alies in the network.

Many of the techniques used for detecting botnets
focus on IoT devices and mobile devices. IoT devices
are attractive to attackers because they have weak
defenses and inadequate built-in security due to their
limited computing power. Similar to DL techniques
involving malware analysis and intrusion detection,
DL-based techniques for botnet detection have not
been assessed for memory requirements and latency.
This is even more crucial in the case of mobile and
IoT devices, which already have minimal computa-
tional power. DL-based solutions for detecting botnets
are often network-based because the DL algorithms
have resource requirements that are too high for direct
deployment to the devices themselves. Further research
must be devoted to enhancing the resource efficiency
of DL algorithms deployed to individual devices and
to exploiting the additional information available at
the device itself. It is important that DL-based tech-
niques for botnet detection be able to detect previ-
ously unknown botnets in real time, so that any attack
can be promptly identified and addressed. Many pro-
posed techniques deal only with botnets encountered
in training; however, techniques that do identify unseen
botnets must be individually trained on IoT devices to
identify their benign behavior, which can be a problem
for real-world deployment.

Attacks Against NNs
As previously discussed, recent research has shown that
NNs can be very effective for various security tasks.
However, it is critical that they be proved resilient to
tampering and adversarial compromise. As the use of DL
in image recognition, object detection, speech recogni-
tion, translation, and so on has grown, many researchers
have explored methods that deceive NN-based models
by slightly modifying the inputs to achieve different
output results. These inputs are called adversarial exam-
ples. This remains a major problem in moving toward
fully automated NN-based techniques for various tasks
in information security because they do not have any
proper security guarantees in adversarial settings.

Szegedy et al.40 were the first to point out that cer-
tain barely perceptible perturbations in the input
images caused NN-based image classifiers to misclas-
sify with a high probability. Papernot et al.41 show how
to generate inputs that are misclassified by a DNN with
a 97% success rate, while modifying only, on average,
4.02% of the input features per sample. Such an attack
requires knowledge of the DNN architecture, which is
a reasonable requirement. One of the key assumptions
they make is that the DNNs are feedforward and there-
fore do not consider RNNs in their experiments. There
are several papers that suggest methods for generating
adversarial examples against NNs.42–44

Significant research efforts have been devoted to
enhancing the robustness of NNs to make them resil-
ient to adversarial examples. Huang et al.45 propose
improving classifiers by generating adversarial examples
as an intermediate step and learning from them. Many
researchers espouse the use of defensive distillation to
prevent adversarial examples;46,47 however, Carlini and
Wagner48 have proven these approaches to be inade-
quate. Others have recommended using feature squeez-
ing as a defense mechanism.49,50 Bhagoji et al.51 advise
using dimensionality reduction via principal compo-
nent analysis and data “antiwhitening” to prevent eva-
sion attacks. Madry et al.52 suggest that to capture the
notion of security against adversarial attacks in a prin-
cipled manner, we should formally define the proper
security guarantees. Yuan et al.53 introduced methods
for generating adversarial examples and related counter-
measures. Many other approaches have also been pro-
posed to protect NNs from attacks.54–57

The aforementioned research efforts have mainly
focused on mainstream NN applications, such as image
classification and speech and text recognition, and have
not yet addressed NN applications relative to secu-
rity. However, because adversarial examples question
the reliability of NNs, any application that uses them is
potentially affected. This lack of reliability is particularly
critical when NNs are used as part of information security

www.computer.org/security� 63

systems and tools because attackers are always looking for
ways to exploit system weaknesses. It is also very difficult
to verify whether the trained model has been tampered
with because there are thousands of parameters that are
learned and stored within an NN model. Furthermore,
NNs lack the necessary formal security guarantees to
be considered resilient against adversarial attacks. The
results should be consistent enough, and it should not be
easy for attackers to make small, undetectable changes to
the input and bypass security checks.

D L techniques have proven to be successful with
helping security professionals tackle the problem

of new, ever-increasing malware attacks. However, most
of the DL-based approaches for information security
tasks merely focus on using NNs to provide the high-
est detection accuracy, but there is very little analysis
about the resource costs of these methods. This may
be primarily due to the nascent stage of the research in
this area as well as the characteristics of DL and NNs
themselves. However, if these techniques are to be suc-
cessfully deployed in real-world networks and security
products, their resource requirements must be ana-
lyzed and optimized. The system requirements of most
DL methods make them unsuitable for IoT and edge
devices because these devices often have limited com-
puting capacity. Most DL techniques require server
machines, possibly with general-purpose GPUs having
thousands of cores, to efficiently carry out DL work-
loads. IoT and edge devices, however, have lower-power
GPUs or no GPUs at all; as a result, they are very slow
to service DL workloads. The solution to this problem
is twofold: 1) DL and NN algorithms, implementa-
tions, and frameworks must be better implemented and
engineered to be more efficient on small devices, and
2) the DL techniques being developed for security tasks
should have lightweight NNs and efficient steps for pre-
processing the input data. Acceleration at the edge using
network pruning can also be explored by using pruning
techniques such as those proposed by Tang and Han58
and Narang et al.59 Network pruning has been shown
to greatly reduce the model size and thus the latency
of CNNs by up to five times mainly in image recogni-
tion tasks, while at the same time maintaining the same
accuracy levels as the nonpruned CNNs. However, the
use of pruning techniques has not yet been explored in
NNs used for security tasks.

Additionally, with many anomaly-based IDS imple-
mentations focusing on the traffic patterns of specific
devices, it is difficult and time-consuming to capture
the usage characteristics for new but similar devices and
then retrain the NN models from scratch. Transfer learn-
ing can address this requirement because it enables the

transfer of learned features and knowledge from a trained
source model to a target model with minimal new train-
ing data. Some interesting research directions related
to the use of DL, specifically in the case of IoT devices,
include investigating whether an anomaly-detection
model trained on a specific type of IoT device transfers
to other device types with similar or different functional-
ities. For example, an anomaly-detection model trained
on smart locks could be used as a source model for a
smart lock from a different vendor or for a completely
different IoT device, such as a thermostat. Those two
types of transfer (i.e., to devices with similar functional-
ities and to devices with different functionalities) can be
combined to obtain a general NN for anomaly detection
in devices. Past research has shown that the traffic pat-
terns for different devices vary significantly, so a general
network may not be highly accurate (i.e., a high FPR),
but it is still worth exploring.

Acknowledgments
This work is supported by National Science Foundation
grant 1719369 and by the U.S. Army Research Laboratory
the and U.K. Ministry of Defense under agreement num-
ber W911NF-16-3-0001. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Army Research Laboratory,
the U.S. government, the U.K. Ministry of Defense, or the
U.K. government. The U.S. and U.K. governments are autho-
rized to reproduce and distribute reprints for government
purposes notwithstanding any copyright notation hereon.

References
	 1.	 Cornell Law School, “44 U.S. Code § 3542—definitions."

Accessed on: Nov. 20, 2018. [Online]. Available: https://
www.law.cornell.edu/uscode/text/44/3542

	 2.	 N. Minihane et al. (2017). McAfee labs threats report.
McAfee. Santa Clara, CA. [Online]. Available: https://
www.mcafee.com/enterprise/en-us/assets/reports/rp-
quarterly-threats-dec-2017.pdf

	 3.	 A. Ng, “Why is deep learning taking off?” deeplearning.
ai, Stanford Univ., CA, 2018. [Online]. Available: https://
youtu.be/xflCLdJh0n0

	 4.	 J. McCarthy, “What is artificial intelligence?” Nov. 12,
2007. [Online]. Available: http://www-formal.stanford
.edu/jmc/whatisai/whatisai.html

	 5.	 J. R. Koza, F. H. Bennett, D. Andre, and M. A. Keane,
“Automated design of both the topology and sizing of
analog electrical circuits using genetic programming,”
in Artificial Intelligence in Design’ 96, J. S. Gero and
F. Sudweeks, Eds. New York: Springer Netherlands,
1996, pp. 151–170.

	 6.	 J. R. Quinlan, “Induction of decision trees,” Mach. Learn.,
vol. 1, no. 1, pp. 81–106, 1986.

64	 IEEE Security & Privacy� May/June 2019

AUTOMATING SECURITY TASKS WITH DEEP LEARNING

	 7.	 M. A. Hearst, S. T. Dumais, E. Osuna, J. Platt, and
B. Scholkopf, “Support vector machines,” IEEE Intell.
Syst. Appl., vol. 13, no. 4, pp. 18–28, 1998.

	 8.	 T. D. Nielsen and F. V. Jensen, Bayesian Networks and Deci-
sion Graphs. New York: Springer-Verlag, 2009.

	 9.	 N. M. Nasrabadi, “Pattern recognition and machine learn-
ing,” J. Electron. Imag., vol. 16, no. 4, pp. 049901, 2007.

	10.	 M. van Gerven and S. M. Bohte, “Editorial: Artificial neu-
ral networks as models of neural information processing,”
Front. Comput. Neurosci., vol. 11, no. 114, Dec. 2017. doi:
10.3389/fncom.2017.00114.

	11.	 Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”
Nature, vol. 521, no. 7553, pp. 436–444, 2015.

	12.	 Skymind, “Recurrent networks.” Accessed on: Nov.
20, 2018. [Online]. Available: http://skymind.ai/wiki
/recurrent-network-rnn

	13.	 F. Rosenblatt, “The perceptron: A probabilistic model for
information storage and organization in the brain,” Psy-
chol. Rev., vol. 65, no. 6, pp. 386–408, 1958.

	14.	 F. Rosenblatt, “Principles of neurodynamics: Perceptrons
and the theory of brain mechanisms,” Cornell Aeronauti-
cal Lab. Buffalo, NY, 1961. [Online]. Available: https://
apps.dtic.mil/dtic/tr/fulltext/u2/256582.pdf

	15.	 L. Deng, M. L. Seltzer, D. Yu, A. Acero, A-r Mohamed, and
G. Hinton, “Binary coding of speech spectrograms using
a deep auto-encoder,” in Proc. 11th Annu. Conf. Int. Speech
Communication Assoc., 2010, pp. 1692–1695.

	16.	 V. Dumoulin and F. Visin, A guide to convolution arith-
metic for deep learning. 2016. [Online]. Available: arXiv:
1603.07285v2

	17.	 J. O. Kephart, G. B. Sorkin, W. C. Arnold, D. M. Chess,
G. J. Tesauro, and S. R. White, “Biologically inspired
defenses against computer viruses,” IJCAI, pp. 985–996,
Aug. 1995.

	18.	 G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu, “Large-scale
malware classification using random projections and neu-
ral networks,” in Proc. IEEE Int. Conf. Acoustics, Speech and
Signal Processing (ICASSP), 2013, pp. 3422–3426.

	19.	 J. Saxe and K. Berlin, “Deep neural network based mal-
ware detection using two dimensional binary program
features,” in Proc. 10th Int. Conf. Malicious and Unwanted
Software (MALWARE), 2015, pp. 11–20.

	20.	 B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert,
“Deep learning for classification of malware system call
sequences,” in Australasian Joint Conf. on Artificial Intelli-
gence 2016, pp. 137–149.

	21.	 R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and
A. Thomas, “Malware classification with recurrent net-
works,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal
Processing (ICASSP), 2015, pp. 1916–1920.

	22.	 W. Huang and J. W. Stokes, “Mtnet: A multi-task neural
network for dynamic malware classification,” in Int. Conf.
Detection of Intrusions and Malware, and Vulnerability
Assessment, 2016, pp. 399–418.

	23.	 A. L. Buczak and E. Guven, “A survey of data mining and
machine learning methods for cyber security intrusion
detection,” IEEE Commun. Surveys Tut., vol. 18, no. 2,
pp. 1153–1176, 2016.

	24.	 J. Cannady, “Artificial neural networks for misuse detec-
tion,” in Proc. Nat. Information Systems Security Conf., 1998.

	25.	 A. Bivens, C. Palagiri, R. Smith, B. Szymanski, and M.
Embrechts, “Network-based intrusion detection using neu-
ral networks,” in Proc. Intelligent Engineering Systems through
Artificial Neural Networks ANNIE-2002, 2002, pp. 579–584.

	26.	 E. Hodo et al., “Threat analysis of IoT networks using artificial
neural network intrusion detection system,” in Proc. IEEE Int.
Symp. Networks, Computers and Communications (ISNCC),
2016, pp. 1–6. doi: 10.1109/ISNCC.2016.7746067.

	27.	 A. Tuor, S. Kaplan, B. Hutchinson, N. Nichols, and S.
Robinson, Deep learning for unsupervised insider threat
detection in structured cybersecurity data streams. 2017.
[Online]. Available: arXiv:1710.00811v2

	28.	 G. Kathareios, A. Anghel, A. Mate, R. Clauberg, and M.
Gusat, “Catch it if you can: Real-time network anomaly
detection with low false alarm rates,” in Proc. IEEE Int.
Conf. Machine Learning and Applications (ICMLA), 2017,
pp. 924–929.

	29.	 R. Sommer and V. Paxson, “Outside the closed world:
On using machine learning for network intrusion detec-
tion,” in Proc. IEEE Symp. Security and Privacy (SP), 2010,
pp. 305–316.

	30.	 E. Bertino and N. Islam, “Botnets and Internet of Things
security,” Computer, vol. 50, no. 2, pp. 76–79, 2017.

	31.	 A. Nogueira, P. Salvador, and F. Blessa, “A botnet detection
system based on neural networks,” in Proc. IEEE 5th Int.
Conf. Digital Telecommunications (ICDT), 2010, pp. 57–62.

	32.	 A. Karim, R. Salleh, and M. K. Khan, “SMARTbot: A
behavioral analysis framework augmented with machine
learning to identify mobile botnet applications,” PLOS One,
vol. 11, no. 3, 2016. doi: 10.1371/journal.pone.0150077.

	33.	 I. Arnaldo, A. Cuesta-Infante, A. Arun, M. Lam, C. Bassias,
and K. Veeramachaneni, “Learning representations for
log data in cybersecurity,” in Int. Conf. Cyber Security Cryp-
tography and Machine Learning, 2017, pp. 250–268.

	34.	 E. B. Beigi, H. H. Jazi, N. Stakhanova, and A. A. Ghor-
bani, “Towards effective feature selection in machine
learning-based botnet detection approaches,” in Proc.
IEEE Conf. Communications and Network Security (CNS),
2014, pp. 247–255.

	35.	 Y. Meidan et al., “N-BaloT: Network-based detection of
IoT botnet attacks using deep autoencoders,” Pervasive
Comput., vol. 17, no. 3, pp. 12–22, 2018.

	36.	 Y. Yu, J. Long, and Z. Cai, “Network intrusion detec-
tion through stacking dilated convolutional autoen-
coders,” Security Commun. Netw., vol. 2017, 2017. doi:
10.1155/2017/4184196.

	37.	 W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware
traffic classification using convolutional neural network

www.computer.org/security� 65

for representation learning,” in Proc. IEEE Int. Conf. Infor-
mation Networking (ICOIN), 2017, pp. 712–717.

	38.	 V. Kant, E. M. Singh, and N. Ojha, “An efficient flow based
botnet classification using convolution neural network,”
in Proc. IEEE Int. Conf. Intelligent Computing and Control
Systems (ICICCS), 2017, pp. 941–946.

	39.	 L. F. Maimó, Á. L. P. Gómez, F. J. G. Clemente, M.
G. Pérez, and G. M. Pérez, “A self-adaptive deep
learning-based system for anomaly detection in 5G net-
works,” IEEE Access, vol. 6, pp. 7700–7712, 2018. doi:
10.1109/ACCESS.2018.2803446.

	40.	 C. Szegedy et al., Intriguing properties of neural networks.
2013. [Online]. Available: arXiv:1312.6199v4

	41.	 N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B.
Celik, and A. Swami, “The limitations of deep learning in
adversarial settings,” in Proc. IEEE European Symp. Secu-
rity and Privacy (EuroS&P), 2016, pp. 372–387.

	42.	 I. J. Goodfellow, J. Shlens, and C. Szegedy, Explaining
and harnessing adversarial examples. 2014. [Online].
Available: arXiv:1412.6572v3

	43.	 A. Nguyen, J. Yosinski, and J. Clune, “Deep neural net-
works are easily fooled: High confidence predictions for
unrecognizable images,” in Proc. IEEE Conf. Computer
Vision and Pattern Recognition, 2015, pp. 427–436.

	44.	 M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter,
“Accessorize to a crime: Real and stealthy attacks on
state-of-the-art face recognition,” in Proc. ACM SIG-
SAC Conf. Computer and Communications Security, 2016,
pp. 1528–1540.

	45.	 R. Huang, B. Xu, D. Schuurmans, and C. Szepesvári,
Learning with a strong adversary. 2015. [Online]. Avail-
able: arXiv:1511.03034v6

	46.	 N. Papernot, P. D. McDaniel, X. Wu, S. Jha, and A. Swami,
“Distillation as a defense to adversarial perturbations
against deep neural networks,” in Proc. IEEE Symp. Secu-
rity and Privacy (SP), 2016, pp. 582–597.

	47.	 N. Papernot and P. D. McDaniel, On the effectiveness of
defensive distillation. 2016. [Online]. Available: arXiv:
1607.05113v1

	48.	 N. Carlini and D. A. Wagner, Defensive distillation is not
robust to adversarial examples. 2016. [Online]. Available:
arXiv:1607.04311v1

	49.	 W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detect-
ing adversarial examples in deep neural networks,” in Proc.
25th Annu. Network and Distributed System Security Symp.
(NDSS), 2018.

	50.	 W. He, J. Wei, X. Chen, N. Carlini, and D. Song, “Adver-
sarial example defense: Ensembles of weak defenses are
not strong,” in Proc. 11th USENIX Workshop Offensive
Technologies, (WOOT), 2017.

	51.	 A. N. Bhagoji, D. Cullina, and P. Mittal, Dimensional-
ity reduction as a defense against evasion attacks on
machine learning classifiers. 2017. [Online]. Available:
arXiv:1704.02654v4

	52.	 A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A.
Vladu, Towards deep learning models resistant to adversar-
ial attacks. 2017. [Online]. Available: arXiv:1706.06083v3

	53.	 X. Yuan, P. He, Q. Zhu, R. R. Bhat, and X. Li, Adversarial
examples: Attacks and defenses for deep learning. 2017.
[Online]. Available: arXiv:1511.05432v3

	54.	 U. Shaham, Y. Yamada, and S. Negahban, Understanding
adversarial training: Increasing local stability of neural nets
through robust optimization. 2015. [Online]. Available:
https://arxiv.org/abs/1511.05432 arXiv:1511.05432v3

	55.	 O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis,
A. Nori, and A. Criminisi, “Measuring neural net robust-
ness with constraints,” in Proc. Advances Neural Informa-
tion Processing Systems, 2016, pp. 2613–2621.

	56.	 S. Gu and L. Rigazio, Towards deep neural network archi-
tectures robust to adversarial examples. 2014. [Online].
Available: arXiv:1412.5068v4

	57.	 K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. D.
McDaniel, Adversarial perturbations against deep neural
networks for malware classification. 2016. [Online]. Avail-
able: arXiv:1606.04435v2

	58.	 S. Tang and J. Han, “A pruning based method to learn both
weights and connections for LSTM," 2015. [Online].
Available: https://nlp.stanford.edu/courses/cs224n/2015
/reports/2.pdf

	59.	 S. Narang, G. F. Diamos, S. Sengupta, and E. Elsen,
Exploring sparsity in recurrent neural networks. 2017.
[Online]. Available: arXiv:1704.05119v2

Ankush Singla is a Ph.D. student with the Com-
puter Science Department at Purdue University
specializing in information security. His research
interests include security analytics for Internet
of Things devices, authentication techniques,
and hardware acceleration for edge devices. Sin-
gla received an M.S. in information security and
assurance from Purdue University. Contact him
at asingla@purdue.edu.

Elisa Bertino is the Samuel Conte Term Professor of
Computer Science at Purdue University and direc-
tor of Cyber2Slab. Her research interests include
security and privacy of data and Internet of Things
systems and analytics for security. Bertino received
a doctorate in computer science from the University
of Pisa, Italy. She is a Fellow of the IEEE, Association
for Computing Machinery (ACM), and the Ameri-
can Association for the Advancement of Science. She
received the IEEE Computer Society 2002 Techni-
cal Achievement Award, the IEEE Computer Society
2005 Kanai Award, and the ACM Special Interest
Group on Security, Audit, and Control Outstand-
ing Contributions Award. Contact her at bertino@
purdue.edu.

