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Abstract. This is the second in a series of papers on rank decompositions of the matrix
multiplication tensor. We present new rank 23 decompositions for the 3×3 matrix multiplication
tensor M⟨3⟩. All our decompositions have symmetry groups that include the standard cyclic
permutation of factors but otherwise exhibit a range of behavior. One of them has 11 cubes as
summands and admits an unexpected symmetry group of order 12.

We establish basic information regarding symmetry groups of decompositions and outline
two approaches for finding new rank decompositions of M⟨n⟩ for larger n.

1. Introduction

This is the second in a planned series of papers on the geometry of rank decompositions

of the matrix multiplication tensor M⟨n⟩ ∈ C
n
2

⊗Cn
2

⊗Cn
2

. Our goal is to obtain new rank
decompositions of M⟨n⟩ by exploiting symmetry. For a tensor T ∈ Cm⊗Cm⊗Cm, the rank of
T is the smallest r such that T = ∑r

j=1 aj⊗bj⊗cj , with aj , bj , cj ∈ C
m. The rank of M⟨n⟩ is a

standard complexity measure of matrix multiplication, in particular, it governs the total number
of arithmetic operations needed to multiply two matrices.

In this paper we present rank 23 decompositions of M⟨3⟩ that have large symmetry groups,
in particular all admit the standard cyclic Z3-symmetry of permuting the three tensor factors.
Although many rank 23 decompositions of M⟨3⟩ are known [15, 13], none of them was known to
admit the standard cyclic Z3-symmetry.

We describe techniques to determine symmetry groups of decompositions and to determine if
two decompositions are in the same family, as defined in ➜4. We also develop a framework for
using representation theory to write down new rank decompositions for M⟨n⟩ for all n. Similar
frameworks are also being developed implicitly and explicitly in [5] and [12].

As discussed below, decompositions come in families. DeGroote [8] has shown, in contrast
to M⟨3⟩, the family generated by Strassen’s decomposition is the unique family of rank seven
decompositions of M⟨2⟩. Unlike M⟨2⟩, it is still not known if the tensor rank of M⟨3⟩ is indeed
23. The best lower bound on the rank is 16 [17]. There have been substantial unsuccessful
efforts to find smaller decompositions by numerical methods. While some researchers have
taken this as evidence that 23 might be optimal, it just might be the case that rank 22 (or
smaller) decompositions might be much rarer than border rank 22 decompositions, and so using
numerical search methods, and given initial search points, when they converge, with probability
nearly one would converge to border rank decompositions.

Key words and phrases. matrix multiplication complexity, alternating least squares, MSC 68Q17, 14L30,
15A69.
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In this paper we focus on decompositions with standard cyclic symmetry: viewed as a trilinear
map, matrix multiplication is (X,Y,Z) ↦ trace(XY Z), where X,Y,Z are n×n matrices. Since

trace(XY Z) = trace(Y ZX), the matrix multiplication tensor M⟨n⟩ ∈ C
n
2

⊗Cn
2

⊗Cn
2

= Mat⊗3n×n
has a Z3 symmetry by cyclically permuting the three factors. If one applies this cyclic permu-
tation to a tensor decomposition of M⟨n⟩, it is transformed to another decomposition of M⟨n⟩.
When a decomposition is transformed to itself, we say the decomposition has cyclic symmetry

or Zstd
3 -invariance.

In ➜2 we present three of our examples. We explain the search methods used in ➜3. We then
discuss techniques for determining symmetry groups in ➜4 and determine the symmetry groups
of our decompositions in ➜5. Our searches sometimes found equivalent decompositions but in
different coordinates, and the same techniques enabled us to identify when two decompositions
are equivalent. Further techniques for studying decompositions are presented in ➜6 and ➜8,
respectively in terms of configurations of points in P

n−1 and eigenvalues. In ➜7, we precisely
describe the subspace of Z3-invariant tensors in Mat⊗3n×n, as well as the subspaces invariant
under other finite groups. In an appendix ➜A, we present additional decompositions that we
found.

Why search for decompositions with symmetry? There are many examples where the
optimal decompositions (or expressions) of tensors with symmetry have some symmetry. This
is true of M⟨2⟩ [6, 4], the monomial x1⋯xn [19], also see [16, ➜7.1], the optimal determinantal
expression of perm3 [18], and other cases. In any case, imposing the symmetry i) reduces the
size of the search space, and ii) provides a guide for constructing decompositions through the
use of “building blocks”.

Notation and conventions. A,B,C,U,V,W are vector spaces, A∗ is the dual vector space to
A, GL(A) denotes the group of invertible linear maps A→ A, SL(A) the maps with determinant
one, and PGL(A) = GL(A)/{C IdA /0} the group of projective transformations of projective
space PA. The action of GL(A) on A⊗A∗ descends to an action of PGL(A). If a ∈ A, [a]
denotes the corresponding point in projective space. Sd denotes the permutation group on d

elements and Zd denotes the cyclic group of order d. For X ⊂ PV , X̂ ⊂ V denotes its pre-image
under the projection map union the origin. X(×r) denotes the quotient X×r/Sr. We write
SLm = SL(Cm), GLm = GL(Cm), and HSLm ⊂ SLm is the subgroup of diagonal matrices. For
a matrix a, aij denotes the entry in the i-th row and j-th column.

Acknowledgements. Work on this paper began during the fall 2014 semester program Algo-

rithms and Complexity in Algebraic Geometry at the Simons Institute for the Theory of Com-
puting. We thank the Institute for bringing us together and making this paper possible.

2. Examples

2.1. A rank 23 decomposition of M⟨3⟩ with Z4 ×Z3 symmetry. Let Za0
4 ⊂ GL3 ⊂ GL×33 be

generated by

(1) a0 =
⎛⎜⎝
0 0 −1
1 0 −1
0 1 −1

⎞⎟⎠ ,
where the action on x⊗y⊗z where x, y, z are 3×3-matrices is x⊗y⊗z ↦ a0xa0

−1⊗a0ya0−1⊗a0za0−1

and let Zstd
3 denote the standard cyclic symmetry.
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Here is the decomposition, we call it SZ4×Z3
:

M⟨3⟩ = − ⎛⎜⎝
0 0 −1
1 0 −1
0 1 −1

⎞⎟⎠
⊗3

(2)

+Za0
4 /Za2

0

2 ⋅
⎛⎜⎝
0 1 0
0 1 0
0 0 0

⎞⎟⎠
⊗3

(3)

+Za0
4 ⋅
⎛⎜⎝
1 0 0
0 0 0
0 0 0

⎞⎟⎠
⊗3

(4)

+Za0
4 ⋅
⎛⎜⎝
0 −1 0
1 −1 0
0 0 0

⎞⎟⎠
⊗3

(5)

+Zstd
3 ×Z

a0
4 ⋅
⎛⎜⎝
0 0 0
0 0 1
0 0 0

⎞⎟⎠⊗
⎛⎜⎝
0 0 0
0 0 0
−1 1 0

⎞⎟⎠⊗
⎛⎜⎝
0 0 0
0 1 −1
0 1 −1

⎞⎟⎠ .(6)

The decomposition is a sum of 23 terms, each of which is a trilinear form on matrices. For

example, the term
⎛⎜⎝
0 0 0
0 0 1
0 0 0

⎞⎟⎠⊗
⎛⎜⎝
0 0 0
0 0 0
−1 1 0

⎞⎟⎠⊗
⎛⎜⎝
0 0 0
0 1 −1
0 1 −1

⎞⎟⎠ sends a triple of matrices (x, y, z) to
the number x23(y32−y31)(z22−z23+z32−z33). This expresses M⟨3⟩ in terms of five Z4×Z3-orbits,
of sizes 1,2,4,4,12.

2.2. An element of the SZ4×Z3
family with a0 diagonalized. It is also illuminating to

diagonalize a0, in other words decompose the decomposition with respect to the Z4 action: In
the following plot each row of 3×3 matrices forms an orbit under the Z4-action. In the first four
rows are the eleven 3 × 3 matrices that appear as cubes in the decomposition. In remaining 4
rows each of the four columns forms three rank one tensors by tensoring the three matrices in
the column in three different orders: 1-2-3, 2-3-1, and 3-1-2.

Each complex number in each matrix is depicted by plotting its position in the complex plane.
To help identify the precise position, a square is drawn with vertices (−1

2
,−1

2
), (1

2
,−1

2
), (−1

2
, 1
2
),

(1
2
, 1
2
). To quickly identify the absolute value of a complex number they are color coded:

Symbol for the complex number

absolute value 1 1√
2

1

2
√
2

1
2

√
5

2
√
2

Numbers with a blue background are the sum of two numbers with a yellow background.
Numbers with a purple background are twice the numbers with a yellow background. Numbers
with a red background are twice the numbers with a blue background. Numbers with a green
background are the sum of a number with a yellow background and a number with a blue
background.

Matrix cells with zeros are left empty.
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2.3. A cyclic-invariant decomposition in the Laderman family. Let SLaderman denote the
rank 23 Laderman decomposition of M⟨3⟩. By [4] the symmetry group of this decomposition (see

➜4) is ΓSLaderman
= (Z2 ×Z2)⋊(Z3 ⋊Z2) ≃S4, where Z2 ×Z2 ⊂ SL

×3
3 . We found a decomposition,

which we call SLader−Zstd
3

that we identified as a Z
std
3 -invariant member of the Laderman family

in the sense of ➜4.
Let

τ23 =
⎛⎜⎝
1 0 0
0 0 1
0 1 0

⎞⎟⎠ , ǫ2 =
⎛⎜⎝
1 0 0
0 −1 0
0 0 1

⎞⎟⎠ , τ13 =
⎛⎜⎝
0 0 1
0 1 0
1 0 0

⎞⎟⎠ ,

Let φ(x⊗y⊗z) = τ13xτ13⊗τ13y⊗zτ13, and let ζ(x⊗y⊗z) = ǫ2yT ǫ2⊗ǫ2xT ǫ2⊗ǫ2zT ǫ2. Let π be the
generator of Zstd

3 . Let Γ denote the group generated by π,φ, and ζ.
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M⟨3⟩ =
⎛⎜⎝
0 0 0
0 1 0
0 0 0

⎞⎟⎠
⊗3

(7)

+ Γ/(Zπ
3 ⋊Zζ

2) ⋅
⎛⎜⎝
0 0 0
0 0 0
0 0 1

⎞⎟⎠
⊗3

(8)

+ Γ/(Zπ
3 ⋊Z

ζ
2) ⋅
⎛⎜⎝
−1 1 0
−1 0 0
0 0 0

⎞⎟⎠
⊗3

(9)

+ Γ/(Zφ
2 ⋊Z

ζ
2) ⋅
⎛⎜⎝
0 −1 0
0 0 0
0 0 0

⎞⎟⎠⊗
⎛⎜⎝
1 −1 0
1 −1 −1
0 1 1

⎞⎟⎠⊗
⎛⎜⎝
0 0 0
1 0 0
0 0 0

⎞⎟⎠(10)

+ Γ/Zπ
3 ⋅
⎛⎜⎝
1 0 0
1 0 0
0 0 0

⎞⎟⎠
⊗3

(11)

These five orbits are respectively of sizes 1,4,4,6,8. There are five Z
std
3 invariant terms, one

from each of (7),(8),(9) and two from (11) because ζ preserves Zstd
3 -invariance.

We originally found this decomposition by numerical methods. The incidence graphs dis-
cussed in ➜4.3 gave us evidence that it should be in the Laderman family, and then it was
straightforward to find the transformation that exchanged SLaderman and SLader−Zstd

3

, namely

x⊗y⊗z ↦ τ12x⊗yǫ2τ12⊗τ12ǫ2zτ12. See ➜4.3 for more discussion. As shown in in [4], Γ is
isomorphic to S4 and these are all the symmetries of the Laderman family. Translated toSLaderman as presented in [4], these five orbits are respectively {19}, {20,21,22,23}, {4,7,12,16},{1,3,6,10,11,14} and {2,5,8,9,13,15,17,18}.

Remark 2.1. As pointed out in [20], there are similarities between this decomposition and
Strassen’s.

Remark 2.2. The decompositions of Johnson-McLouglin [13] cannot have Z3-invariant decom-
positions for rank reasons: The first space of decompositions has five terms (those numbered
3,12,16,22,23 in [13]) where there are two matrices of rank one and one of rank greater than
one, while to have any external Z3-symmetry, the number of such would have to be a multiple
of three. The second space has a unique matrix of rank three appearing (23b), so is ruled out
for the same reason.

2.4. Decomposition S2fix−Z3
. Here is a decomposition with two Z3-fixed points:
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M⟨3⟩ =
⎛⎜⎝
1 0 0
0 0 1
0 0 1

⎞⎟⎠
⊗3

(12)

+ ⎛⎜⎝
0 0 0
0 1 −1
0 0 0

⎞⎟⎠
⊗3

(13)

+Zstd
3 ⋅
⎛⎜⎝
0 1 0
0 0 1
0 0 0

⎞⎟⎠⊗
⎛⎜⎝
0 0 0
0 1 −1
0 1 −1

⎞⎟⎠⊗
⎛⎜⎝
0 0 0
1 0 −1
0 0 0

⎞⎟⎠(14)

+Zstd
3 ⋅
⎛⎜⎝
0 −1 1
0 0 0
0 0 0

⎞⎟⎠⊗
⎛⎜⎝
0 0 0
0 0 0
0 0 1

⎞⎟⎠⊗
⎛⎜⎝
0 0 0
0 0 0
1 0 0

⎞⎟⎠(15)

+Zstd
3 ⋅
⎛⎜⎝
1 0 0
1 0 0
0 0 0

⎞⎟⎠⊗
⎛⎜⎝
0 −1 1
0 0 0
0 0 0

⎞⎟⎠⊗
⎛⎜⎝
0 0 0
0 0 0
0 1 0

⎞⎟⎠(16)

+Zstd
3 ⋅
⎛⎜⎝
1 0 0
0 0 1
0 0 0

⎞⎟⎠⊗
⎛⎜⎝
0 1 0
0 0 1
0 0 1

⎞⎟⎠⊗
⎛⎜⎝
0 0 0
1 0 −1
0 1 −1

⎞⎟⎠(17)

+Zstd
3 ⋅
⎛⎜⎝
1 0 0
0 0 0
0 0 0

⎞⎟⎠⊗
⎛⎜⎝
0 0 1
0 0 1
0 0 1

⎞⎟⎠⊗
⎛⎜⎝
0 0 0
0 0 0
1 −1 0

⎞⎟⎠(18)

+Zstd
3 ⋅
⎛⎜⎝
0 0 0
0 0 1
0 0 0

⎞⎟⎠⊗
⎛⎜⎝
0 1 0
0 1 0
0 1 0

⎞⎟⎠⊗
⎛⎜⎝
0 0 0
−1 1 0
0 0 0

⎞⎟⎠(19)

+Zstd
3 ⋅
⎛⎜⎝
0 0 0
0 0 1
0 0 1

⎞⎟⎠⊗
⎛⎜⎝
1 0 0
1 0 0
1 0 0

⎞⎟⎠⊗
⎛⎜⎝
−1 1 0
0 0 0
0 0 0

⎞⎟⎠(20)

An interesting feature of this decomposition is that it “nearly” has a transpose-like symmetry,
as discussed in later sections.

3. Discussion on the numerical methods used

Our techniques for discovering cyclic-invariant decompositions use numerical optimization
methods that are designed to compute approximations rather than exact decompositions. We
also use heuristics in order to encourage sparsity in the solutions, and a fortunate by-product
of the sparsity is that the nonzero values often tend towards a discrete set of values from which
an exact decomposition can be recognized. Our methods are based on techniques that have
proved successful in discovering generic exact decompositions (those that have no noticeable
symmetries) [1, 22]; we summarize this approach in Section 3.1. Our search process can be
divided into two phases. First, as we discuss in Section 3.2, we find a dense, cyclic-invariant,
approximate solution using nonlinear optimization methods. Then, as we describe in Section
3.3, we transform the dense approximate solution to an exact cyclic-invariant decomposition
using heuristics that encourage sparsity.
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3.1. Alternating Least Squares. Computing low-rank approximations of tensors is a common
practice in data analysis when the data represents multi-way relationships. The most popular
algorithm for computing approximations with CANDECOMP/PARAFAC (CP) structure, i.e.,
rank decompositions, is known as alternating least squares (ALS) [14]. In particular, in the case
of the matrix multiplication tensor, the objective function of the optimization problem is given
by

(21) argmin
X,Y,Z

∥M⟨n⟩ − R∑
r=1

xr⊗yr⊗zr∥ ,
where X, Y , and Z are n2×R factor matrices with rth columns given by xr, yr, and zr and this
and all norms correspond to the square root of the sum of squares of the entries of the tensor
(or matrix). The objective function itself is nonlinear and non-convex and cannot be solved
in closed form. However, if two of the three factor matrices are held fixed, then the resulting
objective function is a linear least squares problem and can be solved using linear algebra. Thus,
ALS works by alternating over the factor matrices, holding two fixed and updating the third,
and iterating until convergence.

In general, ALS iterations are performed in floating point arithmetic. While an objective
function value of 0 corresponds to a rank decomposition, with ALS we can hope for an objective
function value only as small as the finite precision allows. In the case of the matrix multiplication
tensor, there are multiple pitfalls that make it difficult to find approximations that approach
objective function values of 0. The most successful technique was proposed by Smirnov and uses
regularization, with objective function given by

(22) argmin
X,Y,Z

∥M⟨n⟩ − R∑
r=1

xr⊗yr⊗zr∥ + λ (∥X − X̃∥ + ∥Y − Ỹ ∥ + ∥Z − Z̃∥) ,
for judicious choices of scalar λ and matrices X̃, Ỹ , and Z̃ [22]. We discuss effective choices
for the regularization parameters in Section 3.3. This method works for the cases of non-square
matrix multiplication and has been used to discover exact rank decompositions for many small
cases [1, 22], but it does not encourage solutions to reflect any symmetries.

3.2. Nonlinear Optimization for Dense Approximations. To enforce cyclic invariance
on rank decompositions, we can impose structure on the factor matrices X, Y , and Z. In
particular, if a cyclic-invariant approximation includes the component xr⊗yr⊗zr, then it must
also include zr⊗xr⊗yr and yr⊗zr⊗xr. This implies either that all three components appear or
that xr = yr = zr, which means the factor matrices have the following structure:

X = (A B C D)
Y = (A D B C)(23)

Z = (A C D B) ,
where A is an n2 × P matrix and B,C,D are n2 × Q matrices with P + 3Q = R. With this
structure, (21) becomes

(24) argmin
A,B,C,D

XXXXXXXXXXXM⟨n⟩ −
P∑
p=1

ap⊗ap⊗ap − Q∑
q=1
(bq⊗cq⊗dq + dq⊗bq⊗cq + cq⊗dq⊗bq)

XXXXXXXXXXX .
Note that the total number of variables (now spread across 4 matrices) is reduced by a factor
of 3.
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Again, this objective function is nonlinear and non-convex. It is possible to use an ALS
approach to drive the objective function value to 0; however, while (24) is linear in B, C, and
D, it is not linear in A. Thus, the optimal update for A, for fixed B, C, and D, cannot be
computed in closed form. While there are numerical optimization techniques for A, we were not
successful in using an ALS approach to drive the objective function value close to zero.

Instead, we used generic nonlinear optimization software to search for cyclic-invariant approx-
imations. In particular, we used the LOQO software package [23], which relies on the AMPL
[9] modeling language to specify the optimization problem. In order to find solutions, we try
all possible values of P and Q, use multiple random starting points, and constrain the variable
entries to be no greater than 1 in absolute value. For fixed R, there are ⌊R/3⌋ possible values
for P and Q. Multiple starting points are required because the objective function is non-convex:
numerical optimization techniques are sensitive to starting points in this case, with approxima-
tions often getting stuck at local minima. Constraining the variables to be no greater than 1 in
absolute value is a technique to avoid converging numerically to border rank decompositions, in
which case some variable values must grow in magnitude to continue to improve the objective
function value. Driving the objective function value to zero with bounded variable values ensures
that the approximation corresponds to a rank decomposition.

When we are successful, we obtain matrices A,B,C,D that correspond to an objective func-
tion value very close to zero. Thus, the approximation has the cyclic invariance we desire.
However, these matrices are dense and have floating point values throughout the [−1,1] range.
Rounding these floating point values, even to a large set of discrete rational values, typically
does not yield an exact rank decomposition. The next section describes the techniques we use
to convert dense approximate solutions to exact solutions.

3.3. Heuristics to Encourage Sparsity for Exact Decompositions. In order to obtain
exact decompositions, we use the ALS regularization heuristics that proved effective for the
non-invariant case, given in equation (22). However, those techniques ignore the cyclic-invariant
structure in the dense approximations we obtain from the techniques described in ➜3.2. The
heuristic we used to discover cyclic-invariant rank decomposition consists of alternating between
ALS iterations with regularization and projection of the approximation back to the set of cyclic-
invariant solutions.

We now describe the specifics of the regularization terms from (22). The scalar parameter λ
determines the relative importance between an accurate approximation of the matrix multipli-
cation tensor and adherence to the regularization terms. In the context of ALS, only one of the
regularization terms affects the optimization problem when updating one factor matrix. The
target matrices X̃, Ỹ , Z̃ are designed to encourage the corresponding factor matrices to match
a desired structure, and they can be defined differently for each iteration of ALS. Here is the
technique proposed by Smirnov [22]. Consider the update of factor matrix X. By default, X̃ is
set to have the values of X from the previous iteration. If any of the values are larger than 1 (or

any specified maximum value), then the corresponding value of X̃ is set to magnitude 1 with the

corresponding sign. Then, for a given number z of desired zeros, the smallest z values of X̃ are
set to exactly 0. Thus, the regularization term ∥X −X̃∥F will encourage any large values of X to
tend towards ±1 and the smallest z values to tend toward 0. The parameter z can be varied over
iterations and also across factor matrices (though in the case of cyclic-invariant approximations
the set of values within each factor matrix is the same as those of the other factor matrices).

Because ALS does not enforce cyclic invariance, the approximation will tend to deviate from
the structure given in equation (23). We project back to a cyclic-invariant approximation by
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setting all three values that should be the same in each of the factor matrices to their average
value.

Fortunately, perhaps miraculously, by encouraging sparsity and bounding the variable values,
when many entries are driven to zero, the nonzero values tend towards a discrete set of values
(usually ±1). However, the process of converting a dense approximation to an exact decompo-
sition involves manual tinkering and much experimentation. The basic approach we have used
successfully is to maintain a tight approximation to the matrix multiplication tensor, start with
z = 0, gradually increase z, frequently project back to cyclic invariance, and play with the λ

parameter between values of 10−3 and 1. ALS iterations are relatively cheap, so often 100 or
1000 iterations can be taken with a given parameter setting before changing the configuration.
While this process is artful and lacks any guarantees of success, we have nearly always been able
to convert cyclic-invariant dense approximations of M⟨3⟩ to exact decompositions.

4. Symmetry groups of tensors and decompositions

In this section we explain how we found the additional symmetries beyond the Z
std
3 that

was built into the search, and describe the full symmetry groups of the decompositions. We
establish additional properties regarding symmetries for use in future work. We begin with a
general discussion of symmetry groups of tensors and their decompositions.

4.1. Symmetry groups of tensors. Let V be a complex vector space and let T ∈ V ⊗k. Define
the symmetry group of T , GT ⊂ GL(V )×k ⋊Sk to be the subgroup preserving T , where Sk acts
by permuting the factors.

For a rank decomposition T = ∑r
j=1 tj , where each tj has rank one, i.e., tj = v1j⊗⋯⊗vkj , define

the set S ∶= {t1,⋯, tr}, which we also call the decomposition, and the symmetry group of the

decomposition ΓS ∶= {g ∈ GT ∣ g ⋅ S = S}. We also consider S as a point of the variety of r-tuples

of unordered points on the Segre variety of rank one tensors, denoted Ŝeg(PV ×⋯× PV )(×r).
If g ∈ GT , then g ⋅ S ∶= {gt1,⋯, gtr} is also a rank decomposition of T , and Γg⋅S = gΓSg−1

(see [6]), so decompositions come in families parametrized by GT /ΓS , and each member of the
family has the same abstract symmetry group. We reserve the term family for GT -orbits. The
quasi-projective subvariety ΣT

r ⊂ Ŝeg(PA1 ×⋯×PAk)
(×r) of all rank r decompositions is a union

of GT orbits.
If one is not concerned with the rank of a decomposition, then for any finite subgroup Γ ⊂ GT ,

T admits rank decompositions S with Γ ⊆ ΓS , by taking any rank decomposition of T and then
averaging it with its Γ-translates. We will be concerned with rank decompositions that are
minimal or close to minimal, so only very special groups Γ can occur.

4.2. Matrix multiplication. The symmetry groups of matrix multiplication decompositions
are useful for determining if two decompositions lie in the same family, and the groups that
appear in known decompositions will be a guide for constructing decompositions in future work.

The symmetry groups of many of the decompositions that have already appeared in the
literature are determined in [5]. Burichenko does not use the associated graphs discussed below.
One can recover the results of [5] with shorter proofs by using them.

Let T = M⟨n⟩ ∈ C
n
2

⊗C
n
2

⊗C
n
2

=∶ A⊗B⊗C = (U∗⊗V )⊗(V ∗⊗W )⊗(W ∗
⊗U) where U,V,W =

C
n. Recall that M⟨n⟩ is the re-ordering of IdU ⊗ IdV ⊗ IdW and

(25) GM⟨n⟩ = [(PGL(U) × PGL(V ) × PGL(W )) ⋊Z3] ⋊Z2 ⊂ GL(A) ×GL(B) ×GL(C) ⋊S3,

see, e.g., [7, Thms. 3.3,3.4], [6, Prop. 4.1], [11, Thm. 2.9] or [5, Prop. 4.7]. The Z2 ⊂
GL(A) ×GL(B) ×GL(C) ⋊S3 may be generated by e.g., (a⊗b⊗c) ↦ (aT⊗cT⊗bT ), and the Z3
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by cyclically permuting the factors A,B,C. The Z3 ⋊ Z2 is isomorphic to S3, but it is more
naturally thought of as Z3 ⋊Z2, since it is not the S3 appearing in (25).

Thus if S is a rank decomposition of M⟨n⟩, then ΓS ⊂ [(PGL(U) × PGL(V ) × PGL(W )) ⋊
Z3] ⋊Z2.

Remark 4.1. As pointed out by Burichenko [4], for matrix multiplication rank decomposi-

tions one can define an extended symmetry group Γ̂S by viewing A⊗B⊗C = (U∗⊗U)⊗3 =(U∗)⊗3⊗(U⊗3). We do not study such groups in this paper.

We call a Z2 ⊂ ΓS a transpose like symmetry if it corresponds to the symmetry of M⟨n⟩ given
by x⊗y⊗z ↦ xT⊗zT⊗yT , or a cyclic variant of it such as x⊗y⊗z ↦ yT⊗xT⊗zT , composed with
an element of PGL(U) × PGL(V ) × PGL(W ) such that the total map is an involution on the
elements of S. Transpose like symmetries where the elements of PGL(U)×PGL(V )×PGL(W )
are all the identity (which we will call convenient transpose symmetries) do not appear to be
compatible with standard cyclic symmetries in minimal decompositions, at least this is the case
for rank seven decompositions of M⟨2⟩ and the known rank 23 decompositions of M⟨3⟩.

Example 4.2. Let xij , 1 ≤ i, j ≤ n be a basis of A, yij a basis of B, and zij a basis of C. Consider

the standard decomposition Sstd of M⟨n⟩ of size n3:

(26) M⟨n⟩ =
n∑

i,j,k=1
xij⊗yjk⊗zki .

Let HSLn ⊂ SLn denote the maximal torus (diagonal matrices). It is clear ΓSstd ⊇ (HSLn ⋊
Sn)×3 ⋊ (Z3 ⋊Z2) because for ((λ1,⋯, λn), (µ1,⋯, µn), (ν1,⋯, νn)) ∈ (HSLn)×3, we have

(λiµj
−1xij)⊗(µjνk

−1yj
k
)⊗(νkλi

−1zki ) = xij⊗yjk⊗zki
and for all σ, τ, η ∈Sn, we have the equality of sets {∪i,j,kxij⊗yjk⊗zki } = {∪i,j,kxσ(i)τ(j)⊗y

τ(j)
η(k)⊗z

η(k)
σ(i) },

the cyclic symmetry is evident, and the Z2 may be generated e.g., by x⊗y⊗z ↦ xT⊗zT⊗yT .

The Comon conjecture [2, 3], in its original form, asserts that a tensor T ∈ (CN)⊗d that
happens to be symmetric, will have an optimal rank decomposition consisting of rank one
symmetric tensors, that is, the symmetric tensor rank of T equals the usual tensor rank. An
explicit counter-example to this when N = 800 has been asserted in [21]. Nevertheless, there
appear to be many instances where it is known to hold, see, e.g., [10, 3] so we pose the following
question:

Question 4.3 (Generalized Comon Question). Given T ∈ (CN)⊗d that is invariant under some
Γ ⊂ Sd, when does there exist an optimal rank decomposition S of T that is Γ-invariant, i.e.,
Γ ⊆ ΓS?

4.3. Invariants associated to a decomposition of M⟨n⟩. Let M⟨n⟩ = ∑r
j=1 tj be a rank de-

composition S for M⟨n⟩ and write tj = aj⊗bj⊗cj . Partition S by rank triples into disjoint subsets:S ∶= {S1,1,1,S1,1,2,⋯,Sn,n,n}, where for s ≤ t ≤ u we set Ss,t,u = {tj ∣ {rank(aj), rank(bj), rank(cj)} =
{s, t, u}}. Then ΓS preserves each Ss,t,u.

We can say more about ΓS1,1,1 : If a ∈ U∗⊗V and rank(a) = 1, then there are unique points[µ] ∈ PU∗ and [v] ∈ PV such that [a] = [µ⊗v], so define SU∗ ⊂ PU∗ and SU ⊂ PU to correspond

to the elements in PU∗ (resp. PU) appearing in S1,1,1. Let S̃U∗ ⊂ PU∗ and S̃U ⊂ PU correspond
to the elements appearing in some rank one matrix in S.

Since we are concerned with decompositions with a standard cyclic symmetry, we will haveSU ≃ SV ≃ SW and SU∗ ≃ SV ∗ ≃ SW ∗ and similarly for the tilded spaces.
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Figure 1. Incidence graph of standard decomposition
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Figure 2. Incidence graph of decomposition SZ4×Z3

Define a bipartite graph IGS , the incidence graph where the top vertex set is given by elements
in S̃U∗ (or SU∗) and the bottom vertex set by elements in S̃U . Draw an edge between elements[µ] and [v] if they are incident, i.e., µ(v) = 0. Geometrically, [v] belongs to the hyperplane
determined by [µ] (and vice-versa). One can weight the vertices of this graph in several ways,
the simplest is just by the number of times the element appears in the decomposition. In practice
(see the examples below) this has been enough to determine the symmetry group ΓS , in the sense
that it cuts the possible size of the group down and it becomes straightforward to determine ΓS
as a subgroup of the symmetry group of IGS .

Incidence graphs for the four decompositions are given in Figures 1, 2, 3, and 4. Here interpret
the top set of vectors as column vectors and the bottom set as row vectors. Then µ from the
top set is incident to v from the bottom set if the scalar vµ is zero, and then µ and v are joined
by an edge in the graph.

For decompositions where the three copies of Matn×n have been identified, such as our Zstd
3 -

invariant decompositions, consider the restricted family PGLn ⋊ (Z3 ⋊ Z2) ⋅ S, where PGLn ⊂
PGL×3n is diagonally embedded and consider the corresponding restricted symmetry groups
Γres
S ⊂ PGLn ⋊ (Z3 ⋊ Z2). We define a second graph PGS that is an invariant of this restricted
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Figure 3. Incidence graph of decomposition SLader−Zstd
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Figure 4. Incidence graph of decomposition S2fix−Z3

family, the pairing graph which has an edge between [µ] and [v] if µ⊗v appears in the decompo-
sition, and triples of edges that appear in the same summands are grouped by color, and one can
weight the edge by the number of times it appears. Pairing graphs for the four decompositions
are given in Figures 5, 6, 7, and 8. The dashed black lines correspond to cubes, so should be
interpreted as edges with multiplicity three.

As is clear from this discussion, one can continue labeling and coloring to get additional
information about the decomposition.

5. Symmetry groups of our decompositions

With the graphs in hand, it is straightforward to determine the symmetry groups.

5.1. Symmetries of SZ4×Z3
.

Proposition 5.1. The symmetry group of SZ4×Z3
is ΓSZ4×Z3 = Z

a0
4 × Zstd

3 , where Z
a0
4 ⊂ PGL3 ⊂

PGL×33 is generated by a0 of (1).
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Figure 5. Pairing graph of standard decomposition
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Figure 6. Pairing graph of decomposition SZ4×Z3
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Figure 7. Pairing graph of decomposition SLader−Zstd
3
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Figure 8. Pairing graph of decomposition S2fix−Z3

Proof. The incidence graph shows no transpose-like symmetry is possible as points occur with
different frequencies in the two spaces. Since we already know the Zstd

3 symmetry, we are reduced
to determining ΓSZ4×Z3 ∩ PGL×33 .

Say γ = (g, h, k) ∈ PGL×33 preserves SZ4×Z3
. Since a0 is is the unique term in the decomposition

of full rank, a⊗30 is fixed by γ. Since a0 is fixed up to scale, [a0] = [ga0h−1] = [ha0k−1] = [ka0g−1].
This implies, up to a scale that we can ignore, that a30 = ga0h

−1ha0k−1ka0g−1 = ga30g
−1. Hence

a30 and g commute. (We will argue similarly several times in what follows.) Two matrices A,B,
with B invertible, commute if and only if A commutes with B−1. Since a30 = a

−1
0 , we have g, g−1

commute with a0. This reasoning holds for h and k as well.
Since g, h, k all commute with a0, γ commutes with the Z4 action. Since γ preserves rank,

the orbit (5) must be fixed. Since γ commutes with the Z4 action, it suffices to determine it up
to a power of the Z4 action. Namely we can expect γ to fix one of the elements of the 4 orbits
of rank 2 matrices, e.g., the matrix in (5)

(27) M =
⎛⎜⎝
0 −1 0
1 −1 0
0 0 0

⎞⎟⎠ .
Case 1: M = gMh−1 = hMk−1 = kMg−1, which implies g, h, k all commute with M3 (using the

same reasoning as above). The only matrices which commute with both M3 and a0 are scalar
multiples of the identity and we conclude.

Case 2: a0Ma0
−1 = gMh−1 = hMk−1 = kMg−1 which implies a0M

3a0
−1 = gM3g so a0

−1gM3 =(a0−1g)−1. Hence a0
−1g commutes with M3 and a0, thus is a scalar multiple of the identity and

g = h = k = a0, which has already been accounted for.
The other two cases, like case 2, only with a20 and a30 playing the role of a0, are similar. �

Proposition 5.2. In the family of decompositions PGL×33 ⋊ (Z3 ⋊ Z2) ⋅ SZ4×Z3
, the set of Zstd

3 -

invariant decompositions is the image of the diagonal PGL3-action on SZ4×Z3
times the standard

transpose Z2.

Proof. We need to show any γ = (g, h, k) ∈ PGL×33 that takes SZ4×Z3
to another decomposition

invariant under the same standard Z3 satisfies g = h = k.
Since γ fixes rank and there is only one tensor consisting of three matrices of rank 3, γ ⋅ a⊗30

must be a Z3-fixed point. Thus ga0h
−1 = ha0k

−1 = ka0g
−1. Write a = ga0h

−1. This implies
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a3 = ga30g
−1 = ha30h

−1 = ka30k
−1. Equivalently a−3 = ga0g−1, and the same for h, k. Thus

a = a−3gh−1 = gh−1a−3.

Equivalently

a4 = gh−1.

We have g−1ag is a cube root of a−10 . Recall that a−10 has distinct eigenvalues −1, i,−i so all
cube roots must likewise have distinct eigenvalues. This uniquely determines the finite choices
of eigensystems for our cube roots, yielding 27 possibilities. The Z

std
3 action commutes with

the diagonal PGL3, so we can assume g = Id. Then a is a cube root of a−10 , so a has order 12.
Combining this we the observations a4 = h−1 = hk−1 shows h = a−4 and k = a−8. This leaves us
with 27 total candidate restricted families that have a rank three Z4 ×Z3-fixed summand.

Since g, h, k all commute with a0 = a
−3, γ commutes with the Z4 action. Consider the action

of γ on the two terms in (3). Since the Z4 action sends Z3 fixed points to Z3 fixed points, these
summands each map to Z3 fixed points.

For γ to send M of (27) to another Z3 fixed point we must have

Ma4 = a−4Ma8 = a−8M = a4M.

Testing all 27 cube roots of a−10 we see that M commuting with a−4 implies a is a scalar times
a0, and we may assume a = a0, so a4 = Id. This implies that there are no other Z

std
3 -invariant

subfamilies in the family. �

5.2. Symmetries of SLader−Z3
. The symmetry group of GSLader−Z3

has already been discussed.

Proposition 5.3. In Laderman the family of decompositions, the set of Zstd
3 -invariant decom-

positions is the image of the diagonal PGL3-action on SLader−Z3
times the standard transpose

Z2.

The proof is very similar to that of Proposition 5.2, so is omitted.

5.3. Symmetries of S2fix−Z3
.

Proposition 5.4. The symmetry group of S2fix−Z3
is ΓS2fix−Z3 = Z3.

Proof. The incidence and pairing graphs have no joint automorphisms, which shows there are
no additional diagonal GL3 ⊂ GL×33 symmetries.

To show, despite the symmetry of the graphs, that there is no transpose-like symmetry, i.e., a
symmetry of the form x⊗y⊗z ↦ gxTk−1⊗kzTh−1⊗hyT g−1, first note that the first matrix in (14),
call this M14a, must satisfy gMT

14a = M14ah as (14) is the only triple with ranks (2,1,1), and
similarly (using the Z3-action), hM

T
14a = M14ak and kMT

14a = M14ag. Moreover the second and
third matrices in this triple, call them M14b,M14c must satisfy hMT

14ck
−1 =M14b and kMT

14bg
−1 =

M14c, which forces

(28) g = h = k =
⎛⎜⎝
s s s

s s 0
s 0 0

⎞⎟⎠
and we may normalize s = 1. Now apply this to the triple in (17), we get the triple

⎛⎜⎝
0 1 0
0 0 1
0 0 1

⎞⎟⎠⊗
⎛⎜⎝
1 0 0
0 0 1
0 0 0

⎞⎟⎠⊗
⎛⎜⎝
0 0 0
1 0 −1
0 1 −1

⎞⎟⎠
which is not a triple appearing in the decomposition.
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It remains to show there are no additional symmetries coming from GL×33 . There are only
two Z3 fixed points in S2fix−Z3

, M12 appearing in (12) of rank one and M13 appearing in (13),
so these must be fixed by any (g, h, k) ∈ PGL(U) ×PGL(V ) ×PGL(W )-symmetry. Since both
of these matrices are idempotent, we get, by an argument as in the proof of Proposition 5.2,

M12 =M
3
12 = gM

3
12g
−1 = gM12g

−1,(29)

M13 =M
3
13 = gM

3
13g
−1 = gM13g

−1.

There is only one tensor with ranks (2,1,1) in the decomposition, so this also must be fixed.
Since it is Z3 invariant, we get the (1,2,1) tensor and the (1,1,2) tensor also must be fixed. These
matrices are M14a,M14b,M14c. Then M14a = gM14ah

−1, M14b = hM14bk
−1, M14c = kM14cg

−1.
Combining this we get M14a,M14b,M14c commutes with g.

Finally we check that the only matrix which commutes with M12,M13,M14a,M14b,M14c is
the identity matrix. �

Remark 5.5. Remarkably, the group element (28) splits M⟨3⟩ into the sum of two tensors: T1,
the sum of (12),(13),(14),(15),(16) which is invariant under the transpose like action, and the
sum of the others, call it T2, which is sent to a different decomposition of T2 under the action.

Proposition 5.6. In the family of decompositions PGL×33 ⋊ (Z3 ⋊ Z2) ⋅ S2fix−Z3
, the set of

Z
std
3 -invariant decompositions is the image of the diagonal PGL3-action on S2fix−Z3

times the

standard transpose Z2.

Proof. The two Z3 fixed points M12,M13 must be fixed by any symmetry, and as above, for any
triple (g, h, k), equation (29) still holds (in fact for g replaced by h or k as well).

Similarly the triple (14) and its Z3-translates also must be fixed. Then M14a = gM14ah
−1,

M14b = hM14bk
−1, M14c = kM14cg

−1. Combining this we get M14aM14bM14c commutes with g.
We conclude as above. �

6. Configurations of points in projective space

In the decompositions, vectors appear tensored with other vectors, so they are really only
defined up to scale (there is only a “global scale” for each term). This suggests using points in
projective space, and only later taking scales into account.

Towards our goal of building new decompositions, we would like to describe existing decom-
positions in terms of simple building blocks. The standard cyclic Z3 invariant decompositions of
M⟨n⟩ naturally come in the restricted families parameterized by the diagonal PGLn ⊂ PGL×3n .

Thus, when we examine, e.g., the points in PU = P
n−1 appearing in the rank one terms in a

decomposition, we should really study the set of points up to PGLn-equivalence, call such a
configuration. Identifying configurations will also facilitate comparisons between known decom-
positions.

The simplest configuration is n points in C
n that form a basis, as occurs with the standard

decomposition. All known decompositions of size less than n3 use more than n points. The next
simplest is a collection of n + 1 points in general linear position, i.e., a collection of points such
that any subset of n of them forms a basis. Call such a framing of Pn−1. Just as all bases are
PGLn-equivalent to the standard basis, all framings, as points in projective space, are equivalent
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to:

⎛⎜⎜⎜⎜⎜⎝

1
0
0⋮
0

⎞⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎝

0
1
0⋮
0

⎞⎟⎟⎟⎟⎟⎠
,⋯,

⎛⎜⎜⎜⎜⎜⎝

0
0
⋮
0
1

⎞⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎝

1
1
⋮
1
1

⎞⎟⎟⎟⎟⎟⎠
.

We focus on the case of P2.

6.1. The case of P
2. The group PGL3 acts simply transitively on the set of 4-ples of points

in P
2 in general linear position (i.e. such that vectors associated to any three of them form a

basis).
Start with any 4-ple of points in general linear position. We will call the following choice, the

default framing:

u1 =
⎛⎜⎝
1
0
0

⎞⎟⎠ , u2 =
⎛⎜⎝
0
1
0

⎞⎟⎠ , u3 =
⎛⎜⎝
0
0
1

⎞⎟⎠ , u4 =
⎛⎜⎝
−1
−1
−1

⎞⎟⎠ .
Note that u1, u2, u3 is the standard basis and u4 is chosen such that u1 + u2 + u3 + u4 = 0.

The {[uj]} determine 6 lines in PU , those going through pairs of points, that we consider as
points in PU∗.

For the default framing, representatives of these are:

v12 = (0,0,1), v13 = (0,1,0), v14 = (0,1,−1),
v23 = (−1,0,0), v24 = (−1,0,1), v34 = (1,−1,0).

Here [vij] is the line in P
2, considered as a point in the dual space P

2∗, through the points [ui]
and [uj] in P

2 (or dually, the point of intersection of the two lines [ui], [uj] in P
2∗). Algebraically

this means vij(ui) = 0 = vij(uj).
The choices of scale made here are useful for the decomposition SZ4×Z3

because they make
the Z4 action easier to write down. They are such that vi,i+1(ui+2) = 1, vi,i+1(ui+3) = −1 (indices
considered mod four). This has the advantage of vi+1,i+2 = a−i0 v12 where a0 is as in (1). For v13
there was no obvious choice of sign, and we chose v24 = a0

−1(v13).
The vij ’s constitute two Z4-orbits: the vi,i+1’s which consist of four vectors, and the vi,i+2’s of

which there are two.
The vi,j in turn determine their new points of intersection:

u12,34 =
⎛⎜⎝
1
1
0

⎞⎟⎠ , u13,24 =
⎛⎜⎝
1
0
1

⎞⎟⎠ , u14,23 =
⎛⎜⎝
0
1
1

⎞⎟⎠ .
These determine further lines

v(12,34),(13,24) = (−1,1,1), v(12,34),(14,23) = (1,−1,1), v(13,24),(14,23) = (1,1,−1),
which determine

u34,(13,24∣14,23) =
⎛⎜⎝
1
1
2

⎞⎟⎠ , u24,(12,34∣14,23) =
⎛⎜⎝
1
2
1

⎞⎟⎠ , u23,(12,34∣13,24) =
⎛⎜⎝
2
1
1

⎞⎟⎠ ,

u12,(12,34∣13,24) =
⎛⎜⎝
1
1
0

⎞⎟⎠ , u13,(12,34∣13,24) =
⎛⎜⎝
1
0
1

⎞⎟⎠ , u14,(12,34∣13,24) =
⎛⎜⎝
0
1
1

⎞⎟⎠ .
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Figure 9. Points and lines from the default framing of P2. Original four points are
black dots, three new are shaded dots

This process continues, giving rise to an infinite collection of points but in practice only vectors
from the first 3 rounds appeared in decompositions.

6.2. Point-line configuration for SZ4×Z3
. The rank one elements appearing in SZ4×Z3

consist
of points from three rounds of points obtained from the default configuration. All points appear
except that u13∣24 is missing (the orbit under Z4 of u12∣34 is {u12∣34, u14∣23}).

Here is the decomposition SZ4×Z3
in terms of the points from ➜6.1:

M⟨3⟩ = − a⊗30(30)

+Z4 ⋅ (u1v23)⊗3(31)

+Z2 ⋅ (u2v23 − u12∣34v23)⊗3(32)

+Z4 ⋅ (u2v24)⊗3(33)

+Z3 ×Z4 ⋅ (u2v23⊗u4v14⊗u12∣34v13).(34)

6.3. Point-line configuration for SLad−Z3
. Thanks to the transpose-like symmetry, it is better

to label points in the dual space by their image under transpose rather than annihilators, to
make the transpose-like symmetry more transparent. Points:

u1 =
⎛⎜⎝
1
0
0

⎞⎟⎠ , u2 =
⎛⎜⎝
0
1
0

⎞⎟⎠ , u3 =
⎛⎜⎝
0
0
1

⎞⎟⎠ , u12 =
⎛⎜⎝
1
−1
0

⎞⎟⎠ , u23 =
⎛⎜⎝
0
1
−1

⎞⎟⎠ .



20 GREY BALLARD, CHRISTIAN IKENMEYER, J.M. LANDSBERG, AND NICK RYDER

v1 = (1,0,0), v2 = (0,1,0), v3 = (0,0,1),
v12 = (1,1,0), v23 = (0,1,1).

This collection of points has a Z2-symmetry generated by τ13 which swaps the two lines.

010

100

110

01−1

00−1

Figure 10. Rank one PU -points appearing in SLad−Z3

In order to express SLad−Z3
in terms of just these points, we write the decomposition in terms

of the Z3 ⋊Zζ
2-orbits.

M⟨3⟩ =(u2v2)⊗3(35)

+ (u3v3)⊗3(36)

+ (u12v1)⊗3(37)

+ (u1v12)⊗3(38)

+ (u2v1 − u1v12)⊗3(39)

+Z3 ⋅ (u1v3)⊗(u3v1)⊗(u1v1)(40)

+Z3 ⋅ (u23v1)⊗(u12v3)⊗(u23v3)(41)

+Z3 ⋅ (u3v12)⊗(u1v23)⊗(u3v23)(42)

+Z3 ⋅ (u2v3 − u23v1)⊗(u1v2 − u12v3)⊗(u3v2 − u23v3)(43)

+Z3 ⋊Z
ζ
2 ⋅ (u23v12 + u2v3 − u1v23)⊗(u2v3)⊗(u3v2).(44)

6.4. Point-line arrangement for S2fix−Z3
. Despite the lack of a transpose-like symmetry,

both sets of points are the 6 points corresponding to lines dual to the standard configuration
of four points. Again, this illustrates how the decomposition nearly has such a symmetry, and
could likely be modified to have such.

7. Spaces of Γ-invariants for various Γ

The space of Z3-invariants in A⊗3 is S3A ⊕ Λ3A. To see this, as a GL(A) ×S3-module we
have the decomposition A⊗3 = S3A⊗[3] ⊕ S21A⊗[21] ⊕ Λ3A⊗[111]. Then Z3 acts trivially on
the trivial representation [3] and trivially on the sign representation [111] (as the three cycle

is even), and [21] decomposes into its e
2πi
3 , e

4πi
3 eigenspaces under Z3. Thus, if dimA = m, the



GEOMETRY AND MATRIX MULTIPLICATION DECOMPOSITIONS II 21

100 110 010

111

011

001

1

0

0

1
−1

0

0

−1

0

1

0

1

Figure 11. Points from S2fix−Z3
rank one matrices appearing in PU and PU∗, with

the latter expressed as lines in PU

space of invariants (A⊗3)Z3 has dimension 1
3
(m3 + 2m), so restricting the search to Z3-invariant

decompositions reduces the search size by about a factor of 3. (In our case, m = n2.)
The Z3-fixed triples all lie in S3A, so one cannot have all terms of a decomposition individually

Z3-fixed. A-priori there could be 2 + 3k Z3-fixed points for 0 ≤ k < 7. We found decompositions
with 2,5, and 11 Z3-fixed points, i.e., k = 0,1,3.

7.1. Zn+1-invariants. Consider the diagonal Zn+1 ⊂ PGLn ⊂ PGL×3n invariants: Each of U∗, V
decomposes into n one-dimensional representations for Zn+1, corresponding to the eigenvalues

ω,ω2,⋯, ωn where ω = e
2πi
n+1 . Write (U∗)j , Vj for the eigenspace corresponding to ωj . Then,

adding indices modulo n + 1, and letting u ∈ [n],
A0 =

n⊕
t=1

U∗t ⊗Vn+1−t,

Au =
n⊕

i=1,i≠u
U∗i ⊗Vu−i,

so dimA0 = n, and dimAu = n − 1, where each Ai is a Zn+1-isotypic component of A. Note that
A0 is spanned by the powers of a0 of (1).

The space of Zn+1 invariants in A⊗B⊗C is spanned by the spaces Aα⊗Bβ⊗Cγ with α+β+γ ≡
0modn + 1. Let 1 ≤ i, j ≤ n, we have the following dimensions:

space dimension number of such total contribution
A0⊗B0⊗C0 n3 1 n3

A0⊗Bj⊗Cn+1−j plus cyclic perms n(n − 1)2 3n 3n2(n − 1)2
Ai⊗Bj⊗Cn+1−j−i, i + j ≠ n + 1 (n − 1)3 n(n − 1) n(n − 1)4

Thus

Proposition 7.1. The space of Zn+1 ⊂ PGLn ⊂ PGL×3n invariants for the diagonal Zn+1 in

C
n2

⊗Cn2

⊗Cn2

is n5 − n4 + n3 − n2 + n. In particular, when n = 2,3,4 these dimensions are

respectively 22,183,820.
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7.2. Zn+1 ×Z3-invariants. We look inside S3A⊕Λ3A for Zn+1-invariants. Write

S3A = S3(A0 +⋯+An) = S3A0 ⊕

n⊕
j=1

S3Aj ⊕

n⊕
j=1

A0⊗S
2Aj ⊕

n⊕
j=1

Aj⊗S
2A0

⊕

n⊕
j,k=1,j≠k

Aj⊗S
2Ak ⊕ ⊕

1≤j<k≤n
A0⊗Aj ⊗Ak ⊕ ⊕

1≤i<j<k≤n
Ai⊗Aj⊗Ak.

The subspace of Zn+1-invariants is (here all indices run from 1 to n)

(S3A)Zn+1 = S3A0 ⊕ ⊕
j∣3j≡0modn+1

S3Aj ⊕ ⊕
j∣2j≡0modn+1

A0⊗S
2Aj ⊕ 0

⊕ ⊕
(j,k)∣ j+2k≡0modn+1;j≠k

Aj⊗S
2Ak ⊕ ⊕

i∣ i<n+1−i
A0⊗Ai⊗An+1−i ⊕ ⊕

(i,j)∣ i<j<n+1−i−j
or i<j<2n+2−i−j<n+1

Ai⊗Aj⊗An+1−i−j .

The dimensions of the summands of the various types are respectively

(n + 2
3
), (n + 1

3
), n(n

2
), 0, (n − 1)(n

2
), n(n − 1)2, (n − 1)3.

Similarly, the space of Zn+1-invariants in Λ3A is

(Λ3A)Zn+1 =Λ3A0 ⊕ ⊕
j∣3j≡0modn+1

Λ3Aj ⊕ ⊕
j∣2j≡0modn+1

A0⊗Λ
2Aj ⊕ 0

⊕ ⊕
(i,j)∣ i+2j≡0modn+1;i≠j

Ai⊗Λ
2Aj ⊕ ⊕

i∣ i<n+1−i
A0⊗Ai⊗An+1−i ⊕ ⊕

(i,j)∣ i<j<n+1−i−j
or i<j<2n+2−i−j<n+1

Ai⊗Aj⊗An+1−i−j .

The dimensions of the summands of the various types are respectively

(n
3
), (n − 1

3
), n(n − 1

2
), 0, (n − 1)(n − 1

2
), n(n − 1)2, (n − 1)3.

In both cases, the number of terms of each type depends on divisibility properties of n. When
n = 2, the summands are

S3A0 ⊕ S3A1 ⊕ S3A2 ⊕ (A0⊗A1⊗A2)S ⊕ (A0⊗A1⊗A2)Λ,
for a total dimension of 8+ 2 = 10. (Here the S,Λ superscripts are whether the factor is in S3 or
Λ3.)

When n = 3, the summands are

S3A0 ⊕A0⊗S
2A2 ⊕A2⊗S

2A1 ⊕A2⊗S
2A3 ⊕ (A0⊗A1⊗A3)S

⊕Λ3A0 ⊕A0⊗Λ
2A2 ⊕A2⊗Λ

2A1 ⊕A2⊗Λ
2A3 ⊕ (A0⊗A1⊗A3)Λ,

for a total dimension of 43 + 20 = 63.
M⟨3⟩ has a nonzero projection onto each factor except the one-dimensional Λ3A0.
When n = 4 the summands are

S3A0 ⊕A1⊗S
2A2 ⊕A2⊗S

2A4 ⊕A3⊗S
2A1 ⊕A4⊗S

2A3 ⊕ (A0⊗A1⊗A4)S ⊕ (A0⊗A2⊗A3)S
⊕Λ3A0 ⊕A1⊗Λ

2A3 ⊕A2 ⊕Λ2A4⊗A3⊗Λ
2A1 ⊕A4⊗Λ

2A3 ⊕ (A0⊗A1⊗A4)Λ ⊕ (A0⊗A2⊗A3)Λ,
for a total dimension of 164 + 112 = 276, compared with the näıve search space dimension of
163 = 4096 and the Z3-invariant search space of dimension 1376.

In summary:

Proposition 7.2. The dimension of the space of Zn+1×Z3 invariants in (U∗⊗U)⊗3 is respectively
of dimensions 10, 63, and 276 when n = 2,3,4.
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SZ4×Z3
Char. Poly. Count

symmetric
t2(t − 1) 6
t + t2 + t3 4

t − t2 + t3 − 1 1

triples {t3, t3, t3} 4
Table 1. Characteristic polynomials of matrices appearing in SZ4×Z3

SLader−Z3
Char. Poly. Count

symmetric
t2(t − 1) 4
t + t2 + t3 1

triples
{t2(t − 1), t3, t3} 3{t3, t3, t + t2 + t3} 1{t3, t3, t − t2 + t3 − 1} 2

Table 2. Characteristic polynomials of matrices appearing in SLader−Z3

S2fix−Z3
Char. Poly. Count

symmetric
t(t − 1)2 1
t2(t − 1) 1

triples

{t3, t3, t3} 1{t2(t − 1), t2(t − 1), t + t2 + t3} 1{t2(t − 1), t3, t3} 2{t2(t − 1), t2(t − 1), t3} 2{t2(t − 1), t2(t − 1), t2(t + 1)} 1
Table 3. Characteristic polynomials of matrices appearing in S2fix−Z3

8. Eigenvalues

When we deal with a restricted family PGLn ⋅ S, it makes sense to discuss eigenlines and
eigenvalues of the terms appearing. These also facilitate determining if two decompositions lie
in the same family, beyond the graphs.
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Appendix A. Additional decompositions

What follows are three additional decompositions with their graphs and eigenvalue tables.

A.1. A decomposition with five Z3-fixed points and no diagonal GL3-symmetry. The
lack of extra symmetry may be easily deduced from the incidence graph.

M⟨3⟩ =
⎛
⎜
⎝

0 0 0
0 0 0
0 −1 1

⎞
⎟
⎠

⊗3

+
⎛
⎜
⎝

1 0 0
1 0 0
0 0 0

⎞
⎟
⎠

⊗3

+
⎛
⎜
⎝

1 −1 0
0 0 0
0 −1 0

⎞
⎟
⎠

⊗3

(45)

+
⎛
⎜
⎝

0 0 0
0 1 0
0 1 0

⎞
⎟
⎠

⊗3

+
⎛
⎜
⎝

−1 1 0
−1 0 0
0 1 0

⎞
⎟
⎠

⊗3

(46)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 0
0 0 1
0 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
0 0 0
−1 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 −1 1
0 0 0
0 0 0

⎞
⎟
⎠

(47)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 0
0 −1 1
0 −1 1

⎞
⎟
⎠
⊗
⎛
⎜
⎝

1 0 −1
−1 −1 1
0 −1 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
0 0 0
0 −1 0

⎞
⎟
⎠

(48)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 0
1 1 −1
1 1 −1

⎞
⎟
⎠
⊗
⎛
⎜
⎝

−1 0 1
0 0 0
0 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
0 0 1
0 0 1

⎞
⎟
⎠

(49)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 0
0 0 1
0 −1 1

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
1 1 −1
0 1 −1

⎞
⎟
⎠
⊗
⎛
⎜
⎝

1 0 −1
0 0 0
0 −1 0

⎞
⎟
⎠

(50)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 0
0 0 0
1 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

1 0 0
0 0 0
0 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 1
0 0 1
0 0 1

⎞
⎟
⎠

(51)

+ Zstd

3
⋅
⎛
⎜
⎝

0 −1 0
0 0 0
0 −1 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

1 −1 0
1 −1 0
0 −1 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
1 0 0
0 0 0

⎞
⎟
⎠

(52)
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Figure 12. Incidence graph of Addtl. Dec. #1
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Figure 13. Pairing graph of Addtl. Dec. #1

Addtl. Dec. #1 Char. Poly. Count

symmetric
t2(t − 1) 4
t + t2 + t3 1

triples

{t3, t3, t3} 3{t2(t − 1), t2(t + 1), t3} 1{t2(t − 1), t3, t − t2 + t3} 1{t2(t − 1), t2(t − 1), t3} 1
Table 4. Characteristic polynomials of matrices appearing in Addtl. Dec. #1

A.2. Another decomposition with five Z3-fixed points.
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Figure 14. Incidence graph of Addtl. Dec. #2
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Figure 15. Pairing graph of Addtl. Dec. #2

M⟨3⟩ =
⎛
⎜
⎝

0 1 −1
0 1 0
0 0 0

⎞
⎟
⎠

⊗3

+
⎛
⎜
⎝

0 0 0
−1 1 1
0 0 0

⎞
⎟
⎠

⊗3

+
⎛
⎜
⎝

1 0 0
0 0 0
0 0 0

⎞
⎟
⎠

⊗3

(53)

+
⎛
⎜
⎝

0 −1 1
1 −1 −1
0 0 0

⎞
⎟
⎠

⊗3

+
⎛
⎜
⎝

0 0 0
0 0 0
0 0 1

⎞
⎟
⎠

⊗3

(54)

+ Zstd

3
⋅
⎛
⎜
⎝

−1 0 1
0 0 0
−1 0 1

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
0 1 0
0 1 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
0 0 1
0 0 0

⎞
⎟
⎠

(55)

+ Zstd

3
⋅
⎛
⎜
⎝

0 −1 1
0 0 0
0 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
−1 0 1
0 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

1 −1 0
1 −1 −1
0 0 0

⎞
⎟
⎠

(56)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 0
1 0 0
1 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

−1 0 0
0 0 0
−1 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 −1 0
0 −1 0
0 −1 0

⎞
⎟
⎠

(57)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 0
0 0 −1
0 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 1 −1
0 0 0
0 1 −1

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
0 −1 0
0 0 0

⎞
⎟
⎠

(58)

+ Zstd

3
⋅
⎛
⎜
⎝

1 0 −1
0 0 0
1 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 1 −1
0 1 0
0 1 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
−1 0 1
−1 0 0

⎞
⎟
⎠

(59)

+ Zstd

3
⋅
⎛
⎜
⎝

0 −1 1
−1 −1 1
−1 −1 1

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
0 0 0
−1 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 −1
0 0 0
0 0 0

⎞
⎟
⎠

(60)

A.3. Another decomposition with 2 Z3-fixed points.
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Addtl. Dec. #2 Char. Poly. Count

symmetric
t2(t − 1) 4
t + t2 + t3 1

triples

{t2(t − 1), t3, t3} 1{t3, t3, t3} 2{t2(t + 1), t2(t + 1), t3} 2{t2(t − 1), t3, t − t2 + t3} 1
Table 5. Characteristic polynomials of matrices appearing in Addtl. Dec. #2
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Figure 16. Incidence graph of Addtl. Dec. #3

M⟨3⟩ =
⎛
⎜
⎝

0 0 0
0 1 0
0 0 1

⎞
⎟
⎠

⊗3

+
⎛
⎜
⎝

1 0 0
0 0 0
0 0 0

⎞
⎟
⎠

⊗3

(61)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 0
0 0 0
0 0 1

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
0 −1 0
0 1 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
0 1 1
0 0 0

⎞
⎟
⎠

(62)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 0
1 1 0
0 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

−1 0 −1
0 0 0
0 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 −1 0
0 0 0
0 0 0

⎞
⎟
⎠

(63)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 0
0 0 0
−1 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 1 0
0 0 0
0 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
0 −1 −1
0 0 0

⎞
⎟
⎠

(64)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 −1
0 0 0
0 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 1 0
0 0 0
−1 −1 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
1 0 0
−1 0 0

⎞
⎟
⎠

(65)

+ Zstd

3
⋅
⎛
⎜
⎝

0 1 1
0 0 0
0 −1 −1

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
0 0 0
1 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

1 0 0
−1 0 0
1 0 0

⎞
⎟
⎠

(66)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 0
0 0 0
0 1 1

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
0 1 0
0 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

−1 0 −1
1 0 1
−1 0 −1

⎞
⎟
⎠

(67)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 0
0 −1 0
−1 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

1 0 1
−1 0 0
1 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 1 0
0 0 0
0 −1 −1

⎞
⎟
⎠

(68)

Appendix B. Triplets

For the reader’s convenience, we write out all the matrices appearing SZ4×Z3
and SLader−Zstd

3

.



28 GREY BALLARD, CHRISTIAN IKENMEYER, J.M. LANDSBERG, AND NICK RYDER

1 0 0

5

0 1 0

4

0 0 1

4

0 1 −1
2

1 −1 1

2

1 0 −1
1

1 0 0

5

0 1 0

4

0 1 1

4

0 0 1

2

1 0 1

2

1 1 0

1

Figure 17. Pairing graph of Addtl. Dec. #3

Addtl. Dec. #3 Char. Poly. Count

symmetric
t(t − 1)2 1
t2(t − 1) 1

triples

{t2(t − 1), t2(t − 1), t2(t + 1)} 1{t2(t − 1), t2(t + 1), t3} 2{t2(t + 1), t3, t3} 1{t3, t3, t3} 1{t2(t − 1), t2(t − 1),2t2 + t3} 1{t2(t + 1), t2(t + 1), t3 − t2 − t} 1
Table 6. Characteristic polynomials of matrices appearing in Addtl. Dec. #3

Matrix triplets for SZ4×Z3
:

M⟨3⟩ =
⎛
⎜
⎝

0 0 1
−1 0 1
0 −1 1

⎞
⎟
⎠

⊗3

+
⎛
⎜
⎝

0 1 0
0 1 0
0 0 0

⎞
⎟
⎠

⊗3

+
⎛
⎜
⎝

0 0 0
−1 0 1
−1 0 1

⎞
⎟
⎠

⊗3

(69)

+
⎛
⎜
⎝

1 0 0
0 0 0
0 0 0

⎞
⎟
⎠

⊗3

+
⎛
⎜
⎝

0 0 0
−1 1 0
0 0 0

⎞
⎟
⎠

⊗3

+
⎛
⎜
⎝

0 0 0
0 0 0
0 −1 1

⎞
⎟
⎠

⊗3

(70)

+
⎛
⎜
⎝

0 0 1
0 0 1
0 0 1

⎞
⎟
⎠

⊗3

+
⎛
⎜
⎝

0 −1 0
1 −1 0
0 0 0

⎞
⎟
⎠

⊗3

+
⎛
⎜
⎝

0 0 0
1 0 −1
0 1 −1

⎞
⎟
⎠

⊗3

(71)

+
⎛
⎜
⎝

0 0 −1
0 0 −1
0 1 −1

⎞
⎟
⎠

⊗3

+
⎛
⎜
⎝

0 0 −1
1 0 −1
1 0 −1

⎞
⎟
⎠

⊗3

(72)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 0
0 0 1
0 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
0 0 0
−1 1 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
0 1 −1
0 1 −1

⎞
⎟
⎠

(73)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 0
0 0 0
−1 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 1 −1
0 1 −1
0 1 −1

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 −1
0 0 −1
0 0 0

⎞
⎟
⎠

(74)

+ Zstd

3
⋅
⎛
⎜
⎝

−1 1 0
−1 1 0
−1 1 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 −1
0 0 0
0 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
1 0 0
1 0 0

⎞
⎟
⎠

(75)

+ Zstd

3
⋅
⎛
⎜
⎝

0 1 −1
0 0 0
0 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
1 0 0
0 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

1 −1 0
1 −1 0
0 0 0

⎞
⎟
⎠

(76)
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Matrix triplets for SLader−Z3
:

M⟨3⟩ =
⎛
⎜
⎝

0 0 0
0 1 0
0 0 0

⎞
⎟
⎠

⊗3

+
⎛
⎜
⎝

0 0 0
0 0 0
0 0 1

⎞
⎟
⎠

⊗3

+
⎛
⎜
⎝

−1 1 0
−1 0 0
0 0 0

⎞
⎟
⎠

⊗3

(77)

+
⎛
⎜
⎝

1 0 0
1 0 0
0 0 0

⎞
⎟
⎠

⊗3

+
⎛
⎜
⎝

1 −1 0
0 0 0
0 0 0

⎞
⎟
⎠

⊗3

(78)

+ Zstd

3
⋅
⎛
⎜
⎝

1 0 0
0 0 0
0 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 1
0 0 0
0 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
0 0 0
1 0 0

⎞
⎟
⎠

(79)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 0
0 0 1
0 −1 −1

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
1 0 0
−1 1 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 −1 −1
0 0 −1
0 0 0

⎞
⎟
⎠

(80)

+ Zstd

3
⋅
⎛
⎜
⎝

0 −1 0
0 0 0
0 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

1 −1 0
1 −1 −1
0 1 1

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
1 0 0
0 0 0

⎞
⎟
⎠

(81)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 0
0 0 0
0 −1 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 1 1
−1 1 1
1 −1 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
0 0 −1
0 0 0

⎞
⎟
⎠

(82)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 0
0 0 −1
0 0 1

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
−1 0 0
1 0 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 1
0 0 1
0 0 0

⎞
⎟
⎠

(83)

+ Zstd

3
⋅
⎛
⎜
⎝

0 0 0
0 0 0
0 1 1

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 0 0
0 0 0
1 −1 0

⎞
⎟
⎠
⊗
⎛
⎜
⎝

0 1 1
0 0 0
0 0 0

⎞
⎟
⎠

(84)
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