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Abstract. Let M⟨n⟩ ∈ C
n
2

⊗Cn
2

⊗Cn
2

denote the matrix multiplication tensor for n×n matri-
ces. We use the border substitution method [2, 3, 6] combined with Koszul flattenings [8] to
prove the border rank lower bound R(M⟨n,n,n⟩) ≥ 2n2 − ⌈log

2
(n)⌉ − 1.

1. Introduction

Let A,B,C,U,V,W be vector spaces of dimensions a,b,c,u,v,w. The matrix multiplication
tensor M⟨u,v,w⟩ ∈ (U∗⊗V )⊗(V ∗⊗W )⊗(W ∗⊗U) is given in coordinates by

M⟨u,v,w⟩ =
u

∑
i=1

v

∑
j=1

w

∑
k=1

xij⊗yjk⊗zki .

Ever since Strassens’ discovery [11] that the standard algorithm for multiplying matrices is
not optimal, the matrix multiplication tensor has been a central object of study. We write
M⟨n⟩ =M⟨n,n,n⟩.

Let T ∈ A⊗B⊗C be a tensor. The rank of T is the smallest r such that T may be written as a
sum of r rank one tensors (tensors of the form a⊗b⊗c for a ∈ A, b ∈ B, c ∈ C). The border rank of
T is the smallest r such that T may be written as a limit of rank r tensors. We write R(T ) = r.
Border rank is a basic measure of the complexity of a tensor. For example, the exponent of
matrix multiplication, the smallest ω such that n × n matrix multiplication can be computed
with O(nω) arithmetic operations, satisfies ω = lim

n→∞ logn(R(M⟨n⟩)). All modern upper and
lower bounds for the complexity of matrix multiplication rely implicitly or explicitly on border

rank. Strassen showed R(M⟨n⟩) ≥ 3n
2

2
[10] and Lickteig improved this to R(M⟨n⟩) ≥ 3n

2

2
+ n

2
− 1

[9]. After that, progress stalled for nearly thirty years (other than showing R(M⟨2⟩) = 7 [5]),

until in 2012 the first author and Ottaviani showed R(M⟨n⟩) ≥ 2n2 −n [8]. In 2016 we improved

this to R(M⟨n⟩) ≥ 2n2 −n+1 [7]. More important than the result in [7] was the method of proof
- a border rank version of the substitution method [2, 3, 6] that we now review.

A tensor T ∈ A⊗B⊗C is A-concise if it is not contained in any Ã⊗B⊗C where Ã ⊊ A. Let
G(k, V ) denote the Grassmannian of k-planes through the origin in V .

Proposition 1.1. [3, 6] Let T ∈ A⊗B⊗C be A-concise. Fix a′ ≤ a. Then
R(T ) ≥minA′∈G(a′,A∗)R(T ∣A′⊗B∗⊗C∗) + (a − a′).

This method at first glance appears very hard to implement, as one would have to test every
a′-plane. As explained in [6], it is useful for tensors with symmetry because one can use the
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symmetry group to reduce testing to a finite number of a′-planes, which is what we do in this
article to prove the following theorem:

Theorem 1.2. Let 0 <m < n. Then for all w,

R(M⟨n,n,w⟩) ≥ 2nw −w +m − ⌊
w(n−1+m

m−1
)

(2n−2

n−1
) ⌋.

In particular, taking w = n and m = n − ⌈log2(n)⌉ − 1,
R(M⟨n⟩) ≥ 2n2 − ⌈log2(n)⌉ − 1.

As can be seen in the proof, one can get a slightly better lower bound. Here are a few cases
with optimal m and the improvement over the previous bound:

n R(M⟨n⟩) ≥ improvement over 2n2 − n + 1
4 29 0

5 47 1

6 69 2

7 95 3

8 122 3

9 158 4

10 196 6

100 19,992 92

1000 1,999,989 989

10,000 199,999,985 9985.

One might expect that the substitution and border substitution methods could potentially be
used to prove rank and border rank lower bounds up to 3m−3 for tensors in C

m⊗Cm⊗Cm. We
show this is not quite possible for border rank. We define a variety X(a′,b′,c′) ⊂ P(A⊗B⊗C)
that corresponds to tensors where the border substitution method fails to provide lower bounds
beyond a+b+c−a′−b′−c′. More precisely, X(a′,b′,c′) is the variety of (a′,b′,c′)-compressible
tensors, those for which there exists A′ ⊂ A∗, B′ ⊂ B∗, C ′ ⊂ C∗, respectively of dimensions
a′,b′,c′, such that T , considered as a linear form on A∗⊗B∗⊗C∗, satisfies T ∣A′⊗B′⊗C′= 0. We
show:

Proposition 1.3. The set X(a′,b′,c′) ⊆ P(A⊗B⊗C) is Zariski closed. If
(1) aa′ + bb′ + cc′ < (a′)2 + (b′)2 + (c′)2 + a′b′c′
then X(a′,b′,c′) ⊊ P(A⊗B⊗C). In particular, in the range where (1) holds, the substitution
methods may be used to prove nontrivial lower bounds for border rank.

The proof and examples show that beyond this bound one expects X(a′,b′,c′) = P(A⊗B⊗C),
so that the method cannot be used.

If R(T ) ≤ a + b + c − (a′ + b′ + c′) then there exists A′ ⊂ A∗,B′ ⊂ B∗, C ′ ⊂ C∗ such that

T ∣A′⊗B′⊗C′ = 0, because if T = ∑a+b+c−(a′+b′+c′)
j=1 aj⊗bj⊗cj , one can choose A′ to annhilate

a1,⋯, aa−a′ , B′ to annihilate ba−a′+1,⋯, ba−a′+b−b′ and C ′ to annihilate ca−a′+b−b′+1,⋯, ca+b+c−(a′+b′+c′),
and for a border rank decomposition one takes the limits of such planes from the sequence of
rank decompositions converging to it. Let σr(Seg(PA × PB × PC)) ⊂ P(A⊗B⊗C) denote the
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variety of tensors of border rank at most r, called the r-th secant variety of the Segre variety.
The above remark may be restated as:

Proposition 1.4.

σa+b+c−(a′+b′+c′)Seg(PA × PB × PC) ⊂X(a′,b′,c′).
We expect the inequality in Proposition 1.3 to be sharp or nearly so. For tensors in C

m⊗Cm⊗Cm

the limit of this method alone would be a border rank lower bound of 3(m−√3m + 9

4
+ 3

2
). How-

ever, it is unlikely the method alone could attain such a bound due to technical difficulties in
proving an explicit tensor does not belong to X(a′,b′,c′).

The state of the art for matrix multiplication is such that on one hand, for upper bounds on
the exponent there does not appear to be a viable path proposed for proving the exponent is
less than 2.3, but on the other hand, none of the existing techniques provide a viable path for
proving a border rank lower bound of 2n2 for matrix multiplication.

1.1. Acknowledgements. We thank Jason Starr and Math Overflow for help with Example
4.5. Michalek is a member of the AGATES group and is supported by the Foundation for Polish
Science (FNP).

2. Preliminaries

Let A = U∗⊗V , B = V ∗⊗W , C = U⊗W ∗. For v ∈ V , we write v̂ ⊂ V for the line it determines
and [v] ∈ PV for the corresponding point in projective space.

Definition 2.1. For a tensor T ∈ V1⊗ . . .⊗Vn, and U ⊂ V1, let T /U ∈ (V1/U)⊗V2⊗ . . .⊗Vn denote
T ∣U⊥⊗V ∗

2
⊗⋯⊗ V ∗n

, where we consider T as a linear form on V ∗1 ⊗⋯⊗ V ∗n . Define

Bk(T ) ∶= {[v] ∈ PV1 ∣R(T /v̂) ≤ k}.
Lemma 2.2. Let T ∈ V1⊗ . . .⊗Vn be a tensor, let GT ⊂ GL(V1)×⋅ ⋅ ⋅×GL(Vn) denote its stabilizer
and let G1 ⊂ GL(V1) denote the projection of GT to GL(V1). The set Bk(T ) is:

i Zariski closed,
ii a G1-variety.

Proof. Proof of (i): Let L be the total space of the quotient bundle over PV1 tensored with
V2⊗⋅ ⋅ ⋅⊗Vn, i.e., the fiber over [v] is (V1/v̂)⊗V2⊗ . . .⊗Vn. We have a natural section s ∶ PV1 → L
defined by s([v]) ∶= T /v̂. Let X ⊂ L denote the sub-bundle whose fiber over [v] ∈ PV1 is the locus
of tensors of border rank at most k in (V1/v̂)⊗V2⊗ . . .⊗Vn. The set Bk(T ) is the projection to
PV1 of the intersection of the image of the section s and X.

Proof of (ii). We need to show that for all g1 ∈ G1 and [v] ∈ Bk(T ), that g1[v] ∈ Bk(T ). Let
g = (g1, . . . , gn) ∈ GT . Then R(T /v̂) =R(gT /g1v̂) =R(T /g1v̂). �

To prove Theorem 1.2, we will use the Koszul flattening of [8]: for T ∈ A⊗B⊗C, define

(2) T
∧p
A ∶ B

∗
⊗ΛpA→ Λp+1A⊗C

by first taking TB⊗ IdΛp A ∶ B∗⊗ΛpA → ΛpA⊗A⊗C, and then projecting to Λp+1A⊗C. If
{ai},{bj},{ck} are bases of A,B,C and T = ∑i,j,k t

ijkai⊗bj⊗ck, then

(3) T
∧p
A (β⊗f1 ∧⋯∧ fp) = ∑

i,j,k

tijkβ(bj)ai ∧ f1 ∧⋯∧ fp⊗ck.
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We have [8]:

(4) R(T ) ≥ rank(T∧pA )
(a−1

p
) .

In practice the map T
∧p
A is used after specializing T to a subspace of A of dimension 2p + 1 to

get a potential 2p+1

p+1
b border rank lower bound.

3. Proof of Theorem 1.2

We first observe that the “In particular” assertion follows from the main assertion because,
taking m = n − c, we want c such that

n(2n−1−c
n
)

(2n−2

n−1
) < 1.

This ratio is

(n − 1)⋯(n − c)
(2n − 2)(2n − 3)⋯(2n − c) =

n − c
2c−1

n − 1
n − 2

2

n − 2
n − 3

2

n − 3
n − 4

2

⋯n − c + 1
n − c

2

.

so if c − 1 ≥ log2(n) it is less than one.

For the rest of the proof, we first introduce notation: for a Young diagram λ, we picture
it Russian style, as we think of it as representing entries in the south-west corner of an n × n
matrix. More precisely for (i, j) ∈ λ we number the boxes of λ by pairs (row,column) however
we number the rows starting from n, i.e. i = n is the first row. For example

x y
z
w

is labeled x = (n,1), y = (n,2), z = (n− 1,1),w = (n− 2,1). Let Uλ ∶= span{ui⊗vj ∣ (i, j) ∈ λ} and
write Mλ

⟨n,n,w⟩ ∶=M⟨n,n,w⟩/Uλ.

The proof consists of two parts. In the first, we prove by induction on k that for any k < n
there exists a Young diagram λ with k boxes such that R(Mλ

⟨n,n,w⟩) ≤R(M⟨n,n,w⟩) − k.
In the second part we estimate R(Mλ

⟨n,n,w⟩) for any λ by reducing to the case when λ has

just one row (or column).

Part 1) First step: k = 1. By Proposition 1.1 there exists a ∈ BR(M⟨n,n,w⟩)−1(M⟨n,n,w⟩) such
that the reduced tensor drops border rank. The group GL(U) × GL(V ) × GL(W ) stabilizes
M⟨n,n,w⟩. By Lemma 2.2 with G1 = GL(U)×GL(V ), we may act on a and pass to the limit. For
example, we may first reduce the rank of a to 1, e.g., if a has a nonzero entry in the first row,
by multiplying it on the left by the diagonal matrix with entries (1, ǫ,⋯, ǫ) and then letting ǫ

go to zero, and then make it equal un⊗v1 with an element of G1.
Second step: We assume that R(Mλ′

⟨n,n,w⟩) ≤ R(M⟨n,n,w⟩) − k + 1, where λ′ has k − 1 parts.

Again by Proposition 1.1 there exists a ∈ BR(M⟨n,n,w⟩)−k
(Mλ′

⟨n,n,w⟩) such that when we reduce by

it the border rank drops. We no longer have the full action of GL(U) ×GL(V ). However, the

product of Borel groups that stabilize the flags induced by λ′ stabilizes Mλ′

⟨n,n,w⟩. By the torus

action and Lemma 2.2 we may assume that a has just one nonzero entry outside of λ. Further,
using the Borel action we can move the entry south-west to obtain the desired Young diagram
λ.
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Part 2) We use (2) and recall from [8] that for the matrix multiplication operator, the
Koszul flattening factors as M⟨n,n,w⟩ =M⟨n,n,1⟩⊗ IdW , and the rank of (M⟨n,n,w⟩)∧kA is the rank

of (M⟨n,n,1⟩)∧kA times w, and this continues to hold when we restrict the evaluation to subspaces

A′ ⊂ A∗. We apply the Koszul flattening to M⟨n,n,1⟩ ∈ (U∗⊗V )⊗V ∗⊗U , where u = v = n. We
need to show that for all λ of size m,

R(Mλ
⟨n,n,1⟩) ≥ 2n − 1 − (

n−1+m
m−1

)
(2n−2

n−1
) .

We will accomplish this by projecting to a suitable subspace Ã of dimension 2n − 1 via the
projection map pÃ ∶ A→ Ã, such that

rank([pÃ(Mλ
⟨n,n,1⟩))]∧n−1

Ã
≥ (2n − 1

n − 1 )n − (
n − 1 +m
m − 1 ),

and then apply (4). By our choice of basis we may consider Mλ
⟨n,n,1⟩ ∈ (A/Uλ)⊗B⊗C in A⊗B⊗C,

with specific coordinates equal to 0. We need to show

dimker([pÃ(M⟨n,n,1⟩)λ]∧n−1

Ã
) ≤ (n − 1 +m

m − 1 ).
Consider the map φ ∶ A → C

2n−1 given by ui⊗vj ↦ ei+j−1. The rank of the reduced Young
flattening Λn−1

C
2n−1⊗V → Λn

C
2n−1⊗U could a priori go down. However, for M⟨n,n,1⟩, as was

shown in [8, 7], the new map is surjective. We recall the argument from [7], as a similar argument
will finish the proof.

Write eS = es1 ∧⋯∧ esn−1 , where S ⊂ [2n − 1] has cardinality n − 1. For 1 ≤ η ≤ n the reduced
Koszul flattening is given by:

eS⊗vη ↦ n∑
j=1

φ(uj⊗vη) ∧ eS⊗uj = n∑
j=1

ej+η−1 ∧ eS⊗uj .
We index a basis of the source by pairs (S, k), with k ∈ [n], and the target by (P, l) where

P ⊂ [2n−1] has cardinality n and l ∈ [n]. Define an order on the target basis vectors as follows:
For (P1, l1) and (P2, l2), set l =min{l1, l2}, and declare (P1, l1) < (P2, l2) if and only if

(1) In lexicographic order, the set of l minimal elements of P1 is strictly after the set of l
minimal elements of P2 (i.e. the smallest element of P2 is smaller than the smallest of
P1 or they are equal and the second smallest of P2 is smaller or equal etc. up to l-th), or

(2) the l minimal elements in P1 and P2 are the same, and l1 < l2.
(3) the l minimal elements in P1 and P2 are the same, and l1 = l2, and the set of n − l tail

elements of P1 are after the set of n − l tail elements of P2.

In [7] we showed that when one orders the basis as above, the reduced Koszul flattening for M⟨n⟩
has an upper triangular structure. More explicitly, let P = (p1,⋯, pn) with pi < pi+1. Identifying
basis vectors with their indices, the image of (P /{pl},1 + pl − l) is ±(P, l) plus smaller terms in
the order. The crucial part is to control how the projection of Mλ

⟨n,n,w⟩ to the complement of

uj⊗vn+1−i effects the reduced Koszul flattening. We determine the number of additional zeros
on the diagonal. Note that (P, l) will not appear as the leading term in the reduced map if and
only if l = j and n + 1 − i + j − 1 = pl. Hence, the number of additional zeros on the diagonal
equals the number of n element subsets of [2n − 1] that have the j-th entry equal to n − i + j,
which is (n−i+j−1

j−1
)(n+i−j−1

i−1
) ∶= g(i, j). So it is enough to prove that ∑(i,j)∈λ g(i, j) ≤ (n−1+m

m−1
).

Note that ∑m
i=1 g(i,1) = ∑m

j=1 g(1, j) = (n−1+m
m−1

). Thus we have to prove that the Young diagram
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that maximizes fλ ∶= ∑(i,j)∈λ g(i, j) has one row or column. We prove it inductively on the size
of λ, the case ∣λ∣ = 1 being trivial.

Suppose now that λ = λ′ + (i, j). By induction it is sufficient to show that:

(5) g(1, ij) = (n − 1 + ij − 1
ij − 1 ) ≥ (n − j + i − 1

i − 1 )(n − i + j − 1
j − 1 ) = g(i, j),

where n > ij. Without loss of generality we may assume 2 ≤ i ≤ j. For j = 2,3 the inequality is
straightforward to check, so we assume j ≥ 4. We prove the inequality (5) by induction on n.
For n = ij the inequality follows from the combinatorial interpretation of binomial coefficients
and the fact that the middle one is the largest.

We have (n+1−1+ij−1

ij−1
) = (n−1+ij−1

ij−1
)n−1+ij

n
, (n+1−j+i−1

i−1
) = (n−j+i−1

i−1
) n−j+i
n−j+1

and (n+1−i+j−1

j−1
) = (n−i+j−1

j−1
)n−i+j
n−i+1

.

By induction it is enough to prove that:

(6)
n − 1 + ij

n
≥ n − j + i
n − j + 1

n − i + j
n − i + 1 .

This is equivalent to:

ij − 1 ≥ n(i − 1)
n − j + 1 +

n(j − 1)
n − i + 1 +

n(i − 1)(j − 1)
(n − j + 1)(n − i + 1) .

As the left hand side is independent from n and each fraction on the right hand side decreases
with growing n (differentiate each term with respect to n and use that n > ij in the last case to
see all derivatives are negative), we may set n = ij in inequality 6. Thus it is enough to prove:

2 − 1

ij
≥ (1 + i − 1

ij − j + 1)(1 +
j − 1

ij − i + 1).
Then the inequality is straightforward to check for i = 2, so we assume i ≥ 3. Then:

(1 + i − 1
ij − j + 1)(1 +

j − 1
ij − i + 1) ≤ (1 +

j − 1
j2 − j + 1)(1 +

j − 1
3j − 2) ≤

16

13
⋅
4

3
= 64

39
.

However,

64

39
≤ 2 − 1

12
≤ 2 − 1

3j
≤ 2 − 1

ij
,

which finishes the proof.

Remark 3.1. Note that we made two kinds of restrictions:

(1) projecting A to A/Uλ and

(2) projecting A/Uλ to Ã.

The first one corresponds to deleting rows (specified by λ) in the matrix representation of
M⟨n,n,1⟩. The second one takes 2n − 1 linear combinations of rows as explained below.

Since linear projections commute, one might try to first apply the second projection and then
the first one. This is not feasible for two reasons. First, after applying the second projection
we lose symmetry. Second, our method removes whole rows in the matrix representation of the
tensor in the first projection (not just specific entries). Hence it is much better to first remove
rows (when the matrix has mostly zeros) and then use the second projection, than to remove
rows when the matrix is dense (after the second projection).
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4. Compression of tensors: limits of the border substitution method

Consider the product of Grassmannians G ∶= G(a′,A∗) × G(b′,B∗) × G(c′, C∗) with three
projections πi. Let E = E(a′,b′,c′) ∶= ⊗3

i=1 π
∗
i (Si) be the vector bundle that is the tensor

product of the pullbacks of universal subspace bundles Si. Let P → G denote the projective
bundle with fiber over (A′,B′, C ′) equal to Seg(PA′ × PB′ × PC ′), so P ⊂ PE .
Definition 4.1. A tensor T ∈ A⊗B⊗C is (a′,b′,c′)-compressible if there are subspaces A′ ⊂
A∗,B′ ⊂ B∗, C ′ ⊂ C∗ of respective dimensions a′,b′,c′ such that T ∣A′⊗B′⊗C′ = 0, i.e., there
exists (A′,B′, C ′) ∈ G, such that A′⊗B′⊗C ′ ⊂ T ⊥, where T ⊥ ⊂ (A⊗B⊗C)∗ is the hyperplane
annihilating T . If T is not (a′,b′,c′)-compressible, we say it is (a′,b′,c′)-compression generic
(cg). Let X(a′,b′,c′) denote the set of all tensors that are (a′,b′,c′)-compressible.

Proof of Proposition 1.3. Let

Y ∶= {(y, [T ]) ∈G × P(A⊗B⊗C) ∣ Ey ⊂ T ⊥}.
Each fiber of the projection Y →G is a projective space of dimension abc − a′b′c′ − 1, so

dim Y ∶= (abc − a′b′c′ − 1) + (a − a′)a′ + (b − b′)b′ + (c − c′)c′.
On the other hand X(a′,b′,c′) is the generically one to one projection of Y to P(A⊗B⊗C),
which proves both claims since Y is Zariski closed. �

Recall the inequality

(7) aa′ + bb′ + cc′ < (a′)2 + (b′)2 + (c′)2 + a′b′c′
from Proposition 1.3.

Corollary 4.2.

i If (7) holds then a generic tensor is (a′,b′,c′)-cg.
ii If (7) does not hold then rankE∗ ≤ dim G(a′,A∗) × G(b′,B∗) × G(c′, C∗). If the top

Chern class of E∗ is nonzero, then no tensor is (a′,b′,c′)-cg.
Proof. The first assertion is a restatement of Proposition 1.3.

For the second, notice that T induces a section T̃ of the vector bundle E∗ →G. The zero locus
of T̃ is {(A′,B′, C ′) ∈G ∣ A′⊗B′⊗C ′ ⊂ T ⊥}. In particular, T̃ is non-vanishing if and only if T is
(a′,b′,c′)-cg. If the top Chern class is nonzero, there cannot exist a non-vanishing section. �

Example 4.3. Let a = b = c and a′ = b′ = c′. Then the border substitution method can be
applied as long as

a′ ≥ ⌈
√

3a +
9

4
−
3

2
⌉.

Thus by this method alone, one potentially gets border rank equations in C
a⊗Ca⊗Ca up to

3(a − ⌈(
√

3a +
9

4
−
3

2
)⌉).

For example, if a = 9, we may take a′ = 4 and get equations up to σ15.

Example 4.4. Let a = b = c = 3. As pointed out by J. Kileel, the variety X(2,2,3) equals the
trifocal variety. By the results of C. Aholt and L. Oeding [1] the ideal of this variety is defined
by 10 cubics, 81 quintics and 1980 sextics.
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In each particular case when there are a finite number of A′⊗B′⊗C ′ annhilating a generic
T , we may explicitly compute how many different A′⊗B′⊗C ′ a generic hyperplane may contain
as follows: The Chern polynomial of the dual of the universal bundle is ∑k

j=0 p1j t
j , where p1j

is the class corresponding to the Young diagram 1j . These classes multiply by the Littlewood-
Richardson rule (in our cases this is the iterated Pieri rule).

Example 4.5. Let a = b = c = 5 and a′ = 2,b′ = 1,c′ = 5. The bundle E∗ has rank ten: it is the
tensor product of a rank 2 bundle (for a′), rank 1 bundle (for b′) and the trivial rank 5 bundle
(for c′). This example already appeared in [4]. Here G = G(2,5) × P5 as the last Grassmannian
degenerates to a point. The second Chern class of the tensor product of pull-backs equals:

c2(π∗1(S1)⊗π∗2(S2)) = ( ,1) + ( , ) + (1, )2,
where respective Young diagrams represent Schubert classes on G(2,5) and P

5. E.g. (1, )
is G(2,5) times a hyperplane in P

5. To compute the top Chern class of E∗ we need to com-
pute the 5-th power of the above expression. It will be proportional to the class of a point

( , ) and we just have to compute the coefficient.
We obtain the following contributions:

● 5( ,1)( , )4 = 5 ⋅ 2 = 10. Indeed, on the second coordinate corresponding to P
5 we

just have to fill, one by one starting from left, the diagram . On G(2,5) we
must start by filling the two left most entries, by the contribution of ( ,1) obtaining:
x o o
x o o . The remaining square (filled with o before) has to be filled with four unit

squares. There are two ways to do this:

1 2
3 4 and

1 3
2 4 .

● 5(4
2
)( ,1)2( , )2(1, )2 = 30, because there is a unique filling here,

● (5
2
) corresponding to ( ,1)3(1, )4.

This gives the grand total of 50. Hence, in this case the map Y → P(A⊗B⊗C) is surjective,
finite with generic fiber of degree 50.
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