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a b s t r a c t 

This paper presents studies of the optical absorption cross section for homogeneous spheres of radius R 

interacting with light of wavelength λas calculated with the Mie equations. Four regimes of behavior are 
disclosed: the Rayleigh Regime, the Geometric Regime, the Reflection Regime, and a Crossover Regime. 

Two parameters govern these regimes, the imaginary part of the refractive index, κ, and the product of κ
with the sphere size parameter kR where k = 2 π/ λ, i.e. κkR . Simple, approximate functionalities on κ, k , 
sphere volume and projected geometric cross section are derived for these regimes. Interesting aspects of 

our observations include: Rayleigh absorption can apply to all particle sizes, Fresnel reflection can occur 

for sub-wavelength spheres, and while κis the agent of absorption, large κcan increase scattering to the 
detriment of absorption. 

©2019 Published by Elsevier Ltd. 
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. Introduction 

All material objects have a wavelength dependent complex re-

ractive index m = n + i κ. In general, the real part n dominates the
efraction and speed of light, and the imaginary part κdominates
he absorption of light; both factor approximately equivalently into

he reflection of light. Studies of optical properties typically pay

ore attention to the real part n than to the imaginary part κ. This
s understandable, because one is often dealing with transmissive

ptics, and when dealing with reflective optics, reflection coeffi-

ients are used as the relevant parameters, not κnor n . Moreover,
n many situations κis small. But such a statement, as we shall
ee, can be problematic in itself because it engenders the question

small compared to what?”. 

In this paper we explicitly consider the effects of the imagi-

ary refractive index κon the absorption properties of spheres. We
ill consider very wide ranges of κand sphere size parameters kR ,
here k = 2 π/ λ, λbeing the wavelength of light and R the sphere
adius. 

Our method is simple: we use the Mie equations (e.g., [1] ) to

alculate the absorption cross section. Our approach is surprisingly

ovel: we plot the absorption cross section versus the imaginary

art of the refractive index, κ. Because κis the cause of the ab-
orption, this is a very reasonable approach. 
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. Results 

Fig. 1 shows the absorption cross section C abs for a sphere of ra-

ius R as a function of the imaginary refractive index κfor a wide
ange of size parameters kR where k = 2 π/ λand λis the wave-
ength of light. The real part of the refractive index is constant at

 = 1.5. The figure shows that when the imaginary refractive in-

ex κis small, the absorption cross section increases linearly with
for all sizes. For large sizes such that kR > 1 this increase lev-

ls of when κ  1/ kR , i.e., when the parameter κkR  1, C abs 
 = πR 2 , the geometric cross section. Continuing with kR > 1, when
> 2, the absorption falls off with the square of κ. In contrast, for
maller particles, when kR < 1, the absorption cross section never

eaches the geometric cross section from its linear ascent from

mall κ. Instead near κ  1, it begins to decrease, eventually gain-

ng an inverse cubic dependence on κ. This decrease is interrupted
ear κkR  0.3 where an inflection occurs, after which, near κkR 
 at large κ, the same quadratic decrease with κas seen for large
izes develops. We have replotted Fig. 1 for n = 1.1 and 3 and found

ery similar trends. 

To bring some order to this remarkable (to us) series of func-

ionalities, we will divide Fig. 1 into four regimes: 

1. The Rayleigh Regime when κkR < 0.3. 
2. The Geometric Regime when kR > 1 and κkR > 1 and κ< 1. 
3. The Reflection Regime when κ> 3 and κkR > 3. 
4. The Crossover Regime when 0.3 < κkR < 3 and kR < 1. 

https://doi.org/10.1016/j.jqsrt.2019.01.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jqsrt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jqsrt.2019.01.011&domain=pdf
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Fig. 1. Spherical particle absorption cross section C abs as a function of the imaginary refractive index κ. Seven different particle size parameters kR are shown. The light 
wavelength is λ=0.532 μm and the real part of the refractive index is constant at n = 1.5. Dashed lines show the functionalities 2 kV κand 4 nG / κ2 as marked; horizontal 
dot-dash lines indicate C abs = G = πR 2 , and short dot-dash line shows the functionality 18 kVn / κ3 as marked. Dotted line and dash-double-dot line mark the boundaries of the 
crossover regime at κkR = 0.3 and 3.0, respectively. Shaded areas indicate the Rayleigh, Geometric, and Reflection Regimes. The unshaded area is the Crossover Regime. 
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We intend to study each of these regimes below, but first we

will describe the importance of the parameter κkR . 

2.1. The parameter κkR 

The parameter κkR was first described in [2] . It was discovered
that the combination κkR universally parameterized changes in the
angular scattering behavior of spheres, whereas the individual κ
and kR do not. The parameter has been shown to apply to non-

spherical ice crystals [3] , and its usefulness has been described in

a recent review [4] . 

The universality of this parameter has a simple physical basis.

When the refractive index of a medium has a non-zero imaginary

part, i.e., when κ> 0, light will decay exponentially as it propa-
gates into a uniform and homogeneous medium with a 1/e  0.37

decay length of 

δ= 1 / ( κk v ac ) = λv ac / ( 2 πκ) , (1)

where the subscript “vac” means “vacuum”. The parameter δis of-
ten called the skin depth [5] . The ratio of the sphere radius to the

skin depth, R / δis κkR , i.e., 

R/δ= κkR. (2)

Thus κkR quantifies the relative extent of the light penetra-
tion into the sphere. When κkR << 1, absorption does not impede
the entering wave from affecting the entire volume of the sphere.

When κkR > 1, absorption causes the light to be confined to near
the surface of the sphere. From a perspective relevant here, κkR
determines whether the absorption is affected by the volume of

the sphere or by the near-surface region of the sphere. The param-

eter also answers, to some degree, the question for the dimension-

less κ, “small compared to what?” It’s not the magnitude of κthat
matters, but rather the magnitude of the dimensionless κkR com-
pared to one. 
.2. The Rayleigh regime κkR < 0.3 

Here we will show that all the spheres, regardless of size, dis-

lay a semi-quantitative Rayleigh theory dependence of absorption

ross section on κwhen the parameter κkR < 0.3. The canonical
efinition of the Rayleigh regime is constrained with two condi-

ions [6] , kR < < 1 and kR │m │< < 1. Note that the first condition

estricts particle size to be much smaller than the wavelength,

hereby ensuring constructive interference with very little phase

hift for the scattered light, yielding the V 2 dependence of the

cattering cross-section [7,8] . However, absorption is an incoherent

rocess, not dependent on phase shifts. Therefore, the first condi-

ion does not directly affect the absorption cross section. The lat-

er condition addresses absorption in the Rayleigh regime, ensur-

ng that the incident light fully penetrates the particle volume and

ielding the V dependence of the absorption cross-section, consis-

ent with our κkR < 0.3 [9] . The Rayleigh absorption cross section
s given by [6] 

 abs Rayleigh = 4 πR 
2 ( kR ) E ( m ) = 3 V kE ( m ) , (3)

here 

 ( m ) = Im 
m 2 −1 

m 2 + 2 
. (4)

Note the volume dependence V in Eq. (3) . If κ< 1, the Rayleigh
bsorption cross section becomes 

 abs Rayleigh small κ  18 kV nκ/ n 2 + 2 
2 
. (5)

Eq. (5) has the linear dependence with κseen in Fig. 1 that
as obtained from Mie theory. Eq. (5) can be simplified further by

etting the real refractive index n = 1.0 to obtain 

 abs Rayleigh small κ( n = 1 . 0 )  2 kV κ. (6)

This result is included in Fig. 1 as a dashed line and seen to

e in semi-quantitative agreement with the Mie result for all size
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Fig. 2. The ratio of the absorption cross section calculated with the Mie equations for spheres divided by the exact Rayleigh theory predictions of Eqs. (3) and (4) versus the 

size parameter kR . The light wavelength is λ= 0.532 μm and the real part of the refractive index is n = 1.5. Plots are made for a wide range of imaginary refractive indices, 
κ< 1. The dashed line indicates where this ratio is 1.0, the dot-dashed line indicates the ratio of C abs = 2 kV κ(also used in Fig. 1 ), Eq. (6) , to the Rayleigh theory prediction, 
and the short-dashed line indicates the ratio of C abs = 2kV κf(n) , Eq. (8) , to the Rayleigh theory prediction. Note that some of the spike-like structure may be affected by 
aliasing. 
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arameters as long as κkR < 0.3 and κ< 1. Note that when n = 1.5,
q. (5) leads to C abs Rayleigh small κ( n = 1.5)  1.4 9 kV κ. 
On the other hand when κ> 1, the Rayleigh absorption cross
ection becomes 

 abs Rayleigh large κ  18 kV n/ κ3 . (7)

This result is also included in Fig. 1 as a short dot-dash line and

een to be in semi-quantitative agreement with the Mie result for

ll small size parameters, κ> 3 and κkR < 0.3. Note that although
> > 1, κkR < 1 so the entire volume of the sphere is still nearly-
niformly illuminated to yield a volume dependence in Eq. (7) . To

ecap, we find that the Rayleigh theory-derived Eqs. (6) and (7) ap-

ly semi-quantitatively for particles of all sizes when κkR < 0.3 and
is either much less than or much greater than approximately

ne, respectively. 

Fig. 2 compares the Mie result to the Rayleigh theory predic-

ions by plotting the Mie calculated absorption cross section di-

ided by the Rayleigh theory prediction of Eqs. (3) and (4) . There

e see that when kR < ∼1 , the Rayleigh and Mie theory predictions

gree as expected. In the other extreme when kR > ∼10 0 , Rayleigh

heory under-predicts the absorption cross section by about a fac-

or of two as long as κkR < ∼0 . 01 . Nevertheless, the two are pro-
ortional. When 1 < ∼kR < ∼10 0 and κkR < ∼0 . 01 , Rayleigh theory not
nly under-predicts but it misses a strong ripple structure in the

ie result. For all kR the ratio of Mie and Rayleigh theory calcu-

ated absorption declines rapidly after κkR > ∼0 . 1 . When κkR > ∼1 ,
he ratio falls off linearly with kR , consistent with the transition

f the absorption cross section from a volumetric to the geometric

ross sectional area dependence seen in Fig. 1 . 

Bohren and Huffman [6] used a geometric optics approach to

erive a formula for the absorption cross section valid for large size
arameters and weakly absorbing spheres. Their result is 

 abs B & H = 2 kV κ
 

n −1 
 

n 3 − n 2 −1 
3 / 2 

  

= 2 kV κf ( n ) . (8)

Note that the same product kV κincluded in this equation also
ppears in Eqs. (5) and (6) . When n = 1.0, the bracketed term in

q. (8) (i.e., f( n )) equals 1, so that Eq. (8) becomes identical to

q. (6) , which was derived from the Rayleigh theory cross sec-

ion in the n → 1 limit. For n = 1.5 the bracketed term f( n ) = 1.318

nd inclusion of this factor yields perfect agreement between

q. (8) and the ratio C abs / C abs Rayleigh plotted in Fig. 2 for large kR

nd κkR < 0.01. 
All these results show that in the regime where κkR < 0.3 the
ayleigh theory equations for absorption yield the correct func-

ionality of kV κand give magnitudes in semi-quantitative agree-
ent with Mie theory and geometric optics calculations. Keep in

ind that this statement applies to both small and large size pa-

ameters so long as κkR < 0.3, i.e., κ< 1/3 kR . Under this condition,
he absorbance does not significantly affect the light propagation

nto the volume of the sphere. 

.3. The geometric regime when kR > 1 and κkR > 1 and κ< 1 

Fig. 1 shows a geometric regime occurs such that the absorption

ross section C abs is approximately equal to the geometric cross

ection, G = πR 2 , when kR > 1 and κkR > 1 and κ< 1. 
Fig. 3 explores the accuracy of C abs = G in more detail and

rom a different perspective by plotting the absorption efficiency

 abs = C abs / G versus the size parameter kR . There we see that for

arge kR, C abs = G is fulfilled fairly well when κkR > 1, while κ
aries over orders of magnitude. However, this agreement dimin-

shes as κincreases through unity. When κ= 10, the Mie calcu-
ated absorption cross section is more than an order of magnitude

maller than the geometric cross section (i.e., Q < 0.1). Arrows
abs 
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Fig. 3. The absorption efficiency Q abs = C abs / G calculated with the Mie equations for spheres versus the size parameter kR . The light wavelength is λ=0.532 μm and the real 
part of the refractive index is n = 1.5. Plots are made for a wide range of imaginary refractive indices, κ. Arrows indicate where κkR = 1 for different κ. 
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indicating where κkR = 1 emphasize the importance of the param-
eter κkR by indicating the crossover from volumetric dependent
Rayleigh regime to the surface dependent geometric regime that

results in the geometric cross section. 

2.4. The reflection regime when κ> 3 and κkR > 3 

Fig. 1 shows that a third regime occurs whenever κ> 3 and
κkR > 3. In this regime the absorption cross section falls from the
geometric limit quadratically with increasing κ. Also, it is well
known that for large size parameters the extinction cross section,

which is the sum of the absorption and scattering cross sections,

i.e., C ext = C abs + C sca , approaches 2 G as kR → ∞ . Thus when kR >

1, so that C abs + C sca  2 G , if C abs decreases from G with increas-

ing κ, C sca must increase from G with increasing κ. The conclusion
is that as κpasses from 1 to 10 or more, absorption gives way to
specular reflection to keep the extinction cross section equal to 2 G.

One can envision that a smooth, black sphere with C abs = πR 
2 be-

comes shiny like a steel ball as κincreases beyond ∼3. Note that
reflection is a form of scattering so, ironically, the parameter that

causes absorption, κ, ultimately causes scattering and quenches
absorption! 

With these thoughts in mind, consider large spheres and apply

geometric optics to determine their scattering cross section C sca .

For large spheres in the geometric optics regime, the scattering

cross section can be written as the sum of scattering cross sec-

tions for diffraction, transmission, and surface reflection (ignoring

internal reflections) as [10] 

 sca = C sca _ D + C sca _ T + C sca _ R , (9)

where C sca_D approaches G as kR → ∞ , C sca_T becomes 0 for large
κkR, and C sca_R , the scattering cross section due to reflection from
the sphere can be calculated using geometric optics by integrat-
ing the Fresnel reflection coefficients over a spherical surface as
[10,11] 
 Sca _ R = 
G 

4 

 π

0 
dθsin ( θ) 

[ sin (θ/ 2) − u R ] 
2 
+ v 2 R 

[ sin (θ/ 2) + u R ] 
2 
+ v 2 

R 

+ 
[ n 2 − κ2 sin (θ/ 2) − u R ] 

2 
+ [2 nκsin ( θ/ 2) − v R ] 

2 

[ n 2 − κ2 sin (θ/ 2) + u R ] 
2 
+ [2 nκsin ( θ/ 2) + v R ] 

2 

 

(10)

here the two fractions in the large, round brackets contain the s -

nd p -polarized contributions, respectively, and u R , v R , and a are

efined as 

 R = 

  

a 2 + ( 2 nκ) 2 + a 
2 

(11)

 R = 

  

a 2 + ( 2 nκ) 2 −a 
2 

(12)

 = n 2 − κ2 −cos 2 (θ/ 2) . (13)

Here, the total reflectance R equals the scattering efficiency due

o reflection Q sca_R , = C sca_R / G . The large, absorbing sphere is reflect-

ng light from its surface, thus the “reflectance” absorption cross

ection is 

 abs re f l = G ( 1 −R ) (14)

This equation essentially claims that if the light reflects, it

oesn’t get absorbed. 

The prediction of Eqs. (10) through (14) is compared to the ex-

ct Mie prediction as a ratio in Fig. 4 . The prediction is shown to

ork well for kR > 10 and κ> 3 and becomes equal to the Mie pre-
iction as both of these quantities grow larger. There is a hump in

he ratio near kR  1. The prediction continues to work well when

R < 1, as long as κkR > ∼10 . This is remarkable because the concept
f geometric, specular reflection at the foundation of our predic-

ion is surprising for subwavelength-size particles with kR < 1. 

Eqs. (10) through (14) are complex, so we now attempt a sim-

ler description. We will assume that the incident side of the

phere is flat with area G = πR 2 perpendicular to the incident light.
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Fig. 4. The ratio of the absorption cross section calculated with the Mie equations for spheres divided by the reflectance absorption cross section of Eqs. (10) through 

(14) versus the size parameter kR . The light wavelength is 0.532 μm and the real part of the refractive index is n = 1.5. The dashed line indicates where the ratio is one. Plots 

are made for a wide range of imaginary refractive indices, κ. 
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hen we apply Fresnel reflection at normal incidence, where the

eflectivity is 

 = 
( n −1 ) 2 + κ2 

( n + 1 ) 2 + κ2 
. (15) 

With this, Eq. (14) becomes the “normal reflectance” absorption

ross section 

 abs norm re f l  G 
4 n 

( n + 1 ) 2 + κ2 
. (16) 

In the limit of large κsuch that κ>> n , 

 abs norm re f l  4 nG/ κ2 . (17) 

The functionality of Eq. (17) is plotted in Fig. 1 and seen to pro-

ide an adequate description of the Mie calculated results for C abs 
hen κ> 

∼3 . In particular, the normal reflectance absorption cross

ection of Eq. (17) successfully predicts the dependence on G and

he inverse square dependence on κand demonstrates them ex-
licitly. This latter fact is not explicitly demonstrated by the more

ccurate reflectance absorption cross section of Eqs. (10) through

14) . A more detailed comparison of Eq. (17) , not shown here,

hows that in the limit of κ→ ∞ , Eq. (17) under-predicts the re-
ectance absorption cross-section result from Eqs. (10) through

14) by about 33% for all kR , and hence misses the Mie prediction

y the same amount. 

.5. The crossover regime when 0.3 < κkR < 3 and kR < 1 

In light of the results above, this regime occurs because small

articles in the Rayleigh regime, kR | m |  κkR < 1, in which the
ntire volume of the particle is nearly uniformly illuminated by

he incident light, hence obey Eq. (7) , cross over to surface influ-

nced interactions when κkR > 1. Because the other condition for
ayleigh scattering still holds, viz. kR < 1, κis quite large, e.g.,
> 3. This large κleads to Fresnel reflection from these sub-
avelength particles and the functionality of Eq. (17) . 
.6. Other features 

Fig. 2 displays both a broad hump and rapid, high-frequency

ipple features when the size parameter is in the range 1 < ∼kR < ∼30 .

hese features are usually referred to as the interference and ripple

tructures, respectively, and are readily seen in plots of the scatter-

ng and extinction efficiencies [6,12] . The ripple structure can make

 abs very large. Figs. 3 and 4 also display a hump near kR  1. 

Careful inspection of Figs. 2 and 3 shows that the ripple struc-

ure begins to disappear when κkR  0.01 and is essentially gone

hen κkR  0.1, regardless of the particular values of κor kR . This
s consistent with the physical picture of the source of the ripple

tructure being resonances of internal rays propagating along the

nner circumference of the sphere and with the physical picture

hat κkR is a measure of the relative size path length in the sphere
o the 1/e propagation length δdue to absorption. In fact, the rel-
vant ratio for the internal modes would be the sphere circumfer-

nce 2 πR divided by δto yield 2 πκkR . Therefore, we can restate
hat the ripple structure begins to disappear when 2 πκkR  0.06

nd is essentially gone when 2 πκkR  0.6. 
The broad hump interference structure begins near kR  1 and

ies away as κkR increases through ∼0.1. The interference struc-
ure has been explained as being due to interference between light

hat has been diffracted by the particle with that which has passed

hrough the particle [13–16] . The “ebbing away” of the broad hump

ith increasing κkR is consistent with a picture of light no longer
assing through the particle at large κkR . 

. Discussion 

When light encounters an object, it can either scatter via re-

ection, refraction, and diffraction of its energy, or the energy can

e absorbed and converted to another form. In this work we have

tudied absorption and found various regimes of behavior. In some
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cases these regimes imply surprising explanations and reflect on

the behavior of scattering as well. We discuss these situations here.

Our results show that the Rayleigh regimes for absorption and

scattering are different. Rayleigh scattering can be derived under

the assumption that the particle’s internal field is homogeneous.

Then the particle acts like an oscillating dipole for which the re-

emission of radiation, the scattering, can be calculated [1] . One

condition for a homogeneous internal field is for the particle to

be small compared to the wavelength, i.e. kR 1. The role of re-

fractive index can be shown via an electrostatics approach used

by Bohren and Huffman [6] who considered the real and imagi-

nary parts of the refractive index separately. To quote: “we would

not expect the field in the sphere to be uniform when the exter-

nal field is a plane wave unless 2 πκa/ λ< < 1 ” where a = R, the
sphere radius. Note that 2 πκa/ λ= κkR . They then argue that a sec-
ond condition for Rayleigh scattering is needed because the entire

sphere must respond uniformly in time, i.e. sub-volumes in the

sphere must oscillate in phase. This condition is based upon the

need for the scattered waves from the sub-volumes of the sphere

to reach the detector in phase. The result is the requirement that

nkR < < 1 . Since the complete refractive index is m = n + i κ, the
combined condition for Rayleigh scattering is | m | kR << 1. Now we

emphasize that the Rayleigh condition for scattering is that the in-

ternal field is homogeneous in amplitude and phase. 

In contrast to scattering, absorption is not significantly affected

by the real part of the refractive index because absorption is not

dependent upon in-phase addition of waves at the detector. Now

we emphasize that the Rayleigh condition for absorption is that

the internal field is homogeneous in amplitude independent of

phase. Thus the Rayleigh condition for absorption is best stated as

κkR < < 1 not | m | kR << 1. Rayleigh absorption can occur for all
size parameters kR because κcan be very small. Empirically, using
the Mie equations, we find κkR < 0.3 to be a viable condition for
Rayleigh absorption functionality on fundamental physical proper-

ties of the sphere. 

We have also discovered that Fresnel reflection is relevant for

sub-wavelength-size spheres. This is true for the functionality on

the physical properties of the sphere and, to a good approxima-

tion, for the magnitude. Perhaps this is not so surprising when one

considers the fact that both the Mie scattering and Fresnel equa-

tions are based on the electromagnetic boundary conditions, the

only difference being the different symmetries, spherical and pla-

nar, respectively. 

Finally, large κcan increase scattering to the detriment of ab-
sorption. This is also true for both spheres and planar interfaces. 

4. Conclusions 

We have studied the absorption cross section for spheres cal-

culated with the Mie equations. We find four regimes of behavior:
he Rayleigh Regime, the Geometric Regime, the Reflection Regime,

nd the Crossover Regime. We have presented simple formulas to

escribe the absorption in these regimes. Two parameters govern

hese regimes, the imaginary part of the refractive index, κ, and
he ratio of the sphere radius to the optical penetration or skin

epth, κkR . For absorption, the Rayleigh regime applies for all par-
icle sizes so long as κkR < 0.3. Fresnel reflection occurs whenever
oth κ> 3 and κkR > 3, and these conditions allow for Fresnel re-
ection from sub-wavelength-size spheres. 
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