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interacting with light of wavelength A as calculated with the Mie equations. Four regimes of behavior are
disclosed: the Rayleigh Regime, the Geometric Regime, the Reflection Regime, and a Crossover Regime.
Two parameters govern these regimes, the imaginary part of the refractive index, &, and the product of «
with the sphere size parameter kR where k=2m[A, i.e. kkR. Simple, approximate functionalities on «, k,
sphere volume and projected geometric cross section are derived for these regimes. Interesting aspects of
our observations include: Rayleigh absorption can apply to all particle sizes, Fresnel reflection can occur
for sub-wavelength spheres, and while « is the agent of absorption, large k¥ can increase scattering to the
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1. Introduction

All material objects have a wavelength dependent complex re-
fractive index m=n+ik. In general, the real part n dominates the
refraction and speed of light, and the imaginary part ¥ dominates
the absorption of light; both factor approximately equivalently into
the reflection of light. Studies of optical properties typically pay
more attention to the real part n than to the imaginary part «. This
is understandable, because one is often dealing with transmissive
optics, and when dealing with reflective optics, reflection coeffi-
cients are used as the relevant parameters, not ¥ nor n. Moreover,
in many situations x is small. But such a statement, as we shall
see, can be problematic in itself because it engenders the question
“small compared to what?”.

In this paper we explicitly consider the effects of the imagi-
nary refractive index x on the absorption properties of spheres. We
will consider very wide ranges of ¥ and sphere size parameters kR,
where k=2m (A, A being the wavelength of light and R the sphere
radius.

Our method is simple: we use the Mie equations (e.g., [1]) to
calculate the absorption cross section. Our approach is surprisingly
novel: we plot the absorption cross section versus the imaginary
part of the refractive index, x. Because « is the cause of the ab-
sorption, this is a very reasonable approach.
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2. Results

Fig. 1 shows the absorption cross section Cg, for a sphere of ra-
dius R as a function of the imaginary refractive index « for a wide
range of size parameters kR where k=2m[A and A is the wave-
length of light. The real part of the refractive index is constant at
n=15. The figure shows that when the imaginary refractive in-
dex « is small, the absorption cross section increases linearly with
« for all sizes. For large sizes such that kR> 1 this increase lev-
els of when « = 1/kR, i.e., when the parameter kkR = 1, Cpp; =
G=mR?, the geometric cross section. Continuing with kR > 1, when
K > 2, the absorption falls off with the square of x. In contrast, for
smaller particles, when kR < 1, the absorption cross section never
reaches the geometric cross section from its linear ascent from
small k. Instead near k = 1, it begins to decrease, eventually gain-
ing an inverse cubic dependence on k. This decrease is interrupted
near kkR =~ 0.3 where an inflection occurs, after which, near kR =~
3 at large k, the same quadratic decrease with « as seen for large
sizes develops. We have replotted Fig. 1 for n=1.1 and 3 and found
very similar trends.

To bring some order to this remarkable (to us) series of func-
tionalities, we will divide Fig. 1 into four regimes:

1. The Rayleigh Regime when xkR < 0.3.

2. The Geometric Regime when kR>1 and kkR>1 and k¥ < 1.
3. The Reflection Regime when x >3 and xkR > 3.

4, The Crossover Regime when 0.3 <«kkR <3 and kR < 1.
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Fig. 1. Spherical particle absorption cross section C,, as a function of the imaginary refractive index x. Seven different particle size parameters kR are shown. The light
wavelength is A=0.532pm and the real part of the refractive index is constant at n =1.5. Dashed lines show the functionalities 2kVk and 4nG/x? as marked; horizontal
dot-dash lines indicate C,,, =G=mR?, and short dot-dash line shows the functionality 18kVn/x? as marked. Dotted line and dash-double-dot line mark the boundaries of the
crossover regime at kkR=0.3 and 3.0, respectively. Shaded areas indicate the Rayleigh, Geometric, and Reflection Regimes. The unshaded area is the Crossover Regime.

We intend to study each of these regimes below, but first we
will describe the importance of the parameter xkR.

2.1. The parameter kkR

The parameter kR was first described in [2]. It was discovered
that the combination xkR universally parameterized changes in the
angular scattering behavior of spheres, whereas the individual «
and kR do not. The parameter has been shown to apply to non-
spherical ice crystals [3], and its usefulness has been described in
a recent review [4].

The universality of this parameter has a simple physical basis.
When the refractive index of a medium has a non-zero imaginary
part, i.e, when « >0, light will decay exponentially as it propa-
gates into a uniform and homogeneous medium with a 1/e = 0.37
decay length of

8 =1/ (kkpac) = Avac/ (27 K), (1)

where the subscript “vac” means “vacuum”. The parameter § is of-
ten called the skin depth [5]. The ratio of the sphere radius to the
skin depth, R[S is kkR, ie.,

R/S — KkR. (2)

Thus «kR quantifies the relative extent of the light penetra-
tion into the sphere. When «kR << 1, absorption does not impede
the entering wave from affecting the entire volume of the sphere.
When «kR > 1, absorption causes the light to be confined to near
the surface of the sphere. From a perspective relevant here, kkR
determines whether the absorption is affected by the volume of
the sphere or by the near-surface region of the sphere. The param-
eter also answers, to some degree, the question for the dimension-
less k, “small compared to what?” It's not the magnitude of « that
matters, but rather the magnitude of the dimensionless kkR com-
pared to one.

2.2. The Rayleigh regime kkR <0.3

Here we will show that all the spheres, regardless of size, dis-
play a semi-quantitative Rayleigh theory dependence of absorption
cross section on ¥ when the parameter kR <0.3. The canonical
definition of the Rayleigh regime is constrained with two condi-
tions [6], kR <<1 and kR|m| < <1. Note that the first condition
restricts particle size to be much smaller than the wavelength,
thereby ensuring constructive interference with very little phase
shift for the scattered light, yielding the V? dependence of the
scattering cross-section [7,8]. However, absorption is an incoherent
process, not dependent on phase shifts. Therefore, the first condi-
tion does not directly affect the absorption cross section. The lat-
ter condition addresses absorption in the Rayleigh regime, ensur-
ing that the incident light fully penetrates the particle volume and
yielding the V dependence of the absorption cross-section, consis-
tent with our kkR <0.3 [9]. The Rayleigh absorption cross section
is given by [6]

Cabs Rayteigh = 477 R (KR)E (m)) = 3VKE (m), 3)
where

2 1
E{m):lm[—:2+2]. (4)

Note the volume dependence V in Eq. (3). If ¥ <1, the Rayleigh
absorption cross section becomes

Cabs Rayleigh small x = ISkVHK/(HZ + 2) (5}
Eq. (5) has the linear dependence with « seen in Fig. 1 that

was obtained from Mie theory. Eq. (5) can be simplified further by

setting the real refractive index n= 1.0 to obtain

Cabs Rayleigh small k(N = 1-0) ~ 2kVi. (6}
This result is included in Fig. 1 as a dashed line and seen to

be in semi-quantitative agreement with the Mie result for all size

2
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Fig. 2. The ratio of the absorption cross section calculated with the Mie equations for spheres divided by the exact Rayleigh theory predictions of Eqs. (3) and (4) versus the
size parameter kR. The light wavelength is A =0.532pm and the real part of the refractive index is n =1.5. Plots are made for a wide range of imaginary refractive indices,
k < 1. The dashed line indicates where this ratio is 1.0, the dot-dashed line indicates the ratio of C,,, =2kVk (also used in Fig. 1), Eq. (6), to the Rayleigh theory prediction,
and the short-dashed line indicates the ratio of C,,, =2kVkfin), Eq. (8), to the Rayleigh theory prediction. Note that some of the spike-like structure may be affected by

aliasing.

parameters as long as kkR < 0.3 and « < 1. Note that when n=1.5,
Eq. (5) leads to Cyps Rayleigh smali (M =1.5) = 1.49kVi.

On the other hand when « > 1, the Rayleigh absorption cross
section becomes

Cabs Rayleigh large k = 18kVn/ic?. (7)

This result is also included in Fig. 1 as a short dot-dash line and
seen to be in semi-quantitative agreement with the Mie result for
all small size parameters, k >3 and kkR <0.3. Note that although
Kk >>1, kkR <1 so the entire volume of the sphere is still nearly-
uniformly illuminated to yield a volume dependence in Eq. (7). To
recap, we find that the Rayleigh theory-derived Eqs. (6) and (7) ap-
ply semi-quantitatively for particles of all sizes when kR < 0.3 and
k is either much less than or much greater than approximately
one, respectively.

Fig. 2 compares the Mie result to the Rayleigh theory predic-
tions by plotting the Mie calculated absorption cross section di-
vided by the Rayleigh theory prediction of Egs. (3) and (4). There
we see that when kR =1, the Rayleigh and Mie theory predictions
agree as expected. In the other extreme when kR z 100, Rayleigh
theory under-predicts the absorption cross section by about a fac-
tor of two as long as kkR =<0.01. Nevertheless, the two are pro-
portional. When 1 kR =100 and «kR = 0.01, Rayleigh theory not
only under-predicts but it misses a strong ripple structure in the
Mie result. For all kR the ratio of Mie and Rayleigh theory calcu-
lated absorption declines rapidly after kkR =0.1. When xkR =1,
the ratio falls off linearly with kR, consistent with the transition
of the absorption cross section from a volumetric to the geometric
cross sectional area dependence seen in Fig. 1.

Bohren and Huffman [6] used a geometric optics approach to
derive a formula for the absorption cross section valid for large size

parameters and weakly absorbing spheres. Their result is
Cape Bttt — 2ka{rr1 [n3 — (- 1)3"2] ] — KV f(n). 8)

Note that the same product kVk included in this equation also
appears in Egs. (5) and (6). When n=1.0, the bracketed term in
Eq. (8) (ie. f(n)) equals 1, so that Eq. (8) becomes identical to
Eq. (6), which was derived from the Rayleigh theory cross sec-
tion in the n— 1 limit. For n=1.5 the bracketed term f(n)=1318
and inclusion of this factor yields perfect agreement between
Eq. (8) and the ratio Cyps/Cups Rayteign Plotted in Fig. 2 for large kR
and xkR < 0.01.

All these results show that in the regime where kkR <0.3 the
Rayleigh theory equations for absorption yield the correct func-
tionality of kVk and give magnitudes in semi-quantitative agree-
ment with Mie theory and geometric optics calculations. Keep in
mind that this statement applies to both small and large size pa-
rameters so long as kR < 0.3, i.e., ¥ < 1/3kR. Under this condition,
the absorbance does not significantly affect the light propagation
into the volume of the sphere.

2.3. The geometric regime when kR>1 and kkR>1 and k <1

Fig. 1 shows a geometric regime occurs such that the absorption
cross section Cg,, is approximately equal to the geometric cross
section, G= wR?, when kR> 1 and kkR>1 and x <1,

Fig. 3 explores the accuracy of C,= G in more detail and
from a different perspective by plotting the absorption efficiency
Qups = Cans[/G versus the size parameter kR. There we see that for
large kR, Cgps= G is fulfilled fairly well when «kR=>1, while «
varies over orders of magnitude. However, this agreement dimin-
ishes as k increases through unity. When « =10, the Mie calcu-
lated absorption cross section is more than an order of magnitude
smaller than the geometric cross section (i.e., Qgps <0.1). Arrows
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Fig. 3. The absorption efficiency Qs = Cu,/G calculated with the Mie equations for spheres versus the size parameter kR. The light wavelength is A =0.532um and the real
part of the refractive index is n = 1.5. Plots are made for a wide range of imaginary refractive indices, x. Arrows indicate where xkR=1 for different &.

indicating where kkR=1 emphasize the importance of the param-
eter kkR by indicating the crossover from volumetric dependent
Rayleigh regime to the surface dependent geometric regime that
results in the geometric cross section.

24. The reflection regime when k >3 and kkR >3

Fig. 1 shows that a third regime occurs whenever ¥ > 3 and
KkkR > 3. In this regime the absorption cross section falls from the
geometric limit quadratically with increasing «. Also, it is well
known that for large size parameters the extinction cross section,
which is the sum of the absorption and scattering cross sections,
i.e., Cexr = Cyps + Csca, approaches 2G as kR — oco. Thus when kR >
1, so that Cyps + Csea = 2G, if Cpps decreases from G with increas-
ing k', Cyg must increase from G with increasing «. The conclusion
is that as « passes from 1 to 10 or more, absorption gives way to
specular reflection to keep the extinction cross section equal to 2G.
One can envision that a smooth, black sphere with Cgps =mR? be-
comes shiny like a steel ball as x increases beyond ~ 3. Note that
reflection is a form of scattering so, ironically, the parameter that
causes absorption, x, ultimately causes scattering and quenches
absorption!

With these thoughts in mind, consider large spheres and apply
geometric optics to determine their scattering cross section Cgq.
For large spheres in the geometric optics regime, the scattering
cross section can be written as the sum of scattering cross sec-
tions for diffraction, transmission, and surface reflection (ignoring
internal reflections) as [10]

(9)

where Cy,, p approaches G as kR — oo, G5, T becomes 0 for large
kkR, and Csq g, the scattering cross section due to reflection from
the sphere can be calculated using geometric optics by integrat-
ing the Fresnel reflection coefficients over a spherical surface as
[10,11]

Csm = Csca_D + Csm_]" + Csca_R,

G (™. . [sin(6/2) — ug]® + vﬁ)
G = = dg (2]
SR 4]0 sin @) {([sin(9/2)+ uxl’ + 12
[(n? - x?)sin(8/2) — ug]2+[2m(sin(9/2}— vg]?
[(n2 — x2)sin(8/2) + ugl’ + [2nk sin @/2)+ w?

] (10)

where the two fractions in the large, round brackets contain the s-
and p-polarized contributions, respectively, and ug, vg, and a are
defined as

iy — \/\/az +(2nx)? +a

5 (11)

2
Vg — ‘/‘X¢12+(22mc) —a (12)
a= n?— k?—cos?(6/2). (13)

Here, the total reflectance R equals the scattering efficiency due
to reflection Qscq g, = Cscq_r/G. The large, absorbing sphere is reflect-
ing light from its surface, thus the “reflectance” absorption cross
section is

Cabs refl = G(1-BR) (14]

This equation essentially claims that if the light reflects, it
doesn't get absorbed.

The prediction of Egs. (10) through (14) is compared to the ex-
act Mie prediction as a ratio in Fig. 4. The prediction is shown to
work well for kR > 10 and « > 3 and becomes equal to the Mie pre-
diction as both of these quantities grow larger. There is a hump in
the ratio near kR = 1. The prediction continues to work well when
kR <1, as long as kkR z 10. This is remarkable because the concept
of geometric, specular reflection at the foundation of our predic-
tion is surprising for subwavelength-size particles with kR < 1.

Egs. (10) through (14) are complex, so we now attempt a sim-
pler description. We will assume that the incident side of the
sphere is flat with area G= 7 R? perpendicular to the incident light.
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Fig. 4. The ratio of the absorption cross section calculated with the Mie eguations for spheres divided by the reflectance absorption cross section of Egs. (10) through
(14) versus the size parameter kR. The light wavelength is 0.532 pm and the real part of the refractive index is n=1.5. The dashed line indicates where the ratio is one. Plots

are made for a wide range of imaginary refractive indices, .

Then we apply Fresnel reflection at normal incidence, where the
reflectivity is
m-17%+ &2
m+1)?%+ x2

With this, Eq. (14) becomes the “normal reflectance” absorption
cross section

R= (15)

o
(n+ 1"+ &2
In the limit of large « such that ¥ >>n,

Cabs norm refl = 4HG/K2- (17)

The functionality of Eq. (17) is plotted in Fig. 1 and seen to pro-
vide an adequate description of the Mie calculated results for Cg,
when « Z 3. In particular, the normal reflectance absorption cross
section of Eq. (17) successfully predicts the dependence on G and
the inverse square dependence on x and demonstrates them ex-
plicitly. This latter fact is not explicitly demonstrated by the more
accurate reflectance absorption cross section of Eqs. (10) through
(14). A more detailed comparison of Eq. (17), not shown here,
shows that in the limit of ¥ — oo, Eq. (17) under-predicts the re-
flectance absorption cross-section result from Eqs. (10) through
(14) by about 33% for all kR, and hence misses the Mie prediction
by the same amount.

Cabs norm refl = (16)

2.5. The crossover regime when 0.3 <kkR <3 and kR <1

In light of the results above, this regime occurs because small
particles in the Rayleigh regime, kRjm| =~ «xkR < 1, in which the
entire volume of the particle is nearly uniformly illuminated by
the incident light, hence obey Eq. (7), cross over to surface influ-
enced interactions when «kkR > 1. Because the other condition for
Rayleigh scattering still holds, viz. kR < 1, ¥ is quite large, e.g.,
k > 3. This large x leads to Fresnel reflection from these sub-
wavelength particles and the functionality of Eq. (17).

2.6. Other features

Fig. 2 displays both a broad hump and rapid, high-frequency
ripple features when the size parameter is in the range 1 kR = 30.
These features are usually referred to as the interference and ripple
structures, respectively, and are readily seen in plots of the scatter-
ing and extinction efficiencies [6,12]. The ripple structure can make
Caps very large. Figs. 3 and 4 also display a hump near kR =~ 1.

Careful inspection of Figs. 2 and 3 shows that the ripple struc-
ture begins to disappear when xkR =~ 0.01 and is essentially gone
when kR = 0.1, regardless of the particular values of « or kR. This
is consistent with the physical picture of the source of the ripple
structure being resonances of internal rays propagating along the
inner circumference of the sphere and with the physical picture
that kR is a measure of the relative size path length in the sphere
to the 1/e propagation length § due to absorption, In fact, the rel-
evant ratio for the internal modes would be the sphere circumfer-
ence 2R divided by § to yield 2wxkR. Therefore, we can restate
that the ripple structure begins to disappear when 2w kkR =~ 0.06
and is essentially gone when 2w kkR = 0.6.

The broad hump interference structure begins near kR =~ 1 and
dies away as «kR increases through ~ 0.1. The interference struc-
ture has been explained as being due to interference between light
that has been diffracted by the particle with that which has passed
through the particle [13-16]. The “ebbing away” of the broad hump
with increasing «kR is consistent with a picture of light no longer
passing through the particle at large xkR.

3. Discussion

When light encounters an object, it can either scatter via re-
flection, refraction, and diffraction of its energy, or the energy can
be absorbed and converted to another form. In this work we have
studied absorption and found various regimes of behavior. In some
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cases these regimes imply surprising explanations and reflect on
the behavior of scattering as well. We discuss these situations here.

Our results show that the Rayleigh regimes for absorption and
scattering are different. Rayleigh scattering can be derived under
the assumption that the particle’'s internal field is homogeneous.
Then the particle acts like an oscillating dipole for which the re-
emission of radiation, the scattering, can be calculated [1]. One
condition for a homogeneous internal field is for the particle to
be small compared to the wavelength, i.e. kR « 1. The role of re-
fractive index can be shown via an electrostatics approach used
by Bohren and Huffman [6] who considered the real and imagi-
nary parts of the refractive index separately. To quote: “we would
not expect the field in the sphere to be uniform when the exter-
nal field is a plane wave unless 2wka/d < <1" where a=R, the
sphere radius. Note that 2wk a/A =kkR. They then argue that a sec-
ond condition for Rayleigh scattering is needed because the entire
sphere must respond uniformly in time, i.e. sub-volumes in the
sphere must oscillate in phase. This condition is based upon the
need for the scattered waves from the sub-volumes of the sphere
to reach the detector in phase. The result is the requirement that
nkR < <1. Since the complete refractive index is m=n+ik, the
combined condition for Rayleigh scattering is |m|kR << 1. Now we
emphasize that the Rayleigh condition for scattering is that the in-
ternal field is homogeneous in amplitude and phase.

In contrast to scattering, absorption is not significantly affected
by the real part of the refractive index because absorption is not
dependent upon in-phase addition of waves at the detector. Now
we emphasize that the Rayleigh condition for absorption is that
the internal field is homogeneous in amplitude independent of
phase. Thus the Rayleigh condition for absorption is best stated as
kkR < <1 not [mkR << 1. Rayleigh absorption can occur for all
size parameters kR because k can be very small. Empirically, using
the Mie equations, we find kkR < 0.3 to be a viable condition for
Rayleigh absorption functionality on fundamental physical proper-
ties of the sphere.

We have also discovered that Fresnel reflection is relevant for
sub-wavelength-size spheres. This is true for the functionality on
the physical properties of the sphere and, to a good approxima-
tion, for the magnitude. Perhaps this is not so surprising when one
considers the fact that both the Mie scattering and Fresnel equa-
tions are based on the electromagnetic boundary conditions, the
only difference being the different symmetries, spherical and pla-
nar, respectively.

Finally, large x can increase scattering to the detriment of ab-
sorption. This is also true for both spheres and planar interfaces.

4. Conclusions

We have studied the absorption cross section for spheres cal-
culated with the Mie equations. We find four regimes of behavior:

the Rayleigh Regime, the Geometric Regime, the Reflection Regime,
and the Crossover Regime. We have presented simple formulas to
describe the absorption in these regimes. Two parameters govern
these regimes, the imaginary part of the refractive index, x, and
the ratio of the sphere radius to the optical penetration or skin
depth, xkR. For absorption, the Rayleigh regime applies for all par-
ticle sizes so long as «kR < 0.3. Fresnel reflection occurs whenever
both x >3 and xkR >3, and these conditions allow for Fresnel re-
flection from sub-wavelength-size spheres.
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