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Abstract

In this paper we provide a high performance solution to the
problem of committing transactions while enforcing a pre-
defined order. We provide the design and implementation
of three algorithms, which deploy a specialized coopera-
tive transaction execution model. This model permits the
propagation of written values along the chain of ordered
transactions. We show that, even in the presence of data con-
flicts, the proposed algorithms outperform single threaded
execution, and other baseline and specialized state-of-the-art
competitors (e.g., STMLite). The maximum speedup achieved
in micro benchmarks, STAMP, PARSEC and SPEC200 appli-
cations is in the range of 4.3x — 16.5x.

CCS Concepts + Theory of computation — Concur-
rency; Parallel algorithms; - Software and its engineer-
ing — Concurrency control.

Keywords Transactions, Parallelization, Ordering

1 Introduction

Transaction ordering intuitively means considering not just
the set of transactions as input of the problem, but also the
specific commit order that must be enforced for them. Such
a formulation inherently includes a fundamental trade off
between the level of parallelism achievable, given the need of
commiitting in-order, and the performance of single threaded
execution without any software instrumentation.

Ordering tasks before their execution is a problem mostly
relevant to contexts where producing executions equivalent
to a predefined order is needed in order to satisfy certain
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properties (e.g., a program semantics equivalent to serial
execution). Examples of these deployments include: specula-
tive loop parallelization [13, 33, 35, 37, 38], and distributed
computation using the state machine approach [18, 19, 36].

In the former, loops designed to run sequentially are paral-
lelized by executing their iterations concurrently and guard-
ing memory transactions (e.g., by using Transactional Mem-
ory [17] as done in [13, 33, 35]). In that case, providing an
order matching the sequential one is fundamental to enforce
equivalent semantics for both the parallel and sequential
code. Regarding the latter, many distributed systems order
tasks before executing them to guarantee that a single state
machine abstraction always evolves consistently on distinct
nodes. A common example of this methodology is when con-
sensus (e.g., Paxos [20]) is employed to establish a common
order among commands (or transactions) manipulating a
single replicated state.

In this paper we focus on Transactional Memory (TM) as
a technology to support speculative execution of tasks, and
we present three algorithms to process transactions in paral-
lel while enforcing a predefined order: Ordered Write Back
(OWB), Ordered Undo Logging (OUL), and a lock-steal vari-
ant of OUL (OUL-Steal). These algorithms are based on two
widely used techniques to merge transaction modifications
into the shared state: write-back (in OWB) and write-through
(in OUL and OUL-Steal).

All our implementations deploy a common design that
uses a cooperative model where transactions exchange both
data and locks to increase concurrency while preserving
the predefined commit order. OWB uses data forwarding
for transactions that finish their execution successfully, but
are not committed yet, and OUL leverages encounter time
locking with the ability to pass the lock ownership to other
transactions. Our cooperative model is similar to the depen-
dency aware transactions model (DATM) [26, 27]. However,
DATM is not designed (and thus cannot be optimized) for
committing transactions in a predefined order since it tracks
all dependencies among transactions and analyzes them at
run-time seeking for some correct serialization order instead
of the predefined one.
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We implement OWB, OUL, OUL-Steal, the ordered ver-
sion of four existing well-known TM designs (i.e., TL2 [10],
NOrec [8], and UndoLog [12] with and without visible read-
ers), and STMLite [21], a specialized solution that commits
transactions in a predefined order. We conduct a performance
evaluation using a set of micro-benchmarks, STAMP [22],
and some applications from the PARSEC and SPEC2000
benchmarks. For determining the transaction order, we use
either the index of the application main for-loop that gener-
ates the parallel code or a synthetic atomic integer that we
inserted as transaction order. Results have been compared
agains the sequential execution of the benchmarks, as well as
against their parallel execution, as provided by the original
version of the applications, if available.

OUL outperforms other ordered competitors consistently.
The maximum speedup achieved is 4x over Ordered TL2,
4.3% over Ordered NORec, 8x over Ordered UndoLog visible,
10x over Ordered UndoLog invisible, and 5.7x over STMLite.
The peak gain over the sequential non-instrumented exe-
cution in micro benchmarks is 10X, 16.5X in STAMP, more
than 10x in PARSEC, and 30% in SPEC2000.

OWRB ensures TMS1 [11], a weaker but safe [2] consis-
tency condition than opacity [14, 15]. OUL achieves higher
concurrency and performance, at the cost of weakening the
correctness level by ensuring Strict Serializability [4].

Finally, it is worth mentioning that OWB, OUL, and OUL-
Steal are TM implementations meant to be integrated into
runtime systems to support their speculative execution. An
example of such a system is Lerna [35]. In those systems, a
sandboxing [7] mechanism prevents runtime exceptions to
be propagated outside the concurrency control engine.

2 Related Work

Transactional Memory (TM) is a technology to speculative
execute code [17], and has emerged as a technique to extract
parallelism from sequential code [13, 21, 33, 35, 37, 38]. When
a predefined order is necessary, conflicts are handled by
aborting (and re-executing) whichever transaction ran code
with the latest chronological ordering. The key idea is that
code blocks run as transactions and commit in the program’s
original chronological order. The techniques for supporting
the aforementioned ordering are classified as: blocking [13,
21, 39] or freezing [40]; a detailed comparison between them
can be found in [34].

In the blocking approach, Mehrara et al. [21] proposed
STMLite, a TM with a separate thread, Transaction Commit
Manager (TCM), that detects conflicts among transactions
waiting to commit. TCM orchestrates the in-order commit
process with the ability to have concurrent commits. Worker
threads poll and stall to wait for the TCM’s permission. Gon-
zalez et al. [13] use a distributed approach for handling the
commitment order. Each thread employs a bounded circu-
lar buffer to store its completed transactions. If all buffer
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slots are exhausted, the thread stalls until one of the pending
executed transactions reaches the correct commit order.

Another existing solution lets threads freeze completed
transactions and proceed to execute the transactions with
later chronological order, with the disadvantage of increasing
the transaction lifetime (hence, higher conflict probability).
Zhang et al. [40] introduced a technique to support a prede-
termined total order of transactions. A next-to-commit shared
variable is used to preserve this order. Overall, in both the
blocking and freezing approach ordering transactions’ com-
mits negatively affects the overall resource utilization and
may nullify any potential gain due to threads’ parallelism. To
overcome this restriction, OWB and OUL limit the stalling
periods to only the latency of the commit.

The level of atomicity is an orthogonal classification for
the aforementioned techniques. The classical TM model man-
dates transactions to see only committed values. However,
concurrent transactions can construct a dependency graph of
uncommitted values. Based on this graph, the transactions
commiit in the constructed order. Ramadan et al. [27] pro-
posed a dependency aware transactions model (DASTM), in
which every object keeps track of all transactional reads and
writes, and transactions forward their uncommitted changes
to other conflicting transactions. Based on these relations,
the commit order is defined at run-time by verifying that
the constructed conflict graph is acyclic. This check is very
expensive, especially when executed during the transaction
execution and leads to performance gain only in the pres-
ence of very high conflicts. As opposed to DASTM, OWB and
OUL, and OUL-Steal do not maintain the conflicting graph
because data forwarding is optimized to enforce only one
predefined commit order.

Since code parallelization is the main application of our
STM implementations, Thread-level Speculation (TLS) [23,
25] is an immediate related topic. Loop parallelization us-
ing TLS has been proposed in both hardware [25] and soft-
ware [5, 30]. TLS and TM have been merged through a unified
model in [3, 23, 28, 29] to get the best of the two techniques.
Generally, TLS is a less flexible way to parallelize code than
STM. For example, with STM only some instructions can be
instrumented while the others still execute without instru-
mentation; on the contrary, leveraging TLS means specu-
lating over the entire loop body. To overcome some of the
well-known TLS limitations, the work in [23] proposes a
software TLS implementation where write operations di-
rectly update the non-speculative memory and read-races
are tracked using metadata. Some of these intuitions have
been ported to STM by OWB, OUL, and OUL-Steal.

3 Execution and Memory Model

JIn}
Transactions access shared objects using read and write op-
erations, with their usual meaning [17]. We denote the sets

Our model assumes a set of transactions {1}, T», ...
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of shared objects accessed by transaction T; for read and
write as read-set(7;) and write-set(T;), respectively.

A transaction execution is defined as a sequence of op-
erations, where each operation is represented by a pair of
invoke and return events. Besides the read and write oper-
ations, whose semantics is the usual one, it also includes
a commit operation that starts by invoking the try-commit
event, whose return value is either commit or abort. A trans-
action can also be aborted before invoking the try-commit
event. A transaction that begins its execution and did not
invoke the try-commit event yet is called live. A transaction
that invoked the try-commit event but did not commit or
abort yet is called commit-pending. When a transaction is
categorized as committed, it means that all its write opera-
tions have been executed permanently on the shared state;
and when it is categorized as aborted, its operations have no
permanent effect. In both the cases, all metadata is cleaned
before proceeding or re-executing. Figure 1 summarizes the
transaction states.

o
I:l OWB & OUL
{ Validation &
Write-set pub

ES

Figure 1. Transaction execution states in OWB and OUL.

-
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A shared object has a value and a (versioned) lock asso-
ciated with it. We say that a shared object is exposed if it is
locked by some live or commit-pending transaction. Intu-
itively, a shared object is exposed if some transaction can
already read it, although the transaction that wrote to that
object is still executing. A transaction is exposed when it is
commit-pending and has all its written objects exposed.

Two transactions are said to be conflicting if both are con-
current and access an object X, and at least one of them
writes on X. Note that two transactions are conflicting even
if both write the same object without reading it. Including
such a dependency is fundamental, as motivated in the next
paragraph. A conflict is handled by aborting one of the trans-
actions, or postponing the access responsible for the conflict
(if possible), until the other transaction commits.

Transaction Ordering. We focus on TM implementa-
tions providing a specific order of transaction commits, which
is assumed to be known prior to the transaction execution.
We denote such an order as the transaction age. The age is
assumed to be defined before activating any transaction (e.g.,
an ordering layer deployed on top of the TM implementa-
tion), and must match the transactions commit order. The
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age is unique, meaning no two transactions can have the
same age and once assigned to a transaction, the age does
not change even if the transaction is aborted multiple times.

The age of a transaction should not be confused with the
transaction timestamp taken from a global timestamp, as
used by many existing TM implementations (e.g., TL2 [10],
LSA [31]). The age of a transaction is externally determined
(e.g., by the application) and does not depend on the execu-
tion of concurrent transactions.

Let < be the total order relation on transaction ages, and
let those ages be denoted as subscripts (e.g., T;). If T; < T; we
say that T; has a lower age than Tj; otherwise higher. A con-
currency control that enforces an order of commits ensures
that when two operations o; and o, issued by transactions
T; and T;, respectively, are conflicting, then o; must happen
before o; if and only if T; < T;. We deploy this idea into
our execution model by introducing an Age-based Commit
Order (ACO). ACO mandates a customization of the classical
TM model. As an example, the transaction conflict detection
should guarantee that when T; < T, T; must not read a value
written by T; (intuitively, T; should commit before Tj).

We define a transaction T as reachable if all T;’s lower age
transactions are committed, which means that T; has been
reached by a serial execution where all transactions {Tj,...,
Tj_1} committed in the order 1,...,j — 1. In practice, ACO
constrains the serialization orders.

In our model, when a transaction aborts, it is restarted by
the TM library with the same age.

4 General Design

In this section, we present our co-operative model for sup-

porting ACO. The core idea is to relax the common practice

of letting transactions access values written by only commit-
ted or commit-pending transactions that will surely commit.

In our proposed solutions, we weaken this assumption while

still preserving the consistency according to ACO. Depend-

ing on the desired correctness and performance level, we
permit a transaction to expose its changes either:

- after it invokes the try-commit event and performs a vali-
dation to verify execution’s consistency, but still allowing
it to abort later due to ACO violation (in OWB); or

- right after the write operation takes place during the ex-
ecution and aborting any dependent transaction as soon
as a further modification on the same early exposed value
happens (in OUL).

The above idea allows transactions with higher age to
use such visible changes. Although it speeds up the flow of
values from lower to higher age transactions, it also creates
a possible dependency chain with other live and commit-
pending transactions that accessed those values. Therefore
when an abort occurs, the abort event should be immediately
triggered to all the dependent transactions (cascading abort).
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We can classify existing transactional models according
to the way they handle concurrent read and write opera-
tions as: conservative model, conflict serialization model (e.g.,
DASTM [27]), and cooperative ordered model (our model).
The former prohibits the co-existence of read and write oper-
ations issued by concurrent transactions on the same object
(this model is deployed by most concurrency controls). The
conflict serialization model permits all combinations and
selects the commit order based on the transaction depen-
dency. Our cooperative ordered model restricts the memory
snapshot seen by transactions to only the values exposed by
transactions with lower age.

Interestingly, under the conflict serialization model trans-
actions are aborted only when a mutual dependency (i.e., a
cycle in the transaction dependency graph) exists; in our
model, the graph is always acyclic. Avoiding to identify
cycles in the transaction dependency chain increases the
chance to achieve high performance.

4.1 Cooperative Ordered Transactional Execution

To construct our cooperative model, we start by highlighting

the following two events of a transaction execution:

- a transaction is exposed when all its written objects are
exposed, and it is in the commit-pending state by having
all its read operations consistent according to the ACO,
therefore no conflict with lower age transactions occurred,;

- a transaction becomes reachable, when all the lower age
transactions have been committed.

Supporting this new model requires that: i) aborted trans-
actions should be able to abort other transactions that ac-
cessed their exposed updates; and ii) lower age transactions
should enforce the abort of exposed higher age transactions.
Accomplishing the above goals requires maintaining some
transactional metadata (e.g., read and write sets, including
acquired locks) even after a transaction is exposed. Those
metadata help in identifying conflicts (or aborting) exposed
transactions, and they should be kept accessible until a trans-
action becomes reachable. Additionally, we need to support
the cascading abort of multiple live or exposed transactions
that share elements in their read-sets and write-sets.

Exposing written objects before being sure that a transac-
tion eventually commits may violate the ACO if all lower age
transactions are not committed yet. Similarly, ACO might
be violated when the transaction conflicts with a lower age
transaction that accesses a common object that is exposed
by the first. For this reason, we postpone releasing the trans-
action metadata until the transaction becomes reachable,
thus providing a safe point to decide whether a commit or
abort should be triggered. The main difference between an
exposed and a reachable transaction is that: the former, al-
though it has already published its modifications, it can still
be aborted (and trigger the cascading abort of other transac-
tions); the latter cannot be aborted anymore. It is therefore
safe to release all its metadata without violating the ACO.
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5 The Ordered Write Back (OWB)

The Ordered Write Back Algorithm (OWB) employs a write-
buffer approach; a transaction writes its modifications into
a local buffer. While entering the try-commit phase, the
transaction acquires a versioned-lock for each object in its
write-set and writes its changes to the shared memory, and
becomes exposed. To avoid concurrent writers, the locks
are not released until the transaction becomes committed
or is aborted. However, to allow an early propagation of the
modifications, higher age transactions can read these locked
objects. In case an abort is triggered, the exposed transaction
is responsible to abort any dependent transaction that has
read the exposed values. We use versioning to detect conflicts
between concurrent transactions. The transaction performs
a validation before exposing its values, and before releasing
its locks to approach the final commit.

In practice, for OWB a transaction is exposed if: it is exe-
cuted until the end without any conflict with other concur-
rent transactions; it acquired locks on its modified objects
successfully; it exposed its new values to the shared memory;
and it is waiting to be reachable. A transaction can commit
only if it is reachable and passes the validation of its read
operations. The transaction also releases its acquired locks
at this stage.

A transaction keeps these metadata: 1) read-set, which
stores read objects and their read version; 2) write-set, which
stores the modified objects and their new values; and 3)
dependencies list: a list of transactions that read the changes
done by this transaction after it becomes exposed. Shared
objects are associated with a versioned lock. The lock stores
the version number and a reference to the writer transaction
(if it exists) that currently owns it. The version is incremented
when a new value for the object is exposed. The pseudocode
of OWB is included in the paper’s technical report [32].

The Write operation adds the object and its new value to
the write-set. The Read operation first checks if the object has
been earlier modified by the transaction itself. If so, the new
value from the write-set is returned; otherwise the object,
along with its version, is fetched from the shared memory.

If the object is currently exposed, then the writer is aborted
only if its age is higher (W, — R;), and the read operation
is retried. If the transaction that holds the lock has a lower
age than the reading transaction, we let the latter read the
written value (W) — R) and we add it to the writer’s depen-
dencies list. That way, if the writer aborts in the future, it
can cascade its abort to the affected transactions who read
its modifications. In order to avoid inconsistencies while
reading from an exposed writer, we let the reader double
check the writer state (if it is aborted) after it has been regis-
tered in the writer’s dependencies list; also the dependencies
list must provides a thread-safe insertion. Before a read op-
eration returns, the read-set is validated by invoking the
Validate_Reads procedure (see below). Missing that would
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make the read-set of OWB transactions not consistent during
execution.

To enter the exposed state, a validation of the read-set is
executed to make sure the transaction reads a consistent view
of the memory before exposing the locally buffered written
objects. Validate_Reads compares the current versions of
the read objects with the value of the corresponding versions
stored in the read-set. If the current version is different, it
means that the object was modified after the read, i.e, a
Write after Read (WAR) conflict.

Upon passing a read-set validation, the exposed proce-
dure acquires the locks and then writes the write-set to the
memory. If the locks are already acquired by another con-
current exposed writer (W; — W, or W, — W), we handle
that by favoring the lower age transaction, and aborting
the other. Since exposed transactions can still be aborted by
other transactions, we need to store the old value of modified
objects. This is done by swapping the write-set stored values
with the old objects’ values at commit time.

Finally, at commit time we call Validate_Reads again
to prevent the WAR anomaly. However, since write-set ele-
ments are already locked, we can leverage that to reduce the
validation overhead. Consider T; is executing the commit
operation. Let X € read-set(T;) N write-set(T;). As T; is
still acquiring locks over its write-set (including X), T; is sure
that the value of X is unchanged since its lock acquisition,
thereby it could be excluded from the commit-time read-set
validation. To do so, it requires checking that read-set objects
have not been changed while acquiring locks.

Keeping the commit execution time short is fundamental;
the optimization just described shrinks the commit execu-
tion at the price of adding an extra check in the Try-Commit
procedure. However, having common objects in the trans-
action’s read-set and write-set is usual, which makes this
optimization fruitful.

Finally, when a transaction becomes reachable and the
re-validation succeeds, the commit operation releases its ac-
quired locks and reclaims metadata.

As correctness guarantee, OWB guarantees TMS1 [11].
The intuition is that: if for a history generated by OWB, ev-
ery exposed transaction is committed, then the history is
opaque [14]. First of all, transactions can commit only in the
ACO order, serializing all the committed transactions, which
makes OWB strict serializable. Moreover, OWB allows trans-
actions to read only from commit-pending (exposed) and
committed transactions, and any time a transaction enters
the exposed state, it aborts all concurrent transactions that
has read a value that violates the ACO. However, exposed
transactions can abort after some live transaction already
read those values. This is not allowed by Opacity, but TMS1
allows that as long as the live transactions do not perform
any operation after the exposed transaction is aborted. OWB
implements that through an atomic cascading abort. We give
more details about correctness in Section 7.
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6 The Ordered Undo Log (OUL)

The Ordered Undo Log (OUL) Algorithm is an undo-log algo-
rithm that preserves the ACO. Transactional updates affect
the shared memory at encounter time, while the old value is
kept in a local undo-log. Such a scheme implies that the trans-
actions’ order is guaranteed while operations are invoked,
and not at commit time as in OWB. In order to deploy the
above idea, each object is associated with a read-write lock.
The transaction acquires a read or write lock according to its
need, as explained later. Each lock stores the reference to the
(single) writer transaction, which can be either the current
transaction holding the lock or the one that committed that
version, and a list of concurrent readers, meaning live or
commit-pending transactions that accessed the version for
reading it. Since the size of the readers list might impact the
efficiency of the protocol, it should be bounded.

As in OWB, every transaction in OUL maintains a write-
set, but here the write-set stores the old values of the written
objects (undo-log). On the other hand, the transaction read-
set is implicitly represented by the object lock’s readers list.

The pseudocode of OUL is included in the paper’s techni-
cal report [32]. In the Read procedure, we allow Read after
Write (RAW) conflicts only if the writer transaction has a
lower age (W; — Ry); otherwise the speculative writer is
aborted (W, — Ry). The Write procedure enforces that only
a single transaction can hold the write lock on the object at a
time. A Write-Write conflict is solved by aborting the trans-
action with the highest age. As readers are visible, the writer
transaction can check if there is any (wrong) speculative
reader, and abort it accordingly (R, — Wj).

One of the major benefit of a write through protocol is
that the Try-Commit procedure is simple because the values
are already in shared memory. However, in OUL exposing
a transaction only means that it did not conflict with other
transactions so far, but it could be still aborted to preserve
ACO. In the Commit procedure, the transaction is marked as
Inactive and locks are released. As said earlier, since a lock
is maintained with a back-reference to the transaction that
holds it, setting the transaction status is sufficient to release
all the locks held by that transaction with a single step. In
the Abort procedure the transaction restores old values from
the undo-log (Rollback), and release all the locks (Inactive).

6.1 The OUL-Steal Algorithm

OUL-Steal is a variant of the OUL algorithm where we relax
the aforementioned multiple-writers restriction and allow
write-writer conflicts while guaranteeing ACO. In both OWB
and OUL, conflicting transactions co-operate to commit as
they are allowed to proceed without aborts even in the pres-
ence of some read-write conflict, as long as ACO is still
preserved. However, a writer transaction holds the locks
until reaching the commit state, which sometimes limits the
overall concurrency.
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Let T; and T; be two conflicting writers on object X, and
T; < T;. In OUL, if T; finds X locked by T; (W; — W5), T;
should abort T;. However, ACO could still be preserved if T;
overwrites the value written by T; and there is no transaction
T, with T; < Ty < Tj, that reads X in the future.

OUL-Steal allows a transaction with higher age to over-
write the value written by a concurrent transaction with
lower age (W; — W), and steal its lock. The higher age
transaction stores the stolen lock in a local list so that the
lock can be returned back to the original writer (the lower
age transaction) in case of abort. That way, if a mid-age
reader Ty needs the value of a lower age transaction, then
it can abort the higher age transaction(s) which stole the
lock(s); otherwise (i.e., without Ty), the value written by the
higher age transaction will be used by higher age readers.
This operation could be repeated until the reader reaches
the correct writer transaction.

In Write, the lock is passed to the higher age writer and is
saved in its write-set. As a consequence, the written address
exists in the undo-log of both the writers (the original and the
one which stole the lock). During the Abort, the transaction
uses Rollback to revert its changes using its undo-log. An
undo-log entry can be:

- stolen by another writer: which means the transaction does
not have the ownership record at the abort time. In this
case, the transaction does not do any action, although, it
keeps the undo-log entry, which contains the address value
before the current transaction modifications.

exclusively modified by the current transaction, reverting
the old value from the undo-log, and aborting the specula-
tive readers.

stolen from another writer: in addition to the steps done in
the exclusively modified case, the lock ownership is passed
back to the old writer, and the current transaction checks
the state of the old writer. If it was not aborted, then no
further action is needed. Otherwise, the transaction calls
the Rollback of the old owner. At this stage, the old writer
will treat the entry as the cases of exclusively modified or
stolen from, accordingly.

The complete pseudocode of the OUL-Steal algorithm is
available in the paper’s technical report [32].

As correctness guarantee, OUL guarantees Strict Serial-
izability [24]. Unlike OWB, OUL allows reading from live
transactions, which is not allowed by TMS1 (and hence opac-
ity). However, similar to OWB, OUL restricts transactions to
commit only in the ACO order, making OUL strict serializ-
able. More details about correctness are in Section 7.

7 Correctness

Here we discuss the correctness of the given algorithms. We
do not include the case where a transaction triggers an er-
ror (e.g., division by zero) because it speculatively processes
a computation that in a non-parallel execution would not
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happen. Such an execution might be a for-loop iteration exe-
cuted speculatively and preceded by an iteration that breaks
the for-loop itself. We assume a sandboxing mechanism to
handle such runtime exceptions.

First, we show how our protocols preserve the ACO. Sup-
pose by contradiction that the ACO is violated. Let T; and T;
be two transactions such that T; < T;. The interesting case
is if T; successfully reads a value of an object X written by
T;. This implies that R;(X) happened after T; exposes X’s
value in OWB or write(T;) in OUL. In both OWL and OUL,
T; acquires a shared lock on X at the time of the read opera-
tion, either by visible reads (OUL, OUL-Steal) or checking if
there is no writer (OWB). For a successful read, the shared
lock must be acquired, thus the write lock should not be
already granted. This implies that T; has released all its locks.
As a transaction does not release its acquired locks until it
commits, T must be necessarily committed. Therefore R;(X)
must occur after commit(T;). Since a transaction cannot per-
form any step after it commits, R;(X) — commit(T;). This
means commit(T;) — commit(T;), which cannot be the case
since they must commit in order, according to their ages.

Now we prove that both OWB and OUL are serializable. In
order to prove that, we define DG(i, j) as a predicate defining
a dependency between T; and T;, when T; reads a value
written by T;, or T; overwrites a value written by T;. Using
this definition, we can construct a dependency directed graph
DG(T, D), where T is the set of all committed transactions,
and D is the set of dependency relations. It is easy to see that
DG c SG, where SG is the conflict serialization graph [4].
A history is serializable if and only if its SG is acyclic. Note
that serializability is not guaranteed if DG is acyclic.

Assume by contradiction that an execution of our algo-
rithms produce a cyclic DG, which implies having an edge
D(i, j) where i > j. By definition of dependency, this means
that either T reads a value written by T; (i.e., W;(X) — R;(X)),
or T; overwrites a T;’s written value (i.e., W;(X) — W;(X)).In
all the proposed algorithms, exclusive locks must be acquired
when we expose the written values (at commit in OWB or
encounter time in OUL and OUL-Steal) and released only
at commit, or passed to a higher age transaction (which is
not the case here). We can rewrite the previous situations as
commit(T;) — Rj(X) or commit(T;) — W;(X). Since a trans-
action cannot perform any step after it commits, commit(T;)
— commit(T;), which cannot be the case as mentioned ear-
lier; therefore, DG is a acyclic.

Assume e € E = SG \ DG, this edge represents the case
where R;(X) — W;(X), which means R;(X) — commit(T;). In
OWB, the procedure that validates read operations captures
this by comparing the read version with the current version
of the accessed object; while in OUL and OUL-Steal, the
readers’ visibility enables T; to detect the R;(X) and aborts
it.t SOE=0 = SG =DG = SG is acyclic, making the
algorithms serializable.
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Figure 2. Peak performance of all competitors (including unordered) using all micro benchmarks (Y-axis is log scale).

The serialization point of both OUL and OWB is inside
the commit procedure: for OUL is when the transaction’s
status is atomically set to Inactive; for OWB is when locks
on written objects are released. As the serialization point is
inside the transaction execution, all the algorithms preserve
the real-time order, and are strict serializable.

In addition to being strict serializable, OWB is TMS1 [11],
a stronger condition than strict serializability. Being TMS1,
OWB ensures that the response of every operation on an
object, even if performed by aborted and live transactions, is
consistent with a serial execution. Informally, for a history
to be TMS1, it must be strict serializable, and for every suc-
cessful response of an object operation by a transaction T,
there must exist a serialization of a subset of the transactions,
justifying the response. This subset must contain T (until
the response) and all the committed transactions that com-
pleted before T started. The serialization can also contain
some commit-pending transactions, and some committed
and even aborted transactions, that are concurrent to T.

We have shown that OWB is strict serializable. Since OWB
allows a read operation to return a value written by an ex-
posed transaction, which may get aborted later, it justifies
including concurrent aborted transaction for the response.
Recall that OWB allows reading values written by committed
and exposed transactions only, but not from aborted trans-
actions. The intuition is that if a transaction reads from an
exposed transaction, which gets aborted later, the reading
transaction is also aborted without executing any further op-
erations. This is done using cascading mechanism in OWB.

8 Implementation and Evaluation

In our implementation locks are implemented using 32 bits.
The mapping between addresses and locks is made by lever-
aging the least significant bits, thus a single lock might be
responsible for multiple addresses. The lock is divided into
two parts: the most significant bits represent the reference
to the writer, and the remaining bits represent either the
header address of the readers list (for OUL), or the version
number (for OWB). In OUL, we use a bounded list of readers
to limit the number of concurrent readers, which is set to 40.

A thread plays multiple roles in our implementations:
worker, validator, or cleaner. A worker executes transactions
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and performs the try-commit. A cleaner takes care of re-
claiming metadata. Once the transactional operations are
all executed, any thread can take the lead of finalizing any
transaction; however, there is only one thread at a time in the
validator role. This role is responsible for moving commit-
pending transactions to the committed state and re-executes
invalid transactions. We adopt the flat combining [16] tech-
nique to let threads take ownership of the validator role.

We compare our algorithms with STMLite [21]: a light-
weight STM with ACO used to support code parallelization;
the unordered and ordered version of three state-of-art TM
algorithms: TL2 [10], NOrec [8] and UndoLog [12] (with and
without visible readers).

Both TL2 and NOrec follow the write-back design strat-
egy and validate transactions at commit time. To enforce
ACO in these ordered implementations, transactions are al-
lowed to enter the commit phase only when all transactions
with lower age have been committed. In order to aid the
ordering for UndoLog, we exploit an age-based contention
policy (i.e., always favor transactions with lower age) to
handle write-write conflicts. In the visible readers variant,
the writer transaction aborts all active readers, while when
readers are invisible the writer retries multiple times if the
object is locked, then it backs off. STMLite uses a write-back
implementation and replaces the need for constructing a
read-set by leveraging signatures (Bloom Filters). There is a
tradeoff in determining the effective size of signatures, but
the authors recommended a range of 32 to 1024. We used a
signature of size 64 with the STL hashing function because
it provided the best performance. The number of threads in
STMLite also includes its commit manager.

All competitors have been re-implemented atop the same
baseline software framework so that all take advantage of
the same low-level optimizations. It is worth noting that
competitors may provide different correctness guarantees
(e.g., OWB provides TMS1 while NOrec/TL2 give opacity).

In our experiments, the ACO is defined in two ways. Un-
less otherwise specified, the index of the dominant for-loop
that each benchmark uses to generate parallel code (e.g.,
transactions in STAMP) is used as transaction age. In some
application with more complex patterns, such as nested loops,
we insert an atomic integer to define and assign ages.
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Threads are pinned to cores. The scheduling policy is to
use up all cores of one socket before moving to the other
one. We report the throughput for micro benchmarks and
the application execution time for STAMP and some applica-
tions of PARSEC and SPEC200 benchmarks by varying the
number of serving threads in the thread-pool (the datapoint
at 1 thread shows the performance of the single threaded
transactional execution). We also compare our performance
against the unordered algorithms, which do not use ACO.
In this case, applications directly activate transactions in
parallel because no ACO needs to be defined. Performance
of the non-transactional single threaded execution (green
line) is also included.

We used two different machines for our experiments: mi-
cro benchmarks and STAMP have been evaluated on an AMD
machine equipped with 2 Opteron 6168 CPUs, each with 12-
core running at 1.9 GHz. The total memory available is 12
GB. Evaluation of PARSEC applications and SPEC2000 has
been done using a Intel server hosting 4 Intel Xeon Platinum
8160. Results are the average of five runs.

Micro Benchmark. In our first set of experiments we
consider the RSTM micro-benchmarks [1] to evaluate the
effect on performance of different workload characteristics,
such as the amount of operations per transaction, the trans-
action length, and the read/write ratio. Each experiment
includes running half a million transactions. For each micro
benchmark, we configure three types of transactions: short,
long, and heavy. Both short and heavy have the same number
of accesses (i.e., a random between 10 and 20), but the latter
adds more local computation in between them (i.e., 100 CPU-
ops). Long transactions simply produce more transactional
accesses (i.e., a random between 30 and 60).

Figure 2 summarizes the peak performance of all com-
petitors. The gap in performance between the ordered and
unordered versions of the same algorithm is: 26-56% for TL2,
13-41% for NOrec, 12-88% for UL-vis, and 28-74% for UL-inv.

As a general comment on these results, OUL and OUL-
Steal outperform all other ordered versions of the algorithms.
OUL-Steal excels for write dominant workloads and per-
forms equally to OUL in read dominant workloads; OWB
outperforms all write-back-based implementations in most
benchmarks. At high thread count, STMLite suffers from
false conflicts due to the use of signatures. However, at low
number of threads (less than 8) and with long transactions
it achieves a higher peak throughput than Ordered TL2 and
Ordered NOrec, because it benefits from the quick validation
using signatures. For the UL-inv algorithm, the readers’ visi-
bility is crucial; without this information, the algorithm may
abort a lower age transaction (using timeout) while some
higher age transaction holds the read shared lock. On the
other hand, these higher age transactions cannot commit
before their order comes, hence they timeout.

In configurations where the performance of the sequential
(non-transactional) execution is faster than many ordered
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Figure 3. Disjoint 3a — 3c and ReadNWritel 3d - 3i.

algorithms, our solutions outperform it, letting parallelism
pay off. However, there are two benchmarks with long trans-
actions where the sequential execution is still faster. These
workloads represent unfavorable scenarios for processing
ordered transactions because of the high cost of aborting
transactions (possible repeatedly) due to ACO violation.
The DisjointBench (Figures 3a-3c) produces a workload
with no conflict between concurrent transactions. Every
transaction accesses a different set of addresses with read and
write operations. In all configurations, OUL achieves the best
throughput, while OUL-Steal suffers from the overhead of its
lock management scheme without actually gaining from that,
as the disjoint transactions do not have any shared accesses.
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UL-vis achieves a throughput near to OUL-Steal, thanks to
the simplicity of its immediate write strategy. In all the three
plots is visible a peak performance around 6 threads. This
shape is the consequence of NUMA latency [6, 9], which can
be appreciated in this configuration more than in others due
to the absence of data contention.

In addition to that, without aborts we can show the trans-
actional access overhead for all competitors. It is intuitive
that UndoLog algorithms (UL-vis, UL-inv, OUL, OUL-Steal)
benefit from having the values already in memory, thus they
outperform others. In fact, the UndoLog’s main drawback
is the costly abort, which never happens in this benchmark.
With long transactions (Figure 3a), STMLite benefits from
eliminating lock usage at the write-back phase and it has
minimal overhead at low numbers of threads. On the other
hand, for short transactions (Figures 3b and 3c) the Ordered
TL2 algorithm performs better. OWB has a moderate over-
head relative to the other write-back algorithms.

In ReadNWrite1Bench (Figures 3d-3i), the transaction reads
N locations and writes one. Since transaction write-set is very
small, the number of aborts is low. Similarly, UndoLog algo-
rithms excel here as well. With long and heavy transactions
(Figure 3d, 3h), the processing done by workers overweights
the overhead due to single threaded transaction validator,
so both OUL and OUL-Steal scales well with increasing the
number of workers. On the other hand, the validator repre-
sents a performance bottleneck for short transactions (Figure
3f), resulting in a slightly lower scalability.

In ReadWriteN (Figures 4a-4f), each transaction reads N
locations, and then writes to other N locations. The large
transaction write-set introduces a challenge for both undo-
log (increases the number of aborts) and write-buffer algo-
rithms (delay at commit time). The cooperative execution
enables OUL, OUL-Steal and OWB to outperforms all other
algorithms in all workloads. OUL-Steal outperforms OUL by
10% because it significantly reduces the number of aborts
(Figures 4b, 4d, and 4f).

MCASBench performs a multi-word compare-and-swap,
by reading and writing N consecutive locations. Similar to
ReadWriteN, the write-set is large but the abort probability
is lower than before because each pair of read/write acts
on the same location. Figures 4g-41 illustrate the impact of
increasing workers with the different workloads. We noticed
a similar trend to Read WriteN.

The breakdown of the abort reasons for OWB, OUL, and
OUL-Steal is shown in Figure 5. Aborts are measured for the
number of workers that achieved the maximum throughput.

In OWB (Figure 5a), with RNW1bench aborts due to val-
idation failure represent the main reason; while in write-
intensive benchmarks, such as RWNbench and MCASbench,
aborts are mainly (65%-82%) due to concurrent commits
(Locked Write). However, only 3% of these cases fall in WAW,
which means that OWB can benefit from the lock-steal opti-
mization and save a considerable amount of aborts. However,
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applying lock-steal on OWB would complicate the design
and the validation procedure. The reason is that transactions
use commit-time locking and rely on the version number
to validate their read-set. With lock-steal, multiple writers
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would increment the version number, thereby readers would
not be able to do the validation simply.

For OUL and write-intensive benchmarks, concurrent writes
generate between 70% to 85% of total aborts; a WAW repre-
sents at most 10% of them. In OUL-Steal, stealing the lock
eliminates the problem of concurrent writes, and narrows
write-write conflicts to only the WAW anomaly. However,
it introduces several changes to the abort characteristics:
a writer transaction that steals the lock becomes able to
abort any invalid speculative readers earlier than before.
This was reflected on increasing the number of Read After
Write aborts; the probability of triggering cascading aborts
is increased if compared to OUL (Figures 5b, 5c); and the
total number of aborts of OUL is reduced by one order of
magnitude (Figures 3e, 3g, 4b, 4d, 4h, 4j, 5d).

Although OUL-Steal reduces the number of aborts, the
speedup is on average 20%. This is because the abort proce-
dure of OUL-Steal involves recursive rollback for stolen locks.
Also, in OUL algorithms the abort cost differs according to
the transaction type. In fact, aborting a write transaction
requires restoring its original value, thus forcing the trans-
actions involved in the conflict to wait for the restoration of
old written values; aborting the readers is cheaper.

Figure 5d shows the number of aborts in the maximum
throughput scenario. OUL experiences more aborts than
OWRB because of the eager accesses; OUL-Steal avoids this
drawback and experiences lesser, yet longer, aborts.

STAMP Benchmark. STAMP [22] is a benchmark suite
with applications covering a variety of domains. Figure 6
shows the collected execution time (lower is better). Two ap-
plications (Yada and Bayes) have been excluded because they
expose non-deterministic behaviors, thus their evolution is
unpredictable. The datapoints for competitors that do not
scale in some configuration are omitted to preserve the scale
and readability of the plots. We also included performance

129

M.M. Saad et al.

OWB —%— Ordered UndoLog-visible —&—
OUL —— Ordered UndoLog-invisible —w—
OUL-steal —&— Ordered TL2 ——

STMLite —%— Ordered NOrec —@—

Best Unordered —5—
Sequential = ===

100

i
S

Time (Seconds)
Time (Seconds)

1
8 10 12 14 16 18 20
Threads

(b) Kmeans High

1
8 10 12 14 16 18 20 1 2 4 6
Threads

(a) Kmeans Low

1 2 4 6

Time (Seconds)
5
Time (Seconds)

8 10 12 14 16 18 20
Threads

(d) SSCA2

10 12 14 16 18 20 1 2 4 6
Threads

1 2 4 6 8

(c) Genome

i
S
3

100

e

Time (Seconds)
Time (Seconds)

N
1)

10

8 10 12 14 16 18 20
Threads

(f) Vacation High

8 10 12 14 16 18 20 1 2 4 6
Threads

1 2 4 6

(e) Vacation Low

Time (Seconds)
A
8
Time (Seconds) _

1
10 12 14 16 18 20
Threads

(h) Intruder

8 10 12 14 16 18 20 1 2 4 6 8
Threads

(g) Labyrinth

Figure 6. Execution time of STAMP (Y-axis log scale).

of the unordered STM algorithm (among those in Figure 2)
that behaves best in each plot.

Kmeans, a clustering algorithm, iterates over a set of points
and associates them to clusters. The main computation is in
finding the nearest point, while shared data updates occur
when updating the cluster centers. Both OUL and OUL-Steal
scale when increasing the number of workers, while under
high contention OUL-Steal performs better (Figure 6b). OWB
and Ordered NOrec have similar performance, but OWB does
not degrade at high thread count.

Genome reconstructs the gene sequence from segments
of a larger gene. It uses a shared hash-table to organize
segments, which requires synchronization over its accesses.
Genome exhibits a little contention, which makes OUL and
OUL-Steal perform similarly (Figure 6c).

SCAA2 is a multi-graph kernel that is commonly used
in domains such as biology and security. The core of this
kernel uses a shared graph structure that is updated at each
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iteration. The amount of contention is low as the large num-
ber of graph nodes leads to infrequent concurrent updates.
Figure 6d shows that all algorithms perform almost equally
and benefit from optimistic concurrency.

Vacationis a travel reservation system using an in-memory
database. Each client uses a coarse-grain transaction to exe-
cute its session, consequently, aborts are costly. Again, our
cooperative model boosts the performance of the proposed
algorithms, and they scale well when increasing the number
of workers (clients) (Figures 6e and 6f).

Labyrinth is a multi-path maze solver. The maze is repre-
sented as a three-dimensional uniform grid, and each thread
tries to connect input pairs by a path of adjacent maze points.
Upon finding a path, it is is highlighted at a shared output
grid. Transactions conflict when their paths overlap. In Fig-
ure 6g, NOrec outdoes other algorithms because of two rea-
sons: 1) as Labyrinth updates adjacent addresses for the path,
it is prone to produce false sharing for all other algorithms
that use locks; and 2) NOrec employs a value-based valida-
tion, thus when two conflicting transactions updating a maze
point with the same value, they commit successfully.

Intruder, a network intrusion detection system using signa-
tures. It compares the captured packets against a dictionary
of intrusion signatures. Packets are processed in parallel,
grouped in sessions, and stored in a self-balanced (red-black)
tree. Transactions guard the tree operations; contention is
high and depends on the frequency of the rebalance opera-
tion. Figure 6h shows that not all algorithms scale well. The
sequential execution outperforms all of them (except the
unordered).

PARSEC Benchmark. PARSEC is a benchmark suite for
shared memory chip-multiprocessors architectures.

The Black-Scholes application calculates Black-Scholes
equation for input values. Since calculations per iteration
are few, each transaction involves multiple calculations to
reduce the overhead of parallelization. Swaptions employs
Monte Carlo simulation to compute prices. Fluidanimate is
an application performing physics simulations. The main
computation is spent on computing particle densities and
forces, which involves six levels of loops nesting updating
a shared array structure. Since it is not straightforward to
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assign ages based on number of iterations, a global atomic
integer variable is used to assign ages to transactions.

OUL, OUL-Steal and OWB scale in these three applica-
tions; significant speedup over sequential is achieved in
Swaptions. In both Black-Scholes and Fluidanimate, all other
algorithms outperform sequential when contention is low.
Performance drops quickly when contention increases, which
is due to a high abort rate.

SPEC CPU2000 Benchmark. Equake is an application
included in the SPEC CPU2000 benchmark and it simulates
the propagation of elastic waves. The computation iterates
over a number of steps and, in each time step, it iterates
over a number of nodes where each performed calculation
relies on the previous one. The loop-carried dependencies
forces the transaction to be committed in a specific order.
Each thread is assigned a consecutive region of nodes so
only those in joints may abort.

When testing this benchmark, we set the input size to
be 500 nodes. The results show that OUL, OUL-Steal and
OTL2 scales when increasing the number of threads, up to
32 threads; the achieved peak speedup is 30%. After that,
because of high contention and increasing number of aborts,
all algorithms’ performance drops.

9 Conclusion

In this paper, we presented three algorithms, OWB, OUL,
and OUL-steal, that address the problem of committing trans-
actions with an order defined prior to execution. Automatic
code parallelization is a topic where such a requirement ap-
plies. Our results show that even if a system requires a spe-
cific commit order, it is possible to achieve high performance
exploiting parallelism in the presence of data conflicts.
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