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ABSTRACT  

Precise polarimetric imaging of polarization-sensitive nanoparticles is essential for resolving their accurate spatial 
positions beyond the diffraction limit. However, conventional technologies currently suffer from beam deviation errors 
which cannot be corrected beyond the diffraction limit. To overcome this issue, we experimentally demonstrate a 
spatially stable nano-imaging system for polarization-sensitive nanoparticles. In this study, we show that by integrating a 
voltage-tunable imaging variable polarizer with optical microscopy, we are able to suppress beam deviation errors. We 
expect that this nano-imaging system should allow for acquisition of accurate positional and polarization information 
from individual nanoparticles in applications where real-time, high precision spatial information is required. 
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1. INTRODUCTION  
Analyzing individual nanoparticles allows for spatially resolving actual distributions within a heterogeneous population 
beyond the diffraction limit. Whereas ensemble studies provide a blended average, polarimetric imaging of individual 
nanoparticles can reveal their orientations.1–3 By rotating the polarization to align with the axes of anisotropic 
nanoparticles, orientational information can be extracted, giving rise to the nature of their local microenvironment.4–7 
Notably, polarimetric imaging of each individual nanoparticle has the potential to ascertain the precise spatial position 
(nm) of each constituent nanoparticle within a heterogeneous distribution. However, previous implementations utilize 
mechanical approaches in order to rotate the polarization.8,9 Thus, resulting images are prone to beam deviation errors 
due to inherent mechanical and manufacturing limitations (surface defects, mechanical wobble, etc.).10 While image 
processing can reduce beam deviation errors, we show these corrections are not sufficient at the sub-pixel scale to 
accurately correct spatial positions of individual nanoparticles. 

In this paper, we describe a spatially precise, voltage-tunable nano-imaging system for direct observation of polarization-
sensitive nanoparticles. Specifically, we integrate a voltage-tunable imaging variable polarizer (voltage-tunable IVP) 
with optical microscopy (darkfield), to stably image individual, polarization-sensitive nanoparticles. Here, voltage (Fig.1 
(a)), rather than mechanical rotation (Fig. 1 (b)), is used to dynamically tune the transmission polarization angle and 
eliminate beam deviation errors. We demonstrate that the our nano-imaging system can achieve spatially stable and 
reproducible polarimetric images of nanoparticles with less than 30 nm beam deviation compared to conventional setups 
using mechanically rotated polarizers with larger than 1 m beam deviation.   



 

 

 
Figure. 1. Concept of high precision polarimetric nano-imaging by voltage-tunable imaging variable polarizer (IVP) 
compared to unstable imaging by mechanically rotated polarizer. (a) Voltage-tunable IVP: The polarimetric nano-
imaging system integrates optical microscopy (darkfield) with a voltage-tunable IVP, resulting in spatially accurate 
polarimetric images of nanoparticles during the rotation of the polarizer (from 1 to 2), as shown in the foreground. (b) 
Mechanically rotated polarizer: As a comparison, a typical conventional imaging setup involving a mechanically rotated 
linear polarizer is depicted in the background, which results in unstable beam deviation errors (i.e., image shift) and 
uncorrectable sub-pixel errors.  

 

2. THEORY 
In polarimetric nano-imaging, the beam deviation ( l) caused by mechanical rotation of conventional polarizer can be 
quantified as  

l r[(cos cos 0 )2 (sin sin 0 )2]1/2 ,   (1) 

where  is the rotation angle of the polarizer, (rcos 0, rsin 0) and (rcos , rsin ) are the spatial coordinates of the 
nanoparticle image before and after rotation of the polarizer. The spatial position difference before and after rotation 
arises from inevitable manufacturing defects (surface planarity, etc.) For an optical element, the two surfaces are not 
perfectly parallel to each other (Fig. 2), which is described as non-parallelism (with non-parallel angle ). During 
mechanical rotation, the rotation plane of the optical element often does not coincide with the optical element, causing 
the beam to shift (wobble). We believe that non-parallelism is the major contributor to the beam deviation. The beam 
deviation traces out a circular pattern due to the rotation symmetry of the linear polarizer. Therefore, given the polarizer 
refractive index n and distance between the CCD and the polarizer D, the radius of the circle is  

 r D (n 1).   (2) 

Substituting Eq. (2) into Eq. (1), the beam deviation can be expressed as  

 l D (n 1)[(cos cos 0 )2 (sin sin 0 )2]1/2.   (3)  

If we assume typical numbers for D, , and n are 50 mm, 5 arcsec and 1.45 respectively, then a full rotation of the 
polarizer will result in the beam image tracing out a ~1.1 μm diameter circle at the CCD imaging plane (Fig. 2 (c)). 
When imaging polarization-sensitive nanoparticles, these beam deviation errors will cause a significant intensity error in 
the imaging plane which cannot be fully corrected beyond the pixel limit by image processing. 
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