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We introduce RF-Wear, an accurate and wearable solution to track movements of a user’s body using passive RFIDs

embedded in their clothing. RF-Wear processes wireless signals reflected off these tags to a compact single-antenna RFID

reader in the user’s pocket. In doing so, RF-Wear enables a first-of-its-kind body-frame tracking mechanism that is lightweight

and convenient for day-to-day use, without relying on external infrastructure. At the heart of RF-Wear is a novel primitive that

computes angles between different parts of the user’s body using the RFID tags attached to them. RF-Wear achieves this by

treating groups of RFID tags as an array of antennas whose orientation can be computed accurately relative to the handheld

reader. By computing the orientation of individual body parts, we demonstrate how RF-Wear reconstructs the real-time

posture of the user’s entire body frame. Our solution overcomes multiple challenges owing to the interactions of wireless

signals with the body, the 3-D nature of human joints and the flexibility of fabric on which RFIDs are placed. We implement

and evaluate a prototype of RF-Wear on commercial RFID readers and tags and demonstrate its performance in body-frame

tracking. Our results reveal a mean error of 8-12° in tracking angles at joints that rotate along one degree-of-freedom, and 21°-

azimuth, 8°- elevation for joints supporting two degrees-of-freedom.
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1 INTRODUCTION

Many of today’s wearables can measure the movement of body parts they are attached to. But imagine a wearable

system that can track movements of all parts of a user’s body as they carry on with their daily activities, all from

their handheld device. Such a system could aid in monitoring the health of the elderly without asking them to

wear unwieldy equipment. It could also enable more accurate fitness tracking, learning not just the number of

steps made by users, but also their gait and step lengths. Further, it could resolve a critical problem faced by

today’s virtual or augmented reality headsets – the fact that helmets on the head are unaware of the current

posture of their users’ body or the gestures they make.
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Fig. 1. RF-Wear tracks the user’s skeleton using passive RFID tags (annotated as black squares in the figure) that can be

woven into the user’s clothing. These tags are inexpensive, machine washable and lightweight and are tracked relative to a

single portable RFID reader. The figures above illustrate six examples for various joints: shoulder, knee, elbow, waist, and

thigh. Our key primitive measures angles between different parts of a user’s body by tracking the corresponding RFID tags.

RF-Wear then reconstruct the entire body-frame by combining such joint angles.

To deliver all of the above applications and more, one would need to track the entire human body-frame using

a solution that is both convenient (meant for everyday use) and ubiquitous (works no matter where you are).

While there has been a great deal of past work on tracking the human body, these solutions tend to choose

between either being ubiquitous or convenient. For example, infrastructure-based solutions, such as the Microsoft

Kinect [51], or LED-based [24] and RF-based solutions [43, 47] can perform accurate body-frame tracking, but

operate only in environments where the infrastructure is deployed. In contrast, wearable sensor solutions to track

the entire body accurately [3, 15] are portable, yet face impediments for everyday use, be it frequent removal for

recharging batteries or prior to machine washing. Indeed, there exists a gap for a ubiquitous body-frame tracking

system that is also meant for everyday use.

1.1 RF-Wear : Everyday Wearable Body-Frame Tracking using Passive RFIDs

This paper presents RF-Wear, a first-of-its-kind body-frame tracking solution using low-cost passive RFID tags,

each costing a few cents. RF-Wear tracks the user’s body-frame using lightweight, machine washable, battery-free

ultra-high frequency (UHF) RFID tags [21, 44] that can be woven into the user’s clothing [20] (Fig. 1). Such tags

can then be tracked and programmed using a single-antenna handheld RFID-reader that can fit into the user’s

pocket. The RFID reader can be recharged periodically akin to a user’s smartphone and may even be integrated

directly into future smart-phones [18]. We implement a prototype of RF-Wear on a commercial RFID reader

platform and experimentally evaluate its accuracy in tracking parts of the user’s body with a motion capture

system.

At the heart of RF-Wear’s skeleton tracking approach is a simple primitive – measuring angles between different

parts of a user’s body by tracking the corresponding RFID tags. Essentially, RF-Wear relies on the fact that the

skeleton tracking problem can be reduced to tracking angles between various pairs of imaginary lines along

the user’s body. For instance, a user’s posture at the knee when squatting can be measured based on the angle

between the lower and upper leg (Fig. 1b).

Yet, tracking RFID tags accurately to compute these angles using a portable handheld device is challenging.

State-of-the-art solutions to track RFID tags do so using bulky multi-antenna RFID readers [47]. Such systems

measure the angular position of the RFID tags relative to the reader antennas to track their location (Fig. 2a). To

measure these angles accurately, they require the antennas on the readers to span several wavelengths (at least a

meter or more end-to-end). Naturally, such readers are too bulky to fit in a user’s pocket.
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Fig. 2. Our Key Primitive infers the orientations of RFID tag arrays relative to the direction of a single-antenna reader

antenna by reversing the tag-reader relationship and then measures the relative angle at the joint. In this case, the observed

angle (θ1,θ2) at the upper and lower leg relative to the reader can be used to infer the angle at the knee joint: θ2 − θ1.

In contrast, RF-Wear enables RFID-based body-frame tracking using a portable single-antenna RFID reader.

Our key insight is to employ a multi-antenna array composed of RFID tags instead of reader antennas. Specifically,

instead of computing the direction-of-arrival of signals from an individual RFID tag to an array of

reader antennas (Fig. 2a), we calculate the direction-of-arrival of signals from a single reader antenna

to an array of RFID tags (Fig. 2b). Said differently, this direction-of-arrival is simply the orientation of the

array of RFID tags relative to the reader’s direction. We show how traditional antenna-array algorithms can be

extended to process arrays of RFID tags, as opposed to reader antennas. Figure 2c illustrates RF-Wear’s approach

in a simplified 2-D context of tracking a user’s legs. RF-Wear first measures the orientation θ1 of the user’s thigh
relative to an RFID reader using the corresponding array of tags. It then repeats this process at the lower leg to

obtain θ2 and computes the angle at the knee as θ2 − θ1. Observe that RF-Wear’s approach does not require the
precise location of the RFID reader or indeed mandate that this location be fixed over time. This makes RF-Wear

practical to be used with a handheld RFID reader in a user’s pocket, whose absolute location is unknown and

may change over time.

The rest of this paper describes our solutions to the key challenges in making the above design practical. First,

we propose a solution to disambiguate the multiple paths of the signals from the RFID reader to the tags as they

reflect off walls, furniture and even the user’s own body. Second, we generalize RF-Wear to three-dimensions,

allowing for readers that may not be in the same plane as a joint, and joints that may rotate along more than one

degree-of-freedom. Finally, we account for the effect of fabric flexibility that may alter the orientation and shape

of the RFID array on the user’s body.

We implement a prototype of RF-Wear on a commercial Impinj RFID-reader using one single antenna. Our

RFID tags cost few cents a piece, are as light and flexible as a scrap of paper, which can be readily embedded

in fabric (see Sec. 6). We then attach 2-D rectangular arrays of these RFID tags composed of 6-25 tags, based

on available surface area, to fabric placed on different parts of a user’s body and track it relative to the RFID

reader antenna. Our experiments reveal an absolute error of 8 to 12° in the angle of joints that support one degree

of freedom (elbow & knee ) and 21° - azimuth, 8° - elevation in the angle at joints that support two degrees of

freedom (shoulder). We also present a detailed discussion on the advantages and limitations of our approach.

1.2 Contributions

Our main contribution is a novel solution that enables a wearable, accurate and light-weight body-frame tracking

using passive low-cost RFIDs attached to the user’s clothing. RF-Wear achieves this using a handheld RFID reader

in the user’s pocket whose location or movement does not need to be calibrated.
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Our specific contributions are as follows:

• A novel algorithm that infers the orientation in 3-D of an array of RFID tags relative to the direction of a

single-antenna reader antenna by reversing the tag-reader relationship.

• A mobile RFID sensing primitive that can measure the one degree-of-freedom joint angle using two 2-D

RFID arrays, even if the only RFID antenna position is unknown and non-static. Our approach accounts for

the multiplicity of RF signal paths from the RFID tags to the reader and avoids the error-prone triangulations.

• A practical body-worn RFID tags placement solution considers the unique constraints of the human body

and fabric movements: the multiple degrees of freedom of human joints, the limited flat surface area, and

the flexibility of fabric.

• A detailed prototype implementation and evaluation of RF-Wear, including different RFID-array

configurations demonstrates high accuracy in tracking joints that support different degrees of freedom.

2 RELATED WORK

Past work in the body tracking and gesture sensing space falls under two broad categories: infrastructure-based

systems and wearable systems. The prior work on wearable systems can be further classified by if the system is

suitable for daily use.

Infrastructure-based Wearable

Not Suitable for Daily Use Suitable for Daily Use

Gesture Sensing [9, 22, 23, 27, 31, 34, 43] [5, 14, 50] [33]

Body Tracking [2, 4, 24, 26, 32] [8, 10] RF-Wear

2.1 Infrastructure-based systems

Vision and RF-based Infrastructure: There has been much past work on gesture sensing/body tracking

using stationary sensors (e.g. cameras) in the environment. Microsoft Kinect [51] is one of the most successful

innovations that performs full-body skeleton tracking using depth cameras [25]. The leap motion controller [26]

is another popular input device for hand gesture sensing with declared sub-millimeter accuracy. Beyond cameras,

recent work has also demonstrated the use of ambient LED lights to track postures of the upper body [24].

RF-based systems have sought to employ multi-antenna radio receivers to classify gestures and track users

through-walls using radio-signals [2, 34]. Unlike RF-Wear, these systems can only monitor the user’s gestures in

the specific environments where the required infrastructure is deployed and calibrated.

RFID-based Infrastructure: There also has been much interest in the use of multi-antenna RFID arrays for

fine-grained positioning and gesture monitoring [43]. Unlike the traditional signal strength based schemes [28],

recent systems [43, 48] locate the RFID tags based on the low-level phase information of backscattered radio

waves and achieve cm-level accuracy. However, these systems often require a large reader antenna array to

position the tags through triangulation or tri-lateration [43, 48]. Such multi-antenna readers are too bulky to be

used as handheld systems.

Recent work has also investigated the use of single RFID antenna for a variety of coarse-grained sensing tasks,

such as discrete gesture classification [9, 22, 23, 39], exercise monitoring [9] and object-recognition [23]. These

systems are designed to classify between a few coarse positions that the RFID tag may be in, and do not provide

their fine-grained locations or orientations as a function of time. RF-Wear builds on such systems to provide a

novel solution that can accurately track the continuous angle between different parts of a user’s body, using a

compact single-antenna RFID reader.
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2.2 Wearable Systems

Wearable BodyTracking: Themost straightforward approach to implementwearable body tracking is deploying

the sensors on the body/clothes directly. Early research in gesture tracking deployed digital angle measures at the

user’s joints to track posture [7, 38]. One of the first textile-based wearable systems was the sensor jacket [10],

which measured the wearer’s upper body posture utilizing eleven knitted stretch sensors placed over the joints.

A more sophisticated example is SensorTape [8], which deploys a dense light-weight inertial sensor network on

tapes to track the tape curvature.

Such systems are often designed to be used in specific contexts where the added bulk and cost are not pertinent,

e.g. therapy, sports training, and 3-D movie making. Another key challenge with these systems is that they

require batteries and electronics in clothing which add to bulkiness and are not machine washable. They are not

intended for day-to-day use beyond these contexts. In contrast, RF-Wear designs a system that is inexpensive,

non-intrusive and light-weight when attached to fabric, without compromising on tracking accuracy.

Smart Fabrics for Daily Use: Designing non-intrusive fashion and aesthetic smart fabrics is an emerging

topic [12, 33, 49]. Project Jacquard [33] uses conductive yarns to weave the touch and gesture-sensitive areas on

the textile in a non-intrusive way. Biologic [49] takes advantage of the hygromorphic phenomenon in living cells

to build electronics-free fabric material. While these material science breakthroughs are promising, their sensing

capability is restricted to specific types of inputs – touch and humidity, respectively.

The wireless and battery-free nature of passive RFID tags make them an ideal candidate for non-intrusive

smart fabrics [21]. However, existing applications are still limited to use the unique IDs for identifying different

parts of the body/objects grasped [20, 27, 31, 44] or classifying a few discrete gestures [22].

RF-Wear strives to build a system that is suitable for daily use when embedded in fabric without compromising

on fine-grained body-tracking accuracy. Further, unlike inertial systems that rely on movement (angular velocity

and/or acceleration), RF-Wear achieves reliable and accurate posture monitoring of both static and mobile body

parts. It achieves this using battery-free and machine washable RFID tags [19, 45] embedded in the user’s clothing.

3 BACKGROUND

Passive RFID tags communicate with the reader antenna by harvesting and reflecting (i.e., back-scattering)

energy from the radio wave transmitted by the reader antenna. Figure 3 illustrates a conceptual diagram of

backscatter communication. Each RFID tag has a small Electronic Product Code (EPC) memory to hold no more

than 2KB of data. The low-cost tag used in RF-Wear has a more limited memory and contains only a 96-bit or

128-bit serial number. The tag modulates backscatter signals using ON-OFF keying by changing the impedance

on its antenna. The reader can then recognize different tags by demodulating this signal.

The role of RF phase in backscatter-based localization: Recent COTS RFID readers support fine-grained

resolution in detecting the phase of received RF signals with accuracy ≈ 0.0015 radians [48]. This accuracy offers
an opportunity to locate the object within millimeter-level displacement. Figure 3 (left) depicts the details of the

process. Suppose is the distance between the reader antenna and the tag, the signal traverses a total distance of

2 back and forth in backscatter communication along line-of-sight. Besides the RF phase rotation over distance,

the reader’s transmitter, the tag’s reflection characteristics, and the reader’s receiver circuits will all introduce

additional phase rotation, denoted as θT , θTaд and θR respectively. The reader antenna will therefore report a
phase difference (Δθ ) of transmitted (θ1) and received signal (θ2), given by:

Δθ = θ2 − θ1 = (2
λ
∗ 2π + θT + θTaд + θR ) 2π ; λ = ; (1)
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Fig. 3. Background. (Left) Different types of RF phase shifts in backscatter communication. (Right) Using the antennas at

known positions to infer the tag position.

where λ is the wavelength of radio signal at frequency and is the speed of the light. Various factors can

impact the θT , θTaд and θR . For example, the thermal noise from the reader receiver can introduce a mean

measurement error of 0.1 radians [48]. The phase values measured at a given position can vary significantly

across different tags (0.30 ∼ 5.84 radians) [48] and orientations (0 ∼ 2π radians) [46]. All these errors will impact

the ranging accuracy and cannot be ignored in practice. Wewill discuss howwe address these challenges in Sec 4.1.

Using known reader antenna positions to locate the tag: Past systems on locating RFID tags have relied on

bulky multi-antenna RFID readers and require a priori knowledge of the position of the reader antennas [43, 48].

Figure 3 (right) illustrates positioning in the context of a 4-element RFID reader antenna array. These systems

rely on the fact that the reflected signal from a given RFID is received with slightly different phase shifts, across

multiple spatially-separated reader antennas, depending on the tag position. If the reader antennas’ positions

are known, we can construct a likelihood heatmap (i.e., an RF hologram [43]) of tag location using the phase

observations. However, the reader cannot retrieve the absolute distance directly from the phase due to the

operation in Eqn. 1. To resolve this ambiguity, these systems require multiple antennas at various known

locations [43, 47, 48] and a well-defined and known spacing distance between antennas. Indeed, the more antennas

in the system, the greater the resolution in the measured tag location.

4 AN OVERVIEW OF RF-WEAR

In this section, we provide a brief overview of RF-Wear’s approach. RF-Wear’s key primitive is a mechanism that

computes the angles between different parts of the user’s body. RF-Wear then combines angle measurements

across various joints in the body (hip, shoulder, elbow, knees, etc.) to track a person’s body frame.

To compute these angles, RF-Wear relies on passive RFID tags embedded within the user’s clothing covering

the surrounding parts of the body. These RFID tags cost few cents a piece, are about the size of a U.S. quarter and

are as light and flexible as a scrap of paper. This means that RFID tags can be seamlessly stitched into layers of

fabric [13, 20, 21]. RF-Wear works with any arbitrary number of tags (>4) embedded on each part of the user’s

clothing, depending on the available surface area.1 In general, the more tags available on a body part, the more

accurate RF-Wear will be.

Before running RF-Wear’s algorithms, we assume that the RFID reader is aware of the initial configuration of

the RFID tags on clothing, i.e. which tag is on shoulder/left leg/right upper arm, etc. The manufacturer can either

store the layout information in EPC memory of each tag or maintain an online database, where one can lookup

the layout given the unique IDs of tags. However, we do not assume that the absolute position of the reader

1Our results in Sec. 7.1 discuss system accuracy versus the number and geometry of RFID tags, per body-part.
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antenna is known or even constant over time. In other words, our system is designed to accommodate a moving

reader antenna whose absolute location may change over time, as the user carries on with his/her daily activities.

Using a compact RFID reader in the user’s pocket to perform body-frame tracking has three important

implications. First, we can at most use a single reader that is compact and at best supports a single-antenna,

meaning that one cannot leverage the rich literature on multi-reader-antenna arrays for tracking body-worn tags.

Second, RF-Wear must account for the fact that the position of the reader itself is dynamic and unknown, owing

to the fact that the reader will move alongside the user within his/her pocket. Finally, signals from the tags to the

reader are likely to traverse along multiple paths as they reflect off walls, furniture and the user’s body. This

introduces errors in determining the true angle-of-arrival of the signal from the passive tag to the reader antenna.

The rest of this section describes RF-Wear’s approach in dealing with the above challenges. For simplicity, our

discussion starts in a 2-D space and we will discuss the important challenges pertaining to extending RF-Wear to

3-D in Section 5.

4.1 Computing the orientation of an array of RFID tags from a single-antenna reader

RF-Wear’s key approach in tracking the orientation of a part of the user’s body using a handheld, single-antenna

reader relies on inverting the relationship between reader antennas and the tags in antenna-array literature.

Instead of tracking an individual RFID tag from multiple RFID reader antennas at known positions, we infer the

direction of the incoming signal from the antenna to multiple passive RFID tags in a known geometry. While

deploying widely-separated RFID antennas is bulky and expensive, our approach is cheap and simple, only

requiring to attach multiple passive RFID tags to the user clothing in a pre-defined geometry.

Our approach is best explained with an example. Figure 4 (left) illustrates in free space and 2-D, a simple

uniform linear array of RFID tags with incoming signals from the single-antenna reader at an angle θ . In this
example, the distances (aperture) between any two adjacent tags are consistent across the linear array and

known as a priori. If we can infer the difference in time of arrival of the signals at tag 4 and tag 5, we can compute

the difference in the distances they traverse, Δ . Based on Δ and , we can then calculate the direction-of-arrival

(θ ) of the incoming signal from the antenna to the uniform linear array. Indeed, it is easy to see that: Δ = cosθ .
This direction-of-arrival (θ ) defines the orientation of the RFID-array in 2-D space, the quantity we seek to obtain.

To compute Δ and therefore θ from phase rotations, we rely on the phase of the wireless channels measured

at any two adjacent tags. Recall from Eqn. 1 that Δ depends on the phase measurement of the tags. Yet, this

phase value also depends on additional phase rotations that we do not care about and introduce error: θT , θTaд
and θR from the reader’s transmit chain, the tag and the reader’s receive chain respectively. One must therefore

eliminate these errors to compute Δ accurately.



1 :8 • H. Jin

Our approach to overcome this challenge relies on the relative phase between pairs of adjacent RFID tags.

Given that we deal in the difference in phase between two tags, any phase offset from the RFID reader, i.e. θT and

θR disappear. More interestingly, we observe empirically that for RFID tags from the same manufacturer, the

quantity θTaд is also identical and cancels out, provided the tags are oriented towards the same direction in space
(see results in Sec. 7.1). Indeed, one can ensure this at the time of manufacture by orienting all RFID tags in the

same direction on a given plane. An important exception to this property is the effect of fabric flexibility in 3-D

space, when tags may be oriented towards slightly different directions when fabric crumples, a challenge we deal

with in Sec. 5.3.

To illustrate our solution mathematically, let θ4 and θ5 be the raw phase observations of the backscatter radio

from tag 4 and tag 5, respectively in Fig. 4. Then, it is easy to see that θ can be obtained as:

θ =
Δ
=

λ(θ5 − θ4)
4π

(2)

Note that we divide by 4π as opposed to 2π as in Eqn. 1 because the radio signal travels twice the distance –

forwards and backwards in backscatter communication.

Multiplicity of Signal Paths: Our discussion thus far assumes that the signals from the reader to the tag array

traverses along a single path. In practice, however, signals traverse multiple paths as they bounce of objects in

the environment (e.g. the walls, furniture or the user’s body). RF-Wear resolves this by applying the MUltiple

SIgnal Classification (MUSIC) [36] algorithm on an array of RFID tags, as opposed to RF-antennas. At a high level,

the MUSIC algorithm uses an eigen sub-space decomposition approach to separate signal paths along different

spatial angles. Mathematically, h = [ 1, . . . , n] represent the wireless channels from the RFID tags to the RFID

reader, where each tag is separated by a distance . The absolute value square of these channels denotes received

signal power from the tags and the angle denotes the incoming signal phase. Then we can write the normalized

power (a probability metric) of the received signal (α), along any arbitrary incident angle at the array α as:

(α) = 1

| (α) N
∗
N
(α)∗ | , where: (α) = [ 4π jricos(α )/λ]i=1, ...,N (3)

where i denotes the distance between the corresponding tag to the center of the tag array, N is a matrix of the

noise-eigen vectors of ∗, (.)∗ is the conjugate transpose operator.
Figure 4 (right) depicts an example of the relative power of the received signal along different angles-of-arrival

α . Note a distinctive peak at the angle (θ ), the spatial angle-of-arrival of the signal from the reader to the tag array.

Even in the presence of reflectors, the strongest peak of (α) occurs typically at θ , with other paths producing
smaller peaks. We deal with the ambiguity that results when (α) contains multiple dominant peaks in Sec. 4.3.
Array Geometry: We observe that Eqn. 3 while illustrated on a linear array of tags, readily generalizes to

arrays of different geometries [11]. However, we do require two important constraints on array geometry. First,

the geometry of the array (i.e. the spacings: i ’s) must be a known priori, for instance at the time the fabric is

manufactured. Second, we limit the spacing between adjacent tags in the array. To see why, observe that for the

Eqn. 2 to result in valid and unique values of θ (with |cos θ | ≤ 1), we require the spacing between adjacent tags

to be smaller than a quarter of the wavelength ( ≤ λ/4). This provides an important geometric constraint in how
we place RFID tags on fabric – adjacent tags should be no more than λ/4 away. Our results in Sec. 7.1 study the
accuracy and performance of RF-Wear tag arrays in different geometries.

4.2 Dealing with a “moving reader in the pocket”

Given the orientation of different parts of the body relative to the RFID reader, RF-Wear needs to compute the

angles of different joints. The key challenge in doing so is the fact that the RFID reader itself is at an unknown



Towards Wearable Everyday Body-Frame Tracking using Passive RFIDs • 1 :9

θ1

θ2
-40

-30

-20

-10

0

Broadside Angle (degrees)

-60

-40

-20

0

 10 30  50 70 90 110 130 150 170

p(
α

)
p(

α
)

68°

α

Incoming signal power distribution across 0° to 180°
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location in the user’s pocket. To make matters worse, the location of the reader can change over time as the user

moves.

RF-Wear can obtain the angles of different joints in the body without knowing the current location of the

RFID reader. At a high level, our approach relies on the fact that the angle of a given joint is simply the relative

orientation of the two adjacent body parts with respect to the reader. Figure. 5 (left) illustrates this principle in

the context of orientations θ1 and θ2 of the thigh and lower leg relative to the in-pocket RFID reader. It is easy to

see that the angle at the knee is θ2 − θ1 as shown. We note that the above approach assumes that the position of
the RFID reader has not moved significantly over the time period of collecting wireless channel measurements

from the RFID tags on the body. In practice, commercial readers can query RFID tags at the rate of up to 40 Hz

which makes doing so achievable given the reader moves at human speeds.

4.3 Mitigating ambiguity from signal multipath

Finally, we note that our discussion so far has assumed that signals from the reader to the tag array arrives along

a single dominant direct path. In practice, obstacles between the reader and the tags such as the body itself could

weaken the direct path, resulting in multiple dominant signal paths. This results in an array of possible angles

that are likely to be the orientation of the reader. Mathematically, this manifests as multiple local maxima of (α)
leading to ambiguity on the true orientation of the array.

RF-Wear addresses this challenge by exploiting the structure of multipath. Specifically, recall from the laws of

reflection that one can think of multiple signal paths as signals from “virtual sources” that are mirror images of

the RFID reader along various reflecting surfaces. Many of these surfaces, e.g. walls, furniture and large areas of

the body are likely to be shared across adjacent body parts across from a joint. Further, recall from our discussion

in Sec. 4.2 above that for each such virtual source, their angle-of-arrival θ1 and θ2 relative to two joints would
differ exactly by the angle at the joint γ = θ2 − θ1. Said differently, for each virtual source, one would see two
local maxima of (α) across the two body parts that differ exactly by γ (see Fig. 5). Indeed, if all reflectors are
quasi-static and shared across the two body-parts, (α) of one body-part would simply be an γ -rotated version
of the other. Consequently, RF-Wear can retrieve γ by simply performing a cross-correlation of the two (α)
distributions to compute the relative shift. We note that in practice, there could be smaller reflectors (typically,

small parts of the body) that may be dominant influence on the signal for one body-part, but not the other, leading

to noise in our cross-correlation. Our results reveal that in practice, there are a sufficient number of dominant

reflectors shared by adjacent body-parts to guarantee high accuracy in joint angle-tracking (see Sec. 7).
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Fig. 6. RF-Wear in 3-D: (Left) depicts the definition of the polar and azimuthal angle-of-arrival (ϕ,ψ ) from the reader to a

rectangular array of tags. (Right) Depicts (ϕ,ψ ) the power of the received signal along different angles-of-arrival (ϕ,ψ ).

5 RF-WEAR SYSTEM DESIGN IN 3-D

Our discussion thus far has been constrained to two-dimensions. However, generalizing our approach to 3D

elicits three important challenges. First, how does our system deal with an RFID reader that may not be in the

same plane as the joint? Second, what if the joint itself rotates along more than one-degree of freedom? Finally,

given that tags are attached to flexible fabric, what if it folds and crumples, distorting the geometry of the array,

crucial to our analysis? The following sections address these concerns.

5.1 Tracking joints that rotate along one degree-of-freedom in 3D space

In this section, we discuss how RF-Wear can be extended to track the angles of joints in 3D. To begin with, let us

consider joints that rotate along one degree-of-freedom. A key implication of operating in three-dimensional

space for such joints is that the RFID reader antenna may not be in the same plane as the joint itself. Indeed, in

practice, this is extremely difficult to ensure, given that the location of the reader in the user’s pocket is likely to

change over time. To see why this is the problem, recall our approach from Figure 5, which subtracts the angle

between the two tag-arrays θ2 − θ1 to compute the relative angle of the joint. Clearly, should the RFID reader

move slightly so as to rotate about the lower leg, θ2 would remain unaffected, while θ1 would change. Indeed, it
is possible for θ2 − θ1 to vary arbitrarily as the RFID reader moves off-plane, even if the angle of the joint remains

exactly the same.

RF-Wear overcomes this ambiguity by using 2D RFID arrays. Specifically, it relies on rectangular arrays of RFID

tags that can decouple the incoming direction-of-arrival of the reader into azimuth and elevation. Figure 6 (left)

illustrates a simple example of such a rectangular RFID array. For such a rectangular array, we define the long

side as the y axis and the short side as the z axis. We can describe any direction of the incoming signal using a

combination of azimuth (ϕ1) and elevation (ϕ2). Azimuth is a polar angle in the x-y plane, with positive angles
indicating counterclockwise rotation of the origin point; elevation is the angle above (positive angle) or below

(negative angle) the x-y plane. Similar as the 2D example depicted in Figure 4, we can compute the relative power

of the received signal along different angles-of-arrival:

(ϕ,ψ ) = 1

| (ϕ,ψ ) N
∗
N
(ϕ,ψ )∗ | , where: (ϕ,ψ ) = [ 4π jricos(ϕ)sin(ψ )/λ]i=1, ...,N (4)
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lower arm upper arm

105°

Fig. 7. Computing the angle at the elbow joint in 3D: Demonstrates our approach in calculating the angle at the

intersection of body parts (upper and lower arm) for joints rotating in 3D using a rectangular array of RFID tags.

where i denotes the distance between the corresponding tag to the center of the tag array. Fig. 6 (right) depicts

the power of received signal along different azimuth and elevation angles.

Figure 7 further illustrates an example of 1DOF tracking primitive on the elbow joint. Two tag arrays are

attached to the lower arm and the upper arm respectively, sharing the same z axis. We can use Eqn. 4 to infer the

azimuth and elevation angle of the two RFID arrays. Assuming (ϕ,ψ ) would be maximum at exactly (ϕ1,ψ1)
and (ϕ2,ψ2) for the two RFID arrays, the elbow joint angle then can be computed as ϕ2 −ϕ1, the difference of two
azimuth angles (Fig. 7 right). Note that as before, we can mitigate multipath by computing the cross-correlation

of (ϕ,ψ ) to find the difference in azimuth (see Sec. 4.3). Our approach can readily be applied to various joints
that rotate along one-degree of freedom on the human body, e.g. knees and elbows.

5.2 Tracking joints that rotate along two degrees-of-freedom

The above approach can readily be generalized to also compute angles at joints that rotate along two degrees

of freedom, such as the ball-and-socket joint in the shoulder. Given that such joints do not rotate on any given

plane, one cannot characterize the relative angle between the two body parts in terms of one angle in 3-D space.

To illustrate, Figure 1(a) depicts the relative orientation of the upper arm and torso in three-dimensions in terms

of two angles: their relative azimuthal angle α along the plane of the torso and the polar angle β that captures
the elevation of the arm relative to the torso off-plane.

RF-Wear computes these two angles as the difference in azimuthal angles ϕ2 − ϕ1 and polar angles ψ2 −ψ1,
respectively, of the two joints. Indeed, for any rotations along one degree-of-freedom along the plane of the torso,

this angle reduces to the difference in azimuthal angles, ϕ2 − ϕ1 as described above. Similarly, for rotations at
a given relative azimuth, the upper arm would rotate on the plane perpendicular to the torso, while the torso

remains static; meaning thatψ2 −ψ1 would capture their relative out-of-torso-plane angle. Indeed, it is easy to see
that these two rotations are independent allowing us to fully characterize rotations of the two-degree of freedom

joint as ϕ2 − ϕ1 andψ2 −ψ1. More precisely, we compute these differences by accounting for multipath ambiguity
by performing a cross-correlation of (ϕ,ψ ) per array, both along azimuth and polar axes and then computing
the difference across arrays (Sec. 4.3).

Yet, visualizing these angles in 3-D space requires overcoming two important limitations. First, we note that

the angle differences ϕ2 − ϕ1 andψ2 −ψ1 are defined in a coordinate system relative to the direction of the reader

antenna. Re-orienting this coordinate system to a meaningful 3-D coordinate system requires the location of

the reader antenna. Our approach to overcome this challenge triangulates the reader antenna using multiple

Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol. 1, No. 4, Article 145. Publication date: 

December 2017.



145:12 • H. Jin et al.

RFID tag arrays on the body, at known relative locations. We first pose this as an optimization problem with the

wireless channels, as well as their relative location as known quantities, while the location of the reader antenna

is unknown. This is a maximum likelihood problem analogous to [48] with a key difference – the role of reader

antennas and RFID tags inverted. We then solve this optimization problem using a stochastic gradient descent

algorithm with multiple randomly chosen initial estimates of the reader location [48]. Once the reader location is

known, we translate (ϕ,ψ ) coordinates to the coordinate system of the body. More precisely, we compute the

coordinate transform of the family of (ϕ,ψ ) coordinates in (ϕ,ψ ) to account for multipath ambiguity (alg. 1).
We can then compute relative angle differences as before.

Algorithm 1 Applying coordinate transform to direction-of-arrival profiles (ϕ,ψ )
Input: Original spectrum (ϕ,ψ ), Transformation matrix
Define: (ϕ,ψ ): Function correlating orientation to corresponding directional vector
Output: New spectrum ′(ϕ ′,ψ ′)
for Each point in spectrum do

ϕ ′,ψ ′ = −1( (ϕ,ψ ))
′(ϕ ′,ψ ′) = (ϕ,ψ ) ϕ ψ/( ϕ ′ ψ ′)

end for

return ′(ϕ ′,ψ ′)

A second important challenge is that unlike the azimuthal angle, the polar angle cannot distinguish between

off-plane angles that are "upwards" and "downwards" owing to the symmetry of these two scenarios for an RFID

array along a given plane. This means that our body-frame tracking angles off-plane always have an ambiguity

of ±90◦. RF-Wear can resolve this ambiguity by mounting a secondary RFID array on one body part (e.g. along

the side of the torso for the shoulder joint) that is orthogonal to the other array. This would provide a secondary

source of information, where the roles of azimuthal and polar angles are flipped, thereby helping to resolve

ambiguity.

One might wonder how RF-Wear can generalize to support joints that may rotate along all three-degrees-of

freedom (e.g. the wrist). One approach to achieve this is to mount additional arrays along three mutually

orthogonal axes at every joint. However, doing so on smart fabric would neither be convenient nor aesthetically

appealing. Our approach is therefore limited to joints that rotate along at most two-degrees of freedom – in other

words all joints on the body barring the wrist and ankle. In addition, our approach does not apply to smaller

joints at extremities whose surface area is insufficient and attaching RFID tags would be unwieldy (i.e., the fingers

and toes). We discuss these limitations in Sec. 8.

5.3 Dealing with Fabric Flexibility

To operate with high accuracy, RF-Wear must account for the flexibility of fabric that is likely to change the

geometry of RFID tag arrays. Specifically, recall that RF-Wear’s algorithms for body-frame tracking assume that

the structure of the array whether linear or rectangular remains rigid and flat on a surface over time. In practice

however, fabric flexibility is likely to change both the relative distance and orientation of the tags over time,

introducing errors to measurement. Of course, different types of fabric offer different degrees of flexibility, and

consequently, different levels of accumulated error.

Our solution to deal with this problem seeks to fold in mathematical models of flexible fabric [16, 35] into

our RFID array processing equations to minimize this error. Specifically, we rely on a few salient features of

fabric folding [35]. First, the expected change in distance between any two tags for most fabric is limited to a
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few centimeters. More crucially, tags are on average expected to move closer to each other, rather than further

away given that folding is more common than fabric stretching. Next, the folds generated in fabric are likely to

remain even as the user moves their joints. Finally, the relative ordering of tags, already separated by several

centimeters, is unlikely to change due to fabric flexibility.

RF-Wear therefore reformulates the MUSIC algorithm taking into account the expected scaling factor μ in
relative distances between array elements (i.e. RFID tags). It measures a pre-programmed expected scaling factor

of the distance between pairs of RFID-tags taking into account the flexibility of fabric. These standard deviations

are experimentally derived and programmed into RFID tags at the time of manufacture, so that they can provide

this information to the reader when queried. To illustrate the mathematical generalization for the case of the 2-D

linear array of RFID tags (Eqn. 3), we can re-write (α) as:

(α) = 1

| (α) N
∗
N
(α)∗ | , where: (α) = [ 4π jri μcos(α )/λ]i=1, ...,N (5)

Where i , N , , λ and are defined as in Sec. 4.1. We make a few important observations about our fabric

flexibility approximation as described below:

• Distances between tags: we note that the above expression estimates the orientation of the RFID array

taking into account an average-case estimate of the separation between tags. In practice though, the shift

between tags may vary about the mean introducing errors to our estimate in orientation. However, recall

that our interest is in the angle of a joint which is the difference in orientation of two body parts. Given

that fabric flexibility is likely to introduce similar quantum-of-error in the orientation of the two parts,

RF-Wear benefits from much of this error canceling out.

• Individual tag orientation: We notice that the phase values can change significantly if the tag orientation

changes leading to measurement errors as discussed in Sec. 4. In practice, the tag orientation changes

are typically less than <10°, which introduce a tolerable phase observation noise. Moreover, algorithms

such as MUSIC rely largely on the phase differences of multiple pairs of tags, which further de-noises our

measurements. Finally, we choose commercial RFID tags from among 20 different types that interact best

with the human body and whose phase varies minimally across orientations (see Sec. 6).

• Fabric material: The quantum-of-error due to fabric flexibility largely depends on the nature of fabric

used. Our experiments in Sec. 7 compute the value of μ through a one-time-process per fabric used. We

present our results for three different types of fabric in our experiments in Sec. 7.2.

6 IMPLEMENTATION

RFID Tags: We implement our prototype by attaching paper-thin commodity passive RFID tags to regular

clothes, including cotton pants, a sweater and a jacket (Fig. 8). Searching for the ideal RFID tags for RF-Wear is a

non-trivial task. First, the human body attenuates radio signals. Although the tags will be attached to the fabric,

ideal RFID tags should have a consistent performance on/off the body. Second, radio sensitivity and directivity

are important aspects to consider. If the RFID tag has a strong directivity, the tags can be seldom detected if they

do not directly face the reader antenna. Third, ideal RFID tags should have a small and flexible form factor, which

can be embedded into the clothes in a non-intrusive way. Our implementation uses the OmniID IQ 150 tags after

a careful comparison of 20 different types of RFID tags to minimize the effect of RFID tag orientation (a partial

list is in Table 1).

RFIDReader: While there are several commercial handheld single-antenna RFID readers on the market [1, 29, 42]

(up to 12 hours battery life), none of them provide the necessary open software interface (API) to provide wireless

channel state information (magnitude and phase). We, therefore, chose the Impinj Speedway RFID reader equipped

with a single Ettus VERT900 antenna (Fig. 8), which provides the necessary software interface for wireless channels.
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Fig. 8. RF-Wear prototype on body. We implement RF-Wear on OmniID IQ 150 tags attached to clothing and an Impinj

Speedway RFID reader connected to a single-antenna. The tags are attached to fabrics of different material (a sweater is

shown here) and on different body parts (around the knee, elbow, shoulder) the angles of these joints are tracked.

Table 1. A partial list of RFID tags characteristics

UHF RFID Model Size (cm) Flexible Refresh rate (Hz) in the air/on the body (1m away)

Xerafy MicroX 5.1 x 3.63 X 23.8/31.8

Alien Square ALN-9629 2.55x2.55 � 28.4/0

Alien Squiggle ALN-9740 9.82 x 1.23 � 30.2/0

Confidex Silverline Blade 6.0 x 2.5 � 25.2/28.3

OMNI-ID IQ 150 5.2 x 1.25 � 28.1/24.4

Note that while this reader supports four antennas, we disabled three of its antennas and connected only a

single-antenna (with corresponding FCC power limits). Our prototype system is therefore designed to operate in

the same power-regime as commercially-available handheld RFID readers.

Software: To comply with FCC regulation, RFID readers (in the USA) "frequency hop" across 50 channels from

902 MHz to 928 MHz at an interval of approximately 0.2 seconds. Once the RFID tags are in the operation range,

the reader will produce an observation stream that contains all the low-level wireless channel information,

including RFID UUID, phase, signal strength, frequency, etc.

RF-Wear uses a sliding window technique to extract the quasi-simultaneous readings for different tags from

the data stream. First, we only extract the tag readings at the same frequency. Second, all the tag readings need to

occur in a time span of 0.1 seconds. Third, when the 0.1-second duration expired, RF-Wear will execute based on

the partial observations. In practice, some of the tags may become invisible due to the potential body occlusion.

Our algorithms can then run on the partial sensor array data with a sacrification of accuracy.

Finally, we infer the joint angle based on the two sequential readings from the corresponding tag arrays and

feed this joint angle to a Kalman filter.

Real-Time Performance: In our experiments, this sliding window technique can generate around 30

independent tag array readings per second for each tag array. Partial measurements are observed rarely,

particularly when the tag array at extreme angles. We implement the system in python in real-time. The

most computing intensive step is computing the spectrum profile, which takes around 0.015s to process one tag

array.

Our sensing pipeline is faster than the prior state of the art: IDSense (2s) [22] and RapID (200ms) [39]. The key

difference is that we run predictions based on each independent tag reading, while [22, 39] collect the sequential
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readings in a time duration to counter the noisy measurements. Our approach de-noises implicitly through the

tag redundancy and prior tag array layout knowledge.

7 EVALUATION

We present a detailed experimental evaluation to understand the performance and limitations of RF-Wear. Our

evaluation is organized as follows.

1.Array configuration: Different geometric configurations of a 2-D tag array in estimating the orientation.

2. Fabric flexibility: Different fabric materials in estimating the orientation of each RFID array.

3. Motion capture evaluation: Tracking the performance of an on-body deployment at elbow, knee, shoulder.

Metric: To characterize RF-Wear’s performance, we mainly focus on angular error at the joint i.e., the deviation

of estimated angle from the ground truth.

7.1 Array Configuration

During our evaluation, we find that increasing the number of tags and the aperture can both improve the accuracy.

However, the available flat surface areas of different body parts are limited. Moreover, squeezing the antennas

too close can be counter-productive owing to the effects of fabric flexibility. To understand these trade-offs, we

conduct experiments with different array configurations.

Method: We perform this off-body experiment with the Alien Square ALN-9629 RFID tags mounted on a rigid

wooden platform (Fig. 9) at different spacings that can be accurately measured. We choose these square tags

because the square shape allows us to experiment various distances between adjacent tags systematically and

uniformly along both and y dimensions. To make the accuracy results comparable across different tag arrays,
we reject all the RFID predictions based on partial RFID tag array readings for results in this section alone.

During the evaluation, the experimenter then moves around the tag array, while the RFID reader and antenna

are placed on the floor of an empty lab space statically. The tag array is at 1 meter away from the antenna, facing

the same direction and standing on the floor. We test our algorithm on six different angles relative to the antenna:

30°, 60°, 90°, 120°, 150°, 180°. We also place a Cutting Mats on the floor as the ground truth reference. For each

position, we collected data for 30 seconds with three repetitions. We then try different array configurations with

an aperture of 3-5 cm and a size of 6-25 (Table below).

tag array dimension aperture (cm) tag array size (cm2)

2 x 3 5 7.5 x 12.5

2 x 4 5, 4 7.5 x 17.5, 6.5 x 14.5

2 x 5 4 6.5 x 18.5

3 x 3 5, 4, 3 12.5 x 12.5, 10.5 x 10.5, 8.5 x 8.5

4 x 4 5, 4, 3 17.5 x 17.5, 14.5 x 14.5, 11.5 x 11.5

5 x 5 5, 4, 3 22.5 x 22.5, 18.5 x 18.5, 14.5 x 14.5

Results: Figure 10 depicts the accuracy of different RFID tag arrays. A larger aperture leads to a higher accuracy,

which can be explained by the intuition behind MUSIC algorithms (Fig. 4). The θ is calculated based on the ratio
of aperture and distance delta Δ . Increasing makes RF-Wear algorithms more robust to the Δ measurement

errors. All the tag arrays with a 5 cm spacing perform better than that with 4 cm and 3 cm spacing.

Moreover, placing more RFIDs with a small spacing also increases interference between adjacent RFIDs and

reduces the accuracy as well. In all the 3cm spacing cases, the center tags are less visible than the surrounding tags.

As a result, 4x4_3cm and 5x5_3cm don’t produce any data. A more detailed discussion of the RFID interference

can be found in Sec. 8.

Figure 10 also illustrates larger arrays produce higher accuracy results. 5x5_5cm performs better than 4x4_5cm,

which works better than 3x3_5cm. While most tag arrays at 4 cm and 3 cm spacing have reasonably good accuracy,
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Fig. 9. Experimental
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Fig. 10. Microbenchmark results. The azimuth and elevation angle measurement error for

each independent tag array. 5x5_5cm performs best while 3x3_3cm performs worst.

the tag array choices are mainly limited by the body area. For example, small sensor arrays are suited for body

parts with a smaller surface area (e.g. the upper arm), while the larger ones are best suited for larger parts (e.g.

the torso or back).

Key Findings and Insights: All the tag arrays with a 5 cm spacing perform better than that with 4 cm and

3 cm spacing. This is because an increase in aperture also increases effective range of measured phases. Further,

it minimizes error owing to interactions between tags. We note that larger spacing is inadvisable given that it

would be larger than quarter-a-wavelength, as we discuss in Sec. 4. In effect, a choice of spacing of 5 improves

system accuracy while eliminating ambiguity. In all the following experiments, we use the tag arrays with a 5 cm

aperture and adjust the array dimension in accordance with the available surface area.

7.2 Fabric Flexibility
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Fig. 11. Fabric Flexibility: Weplot the broadside

angle error (degrees) between the tag array and

the antenna. The tag arrays were mounted on

different types of fabric with intentional wrinkle:

cotton pant, jean pant, wool sweater and jacket.

In this experiment, we evaluate the effect of fabric flexibility in

the accuracy of RF-Wear.

Method: We place two rectangular arrays of 4×2 RFID tags on

three clothing made of three different materials: (1) Cotton pants;

(2) Wool sweater; and (3) Polyester jacket, each with varying

degrees of flexibility. We place the clothing on the ground and

only test our algorithm at the 90°relative to the antenna. We then

intentionally create a corrugation as the one commonly seen on

the body and repeat each data collection five times. The rest data

collection configuration is same as Sec 7.1.

Results: Figure 11 depicts the mean and standard deviation of the

error in the angle of a one-degree-of-freedom joint using RFIDs

mounted on the three different types of fabric. We observe a mean

error of 6.6◦, 5.2◦ and 8.7◦ for a cotton, wool sweater, and polyester
jacket respectively.

Key Findings and Insights: We observe that while the accuracy diminishes marginally for more flexible fabric,

our system remains largely robust to the flexibility of fabric mounted on clothing owing to the algorithms

described in Sec. 5.3.
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Fig. 12. Motion Capture Apparatus. We evaluated RF-Wear inside (5 ft)3 space using 8 OptiTrack cameras for submillimeter

3D tracking ground-truth. The cameras are mounted on the ceiling.

7.3 Motion Capture Evaluation

In this experiment, we deploy RF-Wear on three representative joints: right elbow, left knee, and left shoulder

and evaluate the angular error in a lab environment using a motion capture system. These joints represent three

classes of joints in RF-Wear: 1DOF joints in upper/lower body and a 2DOF joint.

Apparatus: We conduct our evaluation in a hardware lab as depicted in Figure 12a. To emulate the reflectors

in the real world, we intentionally keep the facilities in the proximity of our test position. We evaluate each

joint independently and use OmniID IQ150 in all three joints. To evaluate the RF-Wear’s performance with

dynamic reader positions, we place an RFMAX S9028 antenna on the ground and allow the subject to move

around naturally within 0.5 m from the antenna (Fig. 12b).

To obtain ground-truth joint angles during motion, we set up an 8-camera Optitrack system inside the lab space.

Eight motion capture cameras are deployed on the ceiling. We affixed multiple reflector markers to different body

parts (Fig. 12b, c, d) and calibrated the Optitrack to track the markers with sub-millimeter accuracy.

7.3.1 Knee Joint. Method: Figure 12b illustrates the evaluation configuration on the subject’s left leg. Two

rectangular 4×2 RFID-arrays are taped to the front side of the pants: one on the lower leg and the other on upper
leg. The subject is instructed to mark time or walk around the antenna in their real life walking pose.

We then test RF-Wear in two contexts: mark time and walk around the antenna. For each context, we collect

data for 60 seconds, and the subject stands still at the beginning and the ending for calibration purpose.

To retrieve the ground truth, we place six reflectors on the left side of the left legs (Fig. 12b). We reconstruct

two imaginary lines (the top three and lower three reflectors respectively) using the motion capture data, and

then compute the angle between these two lines. Since the angle measured from the side (motion capture) is not

identical to that from the front (RF-Wear), we measure the angle different at the beginning (when the subject is

still) to compute the constant offset. The offset in this subject is 22°.

We align the motion capture data with the RF-Wear predictions based on the absolute timestamps.

Results: Figure 13 plots evaluation results for the knee experiments (a, b for the mark time setting and c, d for

the walk around setting).

In the mark time setting, the subject lifts his leg 17 times (counting the peaks in Fig. 13a) in 30 seconds. RF-Wear

captured 1105 independent tag array readings (visualized as blue dots). The refresh rate is 36.8 Hz. We also

implement a standard Kalman filter to smooth the RF-Wear predictions. Figure. 13b illustrates the angular error

distribution after Kalman Filter in a CDF chart (avg = 8.89°, std = 7.73°).

In the walk around setting, the subject lifts his his leg 25 times in 40 seconds (Fig. 13c). RF-Wear captured 1585

independent tag array readings (visualized as blue dots). The refresh rate is 39.6 Hz. Figure. 13d illustrates the

corresponding angular error distribution after Kalman Filter in a CDF chart (avg error = 12.50°, std = 12.52°).

Key Insights: Our system accurately tracks the angle of the joint akin to the baseline with high responsiveness,

refresh rate and accuracy. When the users walk around the antenna, the system still functions correctly, although
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Fig. 13. Knee results. From left to right: a). The knee joint angle trace in the mark time setting; b). The angular error

distribution plot in the mark time setting; c). The knee joint angle trace in the walk around setting; d). The angular error

distribution plot in the walk around setting.

Fig. 14. Elbow results. Left: The elbow joint angle trace in 160 seconds data collection. Right: The angular error distribution

plot for the elbow joint.

the error increases by 4°. Observe as the user walks around, the reader antenna inevitably moves over time on his

body. Our system remains robust to this effect.

7.3.2 Elbow Joint. Method: Figure 12c illustrates the evaluation configuration on the subject’s right elbow.

The procedure is similar to the Knee Joint experiment. Two rectangular 4x2 RFID-arrays are taped to the bottom

of the sleeve of a cotton sweater: one on the lower arm and the other on the upper arm. The subject is instructed

to move the elbow as well as the shoulder to test diverse relative positions from the antenna to the tag array. We

then conduct a long one-shot data collection (3 minutes) and remind the subject to change the movement pace

intentionally during the evaluation.

To retrieve the ground truth, we place six reflectors on the top of the sleeve of a cotton sweater. The systematic

offset in Elbow subject is 0°.

Results: Figure 14 (left) plots evaluation results for the elbow experiments. During the elbow test, the subject

repeats the elbow gestures for 27 times in 155 seconds. Both the raw predictions and the Kalman Filter predictions

are well aligned with the ground truth measurements from the motion capture system. Figure. 14 (right) illustrates

the corresponding angular error distribution after Kalman Filter in a CDF chart (avg error = 12.31°, std = 10.19°).

RF-Wear captured 11872 independent tag array readings (visualized as blue dots). The refresh rate is 76.6 Hz.

Key Insights: We observe similar high accuracy in the elbow in joint angle tracking, as with the knee. We

observe a higher refresh rate in our measurements because the reader is located closer to the elbow than the knee.
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Fig. 15. Shoulder results. Left: The shoulder joint 2 degree of freedom angle trace. Right: The angular error distribution

plot for the azimuth and elevation.

7.3.3 Shoulder Joint. Method: Figure 12d illustrates the evaluation configuration on the subject’s left shoulder.

The procedure is similar to the past two experiments. One rectangular 4x2 RFID-arrays is taped to the front of

the sleeve of a cotton sweater. The subject is instructed to move the shoulder in an arbitrary path.

To retrieve the ground truth, we place ten reflectors on the chest (5 horizontally and five vertically) and three

reflectors on the top of the sleeve. To compute the ground truth, we first identify the ten reflectors in the same

plane and then calculate the relative azimuth/elevation angles of the arm in the plane of the chest.

Results: Figure 15 (left) illustrates the result for shoulder experiment. 1806 samples were captured in 50 seconds,

with 4 peak among them. The refresh rate is 36.1Hz. Average error for azimuth and elevation angle is 21.13 °and

7.95 ° respectively, with stds 16.93° and 5.47°. Figure 15 (right) illustrates the CDF for azimuth and elevation angle

after Kalman Filtering.

Key Insights: We observe a high accuracy in joint angle-tracking for two degrees of freedom. We do observe

a higher error compared to the one-degree-of-freedom joints, intuitively because arrays of similar dimensions

are employed to retrieve two independent angles. Note that the error in polar angle is lower than the azimuth,

because the polar angle can at its highest be 90 degrees while the azimuthal angle varies between 0 and 360

degrees.

8 DISCUSSION AND LIMITATIONS

8.1 Advantages and Limitations of RFIDs for smart fabrics

Using passive tags for body-frame tracking has two key advantages. First, passive RFID tags harvest energy

off the radio waves from the reader antenna, and do not require batteries or complex circuits on the clothes.

Clothes, which require daily maintenance, will remain machine washable. Second, wireless RFID networks are

programmable. RF-Wear’s approach can turn regular clothes into smart suits by weaving RFIDs into fabric. A few

important limitations of our choice of RFIDs for smart-fabrics: First, we assume the presence of a reader which

is in range (few meters) of the tags (e.g. in the user’s pocket or a desk nearby). Second, the reader needs to be

recharged much like a smartphone. However, the increasing proliferation of RFIDs and the potential of future

smartphones to have RFID reader chips [18] bolsters the deployability and applicability of RF-Wear.

8.2 Tracking clothes vs. the body

RF-Wear tracks the body-frame by tracking the way clothes move as the body moves. This imposes a limitation:

RF-Wear can only track the joints covered by clothing. Besides, RF-Wear also does not track angles at extremities
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such as the fingers and toes, given that they offer too small a surface area to attach a RFID array. The joints

supported by RF-Wear are the elbow, shoulder, neck, hip, and knees.

In our experiments, we find that there are two unique types of movements of clothing: skeletal movement (e.g.

changing the elbow joint angle) and frictional movement (e.g. rotation of the waist). This paper mainly explores

skeletal movement in body-frame tracking. Frictional movement occurs due to various factors beyond the body

movement, e.g. the tightness of the clothes and the material friction. A possible approach to measure friction

movement is to place additional RFID tags directly on the skin as tattoos [41]. A study of this, however, is beyond

the scope of this paper.

8.3 Increasing number of RFID Tags vs. Refresh Rate

Our current prototype requires two 4x2 tag arrays to track each joint and six 4x2 tag arrays on the body resulting

24x4 (knees, elbows, hips, shoulders) + 8x6 (main body) = 144 tags in total. Since some of the tags can be reused

in different joints (e.g. upper arm part can be used for both the shoulder and elbow), the minimum number of

required tags is 112 (64 on four limbs + 48 on the main body) tags to track all the joints described above. Improved

performance can result from redundant tags to avoid noise and body occlusion at special angles, e.g. by placing

tags on the chest as well as the back.

While mounting a larger number of RFID tags would improve accuracy and robustness, one would need to

consider whether the reader can query all tags in real-time from a single hand-held reader. Specifically, any

increase in the number of tags will be bottlenecked by the reader’s processing capability (2200 readings/s),

reducing the refresh rate per tag [17]. In our evaluation, the refresh rate for each tag decreases steadily as the

number of tags increases (50 Hz for 8 tags to 16 tags for 30 Hz).

8.4 RFID interactions: with human body and between themselves

The human body attenuates RF signals and can distort the radiation pattern and affect the antenna efficiency of

RFIDs. These issues are akin to RFID tags atop metal objects whose presence strongly affects dipole antenna

based RFID tags [30]. We therefore choose metal friendly RFID tags in RF-Wear and find they also work well

on the body. Two important challenges stem from the occlusion of RF signals by the human body. The first is

multipath ambiguity as described in Sec. 4.3, which we explicitly deal with. Second is the fact that a small number

of RFID tags furthest away from the reader may be out-of-range due to excessive shadowing. Adding extra tags at

different orientations on the fabric or using improved or special RFID tags designed for the body can potentially

remedy this situation. Indeed designing RFID tag array configurations that suit different body types, types of

clothing, can be sewn into fabric and have sufficient redundancy is an important engineering problem.

One might wonder if the phase of RFID tags are affected significantly by the presence of others. Our experiments

space adjacent RFID tags at a relative distance of 2.5 or higher, resulting in empirically observed phase error

(i.e. difference in phase with and without an adjacent tag) of at most 10°. Overall these interferences impacts

accuracy negligibly when compared to other measurement noise (e.g. tag orientations).

8.5 Data-Driven solutions that incorporate body-kinematics

RF-Wear’s accuracy can be greatly improved by incorporating body kinematics, data pertaining to human

movement and even learning patterns of movement of a given user. Our current approach intentionally does not

calibrate to specific users to present native accuracy from RFID-tracking. However, future systems can employ

algorithms such as the random forest decision tree [37] to account for body kinematics and filter observed data.
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8.6 Power consumption

The RFID reader used in our prototype supports four antennas and consumes more power than RF-Wear requires.

A comparable COTS reader can be ThingMagic Micro [40]. This two-antenna-port reader can process 750 tag

readings/s and will consume 3 during scanning and 0.06 during idle. These numbers are comparable to the

widely deployed Wi-Fi cards (active: 2 ; idle: 1 [6]). A further hardware customization can further bring down

the cost and improve the power efficiency.

9 CONCLUSION AND FUTURE WORK

This paper presents RF-Wear, an accurate and wearable system to track a user’s body frame using low-cost

passive RFIDs embedded in their clothing. RF-Wear achieves this by processing wireless signals reflected off

these tags to a compact single-antenna RFID reader. In doing so, RF-Wear enables a first-of-its-kind body-frame

tracking system that is lightweight and convenient for everyday use, without the need for external infrastructure.

We implement and evaluate a prototype of RF-Wear on commercial RFID readers and tags and demonstrate its

performance in body-frame tracking. We believe RF-Wear will form a key primitive for a variety of applications

in gesture-based interfaces, health monitoring and fitness tracking. While RF-Wear tracks the angle of joints on

the body in 3-D, it cannot track more fine-grained changes in curvature of the body, e.g. due to curvature of the

spine. We believe this is an important area for future investigation.
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