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Adaptive Dimensionality
Reduction for Fast Sequential
Optimization With Gaussian
Processes
Available computational models for many engineering design applications are both expen-
sive and and of a black-box nature. This renders traditional optimization techniques difficult
to apply, including gradient-based optimization and expensive heuristic approaches. For
such situations, Bayesian global optimization approaches, that both explore and exploit
a true function while building a metamodel of it, are applied. These methods often rely
on a set of alternative candidate designs over which a querying policy is designed to
search. For even modestly high-dimensional problems, such an alternative set approach
can be computationally intractable, due to the reliance on excessive exploration of the
design space. To overcome this, we have developed a framework for the optimization of
expensive black-box models, which is based on active subspace exploitation and a two-
step knowledge gradient policy. We demonstrate our approach on three benchmark prob-
lems and a practical aerostructural wing design problem, where our method performs well
against traditional direct application of Bayesian global optimization techniques.
[DOI: 10.1115/1.4043202]

1 Introduction
For many engineering design applications, available computa-

tional models are expensive and of a black-box nature. In such situ-
ations, Bayesian global optimization techniques, such as efficient
global optimization (EGO) [1], sequential Kriging optimization
(SKO) [2], value-based global optimization [3], and the knowledge
gradient (KG) [4–6] can be very effective. These techniques gener-
ally rely on the simultaneous learning and optimization of a metamo-
del or surrogate of the true model. Often, a querying policy is
implemented over a set of alternatives to explore and exploit infor-
mation from the true function. In many cases, the size of this alterna-
tives set increases exponentially with the input dimension of the true
function. This renders even modestly high-dimensional problems
intractable and requires recourse to gradient-based Bayesian global
optimization approaches, which can be susceptible to local
minima. To better understand the challenges in high-dimensional
problems, consider a d-dimensional design spacewhere a simple dis-
cretization of each dimension to n points results in nd different alter-
native samples for the exploration process. This number increases to
nd+m in a (d+m)-dimensional problem. This exponential growth in
the alternatives set makes the optimization process slow or intracta-
ble, limiting the applicability of alternative-based Bayesian optimi-
zation techniques to problems with less than four or five dimensions.
To enable the use of alternatives based on Bayesian global optimi-

zation for the optimization of expensive black-box functions, we
develop here a novel two-step knowledge gradient policy that
exploits potential active subspaces of a given true function. In our
approach, with previously queried data, the active subspace
method [7] is used to map the problem to one of the smaller dimen-
sion based on directions of greatest variability of the true function.
Exponentially fewer alternatives are required on this smaller dimen-
sional problem and the knowledge gradient can readily be applied.
The solution to the problem on the active subspace is then mapped
to the original space where a second knowledge gradient is applied
to a hyperplane orthogonal to the active subspace. The result is a

method that enables the application of the alternatives based on
knowledge gradient policy to moderately high-dimensional prob-
lems. Furthermore, due to the fact that the initial knowledge gradient
step is focused in directions defined by the largest variability of the
true function, our method is significantly more efficient than direct
application of the knowledge gradient to the true function. That is,
exploiting the active subspace, when one exists, can lead to signifi-
cant gains in terms of iterations required for the convergence.
In this paper, we first present background on metamodel-based

optimization in Sec. 2, which includes the class of Bayesian
global optimization algorithms we generally consider here. In
Sec. 3, the problem statement and the ingredients of our approach
are discussed. Section 4 then presents our proposed approach. In
Sec. 5, the approach is applied to three two-dimensional test func-
tions to demonstrate how the approach works and its limitations.
Section 6 then presents a practical aerostructural wing analysis
problem. Finally, conclusions are drawn in Sec. 7.

2 Background
Optimization of expensive to evaluate black-box models is often

made tractable by the incorporation of lower fidelity metamodels
or surrogate models. These methods have seen significant applica-
tion in engineering design optimization. Most of these approaches
build corrections to low-fidelity information from higher fidelity
sources, such as adding global response surface corrections to low-
fidelity models [8,9], using low-fidelity information for coarse-
grained search while using high-fidelity function values for fine-
grained decisions [10,11], creating a response surface using both
high- and low-fidelity results [12,13], and running higher-fidelity
models when two or more lower-fidelity models disagree [14,15].
More formal multifidelity optimization frameworks use either a
local approach, such as trust region model management and other
surrogate management techniques [16–21], or a global approach
constructed via interpolation of the high-fidelity objective function.
For example, EGO, SKO, and KG optimization use a Gaussian
process model to estimate the location of high-fidelity optima and
guide multifidelity sampling [1,2,4,22].
Another common means of optimizing expensive to evaluate

problems is the use of either local or global sensitivity analysis.
In the local sensitivity analysis, gradient information is obtained
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(e.g., using finite differences for black-box functions). This infor-
mation can then be used to inform the search direction and plays
a significant role in several of the surrogate model management
frameworks noted earlier. For certain optimization methodologies,
the dimension of the design vector is a key contributor to computa-
tional expense. For example, in many Bayesian global optimization
techniques, such as EGO and KG, an optimization problem should
be solved over the alternative set according to an acquisition function
over the surrogate model. This can be computationally expensive or
intractable for large alternative sets. To handle this situation,
methods for reducing the dimension of the design vector in the
alternative set are desired. Global sensitivity analysis provides a
well-known technique for dimension reduction that maintains the
original design variables. By considering total effect sensitivity
indices [23–25], design variables that do not play a significant role
can be fixed to a nominal value. However, in situations where effec-
tive lower dimensional approximations do not align well with the
design variable directions, alternative subspace approximation tech-
niques can be employed. It should be noted that while global or local
sensitivity information can be used for dimensionality reduction, the
process of obtaining this global/local information is still affected by
the curse of dimensionality since it is based on the sampling of the
black-box model or of a surrogate constructed from samples of it.
Hence, the problems that can be solved by sensitivity analysis tech-
niques are still limited by the size of the original design space.
Subspace approximation approaches are widely used in optimiza-

tion [26], model reduction [27], optimal control [28], and other tasks.
The proper orthogonal decomposition technique, also known as
principal component analysis [29], has been developed to reduce the
dimension of the state space of high-order systems. In this method,
data are projected to a new coordinate system defined by principal
components. Singular value decomposition is a common approach
for the selection of dimensions using principal component analysis
[30]. These techniques are used in modeling and optimization strat-
egies to solve high-dimensional design problems with computa-
tionally expensive black-box functions and are surveyed in Refs.
[31–33]. These techniques are typically used to either reduce the
dimension of the output space, for example, the objectives of a mul-
tidimensional optimization or the dimension of an input space that
has been conditioned by some process, for example, on the opti-
mized samples on a pareto-front [34].
A recent approach to subspace approximation is the Active

Subspace method [7,35]. In this method, the directions in which a
function has the largest variability are detected to construct an
approximate model in a low-dimensional subspace of the function’s
input design space. This is achieved using first-order derivatives.
These derivatives can be computed by several techniques, such as
adjoint methods [36,37] and algorithmic differentiation [38].
Upon computation of the function’s gradients at a set of input
design points, the active subspace technique detects the important
directions, followed by rotating the input design space in the
directions in which the function has the highest variability. Then,
the input design space is projected to the low-dimensional subspace
where the function is then approximated. Following Ref. [7], this
low-dimensional subspace is called the active subspace [35]. This
approach has been applied to design optimization [39,40], inverse
analysis [41], spatial sensitivity analysis [42], aerospace shape opti-
mization [34], and uncertainty quantification for multiphysics
scramjet models [43].
In the following section, we state the problem we seek to solve.

Our approach to solving this problem then follows. This approach
brings to bear the tools and techniques of Bayesian global optimiza-
tion with the active subspace method in a novel manner that enables
more efficient optimization of expensive black-box models when an
active subspace is present.

3 Problem Statement
We consider the problem of constrained optimization of an

expensive to evaluate and black-box objective function f(x) with

design space, χ ⊆ Rm. The specific problem is to find a design
according to

x* = argmax
x∈χ

f (x)

s.t. cj(x) ≤ 0, j = 1, 2, . . . , s
(1)

where x is a set of design variables in the input design space χ, and
cj(x), where j = 1, 2, . . . , s, are a set of constraints that must be sat-
isfied. These constraints are also assumed to be expensive to eval-
uate black-box functions.
For problems such as that given by Eq. (1), it is common to

employ sequential querying policies built off of learned surrogate
models as part of a Bayesian global optimization process designed
to both explore and exploit based on learned function values. For
this, there are two traditional techniques for choosing what to
query next [44]. These are efficient global optimization [1] and its
extensions, such as sequential Kriging optimization [45,46] and
value-based global optimization [3], and the knowledge gradient
[4,47–50]. EGO uses a Gaussian process but assumes no noise
[51,52]. SKO also uses Gaussian processes but includes a tunable
weighting factor to lean toward decisions with higher uncertainty
[44]. KG uses Gaussian processes and differs from EGO in that
the overall best objective value, as determined by a current
learned surrogate is used, rather than a best-queried value. In
Ref. [53], the superiority of the KG policy was demonstrated on
several benchmark functions.
The KG policy, as with other Bayesian optimization techniques,

performs poorly in systems with large input design spaces. This is
generally due to the scaling of the alternatives set with input dimen-
sion. In other words, Bayesian optimization techniques rely on
proper exploration of the design space at the beginning of the optimi-
zation process, which gets exponentially more expensive as the
dimension of the input space increases. Thus, in this paper, we
develop an approach based on the active subspace method and a
two-step knowledge gradient technique to adaptively reduce the
dimension of the input design space and boost the speed of the opti-
mization process. In the following subsections, the key ingredients
of our approach which include the active subspace, Gaussian
process regression, and the knowledge gradient policy are discussed.
Following this, our specific approach is described in detail in Sec. 4.

3.1 Active Subspace Method. The active subspace method is
a technique for discovering the directions of the largest variability
of a function. Once discovered, an approximation of the function
can then be constructed on a lower dimensional subspace defined
by these directions. The result is the potential for learning a sub-
space with significantly lower dimension than that of the original
problem [7]. This potential, when it exists, can be exploited to
create significant efficiency gains in the application of knowledge
gradient policies to expensive black-box optimization problems.
Following Ref. [35], let f be a scalar objective function of m input

variables x in the input design space χ, and ∇x f be the column
vector of gradient of f at design point x. That is,

f = f (x), ∇xf = ∇xf (x), x ∈ χ (2)

The goal is to find an n-dimensional, n<m, active subspace of the
input variables that contains most of the variability of the objective
function, and a function g :Rn → R that is the approximate repre-
sentation of f in the active subspace.
The first step is estimating the covariance of the gradient by com-

puting the expectation over the probability density function of x on
χ. We note here that the use of concepts from probability is entirely
for convenience. There are no requirements of stochasticity in the
underlying variables or functions. Thus, the expectation is usually
taken considering uniformly distributed design variables. The m×m
covariance matrix C is defined as

C = E[∇xf (x)∇xf (x)⊤] (3)
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The exact computation of the covariance matrix in Eq. (3) is not pos-
sible in most problems, especially in the case of black-box functions.
However, it can be approximated using Monte Carlo methods. This
can be achieved by first drawingM samples in the design space and
computing the gradient values at those points (e.g., usingfinite differ-
ences). Then, the covariance matrix can be estimated as

C ≈
1
M

∑M
i=1

∇xf (xi)∇xf (xi)⊤ (4)

In order to identify themost effective directions of the input design
space, the eigenvectors of the covariance matrix, which is a sym-
metric and positive semidefinite matrix, are computed. The covari-
ance matrix can then be written based on the eigenvalue
decomposition as

C =WΛW⊤ (5)

whereW is a m×m column matrix of eigenvectors and Λ is a diag-
onalmatrix of eigenvalues.Note that here, the eigenvalues and eigen-
vectors are placed in descending order. The first n eigenvectors are
then selected to form a reduced-order basis. This partitions the eigen-
vectors and eigenvalues as

W = U V
[ ]

, Λ =
Λ1

Λ2

[ ]
(6)

whereU contains the first n columns ofW and defines the active sub-
space of the input design space. Now, the original full space can be
transferred to the active subspace as

z = U⊤x (7)

and the function f can be approximated in this active subspace as

f (x) ≈ g(U⊤x) = g(z) (8)

where the domain of g is

Z = {z = U⊤x, x ∈ χ} ⊂ Rn (9)

3.2 Gaussian Process Regression. Gaussian processes are
powerful statistical tools for probabilistic modeling purposes. A
Gaussian process can be thought of as a generalized version of
the Gaussian distribution applied over a continuous input space.
In other words, it is an infinite-dimensional normal distribution
where each sample in the input space has a corresponding normal
distribution that is characterized by mean and covariance functions
[54]. This class of models is widely used in engineering applications
due to its flexibility, the ability to incorporate prior knowledge, and
the ability to work with small sample sizes.
Gaussian process regression is a nonparametric Bayesian

approach that conditions a probabilistic function to training data.
Following Ref. [54], Gaussian process regression is approached
by conditioning a multivariate normal distribution as

f ∼ N μ, Σ
( )

(10)

where f is a normally distributed function with mean μ and covari-
ance matrix Σ. Assuming that N training data are available, repre-
sented by XN= (x1,…, xN) and yN= (y1,…, yN) as input and
output samples, respectively, the posterior distribution of f at any
design point x in the input design space is given as

f (x) ∣ XN , yN ∼ N μ(x), σ2(x)
( )

(11)

where

μ(x) = K(XN , x)T [K(XN , XN ) + σ2nI]
−1yN (12)

σ2(x) = k(x, x) − K(XN , x)T [K(XN , XN ) + σ2nI]
−1K(XN , x) (13)

where k is a real-valued kernel function over the input space,
K(XN, XN) is the N×N matrix whose m, n entry is k(xm, xn), and
K(XN, x) is the N× 1 vector whose mth entry is k(xm, x). Note
that the term σ2n,i can be used to model observation error and can
also be used to guard against numerical ill-conditioning. In this
paper, the following exponential kernel function has been employed

k(x, x′) = σ2f exp
−‖x − x′‖22

2l2

( )
(14)

where ‖.‖22 is square of the L2-norm, σ2f determines the prior vari-
ance, and l denotes the characteristic length scale. The parameters
of the Gaussian process, i.e., σ2f , l, and σ2n, can be updated at each
time new information is obtained by using a maximum likelihood
approach or Bayesian techniques [54].

3.3 Knowledge Gradient. Given a Gaussian process repre-
sentation of the underlying function to be optimized, the next
requirement is the decision on where to query next. For this, we
incorporate the knowledge gradient policy. Let {x1:N, y1:N} be the
set of design points and the corresponding objective values that
have been used to construct the Gaussian process of the objective
function. Let f (x) represent this posterior distribution of the function
given this available information. The best expected objective value
can be computed as

f *N =max
x∈χ

E[f (x) ∣ x1:N , y1:N ] (15)

Similarly, if one additional design point can be queried to update the
posterior distribution of the model, the best expected objective
value would be

f *N+1 =max
x∈χ

E[f (x) ∣ x1:N+1, y1:N+1] (16)

The difference f *N+1 − f *N specifies the improvement in value of the
function resulting from the additional query. The idea is to select a
design point to query that maximizes this improvement. Since the
Gaussian process is the probabilistic representation of the objective
function, when choosing xN+1, there is stochasticity in the value of
the objective function, i.e., yN+1, upon querying xN+1. Thus, one
needs to compute the expected value of improvement using the pos-
terior predictive distribution of the objective function.
The knowledge gradient technique [4,44,55–57] is a method for

selecting the design point that maximizes the expected increase in
the objective value. Letting SN = E[f (x) ∣ x1:N , y1:N ] be the knowl-
edge state, the value of being at state SN is defined as VN(SN)=
maxx∈χ S

N. The knowledge gradient that is a measure of expected
improvement, if the design point x would be queried at the next
time step, can be defined as

νKG,Nx = E[VN+1 SN+1(x)
( )

− VN(SN ) ∣ SN] (17)

where the expectation is taken over the stochasticity in the posterior
distribution of the objective at design point x, i.e., f (x).
Now, let χalt be the alternative set, which denotes a finite set of

design samples.
The knowledge gradient policy for sequentially choosing the next

query is then given as

xKG,N = arg max
x∈χalt

νKG,Nx (18)

Calculation of the knowledge gradient, which is based on a piece-
wise linear function, is discussed in detail in two algorithms pre-
sented in Ref. [53].

4 Approach
Our approach to solving Eq. (1) is based on bringing together the

ideas of Bayesian global optimization, via the knowledge gradient,
and subspace approximation, via the active subspace. From a
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general standpoint, the approach alternates between applying the
knowledge gradient on a learned active subspace and applying
the knowledge gradient on a hyperplane of the original design
space (and orthogonal to the active subspace). The result is an effi-
cient method for the solution of Eq. (1) when an active subspace
exists. We stress here that the learned active subspace itself is adap-
tive in our methodology, allowing for rapid initial progress followed
by better and better approximation of the true underlying subspace.
The details of our approach are provided in the following para-
graphs. This section concludes with an algorithm for implementing
our approach and a flowchart depicting the main steps.
The approach starts by constructing Gaussian processes for the

objective function f (x) and the constraints cj(x), j = 1, . . . , s, in
the original m-dimensional input design space based on their avail-
able data. As discussed in Sec. 3.2, these Gaussian processes are
given as

f (x) ∣ XN , yN ∼ N μh(x), σ
2
h(x)

( )
(19)

cj(x) ∣ XNj , cNj ∼ N μcj (x), σ
2
cj
(x)

( )
(20)

where μh and σ2h are the mean and variance of the objective function,
respectively, at design point x in the original high-dimensional
space, and μcj and σ2cj are those of constraint j given the available
data XNj and cNj .
After constructing the Gaussian processes of the objective func-

tion and constraints, the next step is to choose the next design point
to query. Here, this is achieved via a two-step knowledge gradient
process. Rather than directly applying the knowledge gradient on
the potentially high-dimensional original space, we first map the
original space to an active subspace. In this lower dimensional
space, we apply the knowledge gradient policy. Since this lower
dimensional space is an active subspace, useful objective function
improvement is expected at significantly less computational
expense. The active subspace itself is found by evaluating the gra-
dient of the function at the N currently available samples. This can
be done through finite differences with the current Gaussian process
or other means that may be available for a given function. Then, the
covariance matrix is estimated according to Eq. (4), and the normal-
ized eigenvalues are computed for this matrix. The eigenvectors
associated with the normalized eigenvalues larger than a user-
defined threshold specify the transformation matrix U to find the
active subspace. Notice that this threshold should take a value
between 0 and 1. Setting larger values for this threshold results in
more dimensionality reduction, whereas smaller values are associ-
ated with active subspaces with a number of dimensions closer to
the original space. In practice, this value could be chosen adaptively
during the optimization process. This could be done in such a way
that larger values are selected at the beginning of the process for fast
exploration, and as more queries are made and the covariance
matrix of gradients is better approximated, smaller values of the
threshold are selected to avoid unnecessary reduction and error in
the optimization process.
After identifying the active subspace, the N available input

vectors are projected onto the subspace as

ZN = U⊤
NXN (21)

where ZN are the input vectors in the low-dimensional space, UN is
the active subspace, and XN are the available input vectors in the
original space. We note again that this active subspace is adaptive.
In the initial stages of the approach, the covariance matrix might be
estimated inaccurately due to its sensitivity to the initial quality/
accuracy of the surrogate model and its correlation parameters,
which can result in inaccurate detection of the active subspace in
early stages. As the Gaussian process of the objective function is
updated, a new active subspace is computed. Thus, as the more
points are queried, the approximation of the active subspace
becomes closer to the true active subspace as a result of the

Gaussian process representation of the function becoming closer
to the true underlying function.
After the original space has been mapped to the active subspace,

we have the lower dimensional representation of the previously
queried points according to Eq. (21). From these data, we construct
a Gaussian process in the active subspace as

g(z) ∣ ZN , yN ∼ N μl(z), σ
2
l (z)

( )
(22)

where g is the posterior distribution of the objective function in the
low-dimensional space and μl and σ2l are the mean and variance of
the objective function at the design point z in this space, respec-
tively. The next step of the approach is then to use the knowledge
gradient to find the next best point to query in the active subspace.
For this, we generate Latin Hypercube samples in the current active
subspace, which we denote as the alternative set Zf. Among these
alternatives, we select the one that leads to the maximum knowl-
edge gradient in the current active subspace as

zN+1 = argmax
z∈Zf

νKG,Nz (23)

Upon selection of the best point in the current active subspace,
this sample zN+1 needs to be mapped back to the original input
space. For this, we use the following transformation:

z1N+1

..

.

znN+1

⎡
⎢⎣

⎤
⎥⎦

︸����︷︷����︸
zN+1

=

u11 u12 · · · u1n · · · u1m

..

.

un1 un2 · · · unn · · · unm

⎡
⎢⎣

⎤
⎥⎦

︸�����������������������︷︷�����������������������︸
UT

N

x1N+1

..

.

xnN+1

..

.

xmN+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸����︷︷����︸
xN+1

s.t. xN+1 ∈ χ (24)

where xN+1 is the solution to the above linear equations. It is easy to
verify that the solution to the inverse mapping in Eq. (24) is not
unique and the transformation will thus lead to an infinite set of
design points in the original space. To keep the computation tracta-
ble, we propose a strategy to choose a single point xN+1∈ χ given
each zN+1 ∈ Z.
Since the design point needs to be inverse mapped from n dimen-

sions to m dimensions (n<m), one needs to discretize m− n arbi-
trary dimensions of the original space and plug in these
discretized values in the equations and solve the n equations to
find the remaining n values of xN+1. For simplicity and without
loss of generality, Nf samples from the last m− n dimensions are
generated using techniques such as Latin Hypercube sampling.
Then, the other dimensions of these N samples are obtained by
solving Eq. (24). We note here that constraints are also checked
at this point. Specifically, only those samples that satisfy μcj (x) −
3σcj (x) ≤ 0 for j = 1, . . . , s are kept. This set is denoted by Xf,
and called the inverse-mapped set. The constraint handling strategy
follows that of Ref. [56], where it was found to have good perfor-
mance. Since the Gaussian process variances are large in early iter-
ations, it is easy to satisfy the probabilistic constraints, which
enables good exploration potential. As the process moves
forward, the variances are reduced via learning, and the probabilis-
tic constraints converge to the true constraints given by Eq. (1). In
general, a practitioner can control the level of acceptability in terms
of constraint violation by modifying the coefficient of σcj (x) as
deemed appropriate.
A depiction of the proposed inverse mapping process is shown in

Fig. 1.
In this figure, the left plot shows the Gaussian process of an

objective function in its active subspace and the right plot shows
the Gaussian process in the original space. In the left plot, the
circle in the horizontal axis shows the selected point, i.e. zN+1, by
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the first-step knowledge gradient, and the samples in the right plot
show the inverse-mapped set. Now, among all the samples in the
inverse-mapped set, the best design point to query needs to be
selected (i.e., xN+1∈Xf). It is desired to select a sample that
yields the highest expected improvement in the original space.
We propose to select this sample by applying the knowledge gradi-
ent policy to the inverse-mapped set in the original space.
Applying the knowledge gradient in the whole original space

leads to poor performance in the selection of the best design point
to query. This is due to the fact that the alternative set should be enu-
merated in the high-dimensional original space. This number of
alternatives in this set will suffer from the curse of dimensionality.
Further, if there is an active subspace, then exploring certain direc-
tions of the high-dimensional original space may be inefficient due
to a lack of variability along those directions. We overcome this
issue in our approach by applying two knowledge gradient steps:
the first on the active subspace and the second orthogonal to the
active subspace in the original space. Thus, the alternative set in
the original, high-dimensional space can be enumerated on a hyper-
plane of the original space, as shown by samples in the right plot of
Fig. 1. Now, performing the knowledge gradient leads to the selec-
tion of a sample with the highest expected improvement as

xN+1 = argmax
x∈Xf

νKG,Nx (25)

where νKG,Nx is defined in Eq. (17).
After observing yN+1 corresponding to the selected design point

xN+1, the Gaussian processes of the high-dimensional objective
function and all the constraints are updated based on XN+1, yN+1,
and cN+1j . Afterward, the active subspace method is applied to
find the new low-dimensional subspace according to the current
updated knowledge about the objective function, and the entire
process is repeated. Thus, our approach is adaptive in finding the
active subspace in each iteration. The process continues by find-
ing the next design point to query and repeats until a termination cri-
terion, such as exhaustion of the querying budget, is met. The final
solution to Eq. (1) is then found from the current Gaussian process
in the original space. Our proposed approach for adaptive dimen-
sionality reduction for fast sequential optimization with Gaussian
processes is presented in Algorithm 1, and Fig. 2 presents a sche-
matic diagram of our approach.

5 Benchmark Applications
In this section, we present the key features of our proposed

sequential adaptive dimensionality reduction approach for fast opti-
mization of expensive black-box functions.We focus here on bench-
mark problems designed to highlight the strengths and limitations of
the approach. We begin with an analytic two-dimensional con-
strained optimization problem, which we use to demonstrate the
effectiveness of our approach when an active subspace exists. We
follow that demonstration with the application of our methodology

to standard benchmark problems from the literature to reveal the
behavior of our approach when an active subspace does not exist.

Algorithm 1 Adaptive dimensionality reduction for fast sequen-
tial optimization with gaussian processes

1: Construct Gaussian processes for the objective function and constraints in
the original space χ.

repeat

2: Find the active subspace corresponding to the normalized eigen-
values of the covariance matrix in Eq. (4) larger than a user-defined
threshold.
3: Transform the data available in the original space to the active
subspace.
4: Construct the Gaussian process of the objective function in the
active subspace Z.
5: Generate Latin Hypercube samples in the active subspace Z.
6: Apply the first-step knowledge gradient to select a design point in
the active subspace.
7: Inverse map the selected design point to the original space accord-
ing to Eq. (24).
8: Apply the second-step knowledge gradient to select the best design
point in the original space according to Eq. (25).
9: Update the Gaussian processes of the constraints and the objective
function in the original space based on the observations obtained at
the selected design sample.

until termination

10: Return the feasible design point with the largest estimated objective
value according to the Gaussian processes of the constraints and the objec-
tive function in the original space.

5.1 Two-Dimensional Function. We first consider the con-
strained maximization of an analytic two-dimensional function.
The problem is given as

x* = argmaxx∈[−5, 5]2 x
2
1 + x22 + 2x1x2

s.t. x1 + x2 < 6
(26)

The feasible optimal solution for this problem is x*= (− 5,−5) with
the optimal objective value f (x*)= 100. A depiction of this exam-
ple in the original two-dimensional space is shown in Fig. 3,
where the vertical plane separates the feasible and infeasible
regions. Figure 4 represents the transformed objective function to
its active subspace, which is a one-dimensional space for this func-
tion. We note that these two figures are shown for the sake of
visualization, and these are assumed to be unknown prior to apply-
ing our approach.
Figure 5 demonstrates the learned Gaussian processes for this

problem both with and without use of the active subspace. Each

Fig. 1 A depiction of the inverse mapping process
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column of the figure represents an iteration (here the third,
sixth, and ninth iterations of the optimization process). The top
row provides the Gaussian process representation in the active
subspace.
The middle row shows the Gaussian process in the original space

when our approach (exploiting the active subspace) is utilized. The
bottom row shows the Gaussian process in the original space when
the knowledge gradient is applied directly to the full model. From
the figure, it is clear that the use of the active subspace significantly
improves the Gaussian process representation in the original space.
This is the result of more efficient use of queries to the full model,
which were made possible through identification of the active sub-
space for this problem.

5.2 Benchmarks With and Without Active Subspaces. In
this subsection, we focus on the situation where a function we
seek to optimize does not have an active subspace. In most

situations, given the black-box nature of the functions we seek to
optimize, whether or not a given function has an active subspace
will be unknown a priori. Therefore, it is necessary to understand
the behavior of our approach when an active subspace does not
exist for a given function. For this, we test our methodology on
three unconstrained analytic problems, two of which have a negli-
gible active subspace.
The first of the three functions studied here is the objective

function given in Sec. 5.1 and will be denoted as example 1 in
what follows. The second (example 2) is the negated six-hump
camel-back function of Ref. [58]. This function is given as

f (x) = − 4 − 2.1x21 +
x41
3

( )
x21 + x1x2 + −4 + 4x22

( )
x22

( )
(27)

where x1∈ [−3, 3] and x2∈ [−2, 2] and the optimal solutions are
x* = (0.0898 , −0.7126) and (−0.0898, 0.7126) with the objective

Fig. 2 A depiction of our proposed approach for fast sequential optimization. “GP” stands for Gaussian process and “KG” stands
for knowledge gradient.

Fig. 3 A depiction of the two-dimensional function in Eq. (30) Fig. 4 A depiction of the function of Eq. (30) in its one-
dimensional active subspace

071404-6 / Vol. 141, JULY 2019 Transactions of the ASME

Downloaded From: https://mechanicaldesign.asmedigitalcollection.asme.org on 05/22/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



value f (x*)= 1.0316. The third benchmark problem (example 3) is
the negated Mishra’s Bird function, which can be found in
Ref. [59]. This function is given as

f (x) = −
(
sin (x2) exp [(1 − cos x1)

2] + · · ·

cos (x1) exp [(1 − sin x2)
2] + (x1 − x2)

2
) (28)

where x1∈ [−10, 0] and x2∈ [−6.5, 0] and the optimal solution is
x* = (−3.1302 ,−1.5821)with theobjectivevalue f (x*)= 106.7645.
Figure 6 shows the objective functions of examples 1, 2, and 3, as

well as the mean and 95% confidence interval of the maximum
objective function value obtained in each iteration of applying our
approach with active subspace exploitation and performing the
knowledge gradient method in the original space without the
active subspace. The results are obtained over 100 independent
runs. As was seen in Sec. 5.1, the first example has a one-
dimensional active subspace. Our approach is able to exploit this
and obtain a larger average maximum objective value in each iter-
ation when compared with the direct application of the knowledge
gradient policy to the original function. In example 2, the function
gently varies in all directions, and there is no useful active subspace.
As shown in the center plots of Fig. 6, our approach thus performs
similarly to the direct application of the knowledge gradient. We
note here, however, that in early iterations, some efficiency gains

are still had through the use of our method. In the extreme case
of example 3, the function varies significantly in all directions.
Therefore, there is no possible reduction to a meaningful active sub-
space. Our approach, with the exception of the first iteration, per-
forms exactly the same as when the knowledge gradient is
applied to the function in the original space. The key takeaway
here is that the worst case scenario of applying our method, that
is, the situation where there is no active subspace to take advantage
of, simply reverts our approach to that of direct knowledge gradient
application to the original function. However, as can be seen from
the left plots of Fig. 6, if there is an active subspace, our approach
can exploit it for significant gains in efficiency.

5.3 Rosenbrock Function. Here, in order to assess the effec-
tiveness of the proposed method in higher dimensions, we consider
the negated 10- and 20-dimensional Rosenbrock function, which
can be found in Ref. [59] and is given as

f (x) = −
∑N−1
i=1

[100(xi+1 − x2i )
2 + (xi − 1)2] (29)

where xi∈ [−2.048, 2.048] and the optimal solution is x* =
(1, . . . , 1) with the objective value f (x*)= 0. Figures 7 and 8
show the mean and 95% confidence interval of the maximum objec-
tive function value obtained in each iteration of applying our

Fig. 5 Gaussian processes of the objective function in the original two-dimensional space obtained by our active subspace
exploiting approach and via direct knowledge gradient application to the full model
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approach with active subspace exploitation and performing the
knowledge gradient method in the original space without the
active subspace. The results are obtained over 100 independent
runs. As can be seen, our approach, by exploiting the active sub-
space, shows significant improvements in performance versus the
case without active subspace exploitation.
Figures 9 and 10 show the average dimension of the active sub-

space as a function of the iteration number. As can be seen, in the
initial stages of the approach, the dimension is decreased

substantially and as the process goes on, the dimension of the
problem remains less than 5 and 9 dimensions on average for 10-
and 20-dimensional Rosenbrock function, respectively.

6 Aerostructural Demonstration Problem
To demonstrate the effectiveness of our approach on a realistic

problem, we consider the aerostructural design of an aircraft wing
for fuel burn minimization. The aerostructural model of the wing

Fig. 6 The two-dimensional function examples and the mean and 95% confidence interval of the maximum function values
obtained by our approach with active subspace exploitation and with direct knowledge gradient application in each iteration
over 100 independent runs

Fig. 7 The mean and 95% confidence interval of the maximum
function values obtained by our approach with active subspace
exploitation and without active subspace exploitation in each
iteration obtained over 100 independent simulations of the
10-dimensional Rosenbrock function

Fig. 8 The mean and 95% confidence interval of the maximum
function values obtained by our approach with active subspace
exploitation and without active subspace exploitation in each
iteration obtained over 100 independent simulations of the
20-dimensional Rosenbrock function
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used for this demonstration is based on the NASA Common
ResearchModel (CRM) [60], which is a commonly used representa-
tion of a long-range commercial airliner wing operating in transonic
flight [61]. The aerostructural model consists of a three-dimensional
aerodynamic and structural deformation coupled system. The aero-
dynamic lift is calculated using a vortex latticemethod, and the struc-
tural deformation of the wing is calculated using a six-degree-of-
freedom spatial beam finite element method. The coupled nature
of the two subsystems is a consequence of the aerodynamic lift-
ing force deforming the wing geometry, which in turn has a feedback
effect on the aerodynamics. This is shown schematically in Fig. 11,
which is adapted fromRef. [62] and uses the XDSMmethodology of
Ref. [63]. In the figure, y represents the fuel burn and ci represents the
constraints. Amore detailed schematic of the aerostructural system is
presented in Ref. [61].
The model’s design variables are used to determine the unde-

formed wing geometry and internal spar properties. We start with
the CRM wing shape and then vary its twist distribution, taper
ratio, and chord ratio, and vary the spar thickness distribution.
The aircraft is assumed to be in steady flight at cruising altitude,
and the spar elements are assumed to be made from aluminum.

The twist and thickness distribution design variables are control
points used in a B-spline interpolation to vary the design along the
wing’s span. We used two control points each for the twist and
thickness distributions. The wing’s twist effectively changes the
wing’s angle of attack along its span. The spar thickness affects
the wing’s weight as well as its strength. The taper and chord
ratios affect the chord length of the wing, which varies linearly
along the span of the wing.
The coupled system analysis is conducted using a Gauss–Seidel

iterator [64] until the aerodynamic loads and structural deformations
converge to a fixed point. After the variables in the coupled system
converge, the fuel range is computed along with other performance-
based values and problem constraints. The model employs three
constraints in the optimization: (1) it is ensured that stress on struc-
tural spars due to aerodynamic loads remain below the yield stress
for the spar material properties; (2) it is ensured that the spar thick-
ness does not exceed the wing thickness; and (3) it is assumed that
the aircraft is in steady flight by enforcing the total aerodynamic
lifting force be equal to the aircraft weight. In this problem, the
goal is to minimize the fuel burn subject to these three constraints as

x* = argmin
x∈χ

fuel burn(x)

s.t. lift− weight constraint (L =W)

structural failure constraint

structural intersection constraint

(30)

where

x =

x1
x2
x3
x4
x5
x6

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
=

Twist distribution 1
Twist distribution 2

Thickness distribution 1
Thickness distribution 2

Taper ratio
Chord ratio

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

(31)

The boundaries of the design variables are listed in Table 1.
To identify the true optimum for this problem, we use a gradient-

based nonlinear optimizer using sequential least squares program-
ming (SLSQP) [65]. The optimal solution obtained by SLSQP is

Fig. 9 Active subspace dimension in each iteration averaged
over 100 independent simulations of the 10-dimensional Rosen-
brock function

Fig. 10 Active subspace dimension in each iteration averaged
over 100 independent simulations of the 20-dimensional Rosen-
brock function

Fig. 11 A simplified depiction of the aerostructural system

Table 1 Design variable bounds for the aerostructural problem.
LB is the lower bound, UB is the upper bound, and # is the
number of variables of a given type.

Design variable # LB UB

Twist distribution 2 −15 15
Thickness distribution 2 0.001 0.25
Taper ratio 1 0.2 1.5
Chord ratio 1 0.9 1.1
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x*= [12.8037, 14.7378, 0.0377, 0.0718, 0.2, 0.9] with minimum
fuel burn equal to 1.0190 × 105. Figure 12 shows the mean and
95% confidence interval of the minimum fuel burn obtained by
our approach with active subspace exploitation and without active
subspace exploitation in each iteration obtained over 100 indepen-
dent simulations. Our approach, on average, obtains lower values of
fuel burn in each iteration when compared with the case that does
not apply the active subspace method. Figure 13 shows the mean
and 95% confidence interval of the absolute difference between
the optimal design variables and the design variables obtained by
our approach with active subspace exploitation and without active
subspace exploitation in each iteration. These results are obtained
over 100 independent runs. From the figure, it is clear that the
design variables obtained by our approach are closer to the
optimal design variables than the case without applying the active
subspace method.
Figure 14 shows the average dimension of the active subspace as

a function of the iteration number. As can be seen, our approach
reduces the dimension of the problem from six to less than two
dimensions on average.
This reduction enables far more efficient search over alternatives

when using a Bayesian global optimization search strategy, as we
have done here.
It should be noted that the performance improvement by our

approach with active subspace exploitation is achieved by an addi-
tional cost for surrogate model fitting for the objective function in
the active subspace. In other words, the selection process by our
proposed method has approximately two times more complexity
than the original knowledge gradient method, due to the double
selections in the active subspace and the original space. However,
the most important part of the computational expense for real-world
applications is often the number of black-box function evaluations,
which is far less in our approach with active subspace exploitation
in comparison to the case without active subspace exploitation.

7 Conclusions
This paper has presented a sequential decision-theoretic approach

for fast constrained optimization of problems with several input var-
iables. The general use case is for expensive to evaluate black-box
functions. Using the fact that certain directions in the input design
space have less impact on the objective function than others, we
have developed an adaptive methodology to map the high-
dimensional problem to a lower dimension using the active subspace
method. The Gaussian process model constructed for the objective

function in the low-dimensional space is used in combination with
the knowledge gradient approach to select the best sample to query
in the reduced domain. Upon selection of the best design point in
the low-dimensional space, an inverse mapping process to the orig-
inal design space is performed. Since the inverse mapping is not
one-to-one, the method selects the point which has the maximum
knowledge gradient over the inverse-mapped points in the original
space. We demonstrated our approach to the optimization of three
two-dimensional example test problems and an aerostructural wing
design problem. It has been shown that the proposed approach can

Fig. 13 The mean and 95% confidence interval of the absolute
difference between the optimal design variables and the design
variables obtained by our approach with active subspace exploi-
tation and without active subspace exploitation in each iteration
obtained over 100 independent simulations of the aerostructural
problem

Fig. 12 The mean and 95% confidence interval of the minimum
function values obtained by our approach with active subspace
exploitation and without active subspace exploitation in each
iteration obtained over 100 independent simulations of the aero-
structural problem
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take advantage of existing active subspaces, leading tomore efficient
querying. It has also been shown that when no active subspace exists,
the approach proposed here performs as well as direct application of
Bayesian global optimization approaches to the full high-
dimensional problem of interest. It should be noted that this frame-
work can be generalized to any Bayesian optimization technique
by only changing the acquisition function.
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