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Multi-Information Source Fusion
and Optimization to Realize
ICME: Application to Dual-Phase
Materials
Integrated Computational Materials Engineering (ICME) calls for the integration of
computational tools into the materials and parts development cycle, while the Materials
Genome Initiative (MGI) calls for the acceleration of the materials development cycle
through the combination of experiments, simulation, and data. As they stand, both ICME
and MGI do not prescribe how to achieve the necessary tool integration or how to effi-
ciently exploit the computational tools, in combination with experiments, to accelerate
the development of new materials and materials systems. This paper addresses the first
issue by putting forward a framework for the fusion of information that exploits correla-
tions among sources/models and between the sources and “ground truth.” The second
issue is addressed through a multi-information source optimization framework that iden-
tifies, given current knowledge, the next best information source to query and where in
the input space to query it via a novel value-gradient policy. The querying decision takes
into account the ability to learn correlations between information sources, the resource
cost of querying an information source, and what a query is expected to provide in terms
of improvement over the current state. The framework is demonstrated on the optimiza-
tion of a dual-phase steel to maximize its strength-normalized strain hardening rate. The
ground truth is represented by a microstructure-based finite element model while three
low fidelity information sources—i.e., reduced order models—based on different homoge-
nization assumptions—isostrain, isostress, and isowork—are used to efficiently and opti-
mally query the materials design space. [DOI: 10.1115/1.4041034]

1 Introduction

1.1 Motivation: Toward Accelerated Materials Design.
Over the past two decades, there has been considerable interest in
the development of frameworks to accelerate the materials devel-
opment cycle. Back in the late 90s, Greg Olson popularized the
concept of materials-as-hierarchical-systems [1,2], amenable for
improvement through the exploitation of explicit processing–
structure–properties–performance relationships. Olson used this
framework to develop (inverse) linkages connecting performance/
property requirements to desired (multiscale) structural features
and the latter to the corresponding processing steps. A decade
later, the Integrated Computational Materials Engineering (ICME)
[3,4] framework prescribed the combination of theory, experi-
ments, and computational tools to streamline and accelerate the
materials and manufacturing development cycle. Similarly,
the Materials Genome Initiative [5] calls for the acceleration of
the materials development cycle through the combination of
experiments, simulations and data. We would like to point out
that ICME and Materials Genome Initiative (MGI) are aspira-
tional in that the former does not prescribe the way to carry out
the integration of multiple tools and the latter does not put for-
ward a feasible strategy to accelerate the materials development
cycle. On the other hand, ICME and MGI have motivated consid-
erable development in terms of the sophistication in the tool sets

used to carry out the computer-assisted exploration of the materi-
als design space [6–9].

1.2 Challenges and Opportunities. On the integration front,
it has long been recognized that in order to establish quantitative
processing–structure–properties–performance relationships, it is
necessary to integrate multiple (computational) tools across
multiple scales [9]. Realizing such integration is a necessary
(albeit, not sufficient) condition to achieving any measure of
success when attempting to carry out computationally assisted
materials development exercises. Explicit integration of multiple
tools is technically challenging, particularly because of the con-
siderable expense of computational models, the complexity of the
input/output interfaces of such models, and the asynchronous
nature of the development of such tools. We would like to note,
however, that some efforts have recently emerged that attempt to
explicitly integrate models within a single framework for materi-
als design [10–12]. Approaches that instead use statistical techni-
ques and machine learning tools to better sample the design space
have proven to be effective [13].

Another strategy for the accelerated discovery of materials
(most closely associated with the MGI) has been the use of high-
throughput experimental [14–16] and computational [17]
approaches that, while powerful, have important limitations as
they tend to be suboptimal in resource allocation as experimental
decisions do not account for the cost and time of experimentation.
Resource limitation cannot be overlooked as it is often the case
that once a bottleneck in high-throughput workflows has been
eliminated (e.g., synthesis of ever more expansive materials
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libraries), another one suddenly becomes apparent (e.g., need for
high-resolution characterization of materials libraries).

Recently, notions of optimal experimental design, within the
overall framework of Bayesian optimization, have been put for-
ward as a strategy to overcome the limitations of traditional
(costly) exploration of the design space. For example, Balachan-
dran et al. [18] have put forward a framework that balances the
need to exploit current knowledge of the design domain with
the need to explore it by using a metric that evaluates the value of
the next experiment (or simulation) to carry out. Bayesian
optimization-based approaches rely on the construction of a
response surface of the design space and are typically limited to
the use of a single model to carry out the queries. This is an
important limitation, as often times, at the beginning of a materi-
als discovery problem, there is not sufficient information to eluci-
date the feature set (i.e., model) that is most related to the specific
performance metric to optimize.

Talapatra et al. [19] recently proposed a framework that is capa-
ble of adaptively selecting competing models connecting materi-
als features to performance metrics through Bayesian model
averaging, followed by optimal experimental design. Ling et al.
[20] propose a value of information framework that is capable of
managing information from multiple sources with a particular
emphasis on imprecise probabilities. Also, there has been recent
work on nonhierarchical fusion for design that has led to promis-
ing avenues for information source integration [21–23] that we
generally build off here.

1.3 Description of This Work. It is clear from the brief dis-
cussion above that, while considerable progress has been made
recently in the development of novel frameworks for accelerating
materials development efforts, several important challenges
remain to be solved. Model-based ICME-style frameworks tend to
focus on integrating tools at multiple levels under the assumption
that there is a single model/tool relevant at a specific scale of the
problem. This precludes the use of multiple models that may be
more/less effective in different regions of the performance space.
Data-centric approaches, on the other hand, tend to focus (with
some exceptions) on the brute-force exploration of the materials
design space, without accounting for the considerable cost associ-
ated with such exploration.

In this work, we present a framework that addresses the two
outstanding issues listed previously in the context of the optimal
microstructural design of ductile multiphase materials, such as
advanced high strength steels. Specifically, we carry out the fusion
of multiple information sources that connect microstructural
descriptors to mechanical performance metrics. This fusion is
done in a way that accounts for and exploits the correlations
between each individual information source—reduced order
model constructed under different simplifying assumptions
regarding the partitioning of (total) strain, stress or deformation
work among the phases constituting the microstructure—and
between each information source and the ground truth—
represented in this case by a full-field microstructure-based finite
element model. We note here that while this finite element model
is computational, and thus could be considered as a higher fidelity
model as part of a multifidelity framework, our intention is create
a framework for predicting ground truth. Specifically, we are not
interested in matching the highest fidelity model, but in predicting
material properties when created at ground truth. There is usually
no common resource trade-off in this scenario, which is in con-
trast to traditional computational multifidelity frameworks that
trade computational expense and accuracy. Thus, the finite ele-
ment model is used here as a proxy for a ground truth experiment
and is treated as such in the demonstrations provided.

In our framework, we value the impact a new query to an infor-
mation source has on the fused model. In particular, we perform
the search over the input domain and the information source
options concurrently to determine which next query will lead to

the most improvement in our objective function. This concurrent
approach, to our knowledge, has not been addressed in the litera-
ture. In addition, our exploitation of correlations between the dis-
crepancies of the information sources in the fusion process differs
significantly from previous work and enables the identification of
ground truth optimal points that are not shared by any individual
information sources in the analysis.

The remainder of the paper is as follows: First, we proceed to
motivate the work in the context of microstructure-sensitive mod-
eling and design of dual-phase ductile materials, e.g., advanced
high strength steels. These advanced structural alloys are one of
the most technologically sought after materials used in lightweight
structural applications, such as automotive manufacturing. Next,
we describe a microstructure-based finite element model—
considered in this work as the “ground truth”—for predicting the
stress–strain response of ductile dual-phase materials as well as
the reduced order models that predict the stress–strain response of
multiphase microstructures under different assumptions regarding
the partitioning of stress, strain or work of deformation. We then
present and demonstrate the proposed framework for correlation-
exploiting information fusion through reification. This is followed
by the description and demonstration of the proposed multi-
information optimization framework. We close the paper by dis-
cussing further directions for the current research program.

2 Mechanical Behavior of Dual-Phase

Microstructures

A class of one of the most technologically sought after struc-
tural materials, known as advanced high-strength steels, derive
their exceptional properties from complex, heterogeneous micro-
structures. Of the various advanced high strength steels, dual-
phase steels have experienced the fastest growth in the automotive
industry [24]. These dual-phase advanced high strength steels pri-
marily consist of hard martensite islands dispersed in a soft ferrite
matrix [25]. Both these phases undergo nonlinear elastic-plastic
deformation with strikingly different strength levels and strain
hardenability [26,27]. The overall mechanical properties of dual-
phase steels are thus determined partly by the mechanical proper-
ties of the constituent phases, and partly by the microstructural
features, such as the volume fraction of the phases. The properties
of the phases and the microstructural features can, in principle, be
tuned and optimized to achieve a particular performance matrix.

The microstructure–property correlation of ductile dual-phase
materials can be explored by high-fidelity microstructure-based
finite element models. However, these come at considerable com-
putational cost that precludes their use to carry out search in the
microstructure space for regions of optimal performance. The
response of composite microstructures consisting of more than
one phase can be approximated through the use of low-fidelity
models based on different assumptions underlying the homoge-
nized response of the multiphase microstructure. As described
below, here we will carry out the fusion of multiple reduced-order
models based on isostrain [28], isostress [29], or isowork [30]
assumptions for the partitioning of the macroscopic strain, stress,
or work, respectively, among the microstructural constituents.

In this work, we will exploit statistical correlations between the
different information sources to arrive at a fused model with sig-
nificantly better fidelity with respect to the ground truth (micro-
structure-based finite element model) than any individual source
(reduced-order model). The fused model will then be integrated
with a Bayesian sequential design optimization framework to
arrive at optimal microstructures that maximize the strength
normalized strain-hardening rate by identifying and exploiting
optimal sequential queries of different information sources. The
quantity of interest, strength normalized strain-hardening rate, is
an important manufacturing-related attribute as it dictates the duc-
tility and formability of the material. The details of the
microstructure-based finite element modeling (ground truth) of
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dual-phase microstructures and the three lower fidelity reduced-
order models (information sources) are described below.

2.1 Microstructure-Based Finite Element Model. Micro-
structure-based finite element modeling is carried out to calculate
the overall mechanical response of the ductile dual-phase
microstructures. To this end, we generate three-dimensional (3D)
representative volume elements (RVEs) of the dual-phase micro-
structures following the procedure detailed in Ref. [31]. The RVE
is a composite dual-phase microstructure with two discretely mod-
eled phases: a soft phase representative of the ferrite phase and a
hard phase representative of the martensite phase, present in
dual-phase advanced high strength steels. A typical 3D RVE of
the dual-phase microstructure is shown in the inset of Fig. 1.
The RVE consists of 27,000 C3D8 brick elements of the ABAQUS/
standard element library [32], and has a dimension of
100 lm � 100lm � 100lm. The volume fraction of the phases in
the RVE is always an integral multiple of the volume of one ele-
ment, which is 3:7 � 10�5 lm3. The RVE is subjected to fully per-
iodic boundary conditions on all six faces and monotonically
increasing uniaxial tensile deformation. This allows for the calcu-
lation of the overall uniaxial tensile stress–strain response of the
composite microstructure.

In the calculations, both phases are assumed to follow isotropic
elastic-plastic stress–strain response. The Young’s modulus of
both phases is taken to be E¼ 200 GPa and Poisson’s ratio is
taken to be �¼ 0.3. The plastic response of both phases are mod-
eled using the Ludwik power law constitutive relation,

s ¼ so þ KðeplÞ n (1)

where s is the flow stress, epl is the equivalent plastic strain, so is
the yield strength, K is the strengthening coefficient, and n is the
strain hardening exponent. The values of so, K, and n for the con-
stituent phases are given in Table 1. The parameters are chosen to
represent lower initial yield strength of the ferrite (soft) phase
compared to the martensite (hard) phase and higher strain harden-
ability of the ferrite phase compared to the martensite phase
[27,31].

2.2 Reduced-Order Models. We use three low-fidelity
reduced-order models as three sources of information. These three
reduced-order models are:

(i) The Voigt/Taylor isostrain model, where the basic assump-
tion is that the strain field is uniform among the constituent

phases [33]. The effective stress is expressed in terms of
the local stress average with respect to both phases
weighted by their respective volume fractions. That is, for
this model we have

eTpl ¼ ehpl ¼ espl; sT ¼ fhards
h þ ð1 � fhardÞss (2)

(ii) The Reuss/Sachs isostress model, where the basic assump-
tion is that the stresses among the phases are homogeneous
[33]. The effective strain is calculated in terms of the aver-
age of the strains in each phase weighted by their respective
volume fractions. Thus, for this model we have

sT ¼ sh ¼ ss; eTpl ¼ fharde
h
pl þ ð1 � fhardÞespl (3)

(iii) The isowork model, which is an approximation based on
the principle that work of deformation is equally distributed
in all the constituent phases in the dual-phase microstruc-
ture at any strain level. That is,

shehpl ¼ ssespl (4)

In Eqs. (2)–(4), eTpl is the overall plastic strain, ehpl is the plastic

strain in the hard (martensite) phase, espl is the plastic strain in the

soft (ferrite) phase, sT is the overall stress, sh is the stress in the
hard (martensite) phase, ss is the stress in the soft (ferrite) phase,
and fhard is the volume fraction of the hard phase in the micro-
structure. The stress–strain relations, s¼ f(epl), of both phases are
assumed to follow, Eq. (1), with the values of the parameters
given in Table 1.

2.3 Demonstration of Modeling Capabilities. The predicted
stress–strain response of dual-phase microstructures with varying
volume fraction of the hard phase, fhard, using a high-fidelity

Fig. 1 The stress–strain response of dual-phase phase micro-
structures with volume fraction of the hard phase, fhard5 0%,
25%, 50%, 75%, and 100%. A 3D representative volume element
of the dual-phase microstructure is shown in the inset.

Table 1 Constitutive parameters for the constituent phases

Constituent Phase so (MPa) K (MPa) n

Soft (ferrite) 300 2200 0.5
Hard (martensite) 1500 450 0.06

Fig. 2 Comparison of the variation of the strength normalized
strain-hardening rate, (1/s)(ds/depl) at epl5 1.5%, with the volume
fraction of the hard phase, fhard, as predicted by the three
reduced-order models and the microstructure-based finite ele-
ment model
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microstructure-based finite element model is shown in Fig. 1. As
shown in the figure, the flow strength of the dual-phase material
increases with increasing volume fraction of the hard phase. But
the strain-hardening rate, which is the slope of the stress–strain
curve, of the material varies nonmonotonically with the volume
fraction of the hard phase.

The variation of the strength normalized strain-hardening rate,
ð1=sÞðds=deplÞ, with the volume fraction of the hard phase, fhard,
estimated at a strain level, epl¼ 1.5%, using the microstructure-
based finite element calculations, is shown in Fig. 2. As shown in
the figure, the value of ð1=sÞðds=deplÞ at epl¼ 1.5%, first increases
with increasing volume fraction of the hard phase and then starts
to decrease. In general, a higher value of the quantity
ð1=sÞðds=deplÞ denotes higher formability of the material. Note, in
Fig. 2, variation of ð1=sÞðds=deplÞ with fhard exhibits local
perturbations. These perturbations are due to the fact that there are
several possible realizations of the RVE of a dual-phase micro-
structure with a fixed volume fraction of the hard phase. These
different realizations result in slightly different values of
ð1=sÞðds=deplÞ for a fixed fhard value. For a few selected volume
fractions of the hard phase, seven realizations of the dual-phase
microstructures were generated and their mechanical responses
were calculated. The standard error on the values of
ð1=sÞðds=deplÞ at epl¼ 1.5% due to different realizations of the
dual-phase microstructure with fixed volume fraction of the hard
phase are also shown in figure as error bars.

The predictions of ð1=sÞðds=deplÞ at a strain level, epl¼ 1.5%,
as a function of the volume fraction of the hard phase, fhard, using
the three low-fidelity reduced-order models are also shown in
Fig. 2. Compared to the finite element model, the isostress model
gives a reasonable prediction of ð1=sÞðds=deplÞ at epl¼ 1.5% for
low volume fraction of the hard phase but significantly overpre-
dicts this quantity for large volume fractions of the hard phase. In
contrast, the isostrain and isowork models give reasonable predic-
tions at high volume fraction of the hard phase but underpredict
ð1=sÞðds=deplÞ at epl¼ 1.5% at lower volume fractions of the hard
phase. It is also important to note here that the maximum values
of ð1=sÞðds=deplÞ at epl¼ 1.5% according to each information
source are significantly different from the ground truth maximum.

3 Correlation Exploiting Multi-Information Source

Optimization

In most materials design tasks, there are always multiple infor-
mation sources at the disposal of the designer. For example, the for-
ward connections between microstructures and properties/
performance can in principle be developed through experiments as
well as (computational) models at different levels of fidelity and
resolution. Conventional approaches to ICME, on the other hand,
often times make the implicit and unrealistic assumption that there
is only one source available to query the design space—in this
work, our framework uses three relatively simple models (under
the isostrain, isostress and isowork approximations) as representa-
tive of multiple information sources, while considering a
microstructure-sensitive RVE-based simulation as the ground truth.

While information fusion on its own represents a considerable
improvement upon the vast majority of ICME-based approaches
to materials design currently under development, we posit that an
even better approach would necessarily have to account for
resource constraints on the exploration of the materials design
space. Specifically, every source used to query the materials
design space carry a certain (time, monetary, opportunity) cost
and thus there are hard limits to the number of queries and the
sources used to carry out such queries. Unfortunately, such con-
straints rarely take a concrete form that can be dealt with using
formal constrained optimization approaches. This is due to the
often dynamic nature of the materials design and procurement
process. As a materials design cycle progresses, the current state
of the process may dictate if more resources will be allocated to

the process or not. Thus, it is advantageous to tackle such prob-
lems in a myopic fashion.

For single information sources and sequential querying, there
are two traditional techniques for choosing what to query next in
this myopic context [34]. These are efficient global optimization
[35] and its extensions, such as sequential Kriging optimization
[36] and value-based global optimization [37], and the knowledge
gradient (KG) [38–40]. Efficient global optimization uses a Gaus-
sian process [41] representation of queried information, but
assumes no noise [42,43]. sequential Kriging optimization also
uses Gaussian processes, but includes a tunable weighting factor
to lean toward decisions with higher uncertainty [34]. KG can
handle noise and makes its querying selection on the basis of the
expected value of the best design after querying. Here, KG does
not require that design to have actually been evaluated by an
information source.

Recent developments in Refs. [21] and [22] extend these
sequential optimization approaches to the case of multiple infor-
mation sources. The approach we propose here builds off of these
approaches by including and exploiting learned correlations in
multi-information source fusion and by defining and implement-
ing a two-step lookahead querying strategy referred to as the
value-gradient policy. We describe our formal problem statement,
the multi-information source fusion approach, and the value-
gradient utility used to guide the querying policy, in Secs 3.1–3.3.

3.1 Problem Formulation. A mathematical statement of the
problem is formulated as finding the best design, x*, such that

x� ¼ arg max
x2v

f ðxÞ (5)

where f is the ground truth objective function, and x is a set of
design variables in the vector space v. This ground truth objective
function is typically very expensive to query. We note that in this
formulation, there is a tacit dynamic constraint on resources. While
ground truth is impractical to query often in an optimization pro-
cess, other forms of information are usually available and can be
used to approximate the ground truth. These information sources
differ in terms of fidelity with respect to the ground truth, as well
as resource expenditures required per query. These information
sources are also fundamentally related through the fact that they
seek to estimate the same quantity of interest. Thus, there must
exist statistical correlations between these information sources that
can potentially be exploited if learned. In this context, the core
issue to myopically addressing Eq. (5) is the decision of what infor-
mation source to query and where in its input domain to execute
that query. This decision must balance the cost of the query and
what that query is expected to tell us about the solution to Eq. (5).

To assign a value to each potential query option over the infor-
mation source space and the domains of the respective informa-
tion sources, we create intermediate Gaussian process surrogates
for each information source learned from previous queries. We

assume that we have S information sources, �f iðxÞ, where i � {1,
2,…, S}, available to estimate the ground truth, f(x), at design
point x. We further assume that we have Ni previous query results
available for information source i. These results are denoted by
fXNi

; yNi
g, where XNi

¼ ðx1;i;…; xNi;iÞ represents the Ni input

samples to information source i and yNi
represents the correspond-

ing outputs from information source i. Posterior Gaussian process

distributions of each �f i, denoted as fGP,i(x), at any point x in the
input space, are then given as

fGP;iðxÞjXNi
; yNi

� NðliðxÞ;r2
GP;iðxÞÞ (6)

where

liðxÞ ¼ KiðXNi
; xÞT ½KiðXNi

;XNi
Þ þ r2

n;iI�
�1
yNi

(7)
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and

r2
GP;iðxÞ ¼ kiðx; xÞ � KiðXNi

; xÞT ½KiðXNi
;XNi

Þ þ r2
n;iI�

�1KiðXNi
; xÞ
(8)

Here, ki is a real-valued kernel function associated with informa-
tion source i over the input space, KiðXNi

;XNi
Þ is the Ni�Ni

matrix whose m, n entry is kiðxm;i; xn;iÞ; KiðXNi
; xÞ is the Ni� 1

vector whose mth entry is kiðxm;i; xÞ for information source i, and

the term r2
n;i can be used to model observation error for informa-

tion sources or to guard against numerical ill-conditioning. For the
kernel function, we use the commonly used squared exponential
kernel function given as

ki x; x
0ð Þ ¼ r2

s exp �
Xd
h¼1

xh � x0h
� �2

2l2h

 !
(9)

where d is the dimension of the input space, r2
s is the signal var-

iance, and lh, where h¼ 1, 2,…,d, is the characteristic length-scale
that indicates the correlation between the points within dimension
h. The parameters of the Gaussian process (r2

s , lh, and r2
n) associ-

ated with each information source can be estimated via maximum
likelihood or Bayesian techniques [41].

To these Gaussian process surrogates, we further quantify the
discrepancy of each information source with respect to ground
truth. These discrepancies can be estimated from, for example,
expert opinion or available ground truth data, and can vary over
the input space. We add the estimated uncertainty due to informa-
tion source discrepancy, df,i(x), to the uncertainty associated with
the Gaussian process of information source i, denoted by dGP,i(x).
Specifically, each of the S available information sources for esti-
mating the ground truth objective can be written as

fiðxÞ ¼ liðxÞ þ diðxÞ (10)

where

diðxÞ ¼ dGP;iðxÞ þ df ;iðxÞ (11)

Figure 3 shows a depiction of total uncertainty for an information
source, which includes both the uncertainty associated with the
Gaussian process and the uncertainty associated with the fidelity
of the information source.

3.2 Correlation Exploiting Fusion. Available information
sources for estimating a ground truth quantity of interest are nec-
essarily correlated by virtue of their estimation task. If they were
not correlated, then presumably they are irrelevant to the

estimation task at hand. Working under the hypothesis that each
information source brings to bear some useful information regard-
ing a quantity of interest, we seek to systematically fuse available
information from each source. Unlike traditional multifidelity
methods [44–52], the multi-information source fusion method
employed here does not assume a hierarchy of information sour-
ces with the goal of efficiently approximating the highest fidelity
source. The goal here is to best approximate a ground truth quan-
tity of interest by leveraging all available information. This is
achieved by learning the correlations between the discrepancies of
the available information sources, which results in the ability to
mitigate information source bias and avoid overconfidence that
arises from the reuse of dependent information.

There are many techniques in use for fusing information from
multiple sources of information. Among these are approaches
such as Bayesian modeling averaging [53–58], the use of adjust-
ment factors [59–62], covariance intersection methods [63,64],
and fusion under known correlation [65–67]. There are also tech-
niques designed to value the improvement potential of a given
information source through model refinement [68] and model
refinement and selection [69]. In this work, we consider each
information source as fixed. That is, we do not consider improving
predictive capabilities of any individual information source and
instead focus on leveraging multiple available information sources
to construct an improved fused predictive capability.

As noted previously, we hypothesize that every information
source contains useful information regarding the ground truth
quantity of interest. Thus, as more information sources are incor-
porated into a fusion process, we expect the variance of quantity
of interest estimates to decrease. This is not necessarily the case
for techniques such as Bayesian model averaging and adjustment
factors approaches. For the case of unknown correlations between
information sources, recourse must be made to conservative meth-
ods, such as covariance intersection. This method fuses informa-
tion by assuming the worst case correlation information. Thus,
there is much to gain from estimating correlation between infor-
mation sources and incorporating these learned correlations in the
fusion process.

Since our information sources are represented by intermediate
Gaussian processes, their fusion follows that of normally distrib-
uted information. Under the case of known correlations between
the discrepancies of information sources, the fused mean and var-
iance are shown to be [67]

E f̂ xð Þ
h i

¼ eT ~R xð Þ�1l xð Þ
eT ~R xð Þ�1

e
(12)

Var f̂ xð Þ
� �

¼ 1

eT ~R xð Þ�1
e

(13)

where e ¼ ½1;…; 1�T; lðxÞ ¼ ½l1ðxÞ;…; lSðxÞ�T given S models,
and ~RðxÞ�1

is the inverse of the covariance matrix between the
information sources. We stress here that the mean as estimated by
Eq. (12) is not necessarily a convex combination of the informa-
tion source estimates. For example, in the case of two information
sources, Eq. (12) is

E f̂ xð Þ
h i

¼ r2
2 � qr1r2

� �
l1 þ r2

1 � qr1r2

� �
l2

r2
1 þ r2

2 � 2qr1r2

(14)

where the dependence on x has been omitted for notational
clarity. If r1< r2, then l1 will receive a positive weight. If also,
q> r1/r2, then l2 will receive a negative weight. Following Ref.
[67], a high correlation makes it likely that the estimates will be
biased on the same side of the quantity being estimated. Since the
less precise estimate is expected to be further from the true quan-
tity than the more precise estimate, the less precise estimate
receives a negative weight. This acts to shrink the fused estimate
toward the true quantity of interest. This enables the mean of the

Fig. 3 A depiction of total uncertainty, which includes both the
uncertainty associated with the Gaussian process and uncer-
tainty associated with the fidelity of the information source
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fused estimate to be outside the bounds of the means of any of the
individual information source estimate means.

The key to the proper use of fusion of normally distributed
information is the estimation of the correlation coefficients over
the domain. For this, we use the reification process defined in
Refs. [70] and [71]. In this process, to estimate the correlation
coefficients between the deviations of information sources i and j,
each of the information sources i and j, one at a time, is reified, or
treated as a ground truth model. Assuming that information source
i is reified, the correlation coefficients between the information
sources i and j, for j¼ 1,…, i� 1, iþ 1,…, S, are given as

qij xð Þ ¼ r2
i xð Þ

ri xð Þrj xð Þ ¼
ri xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

li xð Þ � lj xð Þ
� �2 þ r2

i xð Þ
q (15)

where li(x) and lj(x) are the mean values of the Gaussian proc-
esses of information sources i and j, respectively, at design point
x, and r2

i ðxÞ and r2
j ðxÞ are the total variances at point x. After-

ward, information source j is reified to estimate qji(x). Then, the
variance weighted average of the two estimated correlation
coefficients is used as the estimate of the correlation between the
errors as

�qij xð Þ ¼
r2
j xð Þ

r2
i xð Þ þ r2

j xð Þ
qij xð Þ þ r2

i xð Þ
r2
i xð Þ þ r2

j xð Þ
qji xð Þ (16)

These average correlations are then used to estimate the fused
mean and variance in Eqs. (12) and (13).

3.3 Value-Gradient Querying. By computing the fused
means and variances in the input design space v, we construct a
fused Gaussian process over this space. This fused information
source contains all of our current knowledge about the ground
truth objective function. Our goal is to optimize ground truth by
leveraging new queries to the less resource-expensive information
sources. Once our resources for information source querying have
been exhausted, the predicted ground truth optimal design can be
synthesized or produced in an experiment. This information can
of course then be fed back to the multi-information source optimi-
zation framework and used to update information source

discrepancy and correlation information. A flowchart of our pro-
posed framework is presented in Fig. 4. We describe the value-
gradient utility in the following paragraphs.

The task then is to determine what information source to query
and where to query it, concurrently, so as to produce the most
value in terms of addressing Eq. (5), with the tacit resource con-
straint in mind. For this decision, we propose a utility, which we
refer to as the value-gradient utility, which takes into account both
the immediate improvement in one step and expected improve-
ment in two steps. The idea here being that we seek to produce
rapid improvement, with the knowledge that every resource
expenditure could be the last, but we also seek to position our-
selves best for the next resource expenditure. In this sense, we are
equally weighting next step value with next step (knowledge)
gradient information, hence the term value-gradient.

The immediate improvement can be quantified by the
maximum mean function value of the fused Gaussian process,
l�fused. Since the best estimate of the objective function is repre-
sented by the fused Gaussian process, which is the probabilistic
representation of the ground truth objective function, there is
uncertainty in the value of the predicted ground truth objective
function upon querying the next sample. Thus, we compute the
expected value of improvement using the posterior predictive dis-
tribution of the fused model. Letting ði1:N ; x1:N ; y1:NÞ be the infor-
mation sources, design points, and the corresponding objective
values used for the first N queries and f̂ denote the posterior distri-
bution of the fused model, the expected improvement (EI) at
design point x is defined as

EIðxÞ ¼ E½max
x02v

E½f̂ ðx0Þji1:N ; x1:N ; xNþ1 ¼ x; y1:N �

�max
x02v

E½f̂ ðx0Þji1:N ; x1:N ; y1:N ��

¼ E½max
x02v

E½f̂ ðx0Þji1:N ; x1:N ; xNþ1 ¼ x; y1:N ��

� max
x02v

E½f̂ ðx0Þji1:N ; x1:N ; y1:N � (17)

where the last expression comes out of the expectation operator as
it is a known value when conditioned on the first N queries.

The KG policy of Refs. [38,72], and [73] takes an information-

economic approach to maximize this expectation. Letting HN ¼
E½f̂ ðxÞji1:N ; x1:N ; y1:N � be the knowledge state, the value of being

at state HN is defined as VNðHNÞ ¼ maxx2v H
N . The knowledge

gradient, which is a measure of expected improvement, is defined
as

�KGðxÞ ¼ E½VNþ1ðHNþ1ðxÞÞ � VNðHNÞjHN � (18)

The KG policy for sequentially choosing the next query is then
given as

xKG ¼ arg max
x2v

�KGðxÞ (19)

Calculation of the knowledge gradient is discussed in detail in two
algorithms presented in Ref. [73]. The method has been shown in
Refs. [38] and [73] to perform very well when faced with highly
nonlinear and multimodal objective functions.

Given both immediate and expected improvement, our pro-
posed value-gradient utility is given as

U ¼ l�fused þ max
x2v

�KGðxÞ (20)

where the first term is the maximum value of the mean function of
the current fused model and the second term is the maximum
expected improvement that can be obtained with another query as
measured by the knowledge gradient over the fused model. We
can then define a value-gradient policy as the policy that selectsFig. 4 Flowchart of the proposed approach
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the next query such that the value-gradient utility is maximized.
By considering the immediate gain in the next step and the
expected gain in the step that follows, the value-gradient is a two-
step look-ahead policy.

To determine the next design point and information source to
query efficiently, we generate Latin hypercube samples in the
input design space as alternatives denoted as Xf. For low-
dimensional problems, a uniform grid of alternatives could also be
considered. Among these alternatives, we seek to find the query
that maximizes the value-gradient utility of Eq. (20). According to
Eq. (6), an evaluation of information source i, at design point x, is

distributed normally with mean li(x) and variance r2
GP;iðxÞ. For a

given alternative, x, we draw Nq independent samples from the
distribution at that point as

f qi ðxÞ � N ðliðxÞ; r2
GP;iðxÞÞ; i ¼ 1;…; S and q ¼ 1;…;Nq (21)

In order to predict the impact of querying each alternative on the
utility function, we temporarily augment the design point, x, and
the sampled information source output value, f qi ðxÞ, one at a time,
to the available samples of information source i. By adding this
sample, the Gaussian process of information source i and, as a
result, the fused Gaussian process are temporarily updated. Then,
the maximum mean function value and the maximum knowledge
gradient of the temporarily updated fused Gaussian process are
evaluated. These quantities can then be used to compute the
value-gradient utility that would result if the sample, ðx; f qi ðxÞÞ,
was realized from information source i. This is given as

Uq
x;i ¼ l�;temp

fused þ max
x02v

�KGðx0Þ (22)

This process is repeated for all Nq samples by removing the previ-
ously added sample and augmenting with the next new sample.
The expected value-gradient utility obtained from adding alterna-
tive x to information source i is then computed as

EUx;i ¼
1

Nq

XNq

q¼1

Uq
x;i (23)

This expected utility is evaluated for all the alternatives and all
the information sources. By denoting Cx;i as the cost of querying
information source i at design x, which is often computational
expense for computational models, we find the query ðiNþ1; xNþ1Þ
that maximizes the expected value-gradient utility per unit cost,
given by

iNþ1; xNþ1ð Þ ¼ arg max
i2f1;…;Sg; x2Xf

EUx;i

Cx;i
(24)

After querying the design point xNþ1 from the selected informa-
tion source, iNþ1, the corresponding Gaussian process and after-
ward, the fused Gaussian process, are updated. This process
repeats until a termination criterion, such as exhaustion of the
querying budget, is met. Then, the optimum solution of Eq. (5) is
found based on the mean function of the fused Gaussian process.
This design is then to be created at ground truth. Information from
this creation can then be fed back into the framework if more
resources are allocated. We note here that the computational com-
plexity of the knowledge gradient policy is OðM2 logMÞ, where
M is the number of alternatives considered [73]. Thus, the compu-
tational complexity of the value-gradient querying policy is
Oð½ðSþ 1ÞM�2 log ½Sþ 1�MÞ, where the Sþ 1 terms represent
each of the S information sources and the fused information
source. We also note that value-gradient policy inherits the
capabilities of the knowledge gradient policy in terms of ability to
handle nonlinear and multimodal objective functions.

4 Demonstration: Information Fusion

In this section, we demonstrate the use of our multi-information
source fusion approach to the dual-phase steel application. For
this demonstration, we fuse information from the three physics-
based reduced-order materials information sources with poten-
tially nonuniformly sampled inputs. We compare the results to
ground truth data collected from the finite element RVE model.
We consider three different cases. The first case involves uni-
formly sampled data for each information source. The second case
involves nonuniformly sampled information from the information
sources, with a large region where each information source is only
sparsely sampled. The third case involves nonuniform sampling
of the information sources where each information source is
sampled well over a small region of the input space and sparsely
elsewhere. In each case, the multi-information source fusion
approach taken here performs well and is far superior to using any
of the information sources in isolation. We conclude this section
with a novel analysis of the effective number of information sour-
ces used to make the fused estimate at each point in the domain.
This analysis provides a clear indication of our ability to exploit
correlation for fusion, since without correlation information, only
a single information source can confidently be used at a given
point in the domain.

4.1 Case 1: Uniform Sampling. In this case, the ground truth
is assumed to have been sampled previously at nine uniformly
spaced points in the input domain. Each information source, that
is, the isostrain, isostress, and isowork models, has been evaluated
at the points where ground truth information is known. The nine
sampled points for each information source are used to construct
Gaussian process surrogate models for each. These are shown as
black lines through the nine black dots on the bottom three plots
of Fig. 5. The dark-shaded region on each of these plots represents
the uncertainty associated with each Gaussian process, respec-
tively. The ground truth data were used to estimate the discrep-
ancy of each information source from ground truth over the
domain. This additional uncertainty is the lighter shaded regions
in the bottom three plots of the figure. We note here again that we
always assume the information sources are unbiased. This
assumption allows us to avoid simply fitting each information
source to the ground truth data, which would result in eliminating
useful information in each information source. On each plot of
Fig. 5, the ground truth is represented with the jagged green line
and the result of our multi-information source fusion approach is
represented by the smooth red line.

From the isostrain, isowork, and isostress subplots, it is clear
that no single information source performs well across the
domain. Indeed, over much of the domain each source performs
poorly. However, as can be seen in the upper left plot, our fused
information source is an excellent match to ground truth. This is
further evidenced by the data provided in Table 2, where the
mean squared errors (MSE):

MSEi ¼
1

N

XN
j¼1

g xjð Þ � fi xjð ÞÞ2
�

(25)

and mean Kullback–Liebler divergences (MDKL):

MDKL;i gjjfið Þ ¼ 1

N

XN
j¼1

ð1
�1

pg xjð Þlog
pg xjð Þ
pfi xjð Þ

dg (26)

between the ground truth and each information source are pre-
sented. Here, p represents the probability density function of the
information source given by the subscript. From the table, we see
that the fused source is a significant improvement over any of the
individual sources and can be used to reliably predict the ground
truth over the whole domain.
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For this particular example, a subtle but crucial aspect of the
use of the reification approach to information source fusion is
revealed. For the input region fhard � (95, 100], each information
source overpredicts the truth. However, as can be seen in the top
plot of Fig. 5, the fused information has overcome the bias of each
information source to match the ground truth nearly exactly. If the

correlation between the information source discrepancies were not
learned, this would not be possible. This is due to the fact that the
mean of a fused set of uncorrelated normal distributions is greater
than the smallest mean and less than the largest mean in the set.
That is, the fused estimate can never overcome the bias that
occurred here.

4.2 Case 2: Large Sparsely Sampled Region. In this case,
each information source has been sampled seven times, with all
but one of the seven points being in the region [0, 50]. These
seven points are not necessarily the same for each information
source. We assume we have ground truth information at each of
the seven points for each information source. This situation could
occur if, for example, different groups have available different
sets of ground truth but are unaware of other data or are unwilling
to share this information with other groups. The key purpose of
this demonstration case is to show the performance of our method-
ology over a poorly interrogated region of the domain when corre-
lation information has been learned elsewhere over the domain.
The results of this demonstration case are shown in Fig. 6. The
information on each plot is presented in the same manner as that
of Fig. 5. As can be seen from the top plot, the fused information
source again performs well, albeit with more predictive uncer-
tainty than case 1, which is to be expected. The MSE and MDKL

values between the ground truth and each information source are
given in Table 3.

Here, we see again that the fused information source is far supe-
rior to any information source in isolation. We also see that the
better sampled situation of the first demonstration case results in a
more accurate fused information source. Of additional interest in
this case is that the ability of our fusion approach to overcome
bias of all information sources is more readily apparent. Particu-
larly, over the region fhard � (60, 85], all three information sour-
ces overpredict the ground truth. However, the fused estimate has
been pushed down toward the ground truth, away from the infor-
mation source estimates. We stress here that we consider each of
the information sources as unbiased in their uncertainty quantifi-
cation. That is, the direction toward ground truth was not assumed
by fitting each information source discrepancy to the ground truth
in a biased fashion. Indeed, there are no ground truth samples in
this region. The bias mitigation is due to the exploitation of corre-
lations that have been learned through reification.

4.3 Case 3: Nearly Nonoverlapping Samples of Each
Information Source. In this case, each information source has
been sampled a few times in a specific region of the domain. The
isostrain model was sampled generally in the left half of the
domain, the isowork model was sampled generally in the right
half of the domain, and the isostress model was sampled generally
in the middle of the domain. Ground truth was again used to quan-
tify information source discrepancy but was not shared across
information sources. The key purpose of this demonstration case
is to show the performance of our methodology when the informa-
tion sources are essentially disparate in their knowledge of the
quantity of interest over the domain. The results of this demon-
stration case are shown in Fig. 7. The information on each plot is
presented in the same manner as that of Fig. 5. As can again be
seen by the top plot, our approach performs well. The MSE and

Fig. 5 The fused model and Gaussian processes of the iso-
work, isostrain, and isostress models in comparison with the
true (RVE) model

Table 2 The MSE and the mean Kullback–Leibler divergences
(MDKL) between the true model (RVE) and the obtained models
in Fig. 5

Model MSE MDKL

Fused model 0.11 2.47
Isowork model 13.29 5.56� 103

Isostrain model 17.23 7.16� 103

Isostress model 193.66 8.59� 104
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MDKL values between the ground truth and each information
source are given in Table 4.

Of particular interest in this case is the performance of the fused
information source in comparison with each individual source
where that source was most heavily sampled. We can see clearly
from Fig. 7 that the fused information source is a better

approximation to ground truth in the left half of the domain than
the isostrain model, where the isostrain model was most queried.
The same is true when comparing the middle of the domain esti-
mates from the fused information source to the isostress results,
and the right half of the domain results from the fused information
source and the isowork model. In each case, the fused information
source is able to leverage the limited information from the other
information sources to significantly outperform the information
source that was heavily queried from in a given region.

4.4 Effective Independent Information Sources. To com-
plete the demonstration of our multi-information source fusion
approach, we define and present a novel number of effective inde-
pendent information sources index. The index measures the effec-
tive number of independent information sources partaking in the
fused estimate at each point of the input domain. To define the
index, we first consider the normalized change of variance that
occurs when information sources are fused together at a given
point. This change can be written as

Dr2 xð Þ
r2
� xð Þ ¼ 1 � 1

r2
� xð Þe>~R xð Þ�1

e
(27)

where Dr2(x) is the variance reduction at x from the current best
information source’s variance, r2

�ðxÞ, at that point. Then, for any
number, S, of independent information sources, each with var-
iance r2

�ðxÞ at x, we can write

Dr2 xð Þ
r2
� xð Þ ¼ 1 � 1

S
(28)

Thus, the number of effective independent information sources
with variance r2

�ðxÞ at the point x is given as

Ieff ¼ r2
�ðxÞe>~RðxÞ

�1
e (29)

This index takes the value S when there are S independent sources
with the same variance. If any sources have a larger variance, they
will not contribute as much to the variance reduction at that point,
and Ieff will be less than S. Thus, effective independent informa-
tion sources, as measured by this index, are relative to the best
source at a given point. We note here also that for highly corre-
lated information sources, Eq. (13) can result in variance
decreases that are larger than would occur with independent infor-
mation sources. This generally occurs as a result of very similar
but biased in the same direction information sources. The ability
to exploit this situation is a feature of the reification approach.

The effective independent information source index for demon-
stration case 1 is shown in Fig. 8. The figure includes the Ieff for
the three source case, as well as each pair of two sources. The two
source indices are still considered with respect to the best of the
three information sources at a given point. This leads to the possi-
ble situation where pairs of information sources are contributing
less than one effective information source.

For the fused approximation of case 1, shown in the top plot of
Fig. 5, it is interesting to note that the Ieff is not large over the
input space, as shown in Fig. 8. For this particular problem, there

Fig. 6 The fused model and Gaussian processes of the iso-
work, isostrain, and isostress models in comparison with the
true (RVE) model when a few number of data are available in
one region

Table 3 The MSE and the mean Kullback–Leibler divergences
(MDKL) between the true model (RVE) and the obtained models
in Fig. (6)

Model MSE MDKL

Fused model 0.18 4.51
Isowork model 16.09 6.35� 103

Isostrain model 18.85 9.72� 103

Isostress model 65.85 1.70� 104
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is often one source that is much more uncertain than the other two
at each point in the domain. This renders that source’s contribu-
tion to Ieff to be very small. For example, isostrain has large var-
iance for low to medium values of fhard and isostress has large
variance for large values.

From the pairwise curves, it is clear that initially the
isowork–isostrain pair is driving the fused approximation. It is
also clear that in this region of low values of fhard, the fusion pro-
cess is exploiting the high correlation between these two sources
and is performing better than three independent sources could.
The isostress model takes over the approximation around fhard �
10%. This holds until fhard � 30%, where all three sources are con-
tributing to the prediction. At fhard � 40%, the isowork–isostrain
pair again drives the prediction. This continues until the end of the
domain is reached. Thus, while all three information sources do

Fig. 7 The fused model and Gaussian processes of the iso-
work, isostrain, and isostress models with data in different
regions in comparison with the true (RVE) model

Table 4 The MSE and the Kullback–Leibler divergences (MDKL)
between the true model (RVE) and the obtained models in
Fig. (7)

Model MSE MDKL

Fused model 1.31 2.97
Isowork model 6.38 465.73
Isostrain model 15.67 9.07� 103

Isostress model 178.48 4.40� 104

Fig. 8 Number of effective independent information sources,
Ieff as a function of fhard for demonstration Case 1

Fig. 9 The optimal solution obtained by our proposed
approach and by applying the knowledge gradient on a GP of
only the true data (RVE) for different number of samples queried
from the true model
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not contribute equally over the domain, they are all three required
to make the fused approximation presented in Fig. 5.

Though the effective independent information source analysis
presented here relied only on the Ieff, which was derived through
the discrepancy quantification and reification process, the analysis
is consistent with the fundamentals of mechanics for these infor-
mation sources and this application. This provides evidence that
such an analysis could be used to aid in the construction of a more
sophisticated physics-based model from models using simplified
assumptions. That is, this index provides information about when
certain assumptions are valid and when they are not. The index
also provides a means of valuing a new evaluation of an informa-
tion source over the domain. For example, this analysis reveals
that sampling the isostress model on the interval fhard � [40, 100]
will provide little value in terms of effective information sources

when an isostrain and isostress model are also available. Such a
valuation could prove useful in a resource constrained process for
estimating a quantity of interest with many possible information
sources available.

5 Demonstration: Multi-Information Source

Optimization

In this section, we demonstrate the application of our frame-
work to the optimization of the ground truth strength normalized
strain hardening rate for the dual-phase steel application. We
stress here that the purpose of our framework is the optimization
of ground truth. That is, our motivation is the creation of a myopic
multi-information source optimization framework for addressing
Eq. (5) in the context of materials design. Thus, we seek to

Fig. 10 The fused model and Gaussian processes of the isowork, isostrain, and isostress models in comparison with the
true (RVE) model in iterations 1, 15 and 30
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identify the best candidate for a ground truth experiment with
whatever resources we have available. Once those resources are
exhausted, a ground truth experiment takes place based on the rec-
ommendation of our framework. The result of that experiment can
then be fed back into the framework. If more resources are then
allocated, perhaps on the basis of promising results, then the
framework can be employed again.

The specific demonstration consists of the use of the three
reduced-order models (isostrain, isostress, and isowork) to query
the impact of quantifiable microstructural attributes on the
mechanical response of a composite microstructure—in this case
a dual-phase steel. The ground truth in this case is the finite ele-
ment model of the dual-phase material. The objective is the maxi-
mization of the (ground truth) normalized strain hardening rate at
epl¼ 1.5%. The design variable is the percentage of the hard
phase, fhard, in the dual-phase material. We assume that our
resources limit us to five total queries to (any of) the information
sources before we must make a recommendation for a ground
truth experiment. Given promising ground truth results, five more
queries can be allocated to the information sources. The frame-
work is initialized with one query from each information source
and one query from the ground truth. This information is used to
construct the initial intermediate Gaussian process surrogates.

The value-gradient policy of our framework was used to select
the next information source and the location of the query in the
input space for each iteration of the process. For comparison pur-
poses, the KG policy operating directly on the ground truth was
also used to reveal the gains that can be had by considering all
available information sources. For this, a Gaussian process repre-
sentation was created and updated after each query to ground
truth. The convergence results of our proposed approach using all
information sources and the KG policy on the ground truth are
shown in Fig. 9. On the figure, the dashed line represents the opti-
mal value of the ground truth quantity of interest. It is clear from
this figure that our approach outperformed the knowledge gradient
applied to directly to ground truth, and in doing so, saved consid-
erable expense by reducing the number of needed ground truth
experiments. The superior performance of our approach can be
attributed to its ability to efficiently utilize the information avail-
able from the three low fidelity information sources to better
direct the querying at ground truth. We note that the original sam-
ple from ground truth used for initialization was taken at
fhard¼ 95%, which is far away from the true optimal. This can be
seen below in Fig. 10 in the left column. Thus, the framework, by
leveraging the three inexpensive available information sources,
was able to quickly direct the ground truth experiment to a higher
quality region of the design space.

Table 5 presents the results of each ground truth experiment
conducted according to the recommendation of our framework.
From the table we see that the third recommendation for a ground
truth experiment produces a nearly optimal design. The final three
experiments show that little more is gained in terms of ground
truth objective and that the fused model has learned more about
the ground truth in that region. At this point, it is likely that more
resources would not be allocated to this design problem and the
framework was able to successfully find the best design.

Updates to each information source Gaussian process surrogate
model and the fused model representing our knowledge of ground
truth are also shown in Fig. 10 for iterations 1, 15, and 30 of the
information source querying process. Here, an iteration occurs
when an information source is queried. This is distinct from any
queries to ground truth. As can be seen from the left column, the
first experiment from ground truth and the first query from each
information source told us little about the location of the true
objective. However, on iteration 15, the fused model, shown by
the smooth red curve, has identified the best region of the design
space, although it underpredicts the ground truth at this point. We
note that at this point, only three expensive ground truth experi-
ments have been conducted. By iteration 30, the fused model is
very accurate in the region surrounding the optimal design for
ground truth. At this point, six ground truth experiments have
been conducted. From the figure, and also from Fig. 2, it is clear
that none of the information sources share the ground truth opti-
mum. The ability of the framework to find this optimum rested
upon the use of correlation exploiting fusion, and would not have
been possible using traditional methods.

To conclude this demonstration, we present the history of the
queries to each information source and the ground truth. This
information is provided in Fig. 11. Note that the iteration now
counts queries to each information source as well as ground truth
experiments. From the figure, it is clear that all three information
sources are exploited to find the ground truth optimal design,
implying that, however imperfect, all sources available to the
designer must be used, in an optimal manner, in order to identify
the optimal ground truth.

6 Conclusions and Future Work

In this paper, we first presented and demonstrated a correlation-
exploiting multi-information source fusion approach. The method
included new extensions to the fusion of any number of correlated
information sources, as well as the creation of a novel effective
independent information source index. The fusion methodology
was demonstrated on microstructure-sensitive performance pre-
diction for ductile dual-phase materials. In all cases, the proposed
fusion approach performed exceptionally well, far exceeding the
predictive capabilities of any individual information source. This
provides evidence that our approach to information source fusion
is highly applicable to the challenge of integration in ICME tools.

We then presented and demonstrated a myopic multi-
information source optimization framework. The framework
focused on determining the next information source to query and
where in the input domain to query it by trading off resource

Table 5 The optimal solution obtained by the fused model and
the true value at the obtained optimum design point. The true
optimal solution by the RVE model is (x*, f*)5 (8.54, 16.77)

Experiment x�fused f �fused ftrueðx�fusedÞ

2 28.64 7.50 13.66
3 10.05 11.98 16.69
4 10.55 13.92 16.64
5 9.55 15.47 16.73
6 8.80 16.71 16.75

Fig. 11 Number of samples queried from the true model (RVE)
and the information sources in each iteration
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expense and gains expected in ground truth objective function
quality. To value each next potential query, we presented a novel
value-gradient policy, which seeks to maximize a two-step look-
ahead utility based on immediate value and the knowledge gradi-
ent for a potential next step. The framework was demonstrated on
the optimization of ground truth strength normalized strain hard-
ening rate for a dual-phase material. The results of the demonstra-
tion revealed the promise of this framework as a suitable
methodology for answering the MGI call for accelerating the
materials development cycle.

In the near term, the information fusion framework developed
here will be validated against larger sets of ground truth data and
be demonstrated in higher dimensions. The framework will also
be extended to handle information sources with misaligned
input–output interfaces, which is a key challenge facing the ICME
community.

Moreover, the optimization framework will be extended to han-
dle multiple objectives and studied for scalability to high dimen-
sional input spaces. Additionally, we will explore the possibility of
carrying out optimal sequential queries in which the sources of
information are not input/output aligned. A specific scenario, for
example, would be combining sources that establish relationships
between processing parameters/conditions and microstructure with
sources that connect microstructures to properties/performance.
Much remains to be done, but this work presents a plausible
research program toward the realization of the promise of ICME,
which in the end rests on tool (or information source) integration.
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