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Predictions and design decisions for complex systems often can be made or informed
by a variety of information sources. These information sources describe the quantity of
interest with different levels of fidelity. We propose a Bayesian approach in which prior be-
liefs about the information sources are represented in terms of Gaussian processes and we
utilize these sources to generate a fused model with superior predictive capability than any
of the constituent models. For this, we implement a multifidelity co-Kriging model aimed
at constructing an accurate estimate of the quantity of interest by exploiting data from
all models. The key feature of our proposed approach is the relaxation of the assumption
of hierarchical relationships among information sources. Instead, we consider an autore-
gressive model where each information source is related to the highest fidelity information
source. The approach is demonstrated on a one-dimensional example test problem and an
aerodynamic design problem.

I. Introduction

In engineering, science, and technology, it is often the case that several different computer models in
addition to experimental data are available to support decision-making. These information sources typically
encompass different mathematical formulae, different resolutions, different physics, and different modeling
assumptions that simplify the problem. This leads to information sources with varying degrees of discrepancy
from the true quantity of interest, or fidelity, as well as different querying costs. While some information
sources may be considered to be of higher fidelity than others, all information sources potentially contribute
some amount of information that should be considered in any decision process. Thus, all available information
sources should be considered when making inference about a quantity of interest.

One of the main purposes of employing multifidelity approaches is to replace expensive information source
queries with several less expensive queries to lower fidelity information sources. These lower fidelity sources
often are in the form of surrogates or hierarchies of surrogates.1 The task then is to create mathematical
approaches for fusing the information from these different sources, which usually entails the exploitation of
cross-correlations between the outputs of the sources. In Ref. 2, a multifidelity model is proposed based on a
linear regression formulation. This model is then improved in Ref. 3, which describes an approach that com-
bines the information from both approximate and accurate models into a single multiscale emulator for the
computer model by using a Bayes linear formulation. These methods can suffer from a lack of accuracy since
they are based on a linear regression formulation. Ref. 4 presents a co-Kriging model in a Bayesian setting,
which is an extension of Kriging for multiple response models. The proposed co-Kriging model is based on
an autoregressive relation between the different information sources. This method has been extensively used
for different applications, such as multifidelity optimization5 and a Bayesian formulation proposed in Ref. 6.
While co-Kriging models generally provide good predictions they are often computationally expensive to
construct. The expense typically arises when large data sets are considered, which can also lead to numerical
issues, such as ill-conditioned covariance matrices. Generally Kriging models are known to suffer from these
concerns, however, they are even more severe for co-Kriging models due to the increased size of the data
set caused by the inclusion of observations from all available information sources. These complexities are
mitigated in the works of Refs. 7–10 by dividing the whole set of simulations into groups of simulations
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corresponding to certain levels. This is achieved by using a co-Kriging model with an original recursive
formulation. Ref. 11 presents a non-intrusive framework based on treed multi-output Gaussian processes,
in which the response statistics are obtained through sampling a properly trained surrogate model of the
physical system. In Ref. 12, a multifidelity approach is proposed to minimize the number of high-fidelity
model evaluations, where the statistics of the high-fidelity model are computed based on realizations of a
corrected low-fidelity surrogate. The correction function can be additive, multiplicative, or a combination of
the two and it may be updated by high-fidelity model evaluations. In Ref. 13, a methodology is proposed to
construct the response surfaces of complex stochastic dynamical systems by blending multiple information
sources via auto-regressive stochastic modeling. Ref. 14 presents a multifidelity Gaussian process regression
(GPR) approach for prediction of finite-dimensional random fields based on observations of surrogate models
or hierarchies of surrogate models. In Ref. 15, a multimodel fusion-based sequential optimization approach
is proposed to allocate samples from nonhierarchical multifidelity models for design optimization. Ref. 16
presents a fusion-based multi-information source optimization approach using knowledge gradient policies.

There are several techniques used in practice for combining information from multiple information sources.
Among them are the adjustment factors approach,17–19 Bayesian model averaging,20–24 and fusion under
known and unknown correlation.25,26 This paper is concerned with the development of an approach for
incorporating different available information sources, with potentially differing levels of fidelity and cost, to
enable accurate and efficient inference of a real world quantity of interest. Here, we relate the fidelity to
uncertainty due to model inadequacy, which is uncertainty due to the omission of some aspects of reality,
improper modeling, or unrealistic assumptions.27–33 This fidelity is characterized by assigning a probability
distribution to the output of each individual model on the basis of the model inadequacy associated with
that particular model. Surrogate models are constructed for information sources using Gaussian processes,34

and a single Gaussian process is constructed for the most accurate estimate of the true quantity of interest
by using the information obtained from all available information sources. We use the recursive co-Kriging
technique proposed in Refs. 7–9 aimed at constructing an accurate estimate of the quantity of interest by
leveraging data from all information sources. One of the distinguishing features of our proposed approach
is the relaxation of the assumption of hierarchical relationships among information sources. We instead
enforce a relationship between all information sources and the highest fidelity information source via an
autoregressive model. Our proposed multifidelity approach is applied to a one-dimensional example test
problem and an aerodynamic design example.

The rest of the paper is organized as follows. Section II presents the approach proposed here. In
Section III, the approach is applied to a one-dimensional test function and an aerodynamic example problem.
Conclusions are drawn in Section IV.

II. Approach

In this section, our proposed approach to build a multifidelity surrogate model of a quantity of interest
using the information obtained from the multiple levels of fidelity is introduced. Here, we assume we have
available some set of information sources, f̄i(x), where i ∈ {1, 2, ..., S}, that can be used to estimate the
quantity of interest, f(x), at design point x. Furthermore, we consider that f̄S(x) is the highest fidelity and
the most expensive information source, and f̄i(x), i ∈ {1, 2, ..., S − 1}, are the cheaper and less accurate
information sources. In order to predict the output of each information source at locations that data are not
available, an intermediate surrogate is constructed for each information source using Gaussian processes.34

These surrogates are denoted by fGP,i(x).
We consider the prior distributions of the information sources modeled by Gaussian processes as

fGP,i(x) ∼ GP (0, ki(x,x)) , (1)

where ki(x,x) is a real-valued kernel function over the input space. For the kernel function, we consider the
commonly used squared exponential covariance function, which is specified as

k(x,x′) = σ2
s exp

(
−

d∑
h=1

(xh − x′h)2

2l2h

)
, (2)

where d is the dimension of the input space, σ2
s is the signal variance, and lh is the characteristic length-scale

that indicates the correlation between the points within dimension h. The parameters σ2
s and lh associated

with each information source can be estimated via maximum likelihood.
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To construct posterior distributions of fGP,i(x) at any point x in the input space, we assume we have
available Ni evaluations of information source i. We denote this information as XNi ,yNi , where XNi =
(x1,i, ...,xNi,i) represents the Ni input samples to information source i and yNi represents the corresponding
outputs from information source i. Given this information, the posterior distributions are given as

fGP,i(x) | XNi ,yNi ∼ N
(
µi(x), σ2

i (x)
)
, (3)

where
µi(x) = Ki(XNi ,x)T [Ki(XNi ,XNi) + σ2

n,iI]−1yNi , (4)

σ2
i (x) = ki(x,x)−Ki(XNi ,x)T [Ki(XNi ,XNi) + σ2

n,iI]−1Ki(XNi ,x), (5)

where Ki(XNi ,XNi) is the Ni ×Ni matrix whose mnth entry is ki(xm,i,xn,i), and Ki(XNi ,x) is the Ni × 1
vector whose mth entry is ki(xm,i,x) for information source i.

In order to estimate the quantity of interest, f(x), using the knowledge available for the information
sources, we employ the co-Kriging method by assuming that fS(x) is the most accurate model that can
represent f(x). Co-Kriging was first proposed by Kennedy and O’Hagan.4 This approach can be compu-
tationally infeasible if many levels of fidelity and/or a large number of data observations are available for
information sources. In order to overcome this computational complexity, a recursive scheme is proposed by
Refs. 8 and 9, which allows the computation of the posterior distribution by a sequence of distinct inferences
of smaller dimensions. In this approach, each model output is represented in terms of a Gaussian random
field and then such fields are hypothesized to be related to each other by the autoregressive model. In our
approach, in order to relax the assumption of hierarchical relationship among the information sources, we
assume that all the information sources are only related to the highest-fidelity information source, fS(x),
not to each other, in an autoregressive co-Kriging scheme as

fS(x) = γi(x)fi(x) + φi(x), (6)

where i ∈ {1, 2, ..., S − 1}, γi(x) is a regression-like parameter representing a scale factor between fS(x)
and fi(x), and φi(x) is a Gaussian random field independent of all the information sources. In a Bayesian
setting, γi(x) is treated as a random field with an assigned prior distribution that is later fitted to the data
through inference. Here, we construct Gaussian processes to predict γi(x) and φi(x) at all x in the design
space.

In order to construct a Gaussian process for γi(x), we use the ratio of the output of the highest fi-
delity model and the information source i as training data. To do so, we accumulate the input samples
to information source i, XNi , and the input samples to information source S, XNS , in a set represented
by Xi,S . According to Equation (3), the values of information source i at a design point x are distributed
normally with mean µi(x) and variance σ2

i (x). Therefore, starting from the information source i, we draw
Nq independent samples of output values for information sources i and S at each design point x ∈ Xi,S , as

fqi (x) ∼ N
(
µi(x), σ2

i (x)
)
, for q = 1, . . . , Nq and x ∈ Xi,S . (7)

Then, at each sample x ∈ Xi,S , we compute the ratio of the generated output samples of the highest fidelity
model, fqS(x), and those of the information source i, fqi (x), as

γqi (x) =
fqS(x)

fqi (x)
, (8)

and compute the mean and variance of these ratios as

γ̄i(x) =
1

Nq

Nq∑
q=1

γqi (x), (9)

σ2
γi(x) =

1

Nq

Nq∑
q=1

(γqi (x)− γ̄i(x))
2
. (10)
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These values are then evaluated for all x ∈ Xi,S and denoted as vectors of γ̄i and σ2
γi . Assuming the

squared exponential covariance function and obtaining the parameters by performing the maximum likelihood
method, we construct a Gaussian process for γi with mean function µγi and covariance matrix Σγi as

γi ∼ N (µγi ,Σγi), (11)

where
µγi = Kγi(Xi,S ,X)T [Kγi(Xi,S ,Xi,S) + Σγi,S ]−1γ̄i, (12)

Σγi = Kγi(X,X)−Kγi(Xi,S ,X)T [Kγi(Xi,S ,Xi,S) + Σγi,S ]−1Kγi(Xi,S ,X), (13)

where X is any set of samples in the design space, and Σγ
i,S is a diagonal matrix with diagonal elements of

σ2
γi .

After constructing Gaussian process for γi(x), we draw Nγ realizations from γi(x), and for each realization

γji (x), j ∈ {1, 2, ..., Nγ}, at each x ∈ Xi,S , the mean and variance of φji (x) are computed as

φ̄ji (x) = µS,i−1(x)− γji (x)µi(x), (14)

σ2
φji

(x) = σ2
S,i−1(x) + γji

2
(x)σ2

i (x), (15)

where µS,0(x) = µS(x) and σ2
S,0(x) = σ2

S(x) for i = 1. These values are evaluated for all x ∈ Xi,S and

denoted as vectors of φ̄ji and σ2
φji

. Assuming again the squared exponential covariance function and obtaining

the parameters by performing the maximum likelihood method, we construct a Gaussian process for φji with
mean function µφji

and covariance matrix Σφji
as

φji ∼ N (µφji
,Σφji

), (16)

where
µφji

= Kφji
(Xi,S ,X)T [Kφji

(Xi,S ,Xi,S) + Σφ
j

i,S ]−1φ̄ji , (17)

Σφji
= Kφji

(X,X)−Kφji
(Xi,S ,X)T [Kφji

(Xi,S ,Xi,S) + Σφ
j

i,S ]−1Kφji
(Xi,S ,X), (18)

where X is any set of samples in the design space, and Σφj

i,S is a diagonal matrix with diagonal elements of

σ2
φji

.

The mean and variance of the fused multifidelity model resulting from the jth realization of γji (x) after

fusion of the first i information sources, represented by µjS,i and σ2j
S,i are given as8,9

µjS,i(x) = γji (x)µi(x) + µφji
(x) +Kφji

(x,XNS )K−1
φji

(XNS ,XNS )
(
yNS − γ

j
i (XNS ) ◦ µi(XNS )− µφji (XNS )

)
,

(19)

σ2j
S,i(x) = (γji (x))2σ2

i (x) +Kφji
(x,x)−Kφji

(x,XNS )K−1
φji

(XNS ,XNS )KT
φji

(x,XNS ), (20)

where ◦ denotes the “Hadamard” product, which is the element by element matrix product. We denote the
vector containing the values of γji (x) for x ∈ XNS by γji (XNS ). These posterior values are evaluated for all

realizations of γji (x), j ∈ {1, 2, ..., Nγ}, for the ith information source, and the resulting posterior mean and
variance of the multifidelity model after fusion of the first i information sources at design point x are

µS,i(x) =
1

Nγ

Nγ∑
j=1

µjS,i(x), (21)

σ2
S,i(x) =

1

Nγ

Nγ∑
j=1

σ2j
S,i(x). (22)

These steps are performed for the other information sources, i ∈ {1, 2, ..., S − 1}. The values for fqS(x)
in Equation (7) are now generated based on Equations (21) and (22) and also these equations are used to
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compute the first terms in Equations (14) and (15) for the next information source. After performing these
steps for all the information sources, the resulting µS,S−1 and σ2

S,S−1 are the most accurate knowledge that
we can gain from the available information sources to estimate the quantity of interest. These values can
be used to construct a Gaussian process for our fused multifidelity model as discussed for γ and φ. Our
proposed approach for Bayesian fusion of multifidelity information sources is presented in Algorithm 1.

Algorithm 1: Bayesian Fusion of Multifidelity Information Sources

1: Construct Gaussian processes for all the information sources, i ∈ {1, 2, ..., S}, given their available data.

for i ∈ {1, 2, ..., S − 1}
2: Draw Nq independent samples of output values for information sources i and S at each design point

x ∈ Xi,S as in Equation (7).

3: Compute the mean and variance of the ratio of the generated output samples according to Equations (8-
10).

4: Construct a Gaussian process for γi according to Equations (11-13).

5: Draw Nγ realizations from the Gaussian process of γi.

for j ∈ {1, 2, ..., Nγ}
6: Compute the mean and variance of φji (x) according to Equations (14-15).

7: Construct a Gaussian process for φji according to Equations (16-18).

8: Compute the mean and variance of the fused multifidelity model according to Equations (19-20).

end for

9: Compute the posterior mean and variance of the multifidelity model after fusion of i information sources
according to Equations (21-22).

end for

III. Application and Results

In this section, we present the results of two demonstrations of our methodology. The first is an analytical
example problem with one-dimensional input and output. The second demonstration has a two-dimensional
input and uses data from two computational fluid dynamics simulators, XFOIL35 and Stanford Univer-
sity Unstructured (SU2).36 Details regarding these simulators and their implementation are discussed in
Section B.

A. One-Dimensional Example

We consider three information sources with a one-dimensional input. In this case, models 1 and 2 are
considered to be the low-fidelity and the high-fidelity models respectively, and model 3 is the highest fidelity
model that here, represents the true quantity of interest. These information sources are defined as

f1(x) = 2− (1.8− 3x) sin(18x+ 0.1), (23)

f2(x) = 2− (1.6− 3x) sin(18x),

f3(x) = 2− (1.4− 3x) sin(18x),

where the domain of x is limited to 0 ≤ x ≤ 1.2. An illustration of the information sources is shown in
Figure 1. We assume that 15 samples are available for models 1 and 2 and 10 samples for the highest fidelity
model.

Figure 2 shows the 95% confidence interval and mean of Gaussian processes of the three information
sources given their available samples as well as the 95% confidence interval and mean of the fused multifidelity
model obtained by our approach.
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0 0.2 0.4 0.6 0.8 1 1.2
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0.5
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1.5
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x)

Information Sources

Model 1
Model 2
Model 3 (Highest Fidelity)

Figure 1: Information sources of problem (23).

As it can be seen, the information sources cannot
represent the true model accurately, while after fusion
of their knowledge and the construction of the multi-
fidelity model by our approach, the truth is estimated
well.

B. 2D CFD Demonstration

This demonstration uses the computational fluid dy-
namics programs XFOIL35 and SU236 as the two sim-
ulators. The airfoil of interest is the NACA 0012, a
common validation airfoil. The “truth” model used
to validate the method is real-world wind tunnel data
of the NACA 0012 airfoil,37,38 which includes 68 data
points throughout the design space. The highest fi-
delity model is built from some set of these real-world
wind tunnel data. For this case, the Mach number,
M , and the angle of attack, α, are the inputs for the
analysis. The quantity of interest is the coefficient of
lift, CL. The design space is χ = IM × Iα with IM = [0.15 0.75] and Iα = [−2.2 13.3].

Figure 2: Gaussian processes of the information sources and the multifidelity model obtained by our approach,
as well as the true model of problem (23).

XFOIL and SU2 are both very powerful CFD simulators, but have different performance capabilities
in various flow regimes. XFOIL is an airfoil solver for the subsonic regime that combines a panel method
with the Karman-Tsien compressibility correction for the potential flow with a two-equation boundary layer
model. This causes XFOIL to overestimate lift and underestimate drag.39 SU2, for the case of airfoil analysis,
uses a finite volume scheme, the details of which may be found in Ref. 36. SU2 was set to use the Reynolds-
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averaged Navier-Stokes (RANS) method with the Spalart-Allmaras turbulence model. This allowed SU2 to
be significantly more accurate than XFOIL in the more turbulent flow regimes at higher values of Mach
number and angle of attack. This accuracy comes with orders of magnitude increase in computational
expense. Figure 3 shows an example output of the two simulators that illustrates the difference in fidelity
levels. Some set of wind tunnel data from NASA and AGARD was used to construct the highest fidelity

(a) XFOIL (b) SU2

Figure 3: Example outputs of NACA 0012 airfoil from XFOIL and SU2.

model by interpolating values between the given data points. A comparison between SU2, XFOIL, and
the highest fidelity model when the Mach number is fixed at 0.30 is shown in Figure 4. As expected, SU2
performs better than XFOIL at higher angle of attack.

-2 0 2 4 6 8 10 12 14
Angle of Attack ( )

-0.5

0

0.5

1

1.5

C
oe

ff
ic

ie
nt

 o
f L

ift
 (C

L)

Model Comparison

Highest Fidelity Model
SU2
XFOIL

Figure 4: Coefficient of lift estimates from SU2, XFOIL, and the highest fidelity model constructed from
wind tunnel data for Mach number fixed at 0.30.

Figure 5 shows the truth model and the fused multifidelity model obtained by our approach for different
numbers of available samples for the highest fidelity model (NS). As it can be seen, as the number of samples
available for the highest fidelity model (NS) increases, our fused multifidelity model gets closer to the truth
model.

Figure 6 presents the mean squared errors (MSE) between the fused multifidelity model obtained by our
approach and the truth model for different numbers of available samples for the highest fidelity model (NS).
Here, MSE is calculated by sampling a large number of uniformly spaced points in the input space. As it can
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Figure 5: Truth model as well as fused multifidelity models obtained by our approach for different number
of available samples for the highest fidelity model (NS).

be seen, as the number of samples available for the highest fidelity model (NS) increases, the MSE between
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our fused multifidelity model and the truth decreases.

10 20 30 40 50 60 70
NS

0

0.5

1

1.5

2

2.5

3

3.5

M
SE

Figure 6: The mean squared error (MSE) between the fused multifidelity model and the truth model for
different number of available samples for the highest fidelity model (NS).

IV. Conclusion

This paper has presented a Bayesian approach to estimate an expensive quantity of interest when different
information sources with varying fidelities are available. The approach uses the prior beliefs about the
information sources represented in terms of Gaussian processes and utilizes these sources to generate a
fused model with superior predictive capability than any of its constituent models. This is achieved by
creating a multifidelity co-Kriging model aimed at constructing an accurate estimate of the quantity of
interest by leveraging data from all available information sources. The key feature of the proposed approach
is the relaxation of the assumption of hierarchical relationships among information sources by making the
hypothesis that all the information sources are related to the highest fidelity information source via an
autoregressive model. The approach is demonstrated on a one-dimensional example test problem and an
aerodynamic design problem. It has been shown that the proposed approach performs well in estimating the
quantity of interest.
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