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Abstract We study numerically the regularity of Arnold tongues corresponding to Diophan-
tine rotation numbers of circle maps at the edge of validity of KAM theorem. This serves
as a good test for the numerical stability of two different algorithms. We find empirically
that Arnold tongues are only finitely differentiable at the tip. We also find several scaling
properties of the Sobolev norms of the conjugacy near the breakdown. We also provide a
renormalization group explanation of the regularity at the tip and the scaling behaviors of
the Sobolev regularity. We also uncover empirically some other patterns which require ex-
planation.

Keywords Arnold tongues · Renormalization · Scaling properties · Computational
methods

1 Introduction

The study of circle maps was initiated by Poincaré in [41], motivated by Celestial Mechanics
more than a century ago, and has been an active area of both theoretical and applied research.
Circle maps arise in many other applications (the reader interested in examples of such
applications is referred to [15, 22, 27, 39, 42]).

An important topological invariant for circle maps is the rotation number (see Defini-
tion 2.1) and, given a two-parametric family of circle maps, the set of parameters for which
the rotation number takes a prefixed value is called Arnold tongue (some authors prefer to
reserve the name “tongue” for rational values only). KAM theory—we refer to Sect. 2 for
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precise definitions, statements and references—shows that, for analytic families of analytic
circle maps satisfying some mild non-degeneracy conditions, the Arnold tongue correspond-
ing to a Diophantine rotation number (see Definition 2.2) is an analytic curve. This result
does not give any information if the family includes some subfamily for which the maps are
analytic but have a critical value.

The goal of this paper is to study numerically the differentiability at the boundary (criti-
cal value) of Arnold tongues corresponding to Diophantine rotation numbers and to present
a renormalization group explanation of the phenomena encountered. In particular, we show
that Arnold tongues are at least C 1+α at the critical point and we also predict which is (gener-
ically) the regularity of the tongues at this value using renormalization group arguments.

Our numerical study is performed using two different numerical methods. Both methods
are solidly build, in the sense that there is a mathematical theory that validates the results
obtained. In addition, both methods take advantage of the geometry and the dynamics of
the problem to exploit cancellations that reduce the operation count and the storage require-
ments. For this reason the algorithms we present are reliable as well as efficient. It is quite
encouraging that, even if the algorithms are so different, they produce results which agree
with 8–10 figures.

• Firstly, a method for computing Diophantine rotation numbers of circle diffeomorphisms
has been introduced in [46] and later extended in [35] to obtain derivatives with respect to
parameters. This method consists in averaging the iterates of the map (or their derivatives)
together with Richardson extrapolation.

• Secondly, we present a numerical algorithm, based on ideas introduced in [37, 38] and
further developed in [59, 60], to compute Diophantine Arnold tongues. The papers above,
showed that using the group structure of the problem, one can obtain a quasi-Newton
method to solve a difference equation. We remark that, with appropriate choices of dis-
cretizations and algorithms, one can implement this quasi-Newton method in a fast way.
Basically, if we keep at the same time a space discretization and Fourier discretization, the
quasi-Newton method reduces to steps that are diagonal either in Fourier space or in real
space. We observe that this method gives us the Fourier coefficients of the conjugacy, so
that we can study its Sobolev norms, which we will see, give valuable information about
the breakdown.

It is worth mentioning that both methods are designed to perform efficient computations
for non-critical maps. For this reason, approaching critical values of the parameters is a good
test for the behavior of the algorithms at their limit of validity. Moreover, as a consequence
of the fact that Arnold tongues are differentiable at the critical point (see Proposition 5.1)
we can compute critical values by extrapolation, thus obtaining higher precision than the
one given by the method in [16, 47].

Renormalization group and scaling ideas provide powerful tools for the study of long
term dynamics, supported by the fact that highly iterated maps, when observed in small
scales, have forms that are largely independent of the map. These methods were first intro-
duced in dynamical systems for unimodal maps [19, 52]. Later, numerical works in [21, 47]
revealed that cubic critical circle maps exhibit interesting “universal” properties, very similar
to those of phase transitions. From the point of view of rigorous mathematical foundations,
many efforts have been made to develop a renormalization group theory that explains the ob-
served properties (we refer to [8, 18, 33, 40, 48, 49, 54, 55]). The references just mentioned
provide different rigorous formalisms which are better or worse suited depending on the
context of study. For convenience, we shall use either of the different approaches according
to our needs.



1156 R. de la Llave, A. Luque

We emphasize that we present the renormalization group picture at the level of rigor usual
in theoretical physics and we omit several precisions (complete specification of the Banach
manifolds, descriptions of the domains etc.) needed for a fully mathematical formulation.
We, of course, believe that such precisions are important, and we hope to come back to
them. Since this paper is somewhat long already, we decided to concentrate in numerical
algorithms and the phenomena they uncover. Other (important!) precisions that adhere to
different standards will be dealt with elsewhere. We note that the rigorous definitions of
renormalization are much easier in dynamical systems than in statistical mechanics or field
theory.

To prove differentiability of Arnold tongues at the critical point, we study scaling rela-
tions of the derivatives of the rotation number with respect to parameters using cumulant
operators. To this end we apply results reported in [5, 6]. It turns out that the asymptotic
properties of cumulant operators characterize the growth of the different derivatives of the
rotation number (see Proposition 5.1). This allows us to control the first derivative of Arnold
tongues.

To establish a bound for the borderline regularity of an Arnold tongue, we give an ex-
planation of the observed phenomenon based on a renormalization group picture. In this
well-known picture, there is a non-trivial (universal) critical point having stable and unsta-
ble invariant manifolds that organize the dynamics of the renormalization operator. Then,
we use the well-known Fenichel theory under rate conditions for normally hyperbolic in-
variant manifolds (we refer to [20]) to obtain a sharp estimate of the differentiability of
Arnold tongues in terms of the spectrum of the linearized renormalization operator. Hence,
we conclude that Arnold tongues are Cr , with r being a number such that

r ≥
log δ

logγ
, |δ| > |γ | > 1, (1)

where δ is the leading unstable value of the linearization of a renormalization operator at the
fixed point and γ is also another scaling factor related to renormalization (see the discussion
in Sect. 5.2). In particular, these are “universal numbers” that do not depend on the family.
We note that, even if the bounds are only lower bounds, there are reasons to believe that they
are sharp and, as we will see this is consistent with our numerical findings.

We emphasize that, at the moment, we are presenting this renormalization group picture
at the level of rigor of theoretical physics. A mathematically rigorous presentation would
require significantly more details (such us specifying which Banach spaces of functions we
are considering, domains of operators, etc.). We thing that it is more convenient to present
an attractive picture that explains the rather delicate numerical observations presented in this
paper. This picture is precise enough to lead to observable predictions.

The contents of the paper are organized as follows. In Sect. 2 we recall some fundamental
facts about circle maps and Arnold tongues. Sect. 3 is devoted to describe the main numer-
ical methods used in the paper. Some high-precision numerical computations are presented
in Sect. 4 in order to give evidence of the differentiability of Arnold tongues. Then, the goal
of Sect. 5 is to give some explanations of the observed phenomena in terms of the renor-
malization group. Finally, in Sect. 6, we present some additional numerical computations of
Arnold tongues using the methods described in Sect. 3. Our findings are briefly summarized
in Sect. 7.



Differentiability at the Tip of Arnold Tongues 1157

2 Rotation Numbers and Arnold Tongues

In this section we briefly recall some basic definitions and concepts related to circle maps
(for details see [17, 29]). We represent the circle as T = R/Z and define Diff r

+(T), r ∈
[0,+∞) ∪ {∞,ω}, the group of orientation-preserving homeomorphisms of T of class Cr

with inverse of class Cr . Concretely, if r = 0, Diff0
+(T) is the group of homeomorphisms

of T; if r ≥ 1, with r ∈ (0,∞)\N, Diff r
+(T) is the group of C⌊r⌋-diffeomorphisms whose

⌊r⌋th derivative verifies a Hölder condition with exponent r − ⌊r⌋; if r = ω, Diffω
+(T) is the

group of real analytic diffeomorphisms.
Given f ∈ Diff r

+(T), we can lift f to R by means of the universal cover π : R → T, given
by π(x) = x (mod 1), obtaining a Cr map f̃ that makes the following diagram commute

R

π

f̃

R

π

T

f

T

π ◦ f̃ = f ◦ π.

Moreover, we have f̃ (x +1)− f̃ (x) = 1 (since f is orientation-preserving) and the lift is
unique if we ask for f̃ (0) ∈ [0,1). From now on, we choose the lift with this normalization
so we can omit the tilde without any ambiguity and we can refer to the lift of a circle map.

Definition 2.1 Let f be the lift of an orientation-preserving homeomorphism of the circle.
Then, the rotation number of f is defined as

ρ(f ) := π

(

lim
|n|→∞

f n(x0) − x0

n

)

. (2)

Let us recall some standard properties related to the rotation number (we refer to [29] for
details). It is well known—already proved by Poincaré—that limit (2) exists for all x0 ∈ R

and is independent of x0. If we consider the rigid rotation Rθ (x) = x + θ , then ρ(Rθ ) = θ .
The rotation number ρ is continuous in the C 0-topology. If we consider the 1-parameter
family µ *→ fµ = Rµ ◦ f , with f ∈ Diff0

+(T), then θ(µ) := ρ(fµ) is an increasing function
of µ and is strictly increasing when θ(µ) /∈ Q.

The rotation number is invariant under orientation-preserving conjugation, i.e., for every
f,h ∈ Diff0

+(T) we have that ρ(h−1 ◦f ◦h) = ρ(f ). Then, it is natural to investigate whether
a particular circle map is conjugated to a rotation. A partial result was given by Denjoy
(see [7]), ensuring that if f ∈ Diff2

+(T) (actually, it suffices that the map has derivative of
bounded variation) with ρ(f ) ∈ R\Q, then f is topologically conjugate to the rigid rotation
Rρ(f ), i.e., there exists η ∈ Diff0

+(T) satisfying

f ◦ η = η ◦ Rρ(f ). (3)

In addition, if we require η(0) = x0, for fixed x0, then the conjugacy η is unique. More
interesting is to ask about the regularity of this conjugation. It is well-known that the answer
depends on arithmetic properties of the rotation number.
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Definition 2.2 Given θ ∈ R, we say that θ is a Diophantine number of (C, τ ) type if there
exist constants C > 0 and τ ≥ 2 such that for any p/q ∈ Q

∣

∣

∣

∣

θ −
p

q

∣

∣

∣

∣

>
C

|q|τ
. (4)

We will denote D(C, τ ) the set of such numbers and D the set of Diophantine numbers of
any type.

The first result about smooth conjugation was given in [1], where is was proved that any
analytic and close-to-rotation circle map f with Diophantine rotation number is analytically
conjugate to Rρ(f ). This result was extended in [24] to any map f ∈ Diffω

+(R). There have
been subsequent improvements—the class of Diophantine numbers allowed, extensions to
analytic maps, to lower differentiability, etc.

The following result is a particular case of the results in [58].

Theorem 2.3 If f ∈ Diffω+(T) has rotation number in the class H (which contains strictly

the set of Diophantine numbers) then f is analytically conjugate to the rigid rotation Rρ(f ).

Analogous results for f ∈ Diffr+(R) where given in [30, 31, 50, 56]. As a sample, we
mention the recent result [32], which provides the sharpest result in low regularity. These
papers are particularly relevant for us, since they relate the conjugacy to properties of renor-
malization.

Theorem 2.4 If f ∈ Diff r
+(T) has Diophantine rotation number ρ(f ) ∈ D(C, τ ) for 2 ≤

τ < r ≤ 3 and r − τ < 1, then f is C 1+r−τ -smoothly conjugate to the rigid rotation Rρ(f ).
In this result, r = 3 means that f ∈ Diff2+Lip

+ (T).

The theory of smooth equivalence of critical circle maps has a less extensive literature.
The interested reader is referred to [9, 10], which are based on renormalization ideas.

In this paper we will consider the following class of critical maps.

Definition 2.5 The space of critical circle maps of order 2k + 1, that we denote as C
2k+1, is

defined as the set of analytic functions f , that are strictly increasing in R and satisfy

• f (x + 1) = f (x) + 1.
• f (j)(0) = 0 for all 0 < j ≤ 2k, and f (0)f (2k+1)(0) ≠ 0.
• There is no other critical point besides 0.

Now let us consider the following family of circle maps

f A
ω,ε(x) = x + ω − ε

2π
sin(2πx), (5)

where (ω, ε) ∈ [0,1)×[0,1] are parameters. Notice that this family satisfies f A
ω,ε ∈ Diffω+(T)

for ε < 1 and f A
ω,1 ∈ C

3. Then, we obtain a function (ω, ε) *→ ρ(ω, ε) := ρ(f A
ω,ε) given by

the rotation number of the family (the map at the critical point is strictly increasing). Then,
the Arnold tongues of (5) are defined as the sets

Tθ = {(ω, ε) : ρ(ω, ε) = θ},
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for any θ ∈ [0,1).
It is well known that if θ ∈ Q, then generically, Tθ is a set with interior; otherwise, Tθ is

a continuous curve which is the graph of a function ε *→ ω(ε), with ω(0) = θ . Furthermore,
if θ ∈ D, the corresponding tongue is given by an analytic curve (see [38, 43]). To avoid
confusions, we point out that the name Arnold tongue is sometimes used in the literature to
refer only to the sets Tθ when θ ∈ Q.

For ε = 1 we have that fω,1 ∈ C
3 for every ω ∈ [0,1)—but is still an analytic map—

and it is known (we refer to [16, 57]) that the conjugation to a rigid rotation is at most
Hölder continuous. The main question that we face in this paper is if the function ε *→
ω(ε), for θ ∈ D, keeps some differentiability at ε = 1, something which is not predicted
by KAM theory. We will study this problem using two different numerical methods. The
numerical explanations will uncover several patterns. We will present a renormalization
group explanation for them.

To illustrate several aspects of universality we select other families of circle maps in our
computations (some interesting computations and properties of these families were reported
in [16]), namely the cubic critical family

f C
ω,ε(x) = x + ω −

ε

2π

(

κ sin(2πx) +
1 − κ

2
sin(4πx)

)

, (6)

and the quintic critical family

f Q
ω,ε(x) = x + ω −

ε

2π

(

κ sin(2πx) +
9 − 8κ

10
sin(4πx) +

3κ − 4

15
sin(6πx)

)

. (7)

Both families satisfy that f C
ω,ε, f

Q
ω,ε ∈ Diffω

+(T) for ε < 1. Furthermore, for ε = 1 we have
that f C

ω,ε ∈ C
3 for 0 ≤ κ < 4

3 and f C
ω,ε ∈ C

5 for κ = 4
3 . Analogously, for ε = 1 we have that

f Q
ω,ε ∈ C

5 for 1
2 ≤ κ < 3

2 and f C
ω,ε ∈ C

7 for κ = 3
2 .

Finally, let us observe that the families (5), (6) and (7) are non-generic in the sense that
their maps contain a finite number of harmonics. For this reason, we consider also the Arnold
family with infinite harmonics

f H
ω,ε(x) = x + ω −

ε

2π

(1 − κ) sin(2πx)

1 − κ cos(2πx)
, (8)

for 0 < κ < 1.

3 Numerical Methods

In this section we describe the two main numerical methods that we use in the present paper.
Firstly, in Sect. 3.1 we include a brief survey of methods developed in [35, 46] to compute
rotation numbers of circle maps and derivatives with respect to parameters. Secondly, in
Sect. 3.2 we introduce a method (adapting ideas presented in [2, 14, 37, 38, 59, 60]) to
compute numerically Arnold tongues together with a very accurate approximation of the
conjugacy at every point. Both methods are very efficient and fast, as we summarize next:

• If we compute N iterates of the map, then the averaging-extrapolation method supported
by Proposition 3.1 allows us to approximate the rotation number with an error of order
O(1/Np+1) where p is the selected order of averaging (compared with O(1/N) obtained
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using the definition). Similarly, we can approximate derivatives of order d with an error of
order O(1/Np+1−d). Algorithm 3.2, corresponding to this procedure, requires O(Np) =

O(N log2 N) operations (see Remark 3.4).
• If we use N Fourier coefficients, then the method in Sect. 3.2 allows to approximate the

conjugacy of the circle map to a rigid rotation with an exponentially small error. The
idea is to perform a Newton method where every correction consists of a small number
of steps, each of which is diagonal either in real space or in Fourier space. Fast Fourier
Transform allows passing from real space to Fourier space so the cost of one step of the
Newton method is of O(N log2 N) operations and O(N) in memory. Implementation is
described in Algorithm 3.5.

3.1 An Extrapolation Method to Compute Rotation Numbers and Its Derivatives with
Respect to Parameters

For the sake of completeness, we review here the method developed in [46] for computing
Diophantine rotation numbers of analytic circle diffeomorphisms (the Cr case is similar) that
was later extended in [35] to compute derivatives with respect to parameters.

Let us consider f ∈ Diffω+(T) with rotation number θ = ρ(f ) ∈ D. Notice that we can
write the conjugacy of Theorem 2.3 as η(x) = x + ξ(x), ξ being a 1-periodic function
normalized in such a way that ξ(0) = x0, for a fixed x0 ∈ [0,1). Now, by using the fact that
η conjugates f to a rigid rotation, we can write the iterates under the lift as follows

f n(x0) = f n(η(0)) = η(nθ) = nθ +
∑

k∈Z

ξ̂ke2π iknθ , ∀n ∈ Z, (9)

where the sequence {ξ̂k}k∈Z denotes the Fourier coefficients of ξ . Then, we have

f n(x0) − x0

n
= θ +

1

n

∑

k∈Z∗

ξ̂k(e
2π iknθ − 1),

that allows computing θ modulo terms of order O(1/n). The idea of [46] is to average the
iterates f n(x0) in a suitable way, obtaining a smaller quasi-periodic remainder.

As a motivation, let us start by considering the sum of the first N iterates under f (ex-
pressed as in (9))

S1
N (f ) :=

N
∑

n=1

(f n(x0) − x0) =
N(N + 1)

2
θ − N

∑

k∈Z∗

ξ̂k +
∑

k∈Z∗

ξ̂k

e2π ikθ (1 − e2π ikNθ )

1 − e2π ikθ
. (10)

We observe that the factor multiplying θ in (10) grows quadratically with the number of
iterates, while the next term is linear in N , with constant A1 = −

∑

k∈Z∗ ξ̂k . Moreover, the
quasi-periodic sum remains uniformly bounded since, by hypothesis, θ is Diophantine and
η is analytic. Thus, we obtain

2

N(N + 1)
S1

N (f ) = θ +
2

N + 1
A1 + O(1/N2), (11)

that allows us to extrapolate the value of θ with an error O(1/N2) if, for example, we
compute S1

N (f ) and S1
2N (f ). Higher order extrapolation follows in a similar way (see Algo-

rithm 3.1). We refer to [46] for the precise formulas and the combinatorial details.
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Besides the rotation number, we are interested in computing derivatives with respect to
parameters. Let us consider a family µ ∈ I ⊂ R *→ fµ ∈ Diffω+(T) depending Cd -smoothly
with respect to µ. The corresponding rotation numbers induce a function θ : I → [0,1)

given by θ(µ) = ρ(fµ). It is well-known that the function θ is continuous but non-smooth:
generically, there exist a family of disjoint open intervals of I , with dense union, such that
θ takes distinct constant values on these intervals (a so-called Devil’s Staircase, see for
example [29]). However, the derivatives of θ are defined in “many” points in the sense of
Whitney.

Concretely, let J ⊂ I be the subset of parameters such that θ(µ) ∈ D (typically a Cantor
set). Then, from Theorem 2.3, there exists a family of conjugacies µ ∈ J *→ ηµ ∈ Diffω

+(T),
satisfying fµ ◦ ηµ = ηµ ◦ Rθ(µ), that is unique if we fix ηµ(0) = x0. Then, if fµ is Cs with
respect to µ, the Whitney derivatives Dj

µηµ and Dj
µθ , for j = 1, . . . , s, can be computed

by taking formal derivatives with respect to µ on the conjugacy equation and solving small
divisors equations thus obtained. Actually, we know that, if we define J (C, τ ) as the subset
of J such that θ(µ) ∈ D(C, τ ), then the maps µ ∈ J (C, τ ) *→ ηµ and µ ∈ J (C, τ ) *→ θ

can be extended to Cd functions on I , where d = d(s, τ ), provided that d is big enough
(see [53]).

To compute Dd
µθ(µ0), the d-th derivative with respect to µ at µ0, with d ≥ 0—let us

remark that we are including formally the case D0
µθ(µ0) = θ(µ0)—, we introduce recursive

sums of order p (we omit the notation regarding the fact that the map is evaluated at µ = µ0)

Dd
µS0

N = Dd
µ(f N

µ (x0) − x0), Dd
µS

p

N =

N
∑

j=0

Dd
µS

p−1
j ,

and the corresponding averaged sums

Dd
µS̃

p

N =

(

N + p

p + 1

)−1

Dd
µS

p

N .

Then, the following result holds (we refer to [46] for d = 0 and [35] for d > 0) by
induction and using the regularity properties of the conjugacy in Theorem 2.3.

Proposition 3.1 If θ(µ0) ∈ D and the derivatives Dj
µθ(µ0) for j = 0, . . . , d exist, then the

following expression holds

Dd
µS̃

p

N = Dd
µθ +

p−d
∑

l=1

Dd
µA

p

l

N l
+ Dd

µEp(N), (12)

where the coefficients Dd
µA

p

l are independent of N and the remainder Dd
µEp(N) is of order

O(1/Np−d+1).

Therefore, according to formula (12), we implement the following algorithm to extrapo-
late the d-th derivative of the rotation number.

Algorithm 3.2 Once an averaging order p is selected, we take N = 2q iterates of the map,
for some q > p, and compute the sums {Dd

µS̃
p

Nj
}j=0,...,p−d with Nj = 2q−p+j+d . We ap-

proximate the d-th derivative of the rotation number (including the case d = 0) using the
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formula

Dd
µθ = -d

q,p,p−d + O(2−(p−d+1)q), -d
q,p,m =

m
∑

j=0

c
(m)
j Dd

µS̃
p

2q−m+j ,

where the coefficients c
(m)
j are given by

c
(m)
l = (−1)m−l 2l(l+1)/2

δ(l)δ(m − l)
, (13)

with δ(n) := (2n − 1)(2n−1 − 1) · · · (21 − 1) for n ≥ 1 and δ(0) := 1. The operator -d
q,p,p−d

corresponds to the Richardson extrapolation of order p − d of (12).

Remark 3.3 To approximate derivatives of the rotation number, we require to compute ef-
ficiently the quantities Dd

µ(f n
µ (x)), i.e., the derivatives with respect to the parameter of the

iterates of an orbit. To this end, algorithms based on recursive and combinatorial formulas
are detailed in [35].

Remark 3.4 Given an averaging order p and a number of iterates N = 2q , the cost of com-
puting {Dd

µS̃
p

Nj
}j=0,...,p−d is of order O(2qp). Taking into account that (given a value of q)

the optimal value of p to use in the extrapolation is p ≃ q − (τ + 1) log2(q)—see details
in [46]—we obtain that the computational cost of Algorithm 3.2 is O(2qp) = O(N log2 N).
Furthermore, let us remark that the implementation of this algorithm does not require to
store any intermediate value, so it has negligible memory cost.

In this case, we obtain the following heuristic expression for the extrapolation error (more
details are given in [46])

|Dd
µθ − -d

q,p,p−d | ≤
10

2p−d+1
|-d

q,p,p−d − -d
q−1,p,p−d |. (14)

Notice that if we select an averaging order p, then we are limited to extrapolate with
order p − d . Moreover, p is the maximum order of the derivative that can be computed.

3.2 A Fast Newton Method for Computing Arnold Tongues

Another numerical approach to compute Arnold tongues Tθ , with θ ∈ D, is based in a pos-
teriori methods introduced in [37, 38]. This has the advantage that it allows obtaining at the
same time an approximation of the conjugacy to a rigid rotation and its Fourier coefficients.
Let us assume that (for certain ε which is not explicitly mentioned) the conjugacy relation
in (3) is satisfied with certain error, i.e., given fω ∈ Diffω

+(T) and θ we have an approximate
conjugacy h such that

fω(h(x)) = h(x + θ) + e(x), (15)

where e : T → T is an error function. To implement a Newton method, we consider correc-
tions ω̄ = ω + .ω and h̄ = h + .h which are obtained by solving (at least approximately)
the following linearized equation

f ′
ω(h(x)).h(x) − .h(x + θ) + ∂ωfω(h(x)).ω = −e(x).
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Following [37, 38] we write

.h(x) = h′(x)ϕ(x),

thus obtaining

f ′
ω(h(x))h′(x)ϕ(x) − h′(x + θ)ϕ(x + θ) + ∂ωfω(h(x)).ω = −e(x). (16)

Notice that taking derivatives at both sides of (15) we get

f ′
ω(h(x))h′(x) = h′(x + θ) + e′(x),

and introducing this expression into (16), we obtain (using that h′(x + θ) ≠ 0)

ϕ(x) − ϕ(x + θ) = v(x), v(x) := −
∂ωfω(h(x)).ω + e(x)

h′(x + θ)
(17)

modulo quadratic terms in the error. Solutions of cohomological equation (17) are easy to
find using Fourier series for periodic functions

f (x) =
∑

k∈Z

f̂ke2π ikx,

where we denote
[

f
]

T
= f̂0 the average of f . Thus, we obtain that—the correction in .ω is

obtained from the compatibility condition [v]T = 0—

.ω = −
[e]T

[∂ωfω ◦ h]T
, ϕ̂k =

v̂k

1 − e2π ikθ
, k ∈ Z\{0}, (18)

the solution being unique if we fix the average [ϕ]T. Cohomological equation as (17) are
standard in KAM theory (see for instance [12, 44]) and it is well-known that under Dio-
phantine conditions given by (4) we can control the analyticity of ϕ—optimal estimates
where provided in [44]—and the convergence of the obtained quadratic scheme. The reader
interested in convergence proofs is referred to [1, 12, 37, 38, 59, 60].

Following the above scheme, we can implement an efficient algorithm to perform a quasi-
Newton step in the computation of the Arnold tongue. The main idea is to take advantage
of the fact that solutions of cohomological equations obtained in (18)—and also the compu-
tation of derivatives such as h′—are diagonal operators in Fourier space. At the same time,
other algebraic operations of functions (product, addition, quotient) as well as compositions
can be performed efficiently in real space and there are very fast and robust FFT algorithms
that allows passing from real to Fourier space (and “vice versa”). Accordingly, if we ap-
proximate the periodic functions involved by using N Fourier modes, we can implement
an algorithm to compute the object with a cost of order O(N log2 N) in time and O(N) in
memory. We refer to [2, 14, 28] for related algorithms in several contexts.

All computations presented in this paper have been performed using truncated Fourier
series up to order N = 2q , with q ∈ N, corresponding to the discrete Fourier transform
associated to N equispaced points in real space {fj } = {fj }j=0,...,N−1, with fj = f (j/N).
In the following discussion, we will denote

{f̂k} = FFTN ({fj }), with f̂k =
1

N

N−1
∑

j=0

fj e−2π ikj/N , (19)
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where f̂0 ∈ R, f̂k = f̂ ∗
N−k and, for convenience, we set f̂N/2 = 0. Conversely we denote

{fj } = FFT−1
N ({f̂k}).

Algorithm 3.5 One step of Newton method Given a circle map fω ∈ Diffω
+(T) and a rotation

number θ , let us assume that we have an approximate conjugacy h(x) = x + ξ(x) to a rigid
rotation Rθ , which is given by N Fourier coefficients {ξ̂k} (see Remark (19)). Then, we
perform the following computations:

1. Estimation of the error.
(a) Compute {ξj } = FFT−1

N ({ξ̂k}).
(b) Compute the Fourier coefficients of ξ θ = ξ ◦ Rθ using ξ̂ θ

k = ξ̂ke2π iθ .
(c) Compute {ξ θ

j } = FFT−1
N ({ξ̂ θ

k }).
(d) Compute {hj } and {hθ

j } using hj = j/N + ξj and hθ
j = θ + j/N + ξ θ

j .
(e) Compute {ej } using ej = fω(hj ) − hθ

j .
2. Solution of the cohomological equation.

(a) Compute the Fourier coefficients of ξ ′ using ξ̂ ′
k = 2π ikξ̂k .

(b) Compute the Fourier coefficients of ξ ′θ using ξ̂ ′θ
k = ξ̂ ′

ke2π iθ .
(c) Compute {ξ ′θ

j } = FFT−1
N ({ξ̂ ′θ

k }).
(d) Compute {aj } and {bj } by means of

aj = −ej/(1 + ξ ′θ
j ) and bj = −∂ωfω(hj )/(1 + ξ ′θ

j ).

(e) Compute {âk} = FFTN ({aj }) and {b̂k} = FFTN ({bj }).
(f) Compute .ω = −a0/b0.
(g) Compute {v̂k} using v̂k = âk + b̂k.ω .
(h) Compute {ϕ̂k} using ϕ̂k = v̂k/(1 − e2π ikθ ) and {ϕj } = FFT−1

N ({ϕ̂k}).
3. Correction of the conjugacy.

(a) Compute {ξ ′
j } = FFT−1

N ({ξ̂ ′
k}).

(b) Compute the new approximately conjugacy {ξj } using ξj ← ξj + (1 + ξ ′
j )ϕj .

(c) Compute {ξ̂k} = FFTN ({ξj }).

Remark 3.6 Consider the r-Sobolev norm given by

∥f ∥H r = ∥Drf ∥L2 =

(

∑

k≥0

(2πk)2r |f̂k|
2

)
1
2

. (20)

Then, we observe that Algorithm 3.5 allows us to monitor the evolution of these norms along
Arnold tongues. Therefore, we can study the breakdown of regularity of the conjugacy when
approaching the critical point (see computations in Sect. 6).

Remark 3.7 To apply Algorithm 3.5, we recall that the conjugacy corresponding to the point
(ω, ε) = (θ,0) is given by {ξ̂k} = 0. We start the computations using N0 = 28 Fourier coef-
ficients and we control the number of coefficients at the ith step by studying the size of the
last N/2 coefficients in {ξk}. Notice also that truncation to finite dimension may produce
spurious solutions and one possibility to avoid this spurious solutions is by using adaptive
steps in the Newton method. We refer to [2] for details.
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Fig. 1 Graph of ε *→ ω(ε)

corresponding to the Arnold
tongue Tθ , for the fixed rotation
number θ = (

√
5 − 1)/2

4 First Numerical Explorations

Using the approach described in Sect. 3.1, some Arnold tongues Tθ of Diophantine rotation
number were approximated in [46] using the secant method and in [35] using the Newton
method. To do that, one fixes θ ∈ D and solves the equation ρ(ω, ε) − θ = 0 by continuing
the known solution (θ,0) with respect to ε (we refer to these references for details). Here
we are interested in the continuation of such solutions when ε approaches the critical value,
ε = 1. We have found empirically that, when approaching the critical point, it is better to
use the secant method to avoid the phase-locking regions.

As implementation parameters we take an averaging order p = 9 and N = 2q iterates
of the map, with q ≤ 23. Computations have been performed using a GNU C++ compiler
and the multiple arithmetic has been provided by the routines quad-double package of [26],
which include a quadruple-double data type of approximately 64 digits.

First we compute the Arnold tongue Tθ , with θ =
√

5−1
2 , corresponding to family (5).

The continuation step in ε is taken as 0.01 if ε ≤ 0.99. Beyond this value, we consider the
points ε = 1 − 0.95n/10, for 1000,1001, . . . ,2010. Notice that the selected points approach
exponentially fast to the critical point and they are defined using the fraction n/10 just
following a criterion of parallelization.

In Fig. 1 we plot the graph of this Arnold Tongue, and in the left plot of Fig. 2 we show,
in log10-log10 scale, the derivatives of the rotation number with respect to ω and ε along the
computed tongue.

Fitting these computations we obtain the following asymptotic expressions close to the
critical point (for ε ≃ 1)

Dωρ(ω(ε), ε) ≃
0.884 . . .

(1 − ε)0.155...
, Dερ(ω(ε), ε) ≃

0.015 . . .

(1 − ε)0.155...
. (21)

In the right plot of Fig. 2 we show the estimated extrapolation error by means of for-
mula (14). We note that asymptotic expansions (21) are modulated by a log-periodic factor.
This is a prediction of the renormalization group picture. Indeed, the renormalization group
picture predicts that if we scale the parameters by a factor δ, the regularity features scale by
another factor. This scaling relations are satisfied by power laws multiplied by a log-periodic
function of log-period δ. These log-period corrections were an important tool in [16].
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Fig. 2 Left: Graph of the derivatives log10(1−ε) *→ log10 Dωρ(ω(ε), ε) (upper graph) and log10(1−ε) *→
log10 Dερ(ω(ε), ε) (lower graph) along Tθ , for the fixed rotation number θ = (

√
5 − 1)/2. Right: We plot

ε *→ log10(e(·)), where e(·) stands for the heuristically estimated error—see (14)—in the computation of the
rotation number and its derivatives

Fig. 3 Left: Graph of the derivative (1 − ε) *→ ω′(ε) along Tθ , with θ = (
√

5 − 1)/2, computed as (22)
from the data in the left plot of Fig. 2. Right: Graph of the derivative (1 − ε) *→ ω′′(ε) along Tθ , with
θ = (

√
5 − 1)/2, computed as (23)

For ε < 0.99, the errors in the computations are of the order of the precision of the
machine. When we are far from the critical point—by “far” we mean a distance larger than
0.001—we can compute the rotation number with more than 25 digits, and the precision of
our computations decreases when approaching the critical point.

The observed growth of the derivatives given in (21) suggests that the map ε *→ ω(ε) is
C 1 at ε = 1—in the left plot of Fig. 3 we show the derivative of this map close to the critical
point—since

ω′(ε) = −
Dερ(ω(ε), ε)

Dωρ(ω(ε), ε)
. (22)

Generalization of formula (22) to higher order is straightforward. However, the growth of
higher order derivatives of the rotation number does not allow us to assert straightforwardly
the existence of derivatives of higher order of ω(ε) at ε = 1. For example, the second deriva-
tive is given by

ω′′(ε) =
−(Dωωρ(ω(ε), ε)ω′(ε) + 2Dωερ(ω(ε), ε))ω′(ε) − Dεερ(ω(ε), ε)

Dωρ(ω(ε), ε)
. (23)
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Fig. 4 Left: Graph in log10 - log10 scale of the derivatives Dω,ωρ(ω(ε), ε) (upper graph), Dω,ερ(ω(ε), ε)

(middle graph) and Dε,ερ(ω(ε), ε) (lower graph) along Tθ . These derivatives satisfy an expression like (21)
(modulo periodic corrections) with an exponent 2.16435 rather than 0.15604. Right: Graph of the derivative
log10(1 − ε) *→ log10(ω′′(ε)) along Tθ , with θ = (

√
5 − 1)/2, computed as (23)

From our numerical experiments we observe that the second order derivatives Dωωρ,
Dωερ and Dεερ grow much faster than Dωρ (see the left plot of Fig. 4), so a necessary
condition to ensure that ω′′(ε) exists is that some precise cancellations take place in the
numerator. Indeed, our numerical experiments indicate that ω′′(ε) is bounded (see the right
plot of Fig. 3) so that significant cancellations among terms in the numerator in (23) are
taking place. In other words, the numerator is much smaller than each of the individual
terms forming it. We think that these rather striking cancellations among terms that look so
different is an evidence in favor of the existence of a renormalization picture and that the
features at breakdown are driven by scaling arguments.

Moreover, we see in Fig. 4 that there are oscillations that seem almost log-periodic (they
decay exponentially, albeit very slowly). We can therefore expect that the Arnold tongue has
a regularity slightly bigger than C 2. As we will see, the renormalization group picture to be
discussed in Sect. 5.2 predicts that this curve is C 2+0.05.

Remark 4.1 We notice that the extrapolation error in the computation of second order deriva-
tives increases dramatically when approaching ε = 1, and one may thing that the oscillations
observed correspond to this error. However, due to the accuracy of the computations shown
in the left plot of Fig. 3, we can approximate ω′′(ε) using finite differences thus obtaining
the same graph shown in the right plot of Fig. 3.

Remark 4.2 A similar behavior is observed for other rotation numbers (see Sect. 6). In all the
cases, the curves are shown to be smoother than C 1. The curve corresponding to the golden
mean is the only one (among the computed rotation numbers) that is smoother than C 2.

5 Explanations in Terms of Renormalization Group

Numerical computations described in Sect. 4 suggest that Diophantine Arnold tongues
maintain some differentiability at the critical point (outside the domain of applicability of
KAM theory), even though these sets correspond to level curves of a function—the rotation
number—whose derivatives blow-up at the critical point.

Our goal now is to justify the differentiability observed. In particular, in Sect. 5.1 we
use the properties of cumulant operators to characterize the growth of the first derivatives
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of the rotation number with respect to parameters. We will see that the asymptotic behavior
of these derivatives is the same. Then, in Sect. 5.2 we give an explanation of the borderline
regularity based on a renormalization group picture. Then, we use the well-known Fenichel
theory under rate conditions for normally hyperbolic invariant manifolds to give a sharp
estimate of the differentiability of Arnold tongues. This depends on the spectrum of the
linearized renormalization operator and it is at least C 1+α .

We emphasize again that we present the results at the level of precision common in
theoretical physics and not at the level of complete mathematical rigor. Notably, we will
talk about eigenvalues of the linearization without specifying on which spaces the functions
act on. There are mathematical reasons as well as experience showing that the points of
the spectrum which matter for our argument are largely independent of what are the spaces
considered.

5.1 Renormalization Group and Cumulant Operators Formalism

In this section we recall some basic ideas, regarding renormalization group theory, re-
quired to understand results reported in [5, 6], where the effect of dynamical noise in one-
dimensional critical dynamical systems (namely unimodal maps of the interval at the ac-
cumulation of period-doubling and critical circle maps) is studied. In these references, a
renormalization scheme was developed for the system

xn = f (xn−1) + σξn (24)

where f is either a unimodal or a critical circle map, ξn are zero mean independent random
variables, and σ ≥ 0 is a small parameter which measures the size of the bare noise. The goal
was to obtain some scaling relations for the Wick ordered moments (called “cumulants” by
statisticians) of the effective noise, and to show that there is a well defined scaling limit.

It turns out that the same asymptotic properties of cumulant operators characterize the
growth of the different derivatives of the rotation number (see Proposition 5.1), which is the
interest of this paper. The goal of this section is to use the scaling properties obtained for
these derivatives to obtain the following result.

Proposition 5.1 Let us consider a two parametric family (ω, ε) *→ fω,ε of analytic circle

diffeomorphisms, such that for ε = 1 we have that fω,1 ∈ C
2k+1. Let us consider the Arnold

tongue Tθ of rotation number θ =
√

5−1
2 . Then, under certain hypothesis on the renormaliza-

tion group (see the discussion below), we have that the quotient

Dε[f
n
ω,ε](x)

Dω[f n
ω,ε](x)

is uniformly bounded with respect to n, for every (ω, ε) in the closure of Tθ .

For the purposes of this section, we will resort only to some basic properties of the
scaling limits of renormalized maps that we summarize next (we follow [33]). From the
well-known relation between the golden mean and the Fibonacci sequence {Fn}n∈Z, given
by F0 = 0, F1 = 1 and Fn+1 = Fn + Fn−1, it follows that

θ = lim
n→∞

Fn

Fn+1
, Fnθ − Fn−1 = (−1)n−1θn,
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and also that the rotation number of

f(n)(x) = f Fn(x) − Fn−1

equals (−1)n−1θn. Notice that for n large ρ(f(n)) is small, so we have that f(n)(x) ≃ x as
x ≃ 0. We want to concentrate on the behavior of f(n) near the critical point (recall that
f ′(0) = 0) and we therefore magnify as follows: let us introduce α(n) = f(n)(0)−1 and the
n − 1th renormalization of f

Rn−1[f ](x) := fn(x) = α(n−1)f(n)(x/α(n−1)). (25)

Remark 5.2 Since ρ(f(n)) = (−1)n−1θn, we have that

(−1)n−1(f(n)(x) − x) > 0

for all n ∈ N and x ∈ R. In particular, for x = 0 we obtain that (−1)n−1α(n) > 0. Therefore
it follows that each function fn(x) is increasing in x and satisfies fn(x) < x.

Numerical experiments (see the references given in Sect. 1) suggest that for every k ∈
N there is a universal constant α∗, satisfying α∗ < −1, and a universal function f∗, both
depending on k, such that

(1) The sequence of ratios αn = α(n+1)/α(n) converges to α∗.
(2) The sequence of functions fn converges to f∗ (non-trivial fixed point).

Then, let us observe that fn(0) = α(n−1)f(n)(0) = α−1
n , and we obtain

α∗ = lim
n→∞

fn(0)−1 = f∗(0)−1 (26)

(for example, for the cubic case k = 1 we have α∗ ≃ −1.2885745 . . .). Moreover, using that
Fn+1 = Fn + Fn−1, it follows that f(n+1) = f(n) ◦ f(n−1) and also f(n+1) = f(n−1) ◦ f(n). After
a suitable rescaling by α(n), from these expressions we obtain, respectively,

fn+1(x) = αnfn(αn−1fn−1(α
−1
n α−1

n−1x)),

fn+1(x) = αnαn−1fn−1(α
−1
n−1fn(α

−1
n x)).

Then, taking limits at n → ∞ we have that the statements (1) and (2) imply that

(3) The universal function f∗ is a solution of the functional equations

f∗(x) = α∗f∗(α∗f∗(α
−2
∗ x)), f∗(x) = α2

∗f∗(α
−1
∗ f∗(α

−2
∗ x)).

Moreover, it turns out that f∗ is an analytic function in x2k+1 (we refer for example
to [40]).

Remark 5.3 For the cubic critical case, there are unpublished computer-assisted proofs (we
refer to [34, 36]) that establish the existence of the universal function f∗.

Definition 5.4 Given a critical map f as in Definition 2.5, we introduce

2(x,n) =

n
∑

j=1

(f n−j )′ ◦ f j (x).
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It is straightforward to check that

2(x,m + n) = (f m)′ ◦ f n(x)2(x,n) + 2(f n(x),m). (27)

A renormalization scheme for 2 follows from introducing λ(n)(x) = 2(x,Fn) and us-
ing (27), Fn = Fn−1 + Fn−2 and f(n)(x) = f Fn(x) − Fn−1, thus obtaining

λ(n)(x) = f ′
(n−1) ◦ f(n−2)(x)λ(n−2)(x) + λ(n−1)(f(n−2)(x)).

Then, after the scaling λn(x) = λ(n)(α
−1
n−1x), we introduce the following operators (which

are called Lindeberg-Lyapunov operators)
(

λn

λn−1

)

= Kn · · · K1

(

λ2

λ1

)

, Kn =

(

Ln Mn

id 0

)

given by

Ln[λ](x) := f ′
n−1(αn−2fn−2(αn−1αn−2x))λ(α−1

n−1α
−1
n−2x),

Mn[λ](x) := λ(αn−2fn−2(α
−1
n−1α

−1
n−2x)).

As it is discussed in [5, 6], an important consequence of the exponential convergence
of fn to f∗ is that the Lindeberg-Lyapunov operators Kn converge exponentially fast to an
operator K∗ as n → ∞. Moreover, the operators Kn are compact in an appropriate space of
analytic functions and they preserve the cone of pairs of complex functions, such that their
components are strictly positive when restricted to the reals. Hence, we can apply Kreı̆n-
Rutman theorem (see for example [45]) an obtain that

Theorem 5.5 Let us consider a critical circle map of order 2k + 1, having rotation number

ρ(f ) = θ =
√

5−1
2 , as described in Definition 2.5. Denote by K∞ = K∗ and let ρn be the

spectral radius of the operators Kn for every n ∈ N ∪ {∞}. Then,

• ρn is a positive eigenvalue of Kn.
• The rest of spec(Kn)\{0} consists of eigenvalues whose modulus is less than ρn.
• A pair of positive functions (ψn,φn) is an eigenvector of Kn if and only if the correspond-

ing eigenvalue is ρn.
• We have that ρ∗ > α2k

∗ > 1 and that there is a constant c > 0 such that for all positive

pairs of functions (λ1,λ2) we have

c−1ρn
∗ ≤ λn(x) ≤ cρn

∗ ,

(

λn

λn−1

)

= Kn · · · K1

(

λ2

λ1

)

.

Proof This statements are justified in [5, 6] specifying also the corresponding domains of
definition which are not discussed here. !

Now, let us make use of Theorem 5.5 to characterize the growth of the derivatives of
the rotation number at the tip of Arnold tongues. To this end, we consider the 2-parameter
family of maps (ω, ε) *→ fω,ε given by (5), and we observe that the derivatives with respect
to ω and ε of the iterates of the map fω,ε are written as (in order to simplify the notation we
omit the dependence on ω and ε in the map)

Dµ[f n](x) =

n
∑

j=1

(f n−j )′ ◦ f j (x)ξµ ◦ f j (x), µ = ω, ε
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where (of course these computations are valid for any family of maps satisfying similar
properties as (5))

ξω(x) = ∂ωf (x) = 1, ξε(x) = ∂εf (x) =
1

2π
sin(2πx). (28)

Let us observe that we have an analogous of (27), which is given by

Dµ[f m+n](x) = (f m)′ ◦ f n(x)Dµ[f n](x) + Dµ[f m] ◦ f n(x) (29)

and also that there exist constants c1, c2 > 0 that allow us to control Dµ[f n] as follows

c12(x,n) ≤ |Dµ[f n](x)| ≤ c22(x,n), µ = ω, ε.

Therefore, using the properties of Theorem 5.5, we obtain (at ε = 1)

c1c
−1ρn

∗ ≤ |Dµ[f Fn ](x)| ≤ c2cρ
n
∗ , µ = ω, ε,

thus concluding that (at ε = 1)

∣

∣

∣

∣

Dε[f
n](x)

Dω[f n](x)

∣

∣

∣

∣

≤ c2c
−1
1 .

Remark 5.6 For the particular example of the Arnold family, we have that the expres-
sions (28) allow us to write

Dω[f n](x) = 2(x,n), |Dε[f
n](x)| ≤

1

2π
· 2(x,n)

thus obtaining a theoretical bound |ω′(1)| ≤ 0.159155. Indeed, the computations presented
in Fig. 2 show that |ω′(1)| ≃ 0.01748 . . . .

5.2 Geometric Interpretation and Bound of the Differentiability

To describe a global picture of the renormalization group we need to take into account the
dependence on the rotation number. For the purposes of the present paper, it suffices to
recall the construction in [40] based on commuting pairs. In the following, we will consider
renormalization both in the space of analytic diffeomorphisms and in the space of analytic
cubic critical maps.

The renormalization group transformation Rm, applied to a particular circle homeomor-
phism f depends upon m, where m is such that m ≤ 1/ρ(f ) < m+ 1—in other words, m is
the first term in the continued fraction of ρ(f ). This transformation is introduced as follows:

Definition 5.7 Consider the space ϕm of pairs (ξ,η) of analytic homeomorphisms of R

which satisfy the following conditions

(1) ξ(0) = η(0) + 1.
(2) η(ξ(0)) = ξ(η(0)).
(3) 0 < ξ(0) < 1.
(4) ξm(η(0)) > 0.
(5) ξm−1(η(0)) < 0.
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(6) If ξ ′(x) = 0 or η′(x) = 0 for x ∈ [η(0), ξ(0)], then x = 0 and η′(0) = ξ ′(0) = η′′(0) =

ξ ′′′(0) = 0, but ξ ′′′(0) and η′′′(0) are nonzero.
(7) (ξη)′(0) = (ηξ)′(0), and if ξ ′(0) = 0, then (ξη)′′′(0) = (ηξ)′′′(0).

Then, the renormalization map Rm acting on ϕm is defined by

Rm(ξ(x),η(x)) =
(

αξm−1(η(x/α)),αξm−1(η(ξ(x/α)))
)

,

where α = 1/(ξm−1(η(0)) − ξm(η(0))).

This construction—using conditions (1), (2) and (3)—allows us to associate a home-
omorphism f = fξ,η on the unit circle to each pair (ξ,η) ∈ ϕm by defining f = ξ on
[η(0),0] and f = η on [0, ξ(0)] and identifying the end points of the interval [η(0), ξ(0)].
Conditions (4) and (5) guarantee that the rotation number of this circle map satisfies
m ≤ 1/ρ(fξ,η) < m + 1 and also that α < −1. Furthermore, it is not difficult to see that
conditions (1), (2), (3), (6) and (7) are preserved by Rm.

Analytic diffeomorphisms Diffω
+(T) and cubic critical maps C

3 are embedded in the
space

⋃

m∈N
ϕm just by considering the map f *→ (f,f − 1). Notice also that, according

with Definition 2.5, we can think of C
3 as a cell of lower dimension, invariant under the

action of Rm, attached to the boundary of the space of circle maps.
The behavior of the rotation number under the action of the renormalization transforma-

tion is characterized in the following Lemma (we refer to [40] for details)

Lemma 5.8 If m ≤ ρ(fξ,η) < m + 1, then ρ(fRm(ξ,η)) = 1/ρ(fξ,η) − m.

An immediate consequence of this result is the following: a map f ∈ Diffω
+(T) (respec-

tively f ∈ C
3) has golden mean rotation number ρ(f ) = θ =

√
5−1
2 if and only if R1(f )

does. Consequently, the spaces

{f ∈ Diffω+(T) : ρ(f ) = θ} and {f ∈ C
3 : ρ(f ) = θ}

are invariant under R1 (actually, the restriction of the transformation R1 coincides with the
local transformation R, given by (25), described in the previous section). Notice that we are
restricting the discussion for the golden mean but other rotation numbers can be considered.
Indeed, Lemma 5.8 motivates that if the continued fraction of the studied rotation number
is eventually periodic, then it makes sense to search for a fixed point in the renormalization
group transformation.

Now, let us describe the geometric picture (see Fig. 5) corresponding to the action of the
renormalization transformation R1 just introduced. Firstly, let us recall (see Remark 5.3)
that in the space of cubic critical maps there is a fixed point f∗ of the renormalization group
(usually called the non-trivial of strong-coupling fixed point). Secondly, in the space of non-
critical circle maps there is another fixed point (usually called trivial or weak-coupling fixed
point), given by Rθ (x) = x + θ . Concretely:

• The non-trivial fixed point f∗ is hyperbolic, having a two-dimensional unstable manifold
which is a universal 2-parameter family of circle maps and contains the curve of rigid
rotations in its closure. Moreover, the stable manifold of f∗ has codimension two and
consists of all elements of C

3 with rotation number θ .
• The trivial fixed point Rθ has a one-dimensional unstable manifold given by the curve of

rigid rotations. Moreover, the stable manifold of Rθ has codimension one and consists of
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Fig. 5 Picture of the
renormalization group acting on
the space of analytic circle maps
with a critical boundary. A is the
stable manifold of the non-trivial
fixed point f∗ restricted to the
critical space. B is the slow
unstable manifold of A

all non-critical maps with rotation number θ . Let us observe that this stable manifold gets
arbitrarily close to the non-trivial fixed point. Notice that, recalling Herman’s Theorem,
all the non-critical maps of rotation number θ must converge to the trivial fixed point
under renormalization.

The spectrum of the linearized transformation at f∗ restricted to the tangent space of C
3

consists of an eigenvalue δ, with |δ| > 1 and a countable number of eigenvalues of modulus
less than one. In addition, one can see that the eigenspace associated to δ is transverse to
the subspace of maps of rotation number θ . The remaining unstable direction, which is
transverse to C

3, corresponds to an eigenvalue γ , with |δ| > |γ | > 1.
Call A = W s

f∗ ∩ C
3 the stable manifold of f∗ in the critical space and call B the slow

unstable manifold of A (associated to γ ).

Remark 5.9 We recall that the slow unstable manifolds are manifolds associated to the
eigenvector that increases the slowest decreasing eigenvalue. These manifolds have been
considered in the mathematical literature. They have somewhat unexpected properties even
in the finite dimensional case. A treatment that includes a discussion of the relations with
β functions of renormalization is [11]. A treatment leading to a different manifold is [13].
More modern treatments appear in [3, 4].

Notice that B is invariant under renormalization and, since it is not contained in C
3, it

consists in maps having rotation number golden mean. Hence, B ⊂ W s
Rθ

, where W s
Rθ

in the
stable manifold of Rθ under R1 (otherwise contradicting Herman’s Theorem). Therefore,
from Fenichel’s theory of normally hyperbolic invariant manifolds under rate conditions
(we refer to [20]) we conclude that the regularity of B is Cr , with

r ≥
log δ

logγ
, |δ| > |γ | > 1.

Of course, this bound for the regularity of B makes sense only at the boundary with the
critical manifold, since W s

Rθ
is an analytic manifold.
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Fig. 6 Arnold tongues of
rotation number θ are obtained
by intersecting the invariant
manifold B with a given
two-parametric family Cω,ε of
circle maps

In general, r is only upper bound for the regularity but in many cases it is sharp. Notice
also that this is a universal number since it depends only on the spectrum of the renormal-
ization operator.

Finally, we observe that Arnold tongues, curves of constant rotation number, are obtained
by intersecting the manifold B with a given two-parametric family Cω,ε of circle maps (see
Fig. 6), chosen in such a way that Cω,0 = {Rω, ω ∈ [0,1)} and Cω,1 ⊂ C

3. Then, we identify
the Arnold tongue Tθ with {f ∈ Cω,ε ∩ B : ρ(f ) = θ}.

Remark 5.10 For the case of θ =
√

5−1
2 , we have that δ ≃ 2.83362 . . . and γ = α2 ≃

1.6604242 . . . . This values predict that the Arnold tongue is C 2+0.05....

Remark 5.11 Of course, the properties discussed in this section are generic. For particular
families of circle maps we can observe higher regularity depending for example if we fall in
a submanifold of A with stronger stable eigenvalues.

6 Further Numerical Investigations

To enhance the universality of the results observed in Sect. 4 and the explanations reported in
Sect. 5, we present additional computations related to Arnold tongues performed by means
of Algorithms 3.2 and 3.5. We think that the large amount of computations shown in this
section illustrates that both numerical methods are very efficient, fast and robust.

Along this section we consider families (ω, ε) *→ fω,ε given by (5), (6), (7) and (8)
for several values of the parameter κ . We recall that fω,ε ∈ Diffω+(T) if ε < 1 and, de-
pending of the parameter κ , we have that fω,1 ∈ C

3,C5 or C
7. For fixed rotation num-

bers that define Arnold tongues, we have selected quadratic irrationals of the form θa,b =

(
√

b2 + 4b/a − b)/2, for 1 ≤ a ≤ b ≤ 5, that have periodic continued fraction given by
θa,b = [0;a, b, a, b, . . .]. It is clear that θa,b ∈ D(C,2) for every a, b, but with a smaller
constant C when a and b increase.
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Fig. 7 Graph of (1 − ε) *→ ω(ε), close to the critical point for several families. Tongues in the plots corre-
spond to θa,b for 1 ≤ a ≤ b ≤ 5

6.1 Additional Computations of Arnold Tongues

As implementation parameters for Algorithm 3.2 we take an averaging order p = 7 and
N = 2q iterates of the map, with q ≤ 22, asking for tolerances of 10−23 in the computation
of the rotation number and 10−26 in the convergence of the secant method. Computations
have been performed using 32-digit arithmetics (provided by the double-double data type
from [26]). The continuation points are taken as ε = 1 − 0.933254n, for n = 0,1, . . . ,100.
As in Sect. 4, these selected points approach exponentially fast to the critical point, in order
to obtain equispaced points in logarithmic scale.

In Figs. 7 and 8 we show the computed Arnold tongues ε *→ ω(ε) close to the critical
points. The plots in Fig. 7 correspond to cubic families while those in Fig. 8 correspond
to quintic and septic families. We observe that all these curves are clearly differentiable.
Indeed, in Figs. 9 and 10 we plot the corresponding derivatives ε *→ ω′(ε).

The computed values ω(1) and ω′(1) of these Arnold tongues are given in Tables 1 and 2.
We point out that some of the values ω(1) were also provided in [16] for the golden mean
θ = (

√
5−1)/2, using the method in [47]. Of course we obtain the same results, even though

it is worth mentioning that the method in [46] is much faster, since evaluating the interval
phase locking for the continued fraction of the rotation number is not required. Precisely,
this is the reason why we can systematically carry this study for different rotation numbers
in a straightforward way.

Then, as we advanced in Remark 4.2, all the Arnold tongues corresponding to these
numbers are smoother than C 1 at the critical point. If we evaluate the expression (23) for
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Fig. 8 Graph of (1 − ε) *→ ω(ε), close to the critical point for several families. Tongues in the plots corre-
spond to θa,b for 1 ≤ a ≤ b ≤ 5

these tongues, as it was done in Sect. 4, we observe that all of them either blow up or
oscillate wildly. It is not surprising that the curve corresponding to the golden mean is the
only one (among the computed rotation numbers) that is smoother than C 2.

Let us recall that derivatives of the rotation number with respect to parameters blow-
up when we approach the critical point. Actually, renormalization group theory predicts an
asymptotic expression of the form (here we use a generic parameter µ = ε,ω)

Dµρ(ω(ε), ε) ≃
αµ

(1 − ε)β∗

(

1 + Pµ(1 − ε)

)

+ O

(

1

(1 − ε)β̃∗

)

(30)

for certain constants αµ, β∗, β̃∗ where the exponents β∗ > β̃∗ depend only on the order of
criticality and the rotation number. The function Pµ satisfies that Pµ(δ(1 − ε)) = Pµ(1 − ε),
so it is periodic in logarithmic scale. Exponents β∗ for the blow-up of the derivatives Dωρ

and Dερ in the studied families are given in Tables 3 and 4, respectively.
In order to approximate this exponents we simply perform a linear fit at the derivatives

in log - log scale, avoiding the oscillatory corrections mentioned before. Nevertheless, we
observe a good agreement between exponents computed for the same rotation number and
order of criticality. Notice also that we have consistent results corresponding to the ex-
ponents computed independently for Dωρ and Dερ. We remark that the oscillatory terms
increase with the order of criticality, making the fit of the results more complicated.

We want to stress again that both Algorithms 3.2 and 3.5 do not depend on the particu-
lar rotation number that we pretend to study. To illustrate this fact we consider the Arnold
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Fig. 9 Graph of the derivative (1 − ε) *→ ω′(ε), close to the critical point for several families. Tongues in
the plots correspond to θa,b for 1 ≤ a ≤ b ≤ 5

family (5) and we select different rotation numbers θn by taking 350 equispaced points
in the interval xn ∈ [0,π/6] and θn = sin(xn) ∈ [0,0.5]. Since Diophantine numbers have
large Lebesgue measure, we expect that the selected points have good arithmetic proper-
ties. However, we check this fact by computing the corresponding Brjuno function—given
by (34)—and we accept the rotation number if B(θn) ≤ 4.

Computations are performed using both Algorithms 3.2 and 3.5 obtaining the same re-
sults. The only difference is that the first one converges for ε = 1 and the second one does
not, even though in the second case we can extrapolate very well the value ω(1) from the
computed non-critical ones (recall that the curve is C 1+α).

The computed Arnold Tongues are shown in Fig. 11. Since the tongues approach each
other when the parameter ε increases, we have different tones in the plot. The white zone
corresponds to resonant Arnold tongues or phase-locking regions. Actually in [51] it was
proved that the set of parameter values corresponding to irrational rotation numbers has
zero Lebesgue measure and in [23] that it has Hausdorff dimension strictly smaller that
one and greater or equal to 1/3. This is observed in Fig. 12 by plotting the singular density
distribution of the Arnold tongues at the critical point, which is obtained using the program R

for Statistical Computing [25]. The density of these tongues becomes singular at the critical
point because the set of irrational Arnold tongues is a foliation which sends a set of positive
measure into a set of zero measure.
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Fig. 10 Graph of the derivative (1 − ε) *→ ω′(ε), close to the critical point for several families. Tongues in
the plots correspond to θa,b for 1 ≤ a ≤ b ≤ 5

6.2 On the Breakdown of Sobolev Regularity

Now we present some computations using Algorithm 3.5 to illustrate the blow-up of Sobolev
norms of conjugacies when approaching the critical point. Again, we consider the families
(ω, ε) *→ fω,ε given by (5), (6), (7) and (8) for several values of the parameter κ , and we fix
rotations numbers of the form θa,b = (

√

b2 + 4b/a − b)/2, for 1 ≤ a ≤ b ≤ 5.
The idea is to continue numerically these Arnold tongues monitoring the evolution of r-

Sobolev norms of the conjugacy—see (20). Concretely, if hε(x) = x+ξε(x) is the conjugacy
to a rigid rotation of the circle map fω(ε),ε satisfying fω(ε),ε ◦hε = hε ◦Rθ , then we compute
the values ∥ξε∥r for 100 points r ∈ [0,2].

In Fig. 13 we plot some of the computed norms in order to illustrate their blow up. Then,
in a similar way as discussed in relation with expressions (30), we fit the first order term of
the following law

∥ξε∥r ≃
A∗(r)

(1 − ε)B∗(r)

(

1 + P∗(1 − ε)

)

+ O

(

1

(1 − ε)B̃∗(r)

)

, (31)

for some constants A∗(r), B∗(r), where B∗(r) is a universal number in the sense that de-
pends only on the rotation number and the order of criticality. Some computations are given
in Table 5.

We want to point out that (31) can be related to the renormalization group, thus obtaining
a heuristic formula for the prediction for the exponents B∗(r) in terms of the scaling proper-
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Table 1 Critical values ω(1) for several rotation numbers and families

θ Family (5) Family (6), κ = 0.3 Family (6), κ = 0.7 Family (6), κ = 4/3

[0;1,1,1,1, . . .] 0.60666106347011 0.62687105954673 0.61481318525291 0.59694625982733

[0;2,1,2,1, . . .] 0.38212565637946 0.36062325061216 0.37308969032734 0.39491140275142

[0;2,2,2,2, . . .] 0.41886498641897 0.39990316709114 0.41264132947169 0.42351776623671

[0;3,1,3,1, . . .] 0.29707881009281 0.26853619235278 0.28029724322956 0.32257130250643

[0;3,2,3,2, . . .] 0.31609640893852 0.29086464077852 0.30142766673575 0.33649021671957

[0;3,3,3,3, . . .] 0.32387366602535 0.30045276849149 0.31006848017653 0.34187333729677

[0;4,1,4,1, . . .] 0.25358922337337 0.21528631778779 0.23144008299429 0.28735985806134

[0;4,2,4,2, . . .] 0.26481615381242 0.22870487487661 0.24423747695879 0.29518260647474

[0;4,3,4,3, . . .] 0.26924114574461 0.23383349744976 0.24927706959563 0.29809076070052

[0;4,4,4,4, . . .] 0.27150235886599 0.23639389072267 0.25185893948316 0.29950445821370

[0;5,1,5,1, . . .] 0.22798444384638 0.18222910335518 0.20189602203919 0.26743847255173

[0;5,2,5,2, . . .] 0.23517195185003 0.19163068831675 0.21026572304927 0.27225731561090

[0;5,3,5,3, . . .] 0.23793193615175 0.19519345236594 0.21347535861221 0.27399967886214

[0;5,4,5,4, . . .] 0.23932398378781 0.19699876644569 0.21509641059390 0.27483473261402

[0;5,5,5,5, . . .] 0.24012917730632 0.19805419119542 0.21603622555704 0.27529864834701

θ Family (8), κ = 0.5 Family (7), κ = 0.6 Family (7), κ = 0.9 Family (7), κ = 1.5

[0;1,1,1,1, . . .] 0.61567565128166 0.63313304089504 0.61633050179571 0.59005254922276

[0;2,1,2,1, . . .] 0.37113750513616 0.35835245630167 0.37459080295573 0.40351729363417

[0;2,2,2,2, . . .] 0.41381227245236 0.38862276635541 0.40674475830016 0.42724158766426

[0;3,1,3,1, . . .] 0.27421337809363 0.27479777089192 0.28941098812035 0.33935075990077

[0;3,2,3,2, . . .] 0.29703674674343 0.29439459617477 0.30653889725553 0.35045111426901

[0;3,3,3,3, . . .] 0.30642250791340 0.30167316749381 0.31326694792198 0.35457863104247

[0;4,1,4,1, . . .] 0.22212813733449 0.23346214811924 0.24684360339516 0.30902598272223

[0;4,2,4,2, . . .] 0.23613533662923 0.24254965099543 0.25677909160315 0.31510031370341

[0;4,3,4,3, . . .] 0.24165845987386 0.24599201459714 0.26053229443740 0.31726556639141

[0;4,4,4,4, . . .] 0.24450197931748 0.24766934120454 0.26238374706392 0.31828876978394

[0;5,1,5,1, . . .] 0.18996231415208 0.20506531290792 0.22204716742246 0.29222344245490

[0;5,2,5,2, . . .] 0.19928758150802 0.21038885255896 0.22814569979955 0.29589555394143

[0;5,3,5,3, . . .] 0.20286298652571 0.21214803717788 0.23036300267215 0.29716690551844

[0;5,4,5,4, . . .] 0.20467586441013 0.21294397395156 0.23142812774567 0.29775887851977

[0;5,5,5,5, . . .] 0.20573171184568 0.21336968574448 0.23202043530149 0.29808153700254

ties and the rotation number (we follow the arguments in [2]). To this end, we set λ = 1 − ε

and we consider the family of circle maps—for convenience, we omit the dependence on
the parameter ω in the family—

fλ(x) = x + ω −
1 − λ

2π
g(2πx),

where g is a 1-periodic function, satisfying g′(0) = 2π , as in the examples given by (5), (6),
(7) and (8). Notice that the critical point corresponds to λ = 0. The key observation is that



1180 R. de la Llave, A. Luque

Table 2 Derivative ω′(1) for several rotation numbers and families

θ Family (5) Family (6), κ = 0.3 Family (6), κ = 0.7 Family (6), κ = 4/3

[0;1,1,1,1, . . .] −0.017480008706 0.015844188888 −0.005297174685 −0.028545926033

[0;2,1,2,1, . . .] 0.035398636056 −0.005231158488 0.018425583068 0.066785487700

[0;2,2,2,2, . . .] 0.002917141025 −0.024409767066 −0.003682733151 0.002888830832

[0;3,1,3,1, . . .] 0.066670897459 0.013323865197 0.036049987734 0.117467946576

[0;3,2,3,2, . . .] 0.042388154205 0.001567670798 0.018392446240 0.072501615773

[0;3,3,3,3, . . .] 0.027734098090 −0.004640726796 0.007791789630 0.042559444114

[0;4,1,4,1, . . .] 0.087891436301 0.022485184504 0.049963021585 0.147292465097

[0;4,2,4,2, . . .] 0.069844498563 0.009352515130 0.035722919701 0.116421906852

[0;4,3,4,3, . . .] 0.058858174400 0.001208860914 0.027133714502 0.094025465075

[0;4,4,4,4, . . .] 0.051387391565 −0.004267696674 0.021301234528 0.079185096802

[0;5,1,5,1, . . .] 0.102996438306 0.025491194823 0.061178543520 0.166115191409

[0;5,2,5,2, . . .] 0.089527362287 0.015715539045 0.049640825551 0.144658034280

[0;5,3,5,3, . . .] 0.081292422821 0.009941703525 0.042680129321 0.128534409348

[0;5,4,5,4, . . .] 0.075645185852 0.006143284836 0.037929898442 0.117664005496

[0;5,5,5,5, . . .] 0.071653884023 0.003531956411 0.034574498276 0.110282140800

θ Family (8), κ = 1/2 Family (7), κ = 0.6 Family (7), κ = 0.9 Family (7), κ = 1.5

[0;1,1,1,1, . . .] −0.004171196679 0.027537364113 −0.001674483085 −0.035470663937

[0;2,1,2,1, . . .] 0.012391201596 0.002825329200 0.031358660599 0.089826694502

[0;2,2,2,2, . . .] −0.000748943517 −0.039280048359 −0.013909345625 0.003674506323

[0;3,1,3,1, . . .] 0.023194322552 0.017569479600 0.059575574792 0.150212001091

[0;3,2,3,2, . . .] 0.011959968014 0.001897136580 0.024632033662 0.091716021501

[0;3,3,3,3, . . .] 0.005029281641 −0.011861643071 0.003861749221 0.047934287671

[0;4,1,4,1, . . .] 0.031707953463 0.066236772883 0.083123456845 0.183890189357

[0;4,2,4,2, . . .] 0.022116085364 0.043358356155 0.057560268438 0.143930363856

[0;4,3,4,3, . . .] 0.016276476088 0.024207462318 0.039912128324 0.113977120621

[0;4,4,4,4, . . .] 0.012222150602 0.010405137696 0.027873412931 0.095003522888

[0;5,1,5,1, . . .] 0.038896089329 0.082957511062 0.101218153327 0.203990264191

[0;5,2,5,2, . . .] 0.030722981151 0.059962122538 0.081693151984 0.176700904422

[0;5,3,5,3, . . .] 0.025793951377 0.042755733323 0.067215229427 0.156571561027

[0;5,4,5,4, . . .] 0.022388211725 0.031797997816 0.057242185950 0.142412448314

[0;5,5,5,5, . . .] 0.019944270297 0.024829041191 0.050500445834 0.132656171032

renormalization sends

hγ λ(x) ≃ α∗hλ(σx), (32)

where α∗ is the universal constant given in (26), γ is the eigenvalue of the non-trivial fixed
point transversal to the critical space and σ is the exponent of convergence of the continued
fraction of the fixed rotation number θ .

For example, we justify (32) for the case of the golden mean θ = (
√

5−1)/2 (in this case
σ is known to be also the golden mean). To renormalize the map fλ, for λ ≃ 0, we compute

f
Fn
λ (hλ(x)) − Fn−1 = hλ(x + Fnθ − Fn−1) ≃ hλ(x + θn)
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Table 3 Exponent β∗ in the blow-up of derivatives of the rotation number with respect to ω, for several
rotation numbers and families

θ Family
(5)

Family (6) Family (8) Family (7)

κ = 0.3 κ = 0.7 κ = 4/3 κ = 1/2 κ = 0.6 κ = 0.9 κ = 1.5

[0;1,1,1,1, . . .] 0.1552 0.1556 0.1550 0.2124 0.1557 0.2112 0.2114 0.2446

[0;2,1,2,1, . . .] 0.1749 0.1747 0.1748 0.2330 0.1739 0.2395 0.2323 0.2687

[0;2,2,2,2, . . .] 0.1660 0.1645 0.1659 0.2257 0.1665 0.2260 0.2283 0.2560

[0;3,1,3,1, . . .] 0.2060 0.2038 0.2057 0.2683 0.2048 0.2642 0.2670 0.2958

[0;3,2,3,2, . . .] 0.1811 0.1788 0.1806 0.2411 0.1795 0.2406 0.2430 0.2602

[0;3,3,3,3, . . .] 0.1871 0.1849 0.1865 0.2491 0.1858 0.2482 0.2476 0.2874

[0;4,1,4,1, . . .] 0.2382 0.2412 0.2385 0.2982 0.2386 0.2814 0.2985 0.3705

[0;4,2,4,2, . . .] 0.2021 0.2061 0.2019 0.2506 0.2015 0.2490 0.2561 0.2829

[0;4,3,4,3, . . .] 0.2035 0.2072 0.2031 0.2596 0.2021 0.2208 0.2485 0.3167

[0;4,4,4,4, . . .] 0.2151 0.2182 0.2142 0.2831 0.2136 0.2542 0.2761 0.3132

[0;5,1,5,1, . . .] 0.2702 0.2694 0.2700 0.3256 0.2708 0.3371 0.3293 0.3753

[0;5,2,5,2, . . .] 0.2259 0.2250 0.2255 0.2773 0.2248 0.2851 0.2794 0.3178

[0;5,3,5,3, . . .] 0.2226 0.2244 0.2237 0.2844 0.2241 0.2828 0.2741 0.3293

[0;5,4,5,4, . . .] 0.2299 0.2320 0.2306 0.3192 0.2319 0.3206 0.3177 0.3471

[0;5,5,5,5, . . .] 0.2465 0.2458 0.2461 0.3167 0.2455 0.3273 0.3121 0.3510

Table 4 Exponent β∗ in the blow-up of derivatives of the rotation number with respect to ε, for several
rotation numbers and families

θ Family
(5)

Family (6) Family (8) Family (7)

κ = 0.3 κ = 0.7 κ = 4/3 κ = 1/2 κ = 0.6 κ = 0.9 κ = 1.5

[0;1,1,1,1, . . .] 0.1562 0.1571 0.1566 0.2115 0.1564 0.2123 0.2370 0.2416

[0;2,1,2,1, . . .] 0.1789 0.1664 0.1786 0.2378 0.1786 0.2426 0.2612 0.3128

[0;2,2,2,2, . . .] 0.1645 0.1666 0.1665 0.2301 0.1663 0.2248 0.2254 0.2507

[0;3,1,3,1, . . .] 0.2048 0.2116 0.2064 0.2813 0.2111 0.2538 0.2428 0.3024

[0;3,2,3,2, . . .] 0.1851 0.1891 0.1809 0.2460 0.1780 0.2183 0.2254 0.2701

[0;3,3,3,3, . . .] 0.1871 0.1877 0.1877 0.2341 0.1881 0.2413 0.2552 0.2775

[0;4,1,4,1, . . .] 0.2484 0.2425 0.2425 0.2901 0.2326 0.2802 0.2938 0.3780

[0;4,2,4,2, . . .] 0.2152 0.2223 0.2188 0.2615 0.2105 0.2430 0.2567 0.2849

[0;4,3,4,3, . . .] 0.1947 0.2113 0.1950 0.2571 0.2026 0.2348 0.2436 0.3004

[0;4,4,4,4, . . .] 0.2146 0.2193 0.2175 0.2828 0.2174 0.2840 0.2753 0.3375

[0;5,1,5,1, . . .] 0.2794 0.2880 0.2874 0.3388 0.2814 0.3441 0.3257 0.3762

[0;5,2,5,2, . . .] 0.2214 0.2246 0.2396 0.2809 0.2224 0.2867 0.2829 0.3142

[0;5,3,5,3, . . .] 0.2347 0.2322 0.2358 0.2843 0.2306 0.2867 0.2866 0.3213

[0;5,4,5,4, . . .] 0.2349 0.2349 0.2386 0.3216 0.2411 0.3217 0.3162 0.3475

[0;5,5,5,5, . . .] 0.2468 0.2369 0.2446 0.3209 0.2416 0.3487 0.3201 0.3483

and multiplying at both sides by α(n−1) we obtain

Rn−1[fλ](α(n−1)hλ(x)) ≃ α(n−1)hλ(x + θn).
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Fig. 11 Arnold tongues
corresponding to few hundreds of
Diophantine rotation numbers for
the Arnold family (5). As usual,
we plot α in the horizontal axis
and ε in the vertical axis

Fig. 12 Density distribution of
the Arnold tongues at the critical
point ε = 1. We do not include
the vertical axis since the value
depends on the smoothing
parameters of the histogram, and
this plot pretends to represent
qualitatively that the density of
the critical points becomes
singular

Since λ ≃ 0 we can write Rn−1[fλ] ≃ fγ n−1λ and, introducing the scaled variable y =

x/θn−1, we get an expression like (32) for the conjugacy hγ λ of fγ λ to a rotation.

In general, using (32) we compute ∥hγ λ∥r ≃ α∗∥hλ(σ ·)∥r = σ r− 1
2 ∥hλ∥r . Finally, intro-

ducing the first order of (31) into this relation for the norms, we conclude that

B∗(r) = −
(

r −
1

2

)

logσ

logγ
−

logα∗

logγ
, (33)

and that P∗ is log-periodic of period logγ .
For example, for a cubic family and fixing θ to be the golden mean, we have that σ ≃

0.61803 . . . and γ = α2 ≃ 1.66042 . . . , so that the slope of the affine expression (33) is
expected to be ≃ 0.949 . . . . This prediction agrees with our numerical experiments.

In the left plot of Fig. 14 we show the exponent B∗(r) as a function of the index r for
several families of circle maps (we take θ as the golden mean). We observe a very good
agreement between maps of the same criticality. Similar results are obtained for the other
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Fig. 13 Evolution of the r-Sobolev norm—for r = i/50, with i = 50,55,60,65,70,75,80,85,90,95 and
100—of the conjugacy to a rotation along the Arnold tongue corresponding to θ = (

√
5 − 1)/2. Left: Fam-

ily (5). Right: Family (6) with κ = 4/3

Table 5 Exponent B∗(r) in expression (31)—for r = 67/50,72/50 and 77/50—corresponding to the blow-
up of the r-Sobolev norm of the conjugacy close to the critical point, for several rotation numbers and families

Family (5) Family (6), κ = 0.3 Family (6), κ = 4/3 Family (7), κ = 0.6

θ
r 67

50
72
50

77
50

67
50

72
50

77
50

67
50

72
50

77
50

67
50

72
50

77
50

[0;1,1, . . .] 0.412 0.510 0.606 0.419 0.508 0.605 0.366 0.428 0.496 0.364 0.431 0.499

[0;2,1, . . .] 0.433 0.527 0.623 0.431 0.526 0.622 0.383 0.450 0.534 0.390 0.457 0.529

[0;2,2, . . .] 0.420 0.515 0.612 0.423 0.515 0.612 0.373 0.439 0.505 0.376 0.442 0.513

[0;3,1, . . .] 0.459 0.559 0.661 0.462 0.562 0.663 0.408 0.478 0.551 0.406 0.479 0.552

[0;3,2, . . .] 0.437 0.526 0.626 0.437 0.530 0.624 0.390 0.463 0.521 0.393 0.460 0.526

[0;3,3, . . .] 0.429 0.529 0.625 0.435 0.532 0.623 0.383 0.455 0.518 0.385 0.451 0.514

[0;4,1, . . .] 0.494 0.595 0.701 0.491 0.593 0.702 0.439 0.522 0.597 0.436 0.524 0.595

[0;4,2, . . .] 0.455 0.550 0.649 0.455 0.548 0.643 0.434 0.484 0.551 0.434 0.491 0.565

[0;4,3, . . .] 0.446 0.543 0.643 0.442 0.532 0.624 – – – – – –

[0;4,4, . . .] 0.447 0.543 0.648 0.443 0.538 0.636 – – – – – –

[0;5,1, . . .] 0.522 0.625 0.739 0.520 0.628 0.741 – – – – – –

[0;5,2, . . .] 0.474 0.566 0.660 0.475 0.573 0.663 – – – – – –

[0;5,3, . . .] 0.466 0.562 0.658 0.468 0.561 0.657 – – – – – –

[0;5,4, . . .] 0.468 0.563 0.664 0.466 0.567 0.665 – – – – – –

[0;5,5, . . .] 0.479 0.572 0.680 0.475 0.575 0.674 – – – – – –

selected quadratic rotation numbers. In addition, in the right plot of Fig. 14 we illustrate the
periodic correction predicted by the renormalization group (see details in the caption).

6.3 Relation of the Blow up Exponents with Brjuno Function

In previous sections we have characterized the first asymptotic exponents in the blow up
of the derivatives of the rotation number (see Sect. 6.1) and the r-Sobolev regularity of the
conjugation to a rotation (see Sect. 6.2). It turns out that—given a certain family—these
exponents depend on the arithmetic properties of the rotation number. However, looking at
formula (33), we have little intuition on this dependence since σ and γ depend on θ in a
very complicated way.
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Fig. 14 Left: we plot r *→ B∗(r), where B∗(r) is the exponent in the expression (31), corresponding to the
blow-up of the r-Sobolev norm of the conjugacy close to the critical point for the golden mean θ = (

√
5−1)/2

and the Families (5), (6) for κ = 0.3,0.7,4/3, (7) for κ = 0.6,0.9,1.5 and (8) for κ = 0.5. Right: we plot
log10(1 − ε) *→ log10(1.42(1 − ε)0.741∥ξε∥r ), for θ = [0;5,1,5,1, . . .], corresponding to Family (6) with
κ = 0.3 and r = 77/50. The coefficients 1.42 and 0.741 correspond to subtract the linear fit in log10-log10
scale

In order to study the dependence of the exponents β∗ and B∗(r) on the rotation number,
we make use of the Brjuno function, which measures how much Diophantine a number is.
Brjuno function can be computed recursively using the following formula

B(θ) = − log θ + θ B(θ−1), θ ∈ (0,1). (34)

Firstly, in Fig. 15 we plot B(θ) *→ β∗ for several of the studied families. It seems
that the exponent β∗ is larger when the Brjuno function increases (i.e., when the rota-
tion number is “closer” to be a rational number), and that this behavior is organized
in families. In all cases we obtain an upper boundary curve which is given by the ro-
tation numbers θ = [0;2,2, . . .], [0;3,3, . . .], [0;4,4, . . .] and [0;5,5, . . .], respectively.
On the other hand, we observe a lower boundary curve that corresponds to the rotation
numbers θ = [0;1,1, . . .], [0;2,1, . . .], [0;3,2, . . .], [0;4,2, . . .], [0;3,1, . . .], [0;5,2, . . .],
[0;4,1, . . .] and [0;5,1, . . .], always appearing in this order.

Secondly, in Fig. 16 we consider the exponent B∗(r) in the blow up of the r-Sobolev
norm. The behavior observed is very similar to that of the exponents of the blow-up of the
derivatives of the rotation number with respect to parameters. Analogous results have been
obtained for the other families studied in this paper.

7 Conclusions

In this study we have used two numerical methods to compute very accurately Arnold
tongues, given by curves ω(ε), as well as the corresponding derivatives ω′(ε). We have
found that the methods work reliably and efficiently even close to the values of ε where the
circle maps cease to be diffeomorphisms and the conjugacies of the circle maps to a rigid
rotation cease to be smooth.

This allows us to extrapolate with confidence to the breakdown and to uncover some new
phenomena. Our main findings are:

1. We have found that the Arnold tongues remain finitely differentiable at the blow up and
we have found the optimal regularity. Indeed, Arnold tongues are at least C 1+α , α being
a universal number. For the golden mean case, the curve is in fact smoother than C 2.
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Fig. 15 We show B(ω) *→ β∗, where B(θ) is the Brjuno function—computed using (34)—and β∗ is the ex-
ponent in the blow-up of derivatives of the rotation number with respect to ω—introduced in (30). The upper

boundary curve corresponds to θ = [0;2,2, . . .], [0;3,3, . . .], [0;4,4, . . .] and [0;5,5, . . .], respectively. The
lower boundary curve corresponds to θ = [0;1,1, . . .], [0;2,1, . . .], [0;3,2, . . .], [0;4,2, . . .], [0;3,1, . . .],
[0;5,2, . . .], [0;4,1, . . .] and [0;5,1, . . .], respectively

2. We have found that Sobolev norms of the conjugacy to rotations blow up as powers. The
exponents of the blow up are also universal numbers and they depend affinely on the
index of the Sobolev space. We have found also log-periodic corrections to the scalings
and we show that these corrections are predicted by the renormalization group.

3. The exponents of blow up of several quantities are related to the Brjuno function of the
corresponding rotation number.

Given the analogy between breakdown of smooth conjugacies and phase transitions, we
present renormalization group explanations of (1) and (2) which give quantitative agreement
(about to 3 figures) with the computed numerically exponents. The observation (3) remains
a challenge for theoretical explanations.

As we mentioned in the introduction, we have presented a renormalization group picture
at the level of rigor of theoretical physics. The task of formulating this picture at the level of
full mathematical rigor will have to be postponed for future work. In addition, this picture
should the adapted in order to deal with general Diophantine (or Bruno) numbers rather than
just Diophantine numbers having periodic continued fraction.
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Fig. 16 We show B(ω) *→ B∗(r), where B(θ) is the Brjuno function (see text for details) and B∗(r) is the
exponent in the blow-up of r-Sobolev norm of the conjugation. The upper boundary curve corresponds to
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