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S U M M A R Y
We present a new 3-D time-domain Gauss–Newton full waveform inversion (3-D FWI) method
for near-surface site characterization. The method is based on a solution of 3-D elastic wave
equations for forward modelling of wave propagation, and Gauss–Newton inversion approach
for model updating to extract material property. Both the forward modelling and model
updating are conducted in the time domain, which allows exploiting complete waveform
information of multiple frequencies simultaneously for detailed subsurface material properties.
Based on virtual sources and reciprocal wavefields, an efficient approach is developed to
calculate derivative seismograms (Jacobian matrix) for all cells simultaneously. The capability
of the presented FWI method is tested on both synthetic and field experimental data sets.
Sensors and sources located in uniform 2-D grids on the ground surface are used to acquire
seismic wavefields, which are then inverted for extraction of 3-D subsurface wave velocity
structures. The results show that the waveform analysis was able to characterize low- and high-
velocity synthetic layers, and variable soil/rock layers of the test site. The S-wave velocity (Vs)
profiles from field experiment generally agree with invasive standard penetration test (SPT) N-
values, including identification of a low-velocity zone.Vs profiles obtained from a cross-adjoint
3-D FWI are also included for comparison, and results from the presented Gauss–Newton
inversion are more consistent with the SPT N-values in both trend and magnitudes.

Key words: 3-D full waveform inversion; geotechnical site characterization; 3-D elastic wave
equation; Gauss–Newton inversion; wavefield derivatives; virtual source and reciprocity.

1 I N T RO D U C T I O N

Full waveform tomography is becoming an efficient geophysical
tool for subsurface site characterization at various length scales from
metres to kilometres. As documented by Vireux & Operto (2009),
the full waveform approach potentially produces higher resolution
models of subsurface structures than approaches that consider por-
tions of measured wavefields such as the dispersive characteristic
of Rayleigh waves or first-arrival times of body waves. The wave-
form tomography can be used to identify and quantify embedded
anomalies (weak soil or void) and characterize variable soil/rock
layers, as phase and magnitude of seismic waves are modulated
by the anomalies, layer interfaces and material property variations.
Both S- and P-wave velocities (Vs and Vp) of the subsurface struc-
tures can be extracted independently from measured wavefields to
increase credibility of characterized profiles.

A number of 3-D FWI algorithms have been developed and ap-
plied to both synthetic and field seismic data at kilometre-scales
(Ben-Hadj-Ali et al. 2008; Epanomeritakis et al. 2008; Fichtner
et al. 2009; Plessix 2009; Sirgue et al. 2010; Tape et al. 2010; Vigh
et al. 2011; Warner et al. 2013; Ha et al. 2015; Métivier et al. 2016).

The 3-D FWI algorithms often use acoustic wave equations due to
challenging computation, and neglect any elastic effects. The acous-
tic approximation generally performs well for marine hydrophone
data but is limited for land seismic data due to the importance
of shear waves (Butzer et al. 2013) for geotechnical site investi-
gation. Currently, studies with elastic 3-D FWI analysis are still
rare.

At smaller length scales (0–100 m), only a few 3-D FWI stud-
ies have been reported for synthetic data (Butzer et al. 2013; Fathi
et al. 2015) and field data (Fathi et al. 2016; Nguyen & Tran 2018).
The main challenges at small scales include dominant Rayleigh
wave components, inconsistent wave excitation (e.g. using sledge-
hammers), strong attenuation due to soil viscosity, and strong vari-
ability of soil/rock lithology. These challenges have prevented FWI
techniques from being used routinely for near-surface site char-
acterization (Tran & Luke 2017). FWI techniques based on the
steepest-descent or conjugate gradient methods often create inver-
sion artifacts within a few metres of the ground surface, as well
as near source and receiver locations. Dominant Rayleigh waves
propagating horizontally near the ground surface produce large
derivative seismograms (high sensitivity) with respect to shallow
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3-D time-domain Gauss–Newton FWI 207

Figure 1. Derivative wavefield comparison: (a) schematic diagram of the model, s and r denote for vertical source and vertical receiver; and (b) derivative
wavefields with respect to Vp and Vs of a cell at 12 m depth calculated by eq. (8) (Explicit) and eq. (15) (Implicit).

cells. The high sensitivity coupled with large residuals due to in-
consistent source, strong attenuation and strong soil/rock variability
often result in overshooting of model updates or shallow artifacts.
The shallow artefacts produce local solutions and limit the depth of
investigation.

The shallow artefacts could be partially suppressed by using gra-
dient tampering for cells near the source/receiver locations (Nguyen
& Tran 2018). Specifically, a tampering radius is used for gradually
increasing gradient scales from zero at the source/receiver locations
to one at the outside of the sphere. However, it is difficult to select
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208 K.T. Tran et al.

Figure 2. Test configuration used for both synthetic and field experiments: source (cross), receiver (circle). Standard penetration tests, SPT (square) are only
for the field experiment.

a proper tampering radius as it depends on quality of measured
waveform data, and cells at the source and receiver locations are
not updated during inversion.

As an effort to improve field experimental results, this paper
presents a new 3-D time-domain Gauss–Newton FWI method for
near-surface site investigation (less than 20 m depth). The method
is based on 3-D elastic wave equations to simulate particle motion,
and Gauss–Newton inversion approach to extract material proper-
ties. The seismic wavefields obtained from 2-D grids of sensors
and sources on the ground surface are inverted to extract Vs and
Vp structures beneath the test area. The benefits of the time-domain
Gauss–Newton inversion include: (1) use of the complete waveform
information including multiple frequencies simultaneously for de-
tailed subsurface material properties and (2) the inverse Hessian
matrix used in Gauss–Newton inversion acts as a weighting func-
tion, which balances the gradient vector to suppress shallow artifacts
for better resolution of the deeper stratigraphy (Pratt et al. 1998;
Sheen et al. 2006).

At kilometre-scales with millions of cells, approximations of
the inverse Hessian matrix are often used to reduce required
computer memory and computing time. Several methods have
been developed for the approximations. They include the limited-
memory BFGS (L-BFGS, e.g. Nocedal & Wright 2006; Fathi et al.
2016), the projected Hessian quasi-Newton (Ma & Hale 2013),
the combined Newton and conjugate gradient (Epanomeritakis
et al. 2008), the pseudo Gauss–Newton (Pan et al. 2015) and
the truncated Newton (Métivier et al. 2013, 2017) methods. Un-
like the kilometre-scales, near-surface characterization problems
often deal with a much smaller number of cells (tens of thou-
sands). Taking the full advantage of the Gauss–Newton approach,
the complete inverse Hessian is used in our presented 3-D FWI
algorithm.

The algorithm is first applied to synthetic data generated from a
realistic profile consisting of four variable high- and low-velocity
soil layers. Subsequently, it is applied to field data collected at
a Florida test site and verified with invasive SPT testing. From

our best understanding, this is the first reported 3-D time-domain
Gauss–Newton FWI for the near-surface site characterization.

2 F U L L WAV E F O R M I N V E R S I O N
M E T H O D O L O G Y

The developed 3-D FWI method uses forward modelling to generate
synthetic wavefields, followed by an inversion to update model
parameters. 3-D elastic wave equations are used for the forward
modelling, and the Gauss–Newton approach is used to minimize
the residual between synthetic (estimated) and measured (observed)
wavefields for extraction of material properties (Vs and Vp).

2.1 Forward modelling of 3-D wave propagation

For the forward modelling, the 3-D elastic wave propagation is de-
scribed by a set of the first-order linear partial differential equations
for isotropic materials. The governing 3-D equations include the
force equilibrium (Einstein summation):

ρv̇i = σi j, j + fi (1)

and the stress–strain or constitutive equations, given as:

ρσ̇i j = λvk,k + 2μvi, j if i = j (2)

ρσ̇i j = μ(vi, j + v j,i ) if i �= j (3)

where σ ij is the ijth component of stress tensor (i, j = 1, 2, 3), vi
is the particle velocity, fi is the external body force, ρ is the mass
density and μ, λ are Lamé’s coefficients. The over dot (.) denotes
the time derivative, and the comma (,) denotes the spatial derivative.
For example, vi,j= ∂vi

∂xj
, is the derivative of the velocity vector with

respect to the three spatial coordinates (xj = x, y, z). Also, repetition
of a subscript (e.g. k k) denotes summing over the indices (k = 1,
2, 3).
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Figure 3. Synthetic model: distribution of Vs and Vp: (a) true model used to generate synthetic data for inversion analysis; (b) initial model used at the
beginning of inversion; and (c) and (d) inverted models with data at 5–20 Hz and 5–30 Hz, respectively.

The classic velocity–stress staggered-grid finite difference
method in the time domain (Virieux 1986) was used to solve the
equations. The free-surface boundary condition is implemented by
using the image technique (Robertsson 1996) at the top boundary

(ground surface), while the perfectly matched layer (PML, Ko-
matitsch & Martin 2007) is applied at the vertical and bottom
boundaries to absorb outgoing waves. See Nguyen & Tran (2018)
for more details.
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210 K.T. Tran et al.

Figure 4. Synthetic model: normalized least squares error versus the iter-
ation number for both inversion runs at 5–20 Hz and 5–30 Hz. The error
defines the degree of match between the estimated and observed waveforms
during the inversion analysis. The error increases at higher frequencies
because the model is not yet appropriate to produce the recorded wave
propagation of shorter wavelengths.

2.2 Model updating by Gauss–Newton method

The Gauss–Newton method involves minimizing the residual be-
tween the estimated waveform data obtained by forward simulation
and the observed seismic data from field testing. The residual is
defined as:

�ds,r=Fs,r (m) −ds,r , (4)

where indices s and r denote the sth shot and rth receiver, re-
spectively. The column vector Fs,r (m) is estimated waveform data
associated with the model m, and obtained from the solution of
the wave equations described by eqs (1)–(3). Model m is a column
vector consisting of Vs and Vp of all cells within the modelled test
domain. The column vector ds,r is observed data for the sth shot and
rth receiver. Both shots and receivers are located in 2-D uniform
grids on the ground surface.

To minimize the residual, a least-squares error E(m) is introduced
as:

E(m) = 1

2
‖ �d‖2 = 1

2
�dt�d, and �d

= {
�ds,r , s = 1..NS, r = 1 . . .N R

}
, (5)

where the superscript t denotes the matrix transpose. NS and
NR are the numbers of shots and receivers, and �d is a column
vector, which is the combination of residuals �ds,r for all shots
and receivers. The size of �d is NT × NS × NR, where NT is the
number of time steps. The updated model, mn+1, is obtained from
the Gauss–Newton approach for minimization of the error E(m) at
the (n+1)th iteration from the nth iteration as:

mn+1 = mn −αn
[
JtJ + λ1P

tP + λ2I
tI

]−1
Jt�d, (6)

where J is the Jacobian matrix, or the partial derivative of wavefield
with respect to individual model parameters (Vs and Vp of cells).
The detailed calculation of matrix J is presented in the following
section. I is the identity matrix, and P is a matrix, whose elements
are determined using a 3-D Laplacian operator:

Pp (�m) = (
�mp

)L + (
�mp

)R + (
�mp

)F + (
�mp

)B
+ (

�mp

)A + (
�mp

)U − 6
(
�mp

)
�, (7)

where the superscripts L, R, F, B, A and U refer to six adjacent
cells (left, right, front, back, above and under) of the cell referring to
the model parameter mp, and Pp is the pth row of the matrix P whose
elements are either 1, –6 or 0. Coefficients λ1and λ2 are constants,
which are used for regularization to increase the invertability of the
approximate Hessian matrix (Ha = JtJ). The choice of the coeffi-
cients from 0 to infinity represents a compromise. Larger values of
λ1 and λ2 lead to smoother inverted models (not good for charac-
terizing of material contrast), whereas smaller values produce more
inversion artefacts. Several trial runs were conducted in the study,
with λ1= 0.02 and λ2= 0.0005 giving good results for both the
synthetic and field data sets. The step length αn is generally close to
1.0, and it is fixed at 1.0 for this study.

To save computer time, the term [JtJ+λ1PtP+λ2ItI ]−1Jt�d
in eq. (6) is calculated using the LU decomposition by a Matlab
built-in function, which does not require to compute the inverse of
the Hessian matrix explicitly. This term is calculated for Vs and
Vp separately using the according Jacobian matrix J. It is noted
that [JtJ + λ1PtP + λ2ItI ]−1acts as a weighting function, and thus
no scaling is needed for the gradient vectors of Vs and Vp. Both
velocities are updated simultaneously in each iteration.

2.3 Partial derivative wavefield

The main challenge for the use of Gauss–Newton method is the
computation of the partial derivative of the wavefield (matrix J).
One approach is to take the partial derivative of the wavefield with
respect to a model parameter (mp) for the sth shot and rth receiver
explicitly through two forward simulations with and without the
model perturbation as:

Jp
s,r = ∂Fs,r (m)

∂mp
=Fs,r

(
m + �mp

) − Fs,r (m)

�mp
. (8)

By perturbing the individual model parameters (unknowns), a
total of NS × (M +1) forward simulations are required to calculate
the matrix J, whereM is the number of unknowns. This requires sig-
nificant computer time, that is many thousands of model parameters
within 3-D profiles. Another more efficient approach is to expand
the implicit approach developed for 2-D time-domain FWI (Sheen
et al. 2006; Tran & McVay 2012; Tran et al. 2013) to evaluate the
derivative of the wavefield for the 3-D problem.

For the model parameters representing the P-wave velocity (Vp),
eqs (1)–(3) are differentiated with respect a parameter Vpn,

ρ
∂v̇i

∂V pn
= ∂σi j, j

∂V pn
(9)

ρ
∂σ̇i j

∂V pn
= λ

∂vk,k

∂V pn
+ 2μ

∂vi, j

∂V pn
+ 2ρV p

∂V p

∂V pn
vk,k

if i = j (10)

ρ
∂σ̇i j

∂V pn
= μ

(
∂vi, j

∂V pn
+ ∂v j,i

∂V pn

)
if i �= j (11)

and the term 2ρV p ∂V p
∂V pn

vk,k in eq. (10) represents the virtual source

for the partial derivative of wavefield ( ∂vi
∂Vpn

) propagated from the

parameter Vpn location to the receivers. It is noted that ∂Vp
∂Vpn

is equal
to 1.0 at the parameter location and zeros for the rest of medium,
or the virtual source is equal to 2ρVpvk,k. Similarly, for the model
parameters representing the S-wave velocity (Vs), eqs (1)–(3) are
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Figure 5. Synthetic model: waveform comparison for a sample shot associated with the initial model (a) and final inverted model (b).

differentiated with respect a parameter Vsn as:

ρ
∂v̇i

∂V sn
= ∂σi j, j

∂V sn
(12)

ρ
∂σ̇i j

∂V sn
= λ

∂vk,k

∂V sn
+ 2μ

∂vi, j

∂V sn
− 4ρV s

∂V s

∂V sn
(vk,k − v j,i )

if i = j (13)

ρ
∂σ̇i j

∂V sn
= μ

(
∂vi, j

∂V sn
+ ∂v j,i

∂V sn

)
+ 2ρV s

∂V s

∂V sn
(vi, j + v j,i )

if i �= j . (14)

In eqs (13) and (14), a virtual source for the derivative wavefield
( ∂vi

∂Vsn
) at the location of parameter Vsn is − 4ρVs(vk,k − vj,i) if i =

j, and 2ρVs(vi,j + vj,i) if i �=j is introduced.
The same Jacobian component of eq. (8) can be obtained by prop-

agating the virtual sources at the parameter location to the receivers.
Also, based on the reciprocity of wave propagation, waveforms are
identical if a source and a receiver are switched. Thus, the Jacobian
matrix (J) can be determined by convolution of the virtual sources
and backward wavefields, which are both obtained from forward
simulations (eqs 1–3). This approach requires only (NS+NR) for-
ward simulations for the calculation of matrix J. Finally, the partial
derivative of the wavefield with respect to a model parameter (mp)
for the sth shot and rth receiver can be implicitly calculated as:

Jps,r = Fx ∗ Rx + Fy ∗ Ry + Fz ∗ Rz (15)

where Fx, Fy and Fz are virtual sources calculated from for-
ward wavefields, which are generated by a source at the sth
shot location and recorded at the location of model parameter
mp (eqs 9–14) in directions x, y and z, respectively. Rx, Ry and
Rz are backward wavefields generated by a source at the rth re-
ceiver location and recorded at the model parameter mp loca-
tion in directions x, y and z, respectively. The ∗ denotes the
convolution.

For verification, shown in Fig. 1 is a comparison of partial deriva-
tive of the wavefields calculated explicitly and implicitly by eqs (8)
and (15), respectively. The tested model is 18 × 40 × 40 m (depth
× length × width) in z, x and y directions. It consists of three hor-
izontal layers with Vs values of 300, 400, 600 m s–1 and Vp values
of 600, 800, 1200 m s–1, respectively, as shown in Fig. 1(a) at a
vertical plane of y = 20 m (middle of the width). The medium
was divided into 1 × 1 × 1 m cells, and a Ricker wavelet source
of 15 Hz central frequency was used for wave simulation. The
source and receiver are both vertical and located on the free sur-
face (depth 0). The model parameter mp are Vs and Vp of a cell
at depth of 12 m. Shown in Fig. 1(b) are derivative wavefields cal-
culated by eq. (8) (explicit) and eq. (15) (implicit) with respect to
Vp and Vs of the cell. It is noted that derivative wavefield calcu-
lated by eq. (8) was convolved with the source signature to ac-
count for the scale of the source signature used for the backward
wavefields in eq. (15). Evident from Fig. 1, the implicit and ex-
plicit derivative wavefields are identical, but the implicit approach is
much more efficient and used in subsequent work. As the derivative
wavefields calculated by eq. (15) are scaled by the source signature
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212 K.T. Tran et al.

Figure 6. Field experiment: (a) test site and (b) propelled energy generator

Figure 7. Field experiment: spectral analysis of measured data for one
sample shot and one line of 24 geophones.

used for the backward wavefields, the residuals (eq. 4) are convolved
with the same source signature before using for model updating in
eq. (6).

3 A P P L I C AT I O N O N S Y N T H E T I C DATA

The first application of the 3-D inversion was on a synthetic model
data set. First, surface-based waveform data was calculated for a
test configuration (i.e. 2-D uniform grids of shots and receivers as
shown in Fig. 2), and subsequently they were input to the 3-D FWI
algorithm as if they were acquired from a field test. Then the Vs and
Vp structures were extracted from the inversion, and compared to
the true profile for evaluation of the algorithm.

The 3-D FWI was tested on a realistic model including both high-
and low-velocity layers. The model was 18 × 36 × 9 m (depth ×
length × width), consisting of four soil layers (Fig. 3a) with a low-
velocity third layer. The four layers have Vs values of 200, 400,
200 and 600 m s–1 , and the Vp is calculated from Vs and a constant

Poisson ratio of 1/3 for the entire medium (or Vp is twice that of Vs).
The mass density was 1800 kg m–3 for the whole model. Synthetic
waveform data were computed using the solution of eqs (1)–(3),
with a test configuration of 96 receivers and 52 shots (sources)
located in 2-D uniform grids (Fig. 2). The receiver grid was 4 ×
24 at 3 m spacing in the shorter direction and 1.5 m spacing in the
longer direction, and the source grid was 4 × 13 at 3 m spacing in
both directions. Sources and receivers were both vertical and located
on the free surface (0-m depth). The Ricker wavelet of 15 Hz central
frequency was used for the source signature.

A basic 1-D initial model with Vs and Vp linearly increased with
depth (Fig. 3b) was used for inversion. The Vs increased from 200 m
s–1 on the free surface (0-m depth) to 600 m s–1 at the bottom of
the model (18-m depth), the Vp is twice that of Vs. Such an initial
model can be established via a spectral analysis of measured data
(see the field data application for details). The same data set (created
by Ricker wavelet source of 15 Hz central frequency) were filtered
through two frequency ranges of 5–20 Hz and 5–30 Hz, and used for
the two inversion runs. The two frequency ranges were selected to
be consistent with dominant frequency components of the field data
(presented later). The first range of 5–20 Hz provided the central
frequency of about 10 Hz, and then a bandwidth of 10 Hz (from 20 to
30 Hz) was added for the second range. The first run began with the
lower frequency range on the initial model (Fig. 3b), as the lower
frequency data have larger wavelengths and produce fewer local
minima in the misfit function, thus require a less detailed initial
model. The second run was performed with the higher frequency
range (5–30 Hz) using the inverted result from the first run as the
input model.

Vs and Vp values of the individual cells were updated simultane-
ously by eq. (6) during the inversion analysis. The stopping criterion
was set at the point when the least-squares error changed less than
1 per cent from one iteration to the next for three consecutive iter-
ations, or if a preset maximum number of iterations (30) had been
reached. The first and second runs stopped after 22 and 30 itera-
tions, respectively. The two runs took approximately 36 hr in total
on a computer with 32 cores having 3.46 GHz each and 256 GB of
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3-D time-domain Gauss–Newton FWI 213

Figure 8. Field experiment: distribution of VS and VP (m s–1 ): (a) initial model used at the beginning of inversion; and (b) final inverted models at 5–30 Hz.

memory; approximately 220 GB of memory was actually used in
the analyses.

The least-squares errors for all 52 iterations of the two inversion
runs are normalized by the initial error of the first iteration and
shown in Fig. 4. The error reduced from 1.0 at the first iteration to
less than 0.13 at the final iteration (iteration 52). The error increased
when adding data from 20 to 30 Hz, because the model is not yet
appropriate to produce the recorded wave propagation of shorter
wavelengths. Fig. 5 shows a comparison of observed data at 5–
30 Hz, for the estimated data associated with the initial model
and the final inverted result at iteration 52. Clearly, the waveform
match improved significantly during inversion. The observed and
final estimated data (Fig. 5b) agrees well with no cycle skipping

(matching of wrong peaks), suggesting that the 1-D initial model is
sufficent.

Results of the two inversion runs are shown in Fig. 3. The result
at 5–20 Hz (Fig. 3c) is comparable to the true model (Fig. 3a),
showing a 4-layer profile in both Vs and Vp images along with
the low-velocity third layer. The result at 5–30 Hz (Fig. 3d) is very
similar to the true model (Fig. 3a). The inverted result was improved
considerably during the second run by adding the higher frequency
data, particularly for the top two layers. The variable layer interfaces
were also accurately characterized, and the true Vs and Vp values
of all layers were recovered. It is noted that the inversion results
are less accurate at the model edges due to poor signal coverage in
these areas.
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214 K.T. Tran et al.

Figure 9. Field experiment: normalized least squares error versus the inversion iteration number for both inversion runs at 5–20 Hz and 5–30 Hz. The error
defines the degree of match between the estimated and observed waveforms during the inversion analysis. The error increases at higher frequencies because
the model is not yet appropriate to produce the recorded wave propagation of shorter wavelengths.

Figure 10. Field experiment: waveform comparison for a sample shot associated with the initial model (a) and final inverted model (b). Poor channels near the
source are removed from analysis.
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Figure 11. Field experiment: inverted Vs and SPT locations along four
receiver lines at y = 0, 3, 6 and 9 m

4 A P P L I C AT I O N T O 3 - D F I E L D DATA

The presented 3-D FWI method was subsequently applied to field
experimental data, collected at a dry retention pond in Gainesville,
Florida, USA (Fig. 6a). The field experiment was done with the same
test configuration of 96 receivers and 52 shots (Fig. 2). The seismic
wavefields were generated by a propelled energy generator (PEG,
40 kg model) as shown in Fig. 6(b), and simultaneously recorded
by 48 4.5-Hz vertical geophones in two stages. In each stage, the
48 geophones were placed for a half of the receiver grid, and 52
shots were applied for the entire source grid (4 × 13). As the same
impact load (same drop weight and height of the PEG) was applied
at each shot location, the collected data from the two stages were
simply combined to produce 96-channel shot gathers. Four standard
penetration tests (SPT) were also conducted at distance of 24 m (x
= 24 m) on each geophone line for verification of seismic results.
This same data set had been analysed by a cross-adjoint 3-D FWI
algorithm (Nguyen & Tran 2018), and the results are also included
in this paper for comparison.

As presented by Nguyen & Tran (2018), a 1-D initial model was
developed via spectral analysis of the measured data for a sample
shot and one line of 24 geophones (Fig. 7). Rayleigh wave velocities
(Vr) were determined from 250 to 400 m s–1 at the frequency range
of 12–50 Hz. As Vs is similar to Vr, the Vs near the ground surface
associated with high frequency data was known to be approximately
250 m s–1 . The half space with Vs of 400 m s–1 was assumed at the
start at a half of maximum wavelength associated with data at 12 Hz
or a depth of 16.7 m (velocity/frequency/2 = 400/12/2 = 16.7 m).
Similar to the case of synthetic model, the initial model (Fig. 8a) was
established having Vs increasing with depth from 250 m s–1 at the
surface to 400 m s–1 (Vs of the half space) at the bottom of the model.
The depth of model was taken as a half of the longer dimension of
test area (or 18 m) to maintain good signal coverage in the analysed
domain. The Vp was estimated from Vs and a constant Poisson’s
ratio of 1/3 for the entire medium, which was taken as the middle
value of the range from 1

4 to 1
2 for general soils. The mass density was

assumed as 1800 kg m–3 for the whole medium and kept constant
during inversion. Efforts to invert the mass density of medium from
the measured wavefield have been shown to be unsuccessful. This
can be explained that most of the energy in wavefields measured on
the surface are Rayleigh waves that are not very sensitive to the mass
density.

Similar to the synthetic data analyses, measured field data were
filtered through the two frequency bandwidths of 5–20 Hz and 5–
30 Hz, and used in two sequential inversion runs. The first run at
5–20 Hz began with the initial model shown in Fig. 8(a), and the sec-
ond run began with the inverted result of the first run. During inver-
sion, estimated waveform data are adjusted by an offset-dependent
correction factor of the form y(r) = A· r<σψ>α) to compensate for
material damping (inelasticity) that cannot be accounted for with
the elastic model. Where r is the source–receiver offset, and the
factor A and exponent <σψ>α were determined with an iterative
least-squares inversion, which minimizes the energy of waveform
residuals. For forward simulation, a source signature was estimated
by deconvolution of the measured data with the Green’s function,
which was explicitly calculated by forward simulation with an as-
sumed Ricker wavelet source (Tran & Luke 2017). The source
signature was updated at the beginning of each iteration to account
for the change of Green’s function during inversion due to updated
model parameters.

The medium of 18 × 36 × 9 m (depth × length × width)
was divided into 13 824 cells of 0.75 × 0.75 × 0.75 m. Each
0.75 m cell size was selected as half of the smaller geophone
spacing (1.5 m) to conveniently assign sources and receivers to
discretized nodes. The same cell size was used for both inversion
runs. Vs and Vp of all cells were updated independently and si-
multaneously during inversion. The first and second inversion runs
stopped at 21 and 9 iterations, respectively. The total computer time
was about 26 hr on the same computer used for the synthetic data
analyses.

Fig. 9 shows the least-squares errors for all 30 iterations of both
inversion runs, which were normalized by the initial error. The
error reduced from 1.0 to about 0.62 in the first run, and further
in the second run. Again, the error increased when adding data
from 20 to 30 Hz, because the model is not yet appropriate to
produce shorter wavelength data. Shown in Fig. 10 is a comparison
of observed data at 5–30 Hz, and estimated data associated with the
initial model and the final inverted result at iteration 30 for a sample
shot. The agreement between observed and estimated data improved
during inversion. The observed and final estimated waveform data
agree well for most channels in Fig. 10(b). No cycle skiping is
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Figure 12. Comparison between Vs and SPT N-values at the 4 invasive test locations. GN FWI and Adjoint FWI denote results from Gauss–Newton and
cross-adjoint waveform inversion methods, respectively.

observed; suggesting the 1-D initial model established from the
spectral analysis was sufficent.

The final inverted results for data at 5–30 Hz are shown in
Fig. 8(b). The Vs profile (Fig. 8b, top) consists of softer lay-
ers (Vs ∼150–300 m s–1 ) with a buried low-velocity zone at
about 5-m depth, underlain by a stiffer layer (Vs ∼ 400 m s–1 ).

The Vp profile (Fig. 10b, bottom) is consistent with the Vs pro-
file. Based on soil types from SPT borings, the softer layers and
stiffer layer are soils and weathered limestone, respectively. For
better viewing, the lateral variation, Fig. 11 shows Vs profiles
along four receiver lines at y = 0, 3, 6 and 9 m, together with
the four SPT locations. Variation of soil layers is consistent along

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/217/1/206/5289582 by U

niversity of Florida user on 08 February 2019



3-D time-domain Gauss–Newton FWI 217

y direction with shallower weathered limestone in the left of test
domain.

Shown in Fig. 12 are the initial Vs values, the final inverted
Vs values at 5–30 Hz, and SPT N-values at four locations. The
depths of four SPTs are about 21-m depth. The final inverted Vs
values are very different from the initial values, suggesting the
Vs profiles have changed (updated) significantly during inversion
analysis, particularly at depths less than 10 m. The final inverted
Vs and SPT results generally agree at all four locations. Both show
soft materials from 0 to 5-m depth, linearly increasing stiffness
with depth from 5 to 10-m depth, and stiffer materials below 10-m
depth. The low-velocity zone at about 5-m depth identified by the
waveform analysis is confirmed by the SPT results, particularly at
the SPT-3 and SPT-4 locations. There is discrepancy between the Vs
(higher values) and SPT N-values at depths less than 2 m of SPT-1
and SPT-2. The discrepancies could be due to local compactions of
soil during seismic testing by the truck carrying the seismic source,
or more likely due to inversion artifacts near source locations that
could not be suppressed by Gauss–Newton inversion. Also, the
SPT N-values appear more erratic than Vs values. This is due to
that N-values represent more local properties than do Vs values,
which are average within cell volumes (0.75 × 0.75 × 0.75 m
each).

Results from this seismic data set analysed by a cross-adjoint
3-D FWI had been reported in details by Nguyen & Tran (2018), in
which the same initial model and frequency content were used. The
inverted Vs from the cross-adjoint inversion at the four SPT loca-
tions are also included in Fig. 12 for comparison. Apparently, both
Gauss–Newton and cross-adjoint methods produce good results for
this data set. However, the inverted Vs from Gauss–Newton method
are more consistent with the SPT N-values in both trend and magni-
tudes, particularly at SPT-1 and SPT-4. The cross-adjoint 3-D FWI
tends to overshoot the low-velocity zones.

5 C O N C LU S I O N

A new 3-D FWI method based on the time-domain Gauss–Newton
inversion is presented for near-surface site characterization. The
method is based on a solution of 3-D elastic wave equations for wave
simulation, and Gauss–Newton inversion to extract subsurface wave
velocities Vs and Vp. The method was tested on both synthetic and
measured field data sets. The results from synthetic data set suggest
that the presented waveform inversion can characterize variable
high- and low-velocity subsurface layers. For the field data, both
Vs and Vp of variable soil layers are characterized at metre-scales
to 18-m depth with only surface-based waveform data. There is
good agreement between the Vs and SPT N-values, including the
identification of a buried low-velocity zone. Results from Gauss–
Newton inversion are more consistent to the SPT N-values than
those from cross-adjoint inversion.
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