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ABSTRACT

The power of Information-Centric Networking (ICN) architectures
lies in their abstraction for communication — the request for named
data. This abstraction promises that applications can choose to op-
erate only in the information plane, agnostic to the mechanisms
implemented in the connectivity plane. However, despite this pow-
erful promise, the information and connectivity planes are presently
coupled in today’s incarnations of leading ICNs by a core archi-
tectural component, the forwarding strategy. Presently, this com-
ponent is not sustainable: it implements both the information and
connectivity mechanisms without specifying who should choose
a forwarding strategy — an application developer or the network
operator. In practice, application developers can specify a strategy
only if they understand connectivity details, while network op-
erators can assign strategies only if they understand application
expectations.

In this paper, we define the role of forwarding strategies, and we
introduce Information-Centric Transport (ICT) as an abstraction
for cleanly decoupling the information plane from the connectiv-
ity plane. We discuss how ICTs allow applications to operate in
the information plane, concerned only with namespaces and trust
identities, leaving network node operators free to deploy whatever
strategy mechanisms make sense for the connectivity that they
manage. To illustrate the ICT concept, we demonstrate ICT-Sync
and ICT-Notify. We show how these ICTs 1) enable applications to
operate regardless of connectivity details, 2) are designed to sat-
isfy a predefined set of application requirements and are free from
application-specifics, and 3) can be deployed by network operators
where needed, without requiring any change to the application
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1 INTRODUCTION

Advocates for Information-Centric Networking (ICN) architectures
argue that the IP underlying telephony-inspired abstraction, in
which pairs of addressed endpoints must establish a connection
to communicate (i.e, a telephone call), does not comply with the
requirements of today’s Internet. Hence, to fully address IP’s chal-
lenges, ICN must use another abstraction — the request for named
data [1].

Although the request for named data abstraction was introduced
and popularized by the World Wide Web and HTTP, HTTP-based
applications are bound to the channel abstraction and must respond
to connectivity events, such as a change of an IP address or connec-
tivity loss. Therefore, the request for named data abstraction in the
network layer not only provides native support for data dissemina-
tion and content-centric security models, but also introduces a new
and powerful promise to ICN applications: the freedom to stay in
the Information Plane, free from connectivity details. In other words,
the application can be concerned only with data namespaces and
trust identities of data producers and consumers, without worrying
about the network characteristics.

However, despite this powerful promise, recent work [2-4] has
shown that the two leading ICN architectures, Named Data Net-
working (NDN) [5] and Content Centric Networking (CCN) [6],
presently couple applications with the details of connectivity. Specif-
ically, a central architectural component in NDN and CCN, the for-
warding strategy, binds applications to the details of connectivity in
an unsustainable way. To see why, consider that a forwarding strat-
egy dynamically determines the answers to questions such as: 1) If
routing rules permit multiple, equivalent next-hops, which should
be chosen?, 2) If a link goes down or if a packet times out, should
a packet be retransmitted on some other next hop?, 3) Should a
packet be "broadcast” to all eligible next hops?

Clearly, the answers to such questions rely on connectivity char-
acteristics, such as where in the network the node is located (e.g,
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core or edge), the number and type (e.g., wired or wireless) of next
hop links available, and the dynamics of the network (e.g., static or
mobile). However, such strategy questions are also meaningful for
application developers, because they are intrinsic to information
flow and hence to application structure. For example, if an appli-
cation is not certain if and when a retransmission will take place,
then the application must be structured to retransmit according to
the specifics of the forwarding strategy [4].

Moreover, it is unclear who selects the forwarding strategy.
Presently, the two software implementations of NDN and CCN, the
NDN Forwarding Daemon (NFD) [7] and Community ICN (CICN)
[6], allow application developers to specify a forwarding strategy
and associate its strategy choices with their namespaces. However,
while a developer can pair a forwarding strategy with its applica-
tion namespace in the localhost, forwarding strategies are assigned
within nodes interior to the network by the operators of those
specific nodes. Therefore, neither application developers nor net-
work operators can optimally select a forwarding strategy, because
the right choice depends on knowledge that neither party alone
possesses in its entirety. This difficulty can be mitigated in isolated
environments where application developers also operate the entire
network, such as with the global NDN testbed [8]. However, in
general, the forwarding strategy component unsustainably couples
information and connectivity.

To clearly define the scope of the paper, we argue that the prob-
lem lies in ICN having one architectural component that both rec-
onciles application and network considerations and manages the
interests of both applications and network operators. Therefore,
the goal of this paper is to propose architectural modifications to
ICN that allow effective decoupling of information and connectivity
mechanisms. We do this by specifying, for the first time, the role
of forwarding strategies in the ICN architecture, and by proposing
a new abstraction for information-oriented mechanisms, named
Information-Centric Transport (ICT).

We define an ICT to be an abstraction and a communications
mechanism designed to support a specific, but broadly applicable,
set of application requirements. An ICT consists of an end-point
API and an optional intermediate service. While forwarding strate-
gies implement connectivity-oriented mechanisms, ICTs implement
information-oriented mechanisms and deal with namespaces and
trust identities. We show how the placement of an intermediate
ICT service in the network can provide sustainable communica-
tions to different applications, without deploying or relying on
any application-specific code in the network, and while keeping
the intermediate ICT and strategy mechanisms transparent to the
application.

Once an application developer relies on an ICT API for infor-
mation dissemination, then forwarding strategy choices can be
made unilaterally by network node operators, provided that those
choices faithfully implement the ICT. Therefore, ICT decouples the
information and connectivity planes in a general-purpose way, and
solves the problem of how to sustainably make forwarding strategy
choices.

To illustrate our contribution concretely, we implemented two
ICTs: ICT-Sync, an ICT for sync-based applications, and ICT-Notify,
an ICT for notification-based applications. We show how these
ICTs implement different application requirements and provide
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communications for their applications under a range of connectivity
scenarios, where IP tools and native NDN applications fail or do not
work well. For instance, links may be sufficiently intermittent that
there is never a synchronous end-to-end path available between a
consumer and a producer.

It is important to note that the paper’s principal goal is to discuss
the concept and placement of the ICT abstraction in the architecture,
and not the specifics of different ICT mechanisms. We use ICT-Sync
and ICT-Notify to demonstrate what these mechanisms might look
like, but the details of specific ICT mechanisms are not the main
focus of this work. Moreover, while ICT-Sync and ICT-Notify are
designed to satisfy different application requirements, they both
implement best-effort mechanisms and are not designed to address
specific performance properties. In the real world, mechanisms
for performance properties intrinsically couple information-level
and connectivity-level considerations. Therefore, understanding if
and how such mechanisms can be implemented while maintaining
architectural clarity within the content-centric approach is another
interesting open question.

The contributions of this paper are as follows:

e We specify, for the first time, the architectural role of for-
warding strategies in ICN.

e We introduce Information-Centric Transport and discuss its
placement in the ICN architecture.

e We demonstrate the ICT abstraction by discussing two ICTs:
ICT-Sync, an enhanced version of NDN sync, as an ICT
for sync-based applications, and ICT-Notify, a new NDN
notification mechanism for push-based NDN applications.

e We show how ICT-Sync and ICT-Notify allow applications to
operate in unstable environments with lossy and intermittent
links, even when there is never a synchronous end-to-end
path between a producer and a consumer.

e We discuss the properties of an intermediate ICT service as
a mechanism that should remain transparent to applications,
and that should not include any application-specifics.

2 BACKGROUND AND RELATED WORK

Information-Centric Networking (ICN) is a future internet architec-
ture that follows the content-centric approach. While the traditional
IP architecture uses addresses to identify the source and destina-
tion of every exchanged packet, the content-centric approach uses
names in its Interest and Data packets to request and retrieve con-
tent items. Named Data Networking (NDN) [5] and Content Centric
Networking (CCN) [6] are two ICN architectures, and each has its
own implementation of an ICN forwarder [6, 7].

In ICN, consumers express an Interest packet to request a con-
tent by its name, and producers respond with Data packets. ICN
uses three data structures to forward and retrieve Interests and
Data: a Forwarding Information Base (FIB) table, which consists
of prefixes and potential faces (upstreams) that can satisfy name
requests; a Content Store (CS), which keeps a replica of a Data
packet forwarded back to the consumer; and a Pending Interest Ta-
ble (PIT), which records and aggregates faces of incoming Interests
to be used when a Data packet is sent back to the consumer.

When a router receives an Interest packet, it first looks for the
requested Data in its CS. If there is no match, the router searches
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its PIT for a record of an unsatisfied Interest with the same name.
If no PIT entry matches the incoming Interest’s name, the router
searches the FIB for a list of potential upstreams that can satisfy
the requested Interest. If the list of upstreams contains more than
one potential face, the forwarding strategy component decides to
whom the Interest should be forwarded, and the router records
the forwarded Interest in its PIT. When an Interest can be satisfied
by a content found in a router’s CS or generated by a producer,
a Data packet is sent back to the consumer(s) by following the
breadcrumbs recorded in the PIT.

2.1 Forwarding Strategies

In past years, the forwarding strategy module has been demon-
strated to be a key architectural component of the ICN architecture.
Unlike IP, the FIB in ICN can contain more than one possible next
hop for a namespace. In such cases, the forwarding strategy compo-
nent is required not only to decide to whom to forward the Interest,
but also to determine whether and when to send or retransmit an
unsatisfied Interest [2, 5, 9].

ICN allows different forwarding strategies to co-exist, and there-
fore, supports a range of different forwarding algorithms for dif-
ferent connectivities. Moreover, both NDN and CCN support the
name-based strategy selection design, in which a namespace can
be paired with a specific forwarding strategy, and therefore an ap-
plication can control its forwarding behavior. This allows ICN to
support flexible stream-based forwarding and to provide different
in-network mechanisms for different applications.

The frequently cited "Named Data Networking" paper [5] de-
scribes this core architectural component as "the key to NDN’s
resiliency and efficiency". However, despite the central role the
forwarding strategy plays, its architectural role has not been well
understood, and it remains an underspecified piece in the ICN ar-
chitecture. Figure 1 shows the building blocks of NDN, with the
strategy layer residing between the MAC layer and the Named Data
layer [5].

Mac Layer

Physical Layer

Figure 1: NDN Building Blocks as Described in [5]
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3 ON THE ROLE OF FORWARDING
STRATEGIES

By studying the role of forwarding strategies in current implemen-

tations of CICN [6] and NFD [10], and by reading related works,

one arrives at to two contradictory assumptions. 1) A forwarding

strategy can be paired with an application namespace, and 2) A for-

warding strategy can address desired connectivity characteristics. If
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both assumptions are true, then a forwarding strategy couples both
applications and network mechanisms, and therefore introduces
challenges for an application developer who 1) cannot guarantee
that the same strategy is used everywhere along the path(s) to the
producer, 2) must modify its application whenever the strategy
behavior is updated in future versions, and 3) should potentially
develop different versions of its application to support its operation
in different network environments. In other words, coupling the
mechanisms of both network and applications in the forwarding
strategy module does not scale and makes it hard to develop ICN
applications.

3.1 The Information and Connectivity Planes

To clearly define the forwarding strategy’s role, we look at the
ICN architecture as a whole and identify the abstraction it aims to
provide and how it provides it.

We argue that ICN applications operate in the Information Plane,
and the network operates in the underlying Connectivity Plane.
To see why, consider that ICN applications ask for data by name,
and the network must find and retrieve that data. But how does
the network do that? Unlike IP, ICN is channel-less and consist of
different hop-by-hop mechanisms to find requested data. In practice,
there is always an actual, real-world connectivity present — e.g.,
the collection of one or more connectivity options, including WiFi
links, Ethernet links, TCP channels, BT, and UDP multicast. Because
the properties of these different connectivities differ so widely, the
best choice of mechanism in any given circumstance may depend
strongly on the specific connectivity available.

In the TCP/IP model, an HTTP name is translated to an IP ad-
dress at the endpoint. However, in the content-centric approach, the
name used by an ICN application is also used by the ICN network
as the identifier of core network operations, including name-based
Interest forwarding, name-based routing, and name-based caching.
The great benefit of using the same identifier in both the informa-
tion and connectivity planes is that the application can operate
in an agnostic way, without having to worry about the specifics
of connectivity. By contrast, HTTP-based applications can break
when 1) devices change IP addresses, 2) devices have and try to use
multiple concurrent interfaces, and 3) Internet connectivity is lost.
It is true that HTTP-based applications can implement mechanisms
to respond to such events, but they are still coupled with the events’
occurrences.

We use a set of illustrative questions to discuss how ICN uses the
request for named data abstraction in the network layer. Suppose
that a consumer application asks: "What is the content for this
name?" Here, the consumer does not specify where the content can
be found, or how to get it. In theory, the consumer’s question can be
answered simply by broadcasting it until someone replies with the
requested named data. However, broadcasting is an expensive net-
work operation, and flooding the network is not a scalable solution.
Therefore, this simple abstraction must somehow be translated by
the network to a practical mechanism that can efficiently find and
retrieve the requested content. In other words, ICN must somehow
move from the information plane to the connectivity plane.

We illustrate the process of moving from the information plane
to the connectivity plane by asking two more questions: 1) "Who
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might have the content for this name?" and 2) "What is the most ef-
ficient way to retrieve it"? These two questions should be answered
differently, according to the characteristics of the network and the
nature of the underlying links.

We argue that the strategy module answers these two questions
in the context of its specific network environment, and therefore
bridges the information and connectivity planes. Allowing a spec-
trum of strategies to co-exist under the umbrella of the ICN archi-
tecture provides flexible forwarding behavior that can be adapted
to the characteristics of the local connectivity. Hence, an applica-
tion asks "What is the content for this name?" in the information
plane, and a strategy relies on a set of input considerations in the
connectivity plane when answering the questions of "Who might
have the content?" and "How to retrieve it?".

We specify the forwarding strategy as the architectural compo-
nent that bridges the information and connectivity planes in ICN.
Moreover, we argue that choosing the right mechanism when mov-
ing between the information and connectivity planes — the role of
the forwarding strategy — is a key element in the design of ICN, and
what makes ICN operate in both Internet-like infrastructures and
dynamic, non-stable topologies where current Internet methods do
not work [11-15].

Although the design and choice of specific mechanisms to bridge
the two planes in any given circumstance is a very interesting prob-
lem, this work focuses on resolving the tensions created because
forwarding strategies, as presently defined, manage the interests of
both application and network operators.

According to our definition of its architectural role, it is clear
that every forwarding strategy mechanism must consider network
characteristics. Therefore, in order to decouple information and
connectivity, we argue that forwarding strategies should not im-
plement information-oriented mechanisms, but should contain only
connectivity-related mechanisms. When decoupled from application-
level mechanisms, forwarding strategies can be safely chosen and
deployed by network operators, according to the connectivity they
manage.

To summarize this section, we illustrate the questions ICN must
answer when translating its abstraction into a set of practical net-
work protocols. We specify the forwarding strategy as the com-
ponent that today answers those questions with respect to local
connectivity characteristics, and therefore bridges the information
and connectivity planes in ICN. As a result, we argue that forward-
ing strategies should implement connectivity-oriented mechanisms,
and be decoupled from information-oriented mechanisms. There-
fore, forwarding strategies should be selected by network operators
according to the connectivity they manage, and should not be paired
to namespaces by application developers.

4 INFORMATION-CENTRIC TRANSPORT

Specifying the role of forwarding strategies leads to the follow-
ing conclusion: forwarding strategies should not be exposed to
applications, and should not implement application-level mech-
anisms. Decoupling information-oriented mechanisms from the
strategy component is one step toward decoupling information and
connectivity. But it is not enough.
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By eliminating the in-network application-level mechanisms pre-
viously implemented by forwarding strategies, we transfer those
mechanisms to the end-points. It is true that, just as in IP, those
mechanisms could be handled by end-point libraries and be decou-
pled from applications. However, just like HTTP-based applications,
ICN applications would still need to respond to connectivity events,
such as a change of interface or packet loss.

Consider the following example: Can an ICN application retrieve
new data when there is never a synchronous end-to-end path be-
tween a consumer and a producer? As we show in Section 7, the
current answer is no. In-network caching allows applications to
retrieve previously consumed data, but is not useful if the data is
new or has already expired. Therefore, while ICN is channel-less,
applications are still bound to the end-to-end communication model.
We believe that name-based strategy selection was created to ad-
dress this challenge. However, as discussed in Section 3, coupling
information and connectivity mechanisms in the same architectural
component is unscalable, and we must find another solution.

As aremedy, we propose Information-Centric Transport (ICT). We
define ICT as both an abstraction and a communication mechanism
that allows applications to operate solely in the information plane,
dealing with namespaces and the trust relationship, while remain-
ing free from connectivity concerns. An ICT is designed to support
a specific, but broadly applicable, set of application requirements.
Figure 2 shows that an ICT consists of two components: an API for
applications at the end hosts, and an intermediate service that runs
on selected devices in the network.

icrs | Interest/ Data

)( Intermittent link or another

connectivity concern Intermediate ICT(s)

Figure 2: ICT as a two-component transport in ICN: A library
API at the end-point, and an intermediate process in the net-
work

To illustrate the concept of ICT, consider how it relates to tradi-
tional notions of transport. Existing transport concepts can readily
be seen in the IP protocols, which can be viewed as Connection-
Centric Transport.

e Connection-Centric Transport (CCT): concerned with end-
points and channel characteristics, such as reliability and
in-order delivery.

e Information-Centric Transport (ICT): concerned with data
names and the trust relationships between named identities.

The properties of a CCT are channel-based, and CCTs such as
TCP and UDP enable applications to meet different reliability re-
quirements. An IP-based application can also implement its own
transport mechanisms by following the Application-Level-Framing
(ALF) concept [16]. Related work has shown that ICN can provide
similar transport mechanisms to applications with CCT require-
ments [17-19]. ICT does not preclude CCT transport mechanisms
for ICN applications. Instead, ICT extends the concept of transport
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to include new in-network and name-based transport mechanisms
for applications that want to stay in the information plane, and are
not concerned only with CCT properties.

The intermediate ICT process is deployed by the network opera-
tor where connectivity characteristics require it (such as intermit-
tent links or in dynamic and mobile networks). When deployed in
the network, an ICT must address information plane requirements
with respect to existing connectivity characteristics and network
mechanisms, while the forwarding strategy addresses concerns
raised by the connectivity plane. Therefore, ICT is information-
oriented, while the forwarding strategy is connectivity-oriented.
For instance, an ICT can buffer interest packets and store data pack-
ets if needed for resilient data delivery, and forwarding strategy can
add, remove, or probe faces in response to connectivity changes.

But how can ICN provide scalable in-network transport? The end-
to-end principle [20] determines that, for scalability, application-
specific features should remain at the end nodes and never reside in
the network. Although ICN already maintains an in-network state
in its PIT and CS, we argue that, to ensure scalability, an ICT should
never implement any application-specific mechanisms. Therefore,
an ICT must be implemented to capture abstractly a specific set
of application-level needs, and for scalability reasons, those needs
must be shared among different types of applications.

We believe that future ICT mechanisms can address a substan-
tial range of abstract application needs, from purely semantic to
performance and reliability. However, at this point, to the best of
our knowledge, there is no clear understanding of the true needs
and requirements of ICN applications. Exploring the different sets
of application-level requirements that should be implemented by
different ICTs is a rich area for future work, and we anticipate that
a number of widely useful ICTs may emerge over time.

In this paper, we demonstrate the ICT concept by providing two
examples of ICTs that were designed to support simple application
semantics and that can be expressed by namespace operations. ICT-
Sync, described in Section 5, is an enhancement of NDN sync, and
was designed to retrieve all the names under a specific application
prefix. ICT-Notify, described in Section 6, was designed to retrieve
only the latest name pushed under a namespace. Although seem-
ingly simple, ICTs for these two namespace operations can support
a wide range of applications and therefore serve as ICN primitives.

Once a primitive ICT has been created, an application can choose
it by using its end-point APIL This API is then responsible for ex-
pressing Interest and Data packets to satisfy the application-level
needs. Furthermore, as a distributed service, every ICT must clearly
define its naming convention so that an intermediate ICN router
can recognize the application’s ICT requirements.

Figure 3 illustrates a network where an ICT can be provided
to support applications. In the figure, Alice, Bob, and Ted are par-
ticipants in a topology that does not always have a synchronous
end-to-end path. In this specific example, if link 1 and link 2 are
never up at the same time, there will never be an end-to-end path
between Alice and the other participants. Therefore, existing end-
point NDN libraries cannot forward to Alice any Data packet from
other participants. However, if Alice uses an ICT API, an interme-
diate ICT process deployed in the network can provide Alice with
continuous transport despite of the links state. ICT evaluation of
similar topologies is shown in Sections 7.
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Figure 3: ICT in a Lossy Environment

To conclude, we define an ICT as a new abstraction proposed for
applications, one that decouples the information and connectivity
planes without knowing or relying on any application-specifics.
An application uses the ICT API, and the intermediate component
of an ICT is placed in the network by the operator where connec-
tivity characteristics and network mechanisms might interrupt the
request for the named data abstraction. To illustrate the ICT ab-
straction, we discuss two proof-of-concept ICTs in Sections 5 and
6. We show how by operating in the Information plane at the end
hosts, and by operating in the intersection of the information and
connectivity planes in the network, ICT-Sync and ICT-Notify can
make an application agnostic to connectivity details, even when
there is never a synchronous end-to-end path.

5 ICT FOR SYNC APPLICATIONS

Sync has been discussed in the past as an ICN primitive [21], and
therefore is a great candidate for enhancement as an ICT. In this
section we discuss ICT-Sync as a secured ICT that supports sync-
based applications in lossy environments. We do not propose a
new scalable synchronization protocol, but simply demonstrate
the concept of ICT and show how ICT-Sync supports sync-based
applications to function in environments that might have unstable
links. The placement of the intermediate component of ICT-Sync in
the network is entirely up to the network operator, and applications
written to use ICT-Sync API can function without it if links are
stable. The intermediate ICT-Sync component allows such applica-
tions to function in lossy networks without any modifications to
the application.

5.1 Syncin ICN

The Custodian-Based Information Sharing (CBIS) system [21] was
the first implementation of an ICN-based sync service. In this early
paper, the authors discussed the high-level principles of what later
became the foundation of other ICN sync protocols.

In brief, sync can be described as a process that provides data
consistency of shared namespaces over time. Although in this paper
we discuss sync in the context of ICN applications, sync’s premise
is widely used today by many IP-based applications, such as Bit-
Torrent Sync, DropBox, Google Drive, and more. However, while
an IP application has to design and implement its own sync para-
digm to support the type of its shared data, ICN sync synchronizes
namespaces that can represent any type of data. Therefore, sync is
a primitive in ICN, and can be used by different type of applications,
such as distributed file sharing[22, 23], chat applications[24], and
routing protocols[25].
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The following sync services for ICN have been proposed in
related work: ChronoSync [26], CCNxSync [27], iSync [28], and
PartialSync[29]. While these protocols can be differentiated by
their implementation details, including their namespace design,
mechanism, and data structures, they all follow the same high-level
goal of providing a continuous synchronization of namespaces.
In this section we discuss only the relevant background details of
ChronoSync[26], as it is the sync protocol we used for our ICT-Sync.

ChronoSync is an end-point sync service library implemented in
NDN. A participant in the synchronization protocol uses ChronoSync
API to register both sync and data prefixes. The sync prefix is shared
among all the participants of an application. The data prefix is
unique to a party, and it is the prefix of all future data names to
be published by that party. The full name of every published data
consists of the data prefix and a sequence number. ChronoSync
maintains the state of the synchronized parties using a sync tree
structure that stores the latest known published sequence number
per participant. A root digest is calculated on the names and se-
quences to represent the state of a particular sync tree. Two sync
trees of the same sync prefix are considered up-to-date if their root
digests are equal.

Periodically, to notify remote parties about the status of the sync
tree, ChronoSync triggers a long-lived sync Interest consisting of
the sync prefix and the root digest of the local sync tree. Upon
receiving a sync Interest, a party compares the received digest with
its local root digest to determine whether its current knowledge
about of the shared set is up-to-date. If a received root digest is older
than the local one, i.e., it can be found in the digest log table, then
ChronoSync responds with a Data packet containing the missing
sequence numbers and their corresponding data prefixes. Upon
receiving a sync Data packet, ChronoSync updates the local sync
tree with the missing sequence numbers and notifies the application.
The application can then fetch the content for the new number by
expressing an interest for the missing sequence number(s).

5.2 ICT-sync

As an enhancement of ChronoSync, ICT-Sync uses the same names-
pace design and sync tree structure to represent the prefix of the
synchronized dataset. However, unlike ChronoSync, ICT-Sync has
an intermediate component of that operates as a separate process.
The intermediate ICT-Sync process can be added to any NDN router
and acts as a producer of the data published under the sync name.
As such, it can be deployed in places in the network where the
operator anticipates lossy or unreliable communication. This way,
ICT-Sync provides continuous sync service for applications, regard-
less of the quality of the underlying links. ICT-Sync API is simple,
and includes three major calls: 1) define prefixes for synchroniza-
tion; 2) publish a new content; and 3) define application’s trust
model.

After the intermediate ICT-Sync process is deployed in the net-
work, it receives and responds to updates from participants in
the sync tree. We implemented the intermediate process to auto-
matically fetch the content associated with updates. On receipt of
content, it validates the signer of the content, using its trust model.
If the content is validated, it saves the full Data packet, including
the original signature of the content and all headers. Then, it serves
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as a provider of the fetched data by registering the participant’s
prefix in its local NFD. Our implementation can be configured to use
either a persistent storage or the NDN CS to store the fetched data,
depending on the characteristics of the network and the router.

The characteristics of ICT-Sync as Information-Centric Trans-
port are as follows:

e ICT-Sync is a primitive and it can be used by any application
that is looking for sync-based services.

o The existence of the intermediate ICT-Sync component does
not introduce any change to the application running at the
endpoints.

e The intermediate ICT-Sync component has no knowledge
of any application-specifics property or the content it han-
dles. It builds its local sync tree from looking at the names
of Interest and Data packets and without decrypting the
content.

e Because an application uses the same APIin both reliable and
challenged networks, its information plane is fully decoupled
from the actual connectivity plane.

e ICT-Sync maintains existing NDN trust schema mechanisms
to fetch keys and validate the data. It does this by using the
existing NDN tools and by looking at the packet’s name and
key-locator fields, without decrypting the content.

6 ICT FOR NOTIFICATION-BASED
APPLICATIONS

In this section, we explore a new NDN service, a notification service,
which we believe can become another primitive for ICN applica-
tions. We define ICT-Notify to be a push-based mechanism that
pushes the latest data under a specified prefix. Just like ICT-Sync,
ICT-Notify can support different types of applications. However,
unlike ICT-Sync, the goal of ICT-Notify is not to maintain data
consistency over time, but to guarantee that the latest content of
every data producer is pushed to every consumer. Examples include
sensors in an IoT network that want to push their latest measure-
ment to others, AR/VR applications that request to push events’
occurrences to other participants in a game, and traditional appli-
cations like chat that simply want to notify others of statuses such
as "online"/"offline"/"away".

One could say that ICT-Sync can be used to satisfy the same
application requirement because it synchronizes the entire set of
names, and therefore it is guaranteed to synchronize the latest.
However, we argue that the mechanisms required to support full
namespace synchronization are heavyweight for applications that
need only the latest update(s). For instance, sync-based applications
must spend an additional Round-Trip-Time (RTT) [26-29] to fetch
the content because sync retrieves only the announcement of the
new content and not the data itself.

To illustrate the differences, consider a simple application that
wants to present a connectivity sign for each participant: A green
circle when a participant is ’on’, a yellow circle when he is ’away’
and a red circle when he is ’offline’. Using ICT-Sync, the application
gets all the connectivity statuses. Using ICT-Notify, the application
gets the latest status. For this specific application, in the case of a
disconnected or lossy environment, it might make more sense to
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use ICT-Notify and get the latest status quicker rather than getting
all the statuses pushed when a link was down.

In addition, while pub-sub mechanisms [29] might seem appro-
priate as notification services, their focus is on retrieving large
streams of data from specific known sources, rather then small
notifications from multiple dynamic sources. Therefore, they re-
quire configuration and do not support dynamic environments. In
this section, we explore an approach for a dynamic multi-source
notification service, with the goal of pushing small notifications
within a one-way delay latency.

6.1 Notifications in ICN

Recent ICN works have studied the problem of handling push-
based notifications. [30] discusses and evaluates three schemes to
support push-based traffic in NDN: Interest notification, unsolicited
data, and virtual Interest polling. Interestingly, due to the trade-
off between a device’s efficiency and the network overhead, it was
found that no scheme is better than the others, and that the selected
scheme should be decided according to the expected traffic load
and the constraints of devices. [31] discusses a framework for multi-
source data retrieval in IoT networks. This framework uses exclude
filters to allow selective data retransmissions, and controls PIT
deletions to support multiple Data packets for the same Interest.
[32] proposes a new ICN packet type for push notifications.

The work in [31] and [32] propose changes to the ICN archi-
tecture to better support push notifications. In contrast, our work
focuses on implementing a proof-of-concept multi-source notifica-
tion ICT without any modifications to the architecture. Our goal
is to show that such an ICT can be a primitive in the current im-
plementation of NDN, without any modification to the PIT or the
forwarder, and without adding a new packet type. We do not argue
that our work is more efficient then the alternatives. Rather, we
argue that a mechanism for push-based notifications can evolve as
an ICT because it supports a common application need, and it can
allow NDN applications to stay in the information plane, free from
connectivity concerns.

6.2 ICT-Notify

For brevity, we discuss only the high-level details of ICT-Notify.
ICT-Notify should not be considered as a final state notification
service mechanism, but as a proof-of-concept ICT mechanism for
pushing the latest data of a producer. As mentioned, ICT-Notify
is not designed to support data consistency over time, but instead,
to push only the latest X notifications, where X can be defined
by the application, and within one-way delay latency. Therefore,
applications that use ICT-Notify must tolerate the loss of past noti-
fications if new are available. We define the following requirements
of ICT-Notify to ensure that it is a primitive ICT that can be used
by different types of ICN applications:

e Supports multi-source data retrieval.

o Introduces a simple API for applications.

e Support scenarios in which the exact number and identity
of producers is unknown.

e Does not require changes to the ICN architecture or for-
warders.
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e Maintains trust relationships as defined by applications, and
does not require to decrypt an application’s content.

e Supports different types of applications, without relying on
any application specific.

ICT-Notify consists of an application library and an intermediate
process that can be deployed by the network operator. The imple-
mentation of ICT-notify follows the long-lived Interest scheme. As
discussed in [30, 32], this scheme presents challenges in namespace
design. In short, although multicasting an Interest with a general
name to all potential producers consumes one PIT entry, it does not
support simultaneous multi-source Data packets because the first
Data packet consumes the PIT entry. In contrast, although sending
a designated Interest to each producer supports simultaneous Data
packets, it consumes more network overhead (state and bandwidth).
To address our requirement for dynamic environments with un-
known identities of producers, we choose the first approach and
use a general namespace design. ICT-Notify supports simultaneous
data delivery through its namespace design, with the penalty of an
additional latency. As our focus is to implement a proof-of-concept
ICT mechanism, this work does not study the cost of long-lived
Interests on the PIT, and does not evaluate the tradeoffs.

Another challenge of the long-lived Interest scheme is to distin-
guish one Interest from another. In the past, this has been done by
adding a sequence number or a timestamp to the Interest name. A
sequence number is used to request the next sequenced notifica-
tion, and a timestamp is used to request a notification that occurred
after that time. However, none of these options provide a complete
solution. Sequenced Interests require the producer’s identity in the
namespace, and timestamps do not support unordered data delivery.
For instance, consider that consumer C sends a long-lived Interest
looking for notifications that occur after t1. Producer P1 responds
with a notification that occurred at t2, and a little after, producer P2
responds with another notification occurred at t3. If t3 arrives at C
before t2, C will then ask for notifications that occurred after t3, and
will miss t2. ICT-Notify takes a new namespace design approach to
address this challenge.

To address these challenges, ICT-Notify follows the next names-
pace design for its long-lived Interest notifications:
<ICTName>/<AppName>/<ConsumerState>. <ICTName> identifies
ICT-Notify packets in the network. <AppName> differentiates ap-
plications that use ICT-Notify and supports multicasting to only
application parties. <ConsumerState> is the list of recent notifi-
cations known by the consumer. A notification list is a tuple of
pairs. Each pair consists of a unique node id, and the unique ids of
the last X events pushed by that node.

Determining the best representations of these unique identifiers
require further exploration. As a proof-of-concept mechanism we
use a random number, generated once by ICT-API, as a node UID,
and a timestamp as the event UID. When using the timestamps
representation, the ICT-Notify library on the producer side can
not determine only what events are missing, but also if the miss-
ing events have not expired. In future work, we plan to explore
additional identifier representations.

We define an event to be the content of a pushed Data packet, in
the form of a short name, for instance: "/sensorA/temperature/50"
or "/User/Alice/Location/X/Y". Since the event is the Data payload,
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and not the Interest or Data name, it can be of any form, and it can
contain producers’ identities if desired by the application. When an
applications pushes an event, ICT-Notify API generates a unique
event identifier, i.e., a timestamp in our proof-of-concept implemen-
tation, and associates it with the event. To minimize collisions of
frequently generated events, ICT-Notify uses nanosecond accuracy
for timestamps.

The name of a notification Data packet consists of the Interest
name and an additional name component, <ProducerState>, that
lists the latest notifications known by the producer. Before a new
long-lived Interest is sent, old notifications are removed from the
<ConsumerState> name component.

When receiving an Interest, a producer compares its local list of
known event identifiers with the identifiers in the received <Con-
sumerState> name component, and determines if it has new events
unknown to the consumer. If so, the producer responds with a Data
packet that consists of 1) its local notification list in the <Produc-
erState> name component, and 2) the events that correspond to
the missing identifiers in the payload. Therefore, the Data name
contains two notification lists: the consumer’s out-of-date list from
the Interest name, and the latest up-to-date producer’s list. The
Data payload contains the set-difference of the two lists, which is a
list of the missing events. To be clear, the list in the name consists of
event identifiers, and the payload consists of the encrypted events.

Since the long-lived interest scheme guarantees that there is al-
ways an Interest in the PIT, a producer can push Data notifications
whenever the application generates an event. Having <Consumer-
State> in the Interest name allows every participant, including the
intermediate ICT process, to find the relevant set-difference and to
respond quickly with Data. It also enables relevant data retrieval
from NDN caches.

We explored two implementations of <ConsumerState> and
<ProducerState>: an invertible Bloom filer (IBF) [33], and a sim-
ple vector. We encoded each of these data structures in a name
component and compressed these names using the Bzip algorithm.
We found that although IBFs are considered to be efficient data
structures, they consume more memory than vectors when sup-
porting small numbers of items (in the hundreds). Our experiments
showed that Interest names with vector representations are six
times smaller than Interest names with IBF representations. A quan-
titative evaluation of vectors is presented in Section 7.2. Since the
goal of ICT-Notify is to push only the latest notifications, old names
are removed from the vector and therefore we do not anticipate a
large number of events encoded in the name components.

Furthermore, ICT-Notify API allows applications to define filters
on the events they request to receive. This way, different instances
of the applications can choose to be notified about specific events,
and not about every event generated by a producer. For instance,
a sensor in an IoT network can wake up and send its tempera-
ture periodically, but an application can choose to be notified only
when the temperature is above X or below Y. ICT-Notify follows
the implementation of the schematized trust model [34] to enable
regular expressions as configurable filters, as is done to define trust
relationships.

The intermediate process of the ICT is similar to an end-point
consumer. It does not produce notifications, and unlike ICT-Sync, it
does not need to store all Data packets. Instead, the intermediate ICT
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process maintains a local map of an application’s notification list,
the tuple of producers and events, according to the flow of Interest
and Data names it sees. It keeps track of the latest events pushed by
each consumer, and saves only the corresponding payloads. Then
it responds to Interests just like any end-point party, without the
need to decrypt the data. This way, ICT-Notify supports applications
even when the network is disturbed, even in the worst case of no
synchronous end-to-end path.

To summarize, ICT-Notify supports applications in two aspects:
1) It proposes a push-based mechanism as a primitive for ICN ap-
plications, without relying on any application specifics. 2) Like
ICT-Sync, it decouples information from connectivity and supports
applications in different connectivities, even if there is no synchro-
nous end-to-end path.

7 DEMONSTRATING ICT-SYNC AND
ICT-NOTIFY

We implemented ICT-Sync and ICT-Notify and demonstrated them

in a lossy environment, where an end-to-end communication was

not always guaranteed. Figure 4 illustrates the NDN topology we

used, which consisted of six end-points and four intermediary NDN

routers.

V
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X)
SICIC

NDN R1 NDN R2 NDN R3
® NDN Routers <—> Stablelink
End-point <- - -> Lossylink

Figure 4: Tested NDN Topology

Interestingly, although it seems simple, this topology illustrates
an use case of a lossy environment that disturbs application flow.
For instance, consider a sensor network in which two sensors com-
municate via one or more intermediate nodes and links that can
asynchronously move or fail. As we show in this section, without
an ICT, the application completely breaks using IP-based or NDN
end-to-end services, but can successfully operate when supported
by an ICT.

We conducted all our experiments on the Open Network Lab
(ONL) [35], where real routers and links can be programmed to
control the factors we used in our experiments: link delay, link
bandwidth, packet drop rates, and link availability. We used 10 two-
core machines as end-points and NDN routers, and five Ubuntu
Linux (16.04.4) software routers servers. All two-core machines
ran NFD [7]. Each experiment was repeated at least five times in
order to control experimental error caused by the dynamics of the
network. The end-points ran tested applications with ICT-sync and
ICT-Notify APIs. NDN routers were a combination of two machines
- a Linux software router and a machine that ran the NFD code.
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Figure 5: Mapping Topology onto Physical ONL Hardware

7.1 Demonstrating ICT-Sync

The goal in this section is to show the capabilities of ICT-Sync,
rather than the scalability of chronoSync. Therefore, in these exper-
iments, we focus on demonstrating how ICT-Sync provides trans-
port for a file sharing application by decoupling it from connectivity
characteristics.

In all ICT-Sync experiments, node ’a’ encrypted data read from
alocal 1MB file into 1KB chunks, and published it using ICT-Sync.
Following ChronoSync protocol, the ICT-Sync API updated the
sync tree to represent the sequence number of the new chunk. The
sync libraries on end-points ’b’-’f” exchanged sync Interest and
Data packets to reconcile the new data, and notified the application
of the new chunk name. In our experiments, we implemented the
application to fetch every new chunk in order to measure its per-
formance on top of a variety of connectivities. Once the chunk was
received, the signer was validated, and the content was decrypted,
and concatenated into a single file. ICT-Sync also followed the ap-
plication trust model by validating every received data packet. In
our experiment, we preconfigured the nodes with the sync prefix
for the content and the trust anchor needed for validation.

We used the consumers’ system clock to record the start time,
when it received the first ChronoSync update, and the end time,
when it finished fetching the last chunk of the synced file. We set the
Link rate to 1000Mbps and manipulated the experimental factors to
replicate an ad-hoc network with low bandwidth and intermittent
links. The calculated error in all the experiments was found to be
very small relative to the measured value, and therefore did not
affect the reported results.

In the next experiment we measured the average fetching time of
a file sharing application with and without ICT-Sync deployed in the
network. Following the ICT concept, we ran the same application
on the different setups. When using ICT-Sync, we configured it to
run on R1. In addition, we tested the same topology with a similar
IP-based application by using ipref. We recorded how many seconds
elapsed from the moment the consumer discovered a new chunk
until it fetched the entire file.

Figure 6 shows the consumer fetch time on top of different com-
munications in three different states: 1) Link 1 is always up, hence
there is a synchronous end-to-end path between the consumers
and the producer . 2) Link 1 is up for two seconds and down for one
second. and 3) Link 1 is up for three seconds and down for three
seconds. ICT-Sync denotes the setup in which the intermediate ICT
runs on router 1. TCP/IP denotes similar IP-based application by
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using ipref, and sync indicates the setup in which only the end
hosts run Sync.

Figure 7 shows the consumer fetch time in the scenario in which
link 1 and link 2 alternated for different amounts of time. Here,
there is never an end-to-end path, because we stopped one link
before we woke up the other. In this test the x-axis indicates the
number of seconds each link is up before being stopped. The results
in Figure 6 and Figure 7 support the following conclusions:

e The application succeeded in fetching the 1MB file when
links 1 and 2 broke the end-to-end path only when ICT-Sync
was running on router 1. Without ICT-Sync, the consumer
failed to fetch the file

o ICT-Sync does not improve performance when the end-to-
end path is reliable and un-interrupted.

B 50dc-ICT-Sync ™ 50dc-sync M 66dc-ICT-Sync M 66dc-sync
80

o [ T lI
0

0 1 5
Loss Rate (%)

Figure 8: Fetch Time with Different Packet Loss Rates

In the next set of experiments, we configured our application to
synchronize a 1MB file on top of different connectivity characteris-
tics. We measured the average fetch time with different connectivity
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characteristics, such as link delay and packet drop rate, and modi-
fied the duty cycle of link 1. A duty cycle of 50% indicates that the
link was up and down for three seconds each time. A duty cycle of
66% indicates that the link was up for two seconds and down for
one second. The results are presented in Figures 8 and 9.

The results support the following conclusions:

e With no consistent end-to-end path, running ICT-Sync on
node 1 always expedited fetch times in the tested scenarios
of different link delays and different packet losses.

e For a 50% duty cycle, the application can fetch up to 57%
faster with ICT-Sync.

e For a 66% duty cycle, the application can fetch up to 72%
faster with ICT-Sync.

7.2 Demonstrating ICT-Notify

The experiments discussed in this section focus on showing the
capabilities of ICT-Notify as a primitive, rather than its scalability.
Scalability tests as well as more technical details will be published
separately. We used the NDN topology in Figure 4 over the physical
topology in Figure 5. Network Time Protocol (NTP) was used on
ONL machines to ensure the consistency of timestamps.

Figure 10 shows notifications’ latency for different number of
producers. In this set of experiments, we increased the number of
producers that send simultaneous notifications. Each producer sent
between 80-100 notifications every 1-4 seconds. We measured the
time elapsed from the moment a producer pushed a notification
until it arrived at the consumer. We used node ’a’ as the consumer,
and nodes ’b’-’f” as the producers. The results suggests a linear
trend between the number of simultaneous updates and the push
latency. This linear trend represents the penalty of using the long-
lived Interest scheme, because only one Data packet consumes the
Interest in the case of simultaneous updates. The following Data
packets are aggregated at the intermediate ICT and wait for the
next long-lived Interest.

In the next sets of experiments we deployed the intermediate
ICT-Notify process on NDN R1. Figure 11 shows the name size (in
Bytes) of the Interest and Data packets sent and received by the
intermediate process. We programed five producers to start sending
simultaneous notifications approximately four seconds after we
started each experiment. We set notifications to expire five second
after they have been sent. Each producer sent 50 notifications every
1-3 seconds. As shown by the figure, Data names are approximately
twice the size of Interest names as they carry both the consumer
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and producer timestamps lists. Figure 10 also shows how the name
size drops when expired timestamps are removed.

Figure 12 shows notifications’ latency for different loss rate in
the scenario in which link 1 and link 2 alternated for different
amounts of times, hence, there is never a synchronous end-to-end
path. The x-axis of Figure 12 indicates the different loss rates we
tested, and the y-axis indicates the latency for the different up
and down times we tried. The results show that notifications are
pushed faster when the links alternate for 1 and 2 seconds than
alternating for 500 ms. As with ICT-Sync, repeating this experiment
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without the deployment of the intermediate ICT process lead to
zero notifications received by the consumer. Our experiments show
relatively long fetching times (in seconds) that are not competitive
for push-based applications. After close examination, we found that
NFD randomly blocks our application, and therefore, the results
contain a few large outliers. To provide a better evaluation of ICT-
Notify, and not NFD performance, we present the median push time
of one producer over different loss rates in Figure 13.

7.3 Related Work

Most related works explore different mechanisms for forwarding
strategies in ICN. Presently, NFD and CICN both implement for-
warding strategies, and each strategy consists of specific forwarding
mechanisms. [6, 10]. [36] discusses the principles of an adaptive for-
warding strategy, while proposed mechanisms for such a strategy
are presented in [37]. A dynamic forwarding mechanism designed
to discover temporary copies of content items is presented in [38].
[39] proposes a revised forwarding strategy that can better prevent
or detect loops in NDN. Strategies for Wireless networks are dis-
cussed in [40, 41], and a set of adaptive forwarding strategies for
access networks are described in [42]. [43] presents a probability-
based adaptive forwarding strategy, including a statistical model to
compute strategy retransmission intervals.

In contrast to these cited works, our work is mainly focused on
solving the problem in which the forwarding strategy component
couples applications with connectivity. The works in [2, 3] discuss
the relation between application and forwarding strategies, but do
not attempt to solve the problem. The works in [4, 9] specifically
attempt to address the conflicts created by the strategy decision
whether to retransmit an unsatisfied Interest.

The work in [17] proposes a consumer-producer API, built to
simplify and reduce the implementation efforts of NDN application
developers. Although this work addresses some of the challenges
discussed here, we propose a general-purpose information-centric
abstraction and a mechanism that provide in-network transport.
Not only an APIL. Another implementation of a socket API for ICN
is discussed in [18].

The Named Function Network (NFN) architecture [44] supports
in-network code execution by applying named functions to named
data. The proposed ICT abstraction follows the same approach and
allows in-network information-oriented mechanisms, but unlike
NFN, it does not require changes to the Interest structure, and
therefore to the forwarding plane. However, the tradeoffs between
the two approaches should be further explored in future work.

In addition, while related sync works [26-29] explore and eval-
uate different sync mechanisms for ICN, our proposed ICT-Sync
is an enhancement of ChronoSync and is focused on providing
transport for sync-based applications. Therefore, our contribution
differs from those of other works proposing sync services.

8 CONCLUSIONS AND FUTURE WORK

In this work, we proposed to decouple information and connectivity
in Information-Centric Networking by specifying the role of for-
warding strategies and by introducing the concept of Information-
Centric Transport (ICT). ICT seeks to fulfill the promise of the ICN
abstraction — the request for named data — and allow applications

ICN ’18, September 21-23, 2018, Boston, MA, USA

the freedom to stay in stay in the information plane focusing on
requesting named data and defining trust identities. An ICT imple-
mentation consists of an API for application developers, and an
intermediate network process for network operators. An interme-
diate ICT should not contain any application-specific knowledge,
and should support ICN trust mechanisms. Moreover, the concept
of ICT does not preclude other applications from using traditional
end-to-end transport mechanisms.

It may appear that the core contribution of this paper is to allow
placing function-specific blobs at intermediate nodes. However,
we argue that forwarding strategies already implement function-
specific blobs in the network. This paper’s core contribution is
to decouple information-oriented mechanisms from connectivity-
oriented mechanisms by placing the ICT component in the ICN
architecture. To make the ICT abstraction practical and scalable,
ICN must implement a set of well-defined ICTs. Determining the
different sets and the specific application requirements that each
set should implement remains a question for future work.

We describe two ICTs to demonstrate the ICT concept: ICT-Sync,
an ICT for applications that request full synchronization of their
names, and ICT-Notify, an ICT for applications that request to be
notified on the latest data of their name. We show that when using
these ICTs, sync-based and push-based applications remain entirely
in the information plane, agnostic to connectivity characteristics.
We further show that applications can thus operate in environments
where IP-based applications and present NDN services fail.

In future work, we plan to extend our efforts and explore new
ICTs to support other application-level requirements. In addition,
our current implementations of ICT-Sync and ICT-Notify were de-
signed only to demonstrate the concept of ICT, and we plan to
improve ICT-Sync and ICT-Notify to be more robust and efficient.
The demonstrated ICTs use simple namespace discovery, however,
it is unclear whether other ICTs, designed to support other appli-
cation needs, should follow the same method. Exploring how an
intermediate ICT discovers its Interest and Data packets is a rich
area for future work.

Additionally, the interaction between the ICT component and
other network components must be further explored. For instance,
how does routing interact with ICTs? Should QoS and congestion
control mechanisms be implemented in the connectivity plane
(forwarding strategy) or in the information plane (ICT)? Can a
single ICT implement different mechanisms for the same set of
application-needs? For instance, can we have one universal ICT that
supports different sync schemas? Moreover, the exact placement(s)
of an intermediate ICT should be explored and better understood.
For instance, should it be deployed everywhere, or only in some
specific network elements? All these questions and more will be
part of future work.
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