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Quantum phase transitions (QPTs) involve transformations
between different states of matter that are driven by quantum
fluctuations'. These fluctuations play a dominant part in the
quantum critical region surrounding the transition point, where
the dynamics is governed by the universal properties associated
with the QPT. Although time-dependent phenomena associated
with classical, thermally driven phase transitions have been
extensively studied in systems ranging from the early Universe to
Bose-Einstein condensates’~®, understanding critical real-time
dynamics in isolated, non-equilibrium quantum systems remains
a challengeS. Here we use a Rydberg atom quantum simulator with
programmable interactions to study the quantum critical dynamics
associated with several distinct QPTs. By studying the growth of
spatial correlations when crossing the QPT, we experimentally
verify the quantum Kibble-Zurek mechanism (QKZM)’~? for an
Ising-type QPT, explore scaling universality and observe corrections
beyond QKZM predictions. This approach is subsequently used
to measure the critical exponents associated with chiral clock
models'®!!, providing new insights into exotic systems that were
not previously understood and opening the door to precision studies
of critical phenomena, simulations of lattice gauge theories'>!* and
applications to quantum optimization'*'>,

The Kibble-Zurek mechanism?>?, which describes nonequilibrium
dynamics and the formation of topological defects in a second-order
phase transition driven by thermal fluctuations, has been verified exper-
imentally in a wide variety of physical systems*®. Recently, the concepts
underlying the Kibble-Zurek description have been extended to the
quantum regime’~°. Here, the typical size of the correlated regions, &,
after a dynamical sweep across the QPT scales as a power law of the
sweep rate, s, with an exponent i determined entirely by the QPT’s
universality class. Specifically, QKZM postulates that when the timescale
over which the Hamiltonian changes becomes faster than the character-
istic response time, 7, which is determined by the inverse of the energy
gap between the ground and excited states, nonadiabatic excitations
prevent the continued growth of correlated regions (Fig. 1a, b). The
resulting scaling exponent, y = v/(1 + vz), is determined by a com-
bination of the critical exponent, v, which characterizes the divergent
correlation length, and the dynamical critical exponent z, which charac-
terizes the relative scaling of space and time close to the critical point'.
Although QKZM has many important implications—for example, in
quantum information science!*—its experimental verification is chal-
lenging owing to the coupling of many-body systems to the environ-
ment'®, Recently, experimental control over isolated quantum systems
enabled the observation of scaling behaviour across QPTs described
by mean-field theories'®!. Although important aspects of QPTs have
already been explored in strongly correlated systems!'®, experimental
observation of quantum critical phenomena beyond mean-field approx-
imations in real-time dynamics remains a challenge'>!%2°.

We investigate quantum criticality using a reconfigurable one-
dimensional array of #Rb atoms with programmable interactions?'. In
our system, 51 atoms in the electronic ground state |g), which are
evenly separated by a controllable distance, are homogeneously coupled
to the excited Rydberg state |r), in which they experience van der
Waals interactions with a strength that decays as V{(r) oc 1/7%, where r
is the interatomic distance. This system is described by the many-body
Hamiltonian,
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where n; = |r;) (r}| is the projector onto the Rydberg state at site i, A
and Q are the detuning and Rabi frequency of the coherent laser cou-
pling between |g) and |r), respectively, Vj; is the interaction strength
between atoms in the Rydberg state at sites i and j, and # is the reduced
Planck constant. For negative values of A, the many-body ground state
corresponds to a state in which all atoms are in the electronic ground
state |g), up to quantum fluctuations, and belongs to a so-called ‘dis-
ordered’” phase with no broken spatial symmetry. For A > 0, several
spatially ordered phases arise from the competition between the detun-
ing term, which favours a large Rydberg fraction, and the Rydberg
blockade, which prohibits simultaneous excitation of atoms separated
by a distance smaller than the blockade radius, Ry, defined by
V(Rp) = Q. As illustrated in Fig. 1c, d, we probe different QPTs into
states breaking various symmetries by choosing the interatomic spacing
and sweeping the control parameter, A, across the phase boundary.

We first focus on the QPT into the antiferromagnetic phase with
broken Z, symmetry, which is known to belong to the Ising universality
class’. Using an interatomic spacing, a, such that Ry/a ~ 1.69, we create
an array of 51 atoms in the electronic ground state and slowly turn on
Qat A <0, adiabatically preparing the system in the ground state of
the disordered phase. We then increase the detuning at a constant rate,
s, up to a final value Ag, at which point we slowly turn off Q (see inset
of Fig. 1¢) and measure the state of every atom. We examine the dynam-
ical development of correlations between the atoms, characterized by
the Rydberg density—density correlation function:

G(T)ZZ ((nini-w)*(ni) <ni+‘r>)/Nr (2)

where the normalization factor N, is the number of pairs of sites sepa-
rated by distance r. By fitting an exponential decay to the modulus of
the correlation function, we extract the correlation length. The exper-
imental results show growth of the correlation length as the detuning
approaches the critical point, followed by saturation once the detuning
is swept past the critical point into the ordered phase (Fig. 2b). From
the individual images it is apparent that, whereas for fast sweeps the
ordered domains are frequently interrupted by defects (domain walls),
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Fig. 1 | Quantum Kibble-Zurek mechanism and phase diagram.

a, Illustration of the QKZM. As the control parameter approaches its
critical value, the response time, 7, which is given by the inverse energy
gap of the system, diverges. b, When the temporal distance to the critical
point becomes equal to the response time, as marked by the red crosses in
a, the correlation length, &, stops growing owing to nonadiabatic
excitations. ¢, Numerically calculated ground-state phase diagram. Circles
(diamonds) denote numerically obtained points along the phase

for slow ramps considerably longer domains are observed (Fig. 2a).
A systematic analysis of the final correlation lengths after crossing into
the ordered phase shows that a power-law scaling model &(s) = &y(so/s)*
with p = 0.50(3), where the uncertainty represents one standard devi-
ation, describes our measurements accurately (Fig. 2c). These results
are consistent with numerical simulations (red points) of the coherent
evolution of the system using matrix product states (MPS).

The QPT into the Z,-ordered phase is in the Ising universality class’,
with critical exponents in one dimension of z = 1, v = 1 and, conse-
quently, jiing = 0.5. Our observations are consistent with these quan-
titative predictions and are distinct from those associated with a
mean-field Ising transition, which are described" by z =1, v = 1/2
and yield e = 1/3. These results offer the first experimental verifica-
tion of the QKZM in an isolated quantum system that defies a mean-
field description.

A key concept associated with critical phenomena is that of univer-
sality, which is manifested by the collapse of correlations to a universal
form when rescaled according to the corresponding critical exponents'.
Such a signature is a strong test of an underlying universal scaling law

Detuning, A/Q

Distance, r (sites)

boundaries, calculated using (infinite-size) density-matrix
renormalization group techniques (Methods). The shaded regions are
guides for the eye. Dashed lines show the experimental trajectories across
the phase transitions determined by the pulse diagram (inset). d, Measured
density-density Rydberg correlations (circles) with fits to the expected
ordered pattern (solid lines), consistent with Z,- (orange), Z,- (purple)
and Z,-ordered (green) states. Error bars denote the standard error of the
mean (s.e.m.) and are smaller than the marker size.

and, in connection with the QKZM, should appear upon rescaling
lengths? by (s/so)". Figure 3a shows that the rescaled correlations for
Ry/a = 1.81 indeed collapse onto two smooth branches, which in turn
collapse on top of each other when the correlations are rectified as
(—1)"G(r) (inset in Fig. 3a), according to the Z,-order parameter.

While the QKZM is a coarse-grained description that predicts the
mean density of defects, the shape of the correlation function gives
further access to microscopic details of the system. Detailed inspec-
tion of the rescaled correlation functions reveals nontrivial deviations
from a simple exponential decay. In particular, the correlations in
Fig. 3a become negative for a range of distances, which implies com-
plex dynamics in the formation and spreading of defects. The observed
corrections to simple QKZM predictions are consistent with recent
theoretical analyses?*** and are in good agreement with numerical sim-
ulations using MPS (Fig. 3¢). Finally, applying the universal rescaling
to the correlation growth shown in Fig. 2b enables us to independently
estimate the values of critical exponents (Extended Data Fig. 7), show-
ing that our results are consistent with z = v = 1, which is associated
with the Ising QPT.
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Fig. 2 | QKZM for a QPT into the Z,-ordered phase. a, Single-shot
images of the atom array before and after a fast (orange arrow) and a slow
(blue arrow) sweep across the phase transition, showing larger average
sizes of correlated domains for the slower sweep. Green spots (open
circles) represent atoms in |g) (|r)). Blue rectangles mark the position of
domain walls, and the red and grey coloured regions highlight the extent
of the correlated domains. b, Correlation length growth and saturation as
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the system crosses the QPT at different rates. The grey dashed line
indicates the critical detuning. ¢, Experimental (green) and MPS-
simulated results (red) for the dependence of the correlation length on the
inverse sweep rate across the phase transition. The length is extracted from
fitting the modulus of the correlation data to an exponential decay. Error
bars denote fit uncertainty. The dashed line indicates a power-law fit to the
experimental results with a scaling exponent of y = 0.50(3).



LETTER

Ramp speed, s (MHz us™)

0.4 0.85 1.3 1.75

|

|
o
w

o
o

o
w

Normalized correlator, G(r)

2 6 10 14
Rescaled distance, (s/s)“r

Fig. 3 | Universality of spatial correlations. a, ¢, Collapse of the measured
(a) and numerically calculated (c) correlations in the Z,-ordered phase,
with distances rescaled according to the extracted scaling exponents. The
purple line connects the points of the correlation function that correspond
to the slowest sweep rate. The insets show the staggered rescaled
correlations. The negative values of the correlation function indicate

Having established the validity of the QKZM—as well as its
limitations—for a QPT in the Ising universality class, we now explore
transitions into more complex Z,-ordered phases, where Rydberg
excitations are evenly separated by N > 2 sites (see Fig. 1¢). The corre-
lation functions at smaller interatomic spacings after slow detuning
sweeps reflect the spatial ordering of the Z,- and Z,-ordered phases
(Fig. 1d). In addition, we determine the probability of finding two
Rydberg excitations separated by N sites for each value of N and R,
(Fig. 4b). By combining these measurements with the numerically
obtained critical points (see Fig. 1¢), we experimentally identify approx-
imate boundaries for the regions that are consistent with the Z -, Z,-
and Z,-ordered phases in Fig. 4b. Within these regions, the dominant
type of order is the one associated with the corresponding phase,
whereas the second most prevalent type of order arises from the
lowest-energy (most probable) defects. In particular, we observe that
in the Z,-ordered phase, the most likely type of defect changes from
Z,-like (for smaller values of Ry/a) to Z ,-like as Ry/a increases.

We test for a power-law scaling behaviour of the correlation length
growth as a function of ramp speed at different interaction strengths
(Fig. 4¢). To compare the results for all interaction strengths consist-
ently, we fit the correlation function to an exponentially decaying
density wave with a period set by the underlying order (as opposed to
the modulus of the correlation function used in Fig. 2¢). The scaling is
extracted through a power-law fit to the resulting correlation lengths.
In parameter regimes far from regions of competing order, we observe
three stable plateaus for the regions consistent with Z,, Z ,and Z, order.
For interaction strengths at which there is a strong competition between
different types of order, we do not observe the formation of long-range
correlations (pale-blue points in Fig. 4c). In these cases, the detuning
sweeps either do not fully cross the phase boundary into the ordered
phases (Methods) or potentially enter theoretically predicted incom-
mensurate phases',

To understand these observations, we compare them to finite-size
scaling analyses of ground-state properties®2’, as well as MPS-based
numerical simulations of our experimental protocol for the full

18 2 8 14 20

nontrivial correlations between domain walls. b, d, Collapse of the
measured (b) and numerically calculated (d) correlations in the
Zs-ordered phase, highlighting the energetic difference of the different
types of defect, as shown by the distinguishability of the two negative
branches, that is, a deviation from a period-3 density wave. All error bars
indicate the s.e.m.

Hamiltonian (equation (1)). For the transitions into the Z,-ordered
phase, some of the extracted values of . are slightly larger than the
exponent expected from the Ising model, /150 = 0.5. We attribute these
deviations to a combination of long-ranged interactions, of finite-size
and/or time effects, and of systematic effects related to the inversion of
the alternating pattern (Fig. 3a, ¢; see also Methods).

QPTs associated with the breaking of a Z, symmetry are more com-
plex owing to competition between the different types of defects that
can be formed. In our system, the defects correspond to two different
types of domain walls, in which the distance between neighbouring
Rydberg excitations is two and four sites (see Fig. 4a). For experimen-
tally accessible parameter regimes, the different associated excitation
energies generally lead to an asymmetry between these defects (see also
Fig. 4b). Correspondingly, the Z,-symmetry breaking is believed to be
in the universality class of the three-state chiral clock model (CCM)
(see Fig. 4a, Methods and ref. %).

The exact nature of such phase transitions has been a subject of
intense theoretical research for the past three decades'®!?>-2 Only
very recently, numerical studies of equilibrium scaling properties®*’
provided evidence for a direct transition?” along some paths across the
phase boundary, where the expected range of values of the scaling expo-
nent is prceym < 0.45 (ref. 2) and pecy > 0.25 (ref. 2°). Our experimental
results are consistent with a direct CCM phase transition over a range
of interaction strengths with e ~ 0.38, in agreement with the theoretical
value obtained by combining the results of the most extensive numer-
ical finite-size scaling studies?®?’ (dashed line in Fig. 4c). Further
evidence for a direct chiral QPT is provided by the universal scaling
behaviour into the Z ;-ordered phase (see Fig. 3b, d).

The transition into the Z ,-ordered phase is even more involved. At
present, complete understanding of this transition is lacking owing to
the potential presence of an intermediate gapless incommensurate
phase'?%, Our experimental results in this region are reasonably
consistent with power-law scaling with p ~ 0.25. Although recent
theoretical work shows that QKZM scaling may still hold on quenching
through a gapless phase, albeit with a modified (system-specific)
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Fig. 4 | Power-law scaling for different interactions. a, Experimental
realization of the CCM?®, The top row shows a single fluorescence image
of a state in the Z,-symmetry-broken phase (Ry/a ~ 2.16), with four
Z,-type defects displacing the Rydberg atoms in one direction
(anticlockwise chirality). The bottom rows display a system with stronger
interactions (Ry/a ~ 2.43), in which Z,-type defects are favoured and the
Rydberg atoms are displaced in the opposite direction (clockwise
chirality). The coloured regions highlight the extent of the correlated
domains, which are labelled by clock orientations in connection to the
CCM. b, Fraction of the final state consistent with the different
Zy-ordered states observed in the experiment (left, circles) and in
numerical simulations (right, diamonds). Within the Z,-ordered region,
the most dominant type of defect changes from Z,- to Z,-type as the
interaction range increases. The higher contrast in the calculated domain

power-law exponent®, detailed theoretical understanding of our exper-
imentally observed exponents in the Z, regime requires further
studies.

Detailed comparison of our experimental results across all phases with
the numerical simulation of the Hamiltonian dynamics using MPS are
presented in Fig. 4. Although qualitatively similar, the datasets display
clear discrepancies. The most important one is a systematic offset between
the extracted values of 1 from the experiment, finite-size scaling analysis
and time-dependent MPS simulations. Although it can be potentially
attributed to experimental imperfections and subtle differences between
the experimental system and the model used for the numerical simula-
tions (see Methods), the disagreement of the MPS simulation with both
the experimental results and the finite-size scaling analyses of equilibrium
properties highlights the difficulty in approximately modelling complex
nonequilibrium dynamics of many-body systems.

Our observations demonstrate a new approach for investigating
quantum critical phenomena and provide insights into the phys-
ics of exotic QPTs that do not lend themselves to simple theoretical
analyses. Increasing the system size, improving the atomic coherence
properties and exploring wider parameter regimes may allow more
precise probing of exotic QPTs into both ordered and incommensurate
phases'"242>27 in various models. In particular, the present approach
is well suited for simulations of lattice gauge theories'*. Whereas the
system studied here is formally equivalent to a quantum link model on
aladder geometry’, two- and three-dimensional systems realized using
novel trapping techniques*"*? can be used to simulate a wide variety of
non-trivial lattice gauge models'2. Finally, the methods demonstrated
in this work can be used to effectively encode and explore solutions to
computationally difficult combinatorial optimization problems, such
as finding the maximum independent set®. Detailed understanding of
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probabilities in Fig. 4b is due to finite detection fidelity, which does not
affect the extracted value of (. ¢, Scaling exponent, (i, as a function of Ry/a,
obtained from experimental data (left, circles) and MPS simulations (right,
diamonds). Pale-blue points indicate instances in which the measured
correlation lengths do not grow beyond the size of Ry/a. Shaded areas
indicate regions consistent with Z,- (green), Z,- (purple) and Z,-ordered
(orange) phases. The solid green line corresponds to fising, the purple
dashed lines represent the upper® and lower?® bounds of jiccy, and the
purple dotted line denotes the value of jiccym obtained from the best
numerical estimates of z (ref. 2°) and v (ref. ¥7). Error bars represent the
68% confidence interval (b) and one standard deviation of the power-law
fit (c), which is dominated by systematic effects in the extraction of
individual correlation lengths.

quantum dynamics in such systems might have direct application to
exploring quantum speedup in both adiabatic and dynamical quantum
optimization algorithms'?.
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METHODS

Rydberg array preparation. The experiment uses an acousto-optic deflector to
generate multiple optical tweezers, which are loaded probabilistically from a cold
gas of ¥Rb atoms in a magneto-optical trap. Each tweezer can be loaded with up
to a single atom. Once the cloud is dispersed, a fluorescence image, similar to the
ones shown in Fig. 2a, is taken to identify loaded traps. The traps are then rear-
ranged to generate a defect-free regular array of 51 atoms that are evenly separated
by distance®* a.

We define our spin Hamiltonian according to two pseudospin-1/2 states. The
first is a ground-state hyperfine sublevel, |¢) = |5, 5, F = 2, my = —2), and the
second is the interacting Rydberg state |r) = |70S,] = 1/2,m; = —1/2), where F,
mpand J, my are the hyperfine and total angular momentum quantum numbers,
respectively. These two states are coupled by a two-photon process via the inter-
mediate state |e) = [6P; /,, F = 3, mp = —3). The two lasers operate at wavelengths
of 420 nm for the lower transition and 1,013 nm for the upper transition.

The 420-nm laser is a frequency-doubled titanium-sapphire laser (SolsTiS 4000

PSX F by M Squared) locked to an optical reference cavity (ATF- 6010-4 from
Stable Laser Systems). The 1,013-nm laser is an external-cavity diode laser (CEL002
by MOGLabs) that is locked to the same reference cavity. The light transmitted
through the cavity is used to injection-lock another 1,013-nm laser diode, which
is then amplified by a tapered amplifier®®. Both beams are focused along the array
axis (aligned with the quantization axis) to drive ¢~ and ¢ transitions for the
420-nm and 1,013-nm beams, respectively.
Pulse generation. We modulate the 420-nm Rydberg laser with an acousto-optic
modulator (AOM) driven by an arbitrary waveform generator (AWG; M4i.6631-x8
by Spectrum Instrumentation). For each experiment, we program a waveform with
varying amplitudes, frequencies and phases in the time domain into the AWG,
which is then transmitted to the AOM through a high-power radiofrequency
amplifier (ZHL-1-2W+ by Mini-Circuits).

The nonlinear AOM response to changes in amplitude and frequency poses a

technical challenge. The deflection efficiency is not proportional to the waveform
amplitude, and large changes in the latter lead to variations in the former. These
effects lead to distortions in the pulse shape. We apply feed-forward corrections to
the amplitude to match the output intensity to the desired waveform amplitude, as
well as to compensate for the variations with frequency.
Pulse parameters. All pulses begin by turning on the value of Q linearly over 1 ps
at a fixed initial detuning A,. We select our initial detuning to be as close to the
critical point as possible and subject to the constraint that the initial turn-on is still
fully adiabatic. We identify this detuning experimentally by ramping Q on and
then off for various fixed detunings. In the adiabatic case, all the atoms should
return to |g). We therefore select the detuning closest to resonance that shows no
excess excitation at the end of the pulse. For a typical measurement in the Z,
regime, we select Ay = —2.5 MHz (Extended Data Fig. 1).

The final detunings of the sweeps are chosen in most cases to cross the tip of the
corresponding phase boundary. In some cases in which the interaction strength
is on the border between two phases, we do not fully cross over the boundary
(Extended Data Fig. 2a).

The power-law scaling behaviour of the correlation length can be limited owing
to strong nonadiabaticity far from the critical point, where the behaviour of the
system is susceptible to microscopic details and is expected to deviate from uni-
versal theories, limiting the speed of the sweeps across the phase transition. At the
same time, slow sweeps are more susceptible to decoherence, both because of the
longer pulse time window and because the system remains closer to the ground
state near the critical point and the growing quantum correlations are increasingly
sensitive to environmental noise. To determine the range of rates for which QKZM
scaling can be observed, we perform a sweep into each of the ordered phases at a
wide range of sweep speeds s. We fit the correlation lengths for each parameter,
discarding all the instances in which the correlation length is smaller than the size
of the blockade radius, with a model that accounts for incoherent processes as
saturation in the final size of the correlation length, namely:

(o |G s=s

= 3)
fo(so/sc)"’ s>,
From this fit, we set spin > sc and find sy such that £(smax) > R (an example is
shown in Extended Data Fig. 3). In this way, we determine the sweep parameters
for the different values of the interaction strength (see Extended Data Table 1).
Numerical computation of the phase diagram. The quantum critical points
along the phase boundary on the phase diagram presented in the main text were
obtained using both finite- and infinite-system density-matrix renormalization
group (DMRG) algorithms®*~*!. The filled coloured regions in Fig. 1c are not the
result of numerical simulations and only show the expected shape of the phases
approximately. In this section, we describe the details of the DMRG calculations.

For the infinite-system DMRG (iDMRG), we generally follow the method sum-
marized in ref. %2, in which translationally invariant matrix product states (iMPS)
are used as variational ansatze for ground-state wavefunctions. Our Hamiltonian
with long-range interactions is encoded using matrix product operator representa-
tions, where 1/r%-decaying interactions are approximated by a linear combination
of four exponentials:

~

CiX; (4)
1

-

1
6
r 1

with (cy, ¢, ¢3, ¢4) = (170.55, 1.29, 0.0252, 0.000279) and (x1, X3, X3, x4) = (0.0051
9,0.0835,0.279, 0.565)**. The resulting function provides an excellent approxima-
tion with relative error less than 10> (Extended Data Fig. 4). This accuracy implies
that even with the strongest interaction strength probed in our experiments
(R, & 3.5), the maximum correction, V; | (1/r%)— T ¢l | < (27) x 36kHz, is
much weaker than the smallest energy scale that can be probed within our exper-
imental timescales.

Our phase diagram involves quantum phases that spontaneously break spatial
translation symmetry. Hence, it is important that the number of spins in a trans-
lationally invariant unit cell of our iMPS ansatz must be compatible with the bro-
ken spatial symmetry. We use two or six spins as a unit cell to probe phase
transitions from disordered to Z,-ordered or Z;-ordered phases, respectively.
Incommensurate phases or onset of spatial symmetry breaking that is not compat-
ible with the number of spins per unit cell can be identified by oscillatory behaviour
of wavefunction overlaps or energy densities over iterations.

To obtain the ground-state wavefunction, we iteratively optimize iMPS tensors
until the (local) overlap between wavefunctions from two consecutive optimization
steps approaches unity up to a small error €. As convergence criteria, we require
that either ¢ < 10~ or ¢ is limited by truncation errors arising from a finite bond
dimension®?, D. We use a wide range of bond dimensions up to D = 200, depending
on the quantity of interest to be computed and on the convergence of the wave-
functions. For example, computing the ground-state energy density is relatively
insensitive to bond dimensions, whereas extracting correlation lengths near the
critical point requires a substantially larger D.

We thus extract the phase boundaries from the energy density. Specifically, we use
iDMRG to extract the ground-state energy density £ along a line in the parameter
space, (Rp/a, A/Q), and compute its second derivative along the line. When crossing
a QPT, the second-order derivative of the energy density exhibits a sharp feature. For
example, Extended Data Fig. 2b shows the numerically computed energy densities
per unit cell (six spins) as a function of Ry/a € [1.75, 2.25] for a fixed A/Q = 2 with
D = 10. We find clear cusps at Ry/a =~ 1.86 and 2.18, corresponding to critical points
from Z,-ordered to disordered and to Z;-ordered phases. Similar procedures along
different lines lead to the phase diagram in Extended Data Fig. 2a and in Fig. 1c.

These phase boundaries are also reproduced using finite-system DMRG**4>
with a bond dimension of up to D = 60 for a chain of L = 51 atoms and open
boundary conditions. The first three energy levels are individually targeted, which
in turn gives us access to the energy gap. The closing of the gap outlines well-
defined lobes in the phase diagram, the boundaries of which overlap well with the
points extracted previously with iDMRG (Extended Data Fig. 5).

A few remarks are in order. First, it has been previously discussed that the
Zs-ordered phase may be interfacing incommensurate phases?*. However, we do
not find any evidence of incommensurate phases between Z, and Z; phases with
up to A/Q = 12 within our numerical precision. The nature of the direct transition
from disordered to Z,-ordered phases is discussed in refs 2>~?’. Second, we have
not explicitly identified the phase transition between disordered to Z ,-ordered
phases. This is because our choices of a unit cell (two or six spins) are not compat-
ible with Z ,-ordered wavefunctions. Instead, the boundary of the disordered phase
for Ry/a > 3 (yellow diamonds in Extended Data Fig. 2a) has been extracted from
the convergence of the iDMRG algorithm; as A/Q increases with a fixed Ry/a, the
yellow diamonds in Extended Data Fig. 2a indicate the points at which the iDMRG
algorithm ceases to converge and instead exhibits oscillatory behaviours. Our
method does not distinguish whether this is due to the onset of the Z ;-ordered
phase or to a gapless incommensurate phase.

Extraction and scaling of correlation length. From the fluorescence images
obtained at the end of an experimental sequence, we calculate the two-dimensional
Rydberg density-density correlation map:

G(i,j) = <n,-nj> —(n,-)<nj> (5)

To minimize boundary effects, we disregard eight sites from each edge. From
the remaining bulk correlations, we average out this map over diagonal lines of
constant |i — j| to obtain the Rydberg density-density correlation described in
equation (2) (Extended Data Fig. 6). The uncertainties on the values of G(r) are
found via jackknife analysis.



Two different approaches are used to extract a characteristic length from such
correlations. For transitions into Z-ordered states (Fig. 4), we perform a least-
squares fit to the data with the model function:

G(r) = Ae "Gy (g, (6)

where A is the amplitude at r = 0, { is the correlation length and GN(r)gs is the ideal
correlation function at integer values of r for the corresponding Z-ordered state,
with a peak every N sites:

Gz(r)gs = cos(2wr/2)
és(r)gs = cos(27r/3) (7)
G4(r)g5 = cos(2wr/4) + (1/2)cos(27r/2)

The range of distances used for all fits is 0 < r < 20, where the cutoff at 20 sites
is used to avoid any potential finite-size effects of the system.

In addition to the procedure described above, for Z,-ordered states it is possible
to extract a correlation length by fitting an exponential decay to the modulus of
the correlation function, as is done in Fig. 2. This method enables the determina-
tion of the correlation length in a way that is less susceptible to systematic effects
arising from inversions of the alternating pattern, as observed in Fig. 3a. However,
this method cannot be applied to Z-ordered states for N > 2, necessitating the
use of a more general approach, such as the function G(r) defined above. Whereas
the scaling exponents extracted using both of these methods for the Z,-ordered-
state data are consistent within error bars, G(r) is used to obtain all exponents in
Fig. 4c.

To extract the most likely scaling exponent y at a given interaction, we fit the
data with a power law

§=¢,(s/s0)" ®)

where s is the detuning sweep rate.

Zy domain density. In the fluorescence images obtained at the end of each exper-
imental sequence, we identify the loss of an atom to a Rydberg excitation. In this
way, we can directly count the number of instances of two lost atoms separated by
N sites, with every site in between containing an atom. To extract the data for
Fig. 4b, we disregard the first eight sites from the edges and count the instances in
which both ends of the N atom chain are within the bulk, fy. The relative proba-
bility for two lost atoms separated by N sites is given by:

B N><fN
PN - Zi>o(i sz) 9)

Unlike G(r), py is susceptible to detection infidelity
Length rescaling of correlation functions. In Fig. 3, we use the normalized meas-
ured density-density correlation functions, LG(r)i, and rescale the length r by the
QKZM length-scaling exponent found via the scaling analysis of the correlation
length, r — (s/so)r.

Finite-time scaling. The length-scaling exponent, 11, found experimentally sets
constraints to the possible combinations of the critical exponents z and v at a given
interaction strength. To estimate, or qualitatively test, the possible values of zand
v, given the constraints set by 11, we make use of the fact that in the critical region,
all system properties scale in a universal way. The QKZM predicts a universal
scaling of time with a scaling exponent of z2/(1 + zv), in addition to the scaling of
length*® with y = v/(1 + zv). In the experiment, the control parameter used to
cross the QPT is 6 = A— A, where A is the value of the detuning at the critical
point and can be estimated through numerical simulations (see section ‘Numerical
computation of the phase diagrany). Near the critical point, the control parameter
varies in time as §(f) = st, leading to a universal scaling of 6(s) = do(so/s)", where
r = —1/(1 + zv). Using the data shown in Fig. 2 for the correlation length growth
across the transition into the Z,-ordered phase, we can apply the transformation
& — &(s/sp)! and § — 6(s/sp)" to observe how well the data collapse to a universal
shape. Extended Data Fig. 7 shows that these data are consistent with having crit-
ical exponents z = 1 & v, as expected for the Ising universality class.

Numerical simulation of Kibble-Zurek dynamics. We model the dynamics of
the system numerically using MPS and use a variant of a time-evolving block
decimation algorithm to propagate the state. We use a state update that allows us
to include exactly the effect of the interaction between atoms that are separated by
less than € = 7 sites. Interactions beyond this range are neglected. To this end, we
use a trotterization for the unitary that propagates the system from a time t; to a
time ty 1 =t + At as

21,35

N—-¢
U= )=~ [] exp (—ih,(t)A)
p=1

(10)
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where
14371 .Q(t) . -2 ¢—1 1
hp(tk)zzz k. 0y~ Altn, +Z Z i Vifpriflpyj (1)
=0\ 2 i=0 j=i+1 —(—)

for1 < p < N —¢,and h; and hy_, are similar but with appropriately adjusted
coefficients.

We simulate the evolution according to the same pulse shape as that applied in

the experiment, with a time step of At = 0.15 ns and a bond dimension of 128.
A comparison between the numerically simulated dynamics and the experimen-
tal results for different interaction strengths is shown in Fig. 4. As described in
section ‘Extraction and scaling of correlation length, deviations of the individual
correlation functions from an exponentially decaying period-N density wave lead
to systematic effects that dominate the uncertainty in the determination of the
values presented in Fig. 4b. The comparison between experimental and numerical
results is susceptible to multiple effects, including finite-size effects?’, accuracy of
the approximate numerical methods used, experimental imperfections and data
fitting, which contribute to the observed discrepancy.
Chiral clock models. QPTs in the Rydberg Hamiltonian (equation (1)) involving
breaking of the Z, (n > 3) translational symmetry along one spatial direction are
expected to be in the universality class of the extensively studied Z, CCMs!*11-28:48-51,
To elucidate this connection, let us focus on n = 3 and consider the case when
V1> |0, |AJ; that is, nearest-neighbour interactions are strong enough to effec-
tively preclude two neighbouring atoms from simultaneously being in the Rydberg
state. Because van der Waals interactions decay rapidly as V, = Cs/x%, we neglect
couplings beyond the third-nearest neighbour by approximating V, ~ 0 for x > 3,
leading to a truncated model of the form:

N
N
Hpya =7 ?(Ig,.) (] + 1) (g)) — An; + Vymin,

i=1

(12)

supplemented with the constraint ;1,11 = 0.

The Hamiltonian in equation (12) can be mapped to a system of hard-core
bosons, in which no more than one boson can occupy a single site. This follows
upon identifying the state in which the atom at site i is in the internal state |r) (|g))
with the presence (absence) of a boson. By defining the bosonic annihilation and

number operators, b; and n; = b;'b,, respectively, we obtain

N
2 .
Hy=>" ?(b,-' +b)—An;+ Vyning

i=1

(13)

together with n;n;; = 0. This model (often referred to as the U-V model) was
shown by refs 2#°2 to exhibit a phase transition in the universality class of the
three-state CCM, over a set of parameters.

The Z,, CCM is a simple extension of the transverse-field Ising model, in which
each spin is promoted to have n > 2 states. However, instead of extending the
symmetry from Z, to S,,, which would result in the n-state Potts model®’, the
interactions are constructed to be invariant under Z,, transformations. With n =3,
the three-state CCM is defined by the Hamiltonian**!

N N—-1
Heey=—fY. /e =] 3" ofo, e " +hee (14)
=1 =1

acting on a one-dimensional chain of N spins. The three-state spin operators 7; and
03, which can be represented as

1 00 010
7=0 w 0|, o=|0 01 (15)
00 w 100
act locally on site i, and each satisfy
P=0’=1,0 r=wr 0; w=exp(2wi/3) (16)

Here, ¢ and 6 define two chiral interaction phases: to describe spatially ordered
phases, we need ¢ = 0, where time reversal and spatial parity are both symmetries
of the Hamiltonian but a purely spatial chirality is still present. We note that Hgyq
does not break time-reversal symmetry, necessitating the choice of ¢ = 0 in the
quantum clock model (equation (14)). However, with both ¢ and 6 non-zero,
time-reversal and spatial-parity (inversion) symmetries are individually broken
but their product is preserved.

As depicted in Fig. 4a, a generic state in the Hilbert space of the Z; CCM can
be mapped to one of three states of a clock according to the eigenvalue 1,w or w?
of the operator o at each site. Consequently, there can be two domain walls in the
system that differ in their energies, depending on whether the clock rotates clock-
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wise or anticlockwise upon crossing the wall. With ¢ = 0 and 6 = 0, these have
different energies, 2/sin[(7/6)-60] and 2Jsin[(n/6)+0], and are thus inequivalent,
leading to a chirality in the system, which is absent for ¢ = 6 = 0.

On setting both ¢ = § = 0, Hccum reduces to the Hamiltonian for the three-state
Potts model, which possesses a larger symmetry, S;; the concomitant order—
disorder phase transition has critical exponents z = 1, v = 5/6°>**>> and, accord-
ingly, /¢ &~ 0.45. We note that these exponents are fundamentally distinct from those
of the Z; CCM; namely, z ~ 1.33 and v~ 0.71, yielding piccm = 0.37. The Rydberg
Hamiltonian described in the main text contains a point along the phase boundary
for which the condition of ¢ = 6 = 0 is fulfilled, and with fine-tuned pulses it may
be possible to explore the critical properties of the three-state Potts model.

For n = 4, the transitions of both the Potts and the achiral clock model are in the
Ashkin-Teller universality class®®®’. The critical exponents of the four-state Potts
model are z = 1 and v = 2/3 (implying i« = 0.40), whereas the four-state achiral
clock model is equivalent to two uncoupled Ising systems with z=1and v = 1.
With a non-zero chirality, however, it is believed that there is no direct transition
from the ordered to the disordered phase in the four-state CCM, because an inter-
mediate gapless incommensurate phase always intervenes! %%,

Data availability
The data that support the findings of this study are available from the correspond-
ing author on reasonable request.
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Extended Data Fig. 1 | Determination of initial detuning A,. At
fixed laser detuning, we linearly ramp Q on and then off (1 s each). We
identify the negative detuning closest to resonance for which the system
is fully adiabatic, such that the excitation probability at the end of the
pulse returns to the minimum. From this typical measurement, taken at
Rp/a = 1.59, we set Ay = —2.5 MHz. Error bars denote 68% confidence
intervals.
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Extended Data Fig. 2 | Numerically extracted phase diagram with
trajectories for QKZM measurements. a, Green (purple) markers
indicate the phase boundary points between disordered and Z,
(Z3)-ordered phases. Yellow diamonds indicate the boundaries of the
disordered phase (as approached from increasing A with fixed Q and
Ry/a). We have not verified whether these transitions are directly from
disordered to Z,-ordered phases or involve incommensurate phases. Each
grey dashed line corresponds to the trajectory across phase space used to

1.8 1.9 2 21 2.2
Blockade radius R,

probe for scaling behaviour of the correlation length growth. The
horizontal section of each trace corresponds to the detuning sweep at a
constant Rabi frequency, whereas the curved sections correspond to pulse
turn-off at a fixed value of detuning. The total duration of the detuning
sweep is varied to control the rate of transition across the phase
boundaries, but the time to turn the field off is not. b, Numerically
obtained energy densities £ along the red solid line indicated in a. The
second-order derivative of £ shows clear cusps at two critical points.
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Extended Data Fig. 3 | Scaling window. Determination of the window of
rates for which scaling is valid for the transition into the Z;-ordered phase.
The grey solid lines represent the result of the fitted model, which grows as
a power law until it saturates. The dashed horizontal line marks the size of
the blockade radius. All of the rates used in the experiment are larger than
the values at which the dashed and solid lines intersect and smaller than
the point at which the model saturates. The error bars denote one standard
deviation of the power-law fit.
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Extended Data Fig. 5 | Energy gap. Calculated gap between ground and
first excited state using DMRG calculations. Green (purple) circles indicate
the extracted quantum critical points separating the disordered from the
Z, (Zs)-ordered phase.
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Extended Data Fig. 6 | Rydberg density-density correlations. Full
density-density correlation map for sites i and j after a slow sweep into the
Z,-ordered phase. The orange square marks the bulk region used for
analysis.
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Extended Data Fig. 7 | Finite-size scaling across QPT into the Z,-ordered
phase. a, Experimentally measured growth of the correlation length across
the phase transition for different sweep speeds. The error bars denote one
standard deviation of the power-law fit. b, Verification of critical
exponents across the QPT into the Z,-ordered phase by rescaling the
control parameter and spatial correlations. Using the experimentally
extracted value of the QKZM length-scaling exponent, ;= 0.52, and
setting the dynamical critical exponent to the Ising prediction, z = 1, it is
observed that the data in a fall along a smooth function.
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Extended Data Table 1 | Pulse parameters for QKZM sweeps

Rp/a Ay Ay Smin Smax
1.58 -2.5 7.5 3.5 15.2
1.62 2.5 7.5 3.5 15.2
1.65 2.5 7.5 3.5 15.2
1.69 2.5 7.5 3.5 15.2

1.72 -2.5 7.5 3.5 15.2
1.76 -2.5 7.5 3.5 15.2
1.81 -2.5 5.5 4.6 19.7
1.85 -2.3 5.7 4.6 19.7
1.89 -2.4 7.6 3.5 15.2

1.94 -2.3 5.7 4.6 19.7
1.99 -2.3 5.7 4.6 19.7
2.04 -2.7 5.3 4.6 19.7
2.1 -2.3 5.7 4.6 19.7
2.16 -25 5.5 4.6 19.7
2.22 -25 5.5 4.6 19.7

2.28 -2.3 5.7 4.6 19.7
2.35 -2.5 5.5 4.6 19.7
2.43 -2.6 5.4 4.6 19.7
2.5 -2.5 5.5 4.6 19.7
2.59 -2.4 5.6 4.6 19.7
2.68 -2.7 5.3 4.6 19.7

2.77 -2.4 5.6 4.6 19.7
2.88 -2.1 5.9 4.6 19.7
2.99 -2.5 5.5 4.6 19.7
3.1 -2.5 5.5 4.6 19.7
3.17 -2.2 5.8 4.6 19.7
3.24 -2.5 5.5 4.6 19.7
3.31 -2.1 5.9 4.6 19.7

3.38 -2.6 5.4 4.6 19.7
3.45 -2.2 5.8 4.6 19.7

For different blockade radii (Rg/a) we list the initial and final detunings Ao and Ay of the sweeps
and the minimum (Smin) and maximum (Smax) sweep speeds applied.



	Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator

	Online content

	Acknowledgements
	Reviewer information
	Fig. 1 Quantum Kibble–Zurek mechanism and phase diagram.
	Fig. 2 QKZM for a QPT into the -ordered phase.
	Fig. 3 Universality of spatial correlations.
	Fig. 4 Power-law scaling for different interactions.
	Extended Data Fig. 1 Determination of initial detuning Δ0.
	Extended Data Fig. 2 Numerically extracted phase diagram with trajectories for QKZM measurements.
	Extended Data Fig. 3 Scaling window.
	Extended Data Fig. 4 Approximation of interaction potential.
	Extended Data Fig. 5 Energy gap.
	Extended Data Fig. 6 Rydberg density–density correlations.
	﻿Extended Data Fig. 7 Finite-size scaling across QPT into the -ordered phase.
	﻿Extended Data Table 1 Pulse parameters for QKZM sweeps.




