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Abstract. Hierarchical clustering is a fundamental unsupervised learning task, whose aim is to organize a4
collection of points into a tree of nested clusters. Convex clustering has been proposed recently5
as a new way to construct tree organizations of data that are more robust to perturbations in the6
input data than standard hierarchical clustering algorithms. In this paper, we present conditions7
that guarantee when the convex clustering solution path recovers a tree and also make explicit how8
a�nity parameters in the convex clustering formulation modulate the structure of the recovered tree.9
The proof of our main result relies on establishing a novel property of point clouds in a Hilbert space,10
which is of potentially independent interest.11
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1. Introduction. Hierarchical clustering is a fundamental unsupervised learning task,14

whose aim is to organize a collection of points into a tree of nested clusters. To reinforce15

the idea that we seek a collection of nested clusters, we will often also refer to clusters as16

folders in this paper.17

As an illustration, Figure 1 shows a collection of points in R2, labeled 1 to 18, that we seek18

to organize. Based on the Euclidean distances between the points, an intuitive organization19

is the following hierarchy of nested clusters. At the finest and first level of clustering, we20

partition the set {1, . . . , 18} into five subsets or folders:21

F1,1 = {1, 2, 3, 4, 5}, F1,2 = {6, 7, 8}, F1,3 = {9, 10, 11, 12, 13},22

F1,4 = {14, 15, 16}, and F1,5 = {17, 18}.23

At the second level of clustering, we merge the folders from the first level into a partition of24

two folders: F2,1 = F1,1 [ F1,2 and F2,2 = F1,3 [ F1,4 [ F1,5.25

Finally, at the third level of clustering, we merge the folders from the second level into26

a single folder: F3,1 = F2,1 [ F2,2. Figure 2 illustrates the described tree organization. Since27

each level of the tree consists of a partition of the data points, we refer to such hierarchical28

organizations as “partition trees.”29

There are many existing algorithms for automatically constructing partition trees, but30

perhaps the most often used algorithms in practice are collectively known as agglomerative31

hierarchical clustering methods [18, 21, 23, 30, 47]. Given a collection of points in Rp, agglom-32

erative hierarchical clustering methods recursively merge the points which are closest together33
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Figure 1: Eighteen points in R2 to organize.

a

Figure 2: Partition Tree.

until all points are joined. Di↵erent choices in the definition of closeness lead to the di↵erent34

variants. Figure 3 shows two trees computed by two variants of the agglomerative hierarchical35

clustering. For each tree, the eighteen points reside in the “leaves” which are organized into36

a hierarchy of nested clusters that captures an increasingly coarser grouping structure as one37

progresses from the leaves to the root of the tree. The branch lengths in the tree quantify the38

similarity between pairs of points, or clusters at higher levels. We see that both trees recover39

binary partition trees that are similar to the ideal partition tree shown in Figure 2.40
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6 7 8 2 4 5 1 3 9 10 13 11 12 17 18 15 14 16
(a) Single-linkage tree

6 7 8 2 4 5 1 3 9 10 13 11 12 17 18 15 14 16

(b) Average-linkage tree

Figure 3: Hierarchical clustering of data in Figure 1 under two di↵erent agglomeration meth-
ods.

1.1. Convex Hierarchical Clustering?. Although agglomerative hierarchical methods are41

widely used in practice, the greedy manner in which trees are constructed often results in an42

unstable mapping between input data and output tree. Indeed, agglomerative hierarchical43

clustering methods have been shown to be highly sensitive to perturbations in the input data,44

namely the resulting output trees can vary drastically with the addition of a little Gaussian45

noise to the data [10].46

One promising alternative strategy for constructing trees stably relies on formulating the47

clustering problem as a continuous optimization problem. Following up on the initial proposal48

by [33], several recent works have shown that solving a sequence of convex optimization49

problems can recover tree organizations [9, 12, 19, 25, 32, 41]. Given n points x1, . . . , xn in50

Rp, we seek cluster centers (centroids) ui in Rp attached to point xi that minimize the convex51

criterion52

E�(u) =
1

2

nX

i=1

kxi � uik2 + �
X

i<j

wijkui � ujk,(1.1)53

where � is a nonnegative tuning parameter, wij is a nonnegative a�nity that quantifies the54

similarity between xi and xj , and u is the vector in Rnp obtained by stacking the vectors55

u1, . . . , un on top of each other. For now, we assume all norms are Euclidean norms; we will56

later consider arbitrary norms. The sum of squares data-fidelity term in (1.1) quantifies how57

well the centroids ui approximate the data xi, while the sum of norms regularization term58

penalizes the di↵erences between pairs of centroids ui and uj . To expand on the latter, the59

regularization term is a composition of the group lasso [51] and the fused lasso [44] and incen-60
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(a) Gaussian Kernel A�nities
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(b) Unit A�nities

Figure 4: Solution paths of convex clustering using di↵erent a�nities wij .

tivizes sparsity in the pairwise di↵erences of centroid pairs. Overall, E�(u) can be interpreted61

as the energy of a configuration of centroids u for a given relative weighting � between data-62

fidelity and model complexity as quantified by the regularization term. We next elaborate63

how u(�) varies as the tuning parameter � varies.64

Because the objective function E�(u) in (1.1) is strongly convex, for each value of � it65

possesses a unique minimizer u(�), whose n subvectors in Rp we denote by ui(�). The tuning66

parameter � trades o↵ the relative emphasis between data fit and di↵erences between pairs67

of centroids. When � = 0, the minimum is attained when ui = xi, namely when each point68

occupies a unique cluster. As � increases, the regularization term encourages cluster centroids69

to fuse together. Two points xi and xj with ui = uj are said to belong to the same cluster.70

For su�ciently large �, the ui fuse into a single cluster, namely ui = x, where x is the average71

of the data xi [12, 42]. Moreover, the unique global minimizer u(�) is a continuous function72

of the tuning parameter � [10]; we refer to the continuous paths ui(�), traced out from each73

xi to x as � varies, collectively as the solution path. Thus, by computing ui(�) for a sequence74

of � over an appropriately sampled range of values, we hope to recover a partition tree.75

Figure 4 plots the ui as a function of � for two di↵erent sets of a�nities wij . We will discuss76

the di↵erences in the recovered trees shortly, but for now we point out that computing u(�) for77

a range of � indeed appears to recover trees that bear similarity to the desired partition tree78

in Figure 2. Moreover, the ui(�) are 1-Lipschitz functions of the data xi [11]. Consequently,79

small perturbations to the input data xi, are guaranteed to not result in disproportionately80

large variations in the output ui(�).81

At this point, the solution path of convex clustering appears to stably recover partition82

trees as desired. Nonetheless, questions remain as to whether convex clustering is a form83

of convex hierarchical clustering. Specifically, (i) when is the solution path guaranteed to84

produce a tree, and (ii) how do the a�nities modulate the branch formation in the recovered85
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tree?86

Hocking et al. provide a partial answer to the first question [19]. They prove that if unit87

a�nities are used, namely wij = 1 for all i and j, and if 1-norms are used in the regularization88

term in (1.1), then the solution path must be a tree. On the other hand, in the same paper,89

they also provide an example, using the Euclidean norm in the regularization term, where90

the solution path can fail to be a tree. Specifically, as the tuning parameter � increases, it is91

possible for centroids to initially fuse and then “unfuse” before eventually fusing again. We92

provide an example of this phenomenon in Appendix A.93

The di↵erences in the two recovered trees shown in Figure 4 motivate the second question.94

Figure 4a shows the solution path when using Gaussian kernel a�nities, namely for all i and95

j96

wij = exp

✓
�kxi � xjk22

�

◆
,97

where � is a positive scale parameter. Gaussian kernel a�nities have been empirically shown98

to provide more aggressive fusion of folders closer to the leaves, and consequently more infor-99

mative, hierarchical clustering results [10, 12, 19]. Figure 4b shows the solution path when100

using unit a�nities. We see that Gaussian kernel a�nities can generate a solution path that101

recovers the partition tree in Figure 2, while unit a�nities can generate a solution path that102

recovers a less “nested” approximation to the partition tree in Figure 2. The same sets of103

points and folders are getting shrunk together in Figure 4a and Figure 4b, but less aggres-104

sively in the latter as � increases. In Appendix B, we provide an additional real data example105

highlighting how di↵erent the recovered trees can be under the two sets of a�nities. Our106

main result will complement these empirical observations with a theoretical argument for why107

certain data-driven a�nities, including but not limited to Gaussian kernel a�nities, should108

be preferred over others.109

1.2. Contributions. In this paper, we answer the open questions of (i) why the solution110

path of convex clustering can recover a tree and (ii) how a�nities can be chosen to guarantee111

recovery of a given partition tree on the data. We first answer these questions in the case112

when Euclidean norms are employed in (1.1) and then later describe how our results can be113

extended to more general data-fidelity terms and arbitrary norms in the regularization term.114

We clarify how the theoretical contributions in this paper di↵er from existing theoretical115

results in the convex clustering literature. Radchenko and Mukherjee in [34] present a pop-116

ulation model for the convex clustering procedure and provide an analysis of the asymptotic117

properties of the sample convex clustering procedure. We note that their analysis is specific118

to using 1-norms in the regularization term, while we consider first the Euclidean norm before119

generalizing to arbitrary ones. Zhu et al. in [54] provide conditions under which two true un-120

derlying clusters can be identified by solving the convex clustering problem with appropriately121

chosen a�nities. Similarly, She [39] and Sharpnack et al. [38] present results when the convex122

clustering solution can consistently recover groupings. Others present finite sample prediction123

error bounds for recovery of a latent set of clusters [42, 46].124

Our contributions di↵er from these prior works in two ways. First, we provide conditions125

on the a�nities that ensure that the solution path reconstructs an entire hierarchical partition126
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6 E. C. CHI AND S. STEINERBERGER

tree and clarify how these a�nities can be explicitly tuned to recover a specific target tree.127

With the exception of the work by Radchenko and Mukherjee in [34], all of the other works128

present theoretical guarantees for recovering a single partition level rather than a nested129

hierarchy of partitions. Second, in contrast to all of the previous work, we do not make any130

distributional assumptions on the data. Instead, we focus in this paper on understanding the131

behavior of the solution path as a function of the a�nities used in the regularization term.132

By understanding this dependency, we gain insight into why a commonly used data-driven133

a�nities choice, namely the Gaussian kernel, works so well in practice.134

1.3. Outline. The rest of this paper proceeds as follows. In Section 2, we define structures135

needed to construct a�nities that will enable us to recover a desired partition tree and once136

equipped with the necessary building blocks, give an overview of our main result. In Section 3,137

we introduce a geometric lemma that is key to proving our main result. In Section 4, we138

give proofs of the geometric lemma and our main theorem. In Section 5, we show how our139

main result can be generalized to other data-fidelity terms and regularization term norms. In140

Section 7, we conclude with a discussion on our results within the broader context of penalized141

regression methods for clustering.142

2. Setup and Overview of Main Result. Our main result shows that if the a�nities143

wij arise from an underlying partition tree, then that tree can be reconstructed from the144

solution path of the convex clustering problem. To proceed, we will need a formal definition145

of a partition tree and then a judicious assignment of weights to the edges in the tree graph146

corresponding to the partition tree.147

2.1. Partition Tree. Let ⌦ = {x1, . . . , xn} ⇢ Rp be an arbitrary collection of points and148

let [n] denote the set of indices {1, . . . , n}. Following the notation and language employed in149

[2] and [29, 28], we say that T is a partition tree on the collection of points ⌦ consisting of150

P0, . . . ,PL partitions of ⌦ if it has the following properties:151

1. The partition Pl = {Fl,1, . . . , Fl,nl
} at level l consists of nl disjoint non-empty subsets152

of indices in {1, . . . , n}, termed folders and denoted by Fl,i, i 2 [nl].153

2. The finest partition P0 contains n0 = n singleton “leaf” folders, namely F0,i = {i}.154

3. The coarsest partition PL contains a single “root” folder, namely FL,1 = [n].155

4. Partitions are nested; if F 2 Pl, then F ✓ F 0 for some F 0 2 Pl+1, namely each folder156

at level l � 1 is a subset of a folder from level l. Note that we allow for F = F 0.157

A partition tree T on ⌦ can be seen as the collection of all folders at all levels, namely158

T = {Fl,i : 0  l  L, i 2 [nl]}.159

2.2. Weighted Tree Graph. We next assign every folder Fl,i 2 T to a node and draw an160

edge between nested folders in adjacent levels. Thus, if F 2 Pl, F 0 2 Pl+1, and F ⇢ F 0, then161

we draw an edge (F, F 0) between F and F 0. If we let E denote the set of all edges between162

nested folders in adjacent levels, then the resulting graph G = (E , T ) is a tree.163

We next assign weights on the edges in E as follows. Let " > 0 be a fixed parameter,164

whose value we will elaborate on shortly. Edges between level 0 folders and level 1 folders165

receive a weight of 1. Edges between level 1 folders and level 2 folders receive a weight of166

". Edges between level 2 folders and level 3 folders receive a weight of "2 and so on. Thus,167

edges between level l folders and level l+1 folders receive a weight of "l. Figure 5a shows the168
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weighted tree graph G derived from the partition tree given in Figure 2.169

(a) Weighted Tree Graph (b) The path p15 from 1 to 5 produces w15 = 1.

(c) The path p17 from 1 to 7 produces w17 = ". (d) The path p19 from 1 to 9 produces w19 = "2.

Figure 5: Weighted Tree: Edges that are solid lines have weight 1. Edges that are dashed
lines have weight ". Edges that are dotted lines have weight "2.

We are finally ready to construct wij from the weighted tree graph. Let F0,i and F0,j be170

leaf nodes in the graph G and let pij be the sequence of edges in E that form the path between171

F0,i and F0,j . Then we set wij to be the smallest weight of edges contained in pij . In other172

words, wij is the smallest edge weight one sees in traveling from i to j. Figure 5b shows that173

the path p15 from 1 to 5 in the weighted graph G leads to the a�nity assignment w15 = 1.174

Figure 5c and Figure 5d show additional examples of how a�nities are derived from the edge175

weights in G.176

2.3. Main Result. We now state our main result.177

Theorem 2.1. There exists "0 > 0, depending on the data and the tree structure (which we178

assume defines the wij as outlined above in Section 2.2), so that for all " 2 (0, "0) the solution179
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path180

u(�) = argmin
u1,...,un

nX

i=1

kxi � uik2 + �
nX

i,j=1

wijkui � ujk,181

as parametrized by � 2 (0, �0) traces out exactly the partition tree structure underlying the182

a�nities wij before collapsing into a point for some large, but finite, �0.183

Informally speaking, this means that as � increases, elements from the same folder collapse184

into a single point, these folders (now single points) move themselves (or rather, the fused185

points move in a coordinated manner) and then collapse again in a way predicted by the tree186

(i.e. folders sharing a parent folder collapse). This evolution continues on until all points have187

collapsed into a single point (which happens for a finite value �0). We have no precise bound188

on the times � at which these collapses happen but by making "0 su�ciently small, there is189

an arbitrary long time between stages of collapsing. The proof of Theorem 2.1 also gives a190

bound on �0 as a byproduct.191

192

Remarks Several additional remarks are in order.193

1. At first blush, it appears that the data xi plays no role in the recovered partition tree194

as the a�nities wij dictate the trajectory of the solution path. In practice, however,195

one would never use wij that did not depend on the data. We study the convex196

clustering solution path separate of any particular data-driven choice of the a�nities,197

but intuitively the a�nity wij should be inversely proportional to the distance between198

xi and xj . Theorem 2.1 further clarifies a su�cient condition on how rapidly (i.e.199

geometrically fast) the a�nity wij should decrease as the distance between xi and xj200

increases for all pairs of data points, to ensure the solution path is a tree. To further201

clarify the importance of using wij that respect the geometry of the data, we give an202

example of a solution path that is not a tree as a consequence of using wij that do not203

respect the geometry of the data in Appendix A.204

2. The a�nities do not need to have exactly the structure described in Section 2.2.205

A more precise statement would be that there exists an "0 such that whenever we206

associate weight "1 2 (0, "0) to the first level, then there exists an " (depending on207

everything and "0, "1) such that if we associate weight "2 2 (0, ") to the second level208

there exists an "3 (depending on everything and "0, "1, "2 etc.). Simply put, it su�ces209

to have a su�ciently clear separation of scales encoded in the a�nities.210

Indeed, Figure 6 shows the Gaussian kernel a�nities w1j between x1 and the remain-211

ing xj for j = 2, . . . , 18 from the example in Figure 1. We observe clear separation212

of scales encoded in the Gaussian kernel a�nities that align with the partition tree213

and corresponding weighted graph G in Figure 5a. Similar plots of the set of a�nities214

associated with each data point reveal alignment with the partition tree and corre-215

sponding weighted graph G. The key quality of the Gaussian kernel should be readily216

apparent, namely the Gaussian kernel naturally encodes, in a data-driven way, a ge-217

ometric decay in weights that is su�cient to reconstruct a partition tree embedded218

in Euclidean space. We emphasize, however, that there is nothing special about the219

Gaussian kernel, and its rapid decay in weights is not even necessary. Any data-driven220
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Figure 6: Gaussian kernel a�nities w1j between x1 and the other xj from the example in
Figure 1.

a�nities possessing a su�cient separation of scales will produce similar trees.221

3. The result is completely independent of where the {x1, . . . , xn} 2 Rp are located in222

space. Their location, however, a↵ects the critical scale "0.223

4. The statement guarantees that points ui fuse together with respect to the folder struc-224

ture before moving to fuse with other points and their respective folder structure,225

however, we do not have clear control over whether they intersect (in the sense of two226

ui, uj belonging to di↵erent folders occupying the same point in space for some value227

of �) in between or not. Generically, this will not happen but, for a non-generic set of228

xi, it is possible to arrange for the ui to indeed intersect, then move apart again before229

finally fusing for a larger value of �. This is a consequence of our lack of conditions230

on the position of the points xi. If the xi are located in space in a way that actually231

reflects the tree structure, then they will fuse upon intersecting for the first time.232

3. A Geometric Lemma. We establish a geometric Lemma that is of intrinsic interest:233

it states that for any set of distinct points {u1, . . . , un} 2 Rp, one of these points u (indeed,234

one on the boundary of the convex hull of all the points) has the property that for a suitable235

“viewing direction” v 2 Rp most points are clearly visible when standing in the point u and236

looking towards the viewing direction (in the sense of having a large inner product). We now237

phrase this more precisely below. Recall that the convex hull of a set S, denoted by convS is238

the smallest convex set containing the set S.239

Lemma 3.1. For every set S = {u1, . . . , un} ⇢ Rp of n � 3 distinct points, there exists

u 2 S \ @ convS and v 2 Rp satisfying kvk = 1

This manuscript is for review purposes only.



10 E. C. CHI AND S. STEINERBERGER

such that240

1

n

nX

i=1
ui 6=u

⌧
ui � u

kui � uk , v
�

� 1

2
.(3.1)241

The statement can be summarized as follows: for a suitable point u 2 S \ @ convS, if we242

map the direction to all other points onto the unit sphere Sp, then convexity implies that there243

is a great circle on Sp such that all these directions are on one side of the great circle or on it.244

This can be interpreted as the dualization of the fact that there is a supporting hyperplane245

touching the boundary of the convex hull in such a way that all of convS is on one side. The246

statement claims the existence of a boundary point u such that the average projection point247

is bounded away from that great circle by a universal constant.248

u

v

Figure 7: A set of points in R2: there exists a point u on the boundary of the convex hull and
a direction v such that the average inner product of (ui � u)/kui � uk and v is bounded away
from 0 by a universal constant.

We will use Lemma 3.1 to study the regularization term in (1.1), namely the functional249

J(u) =
mX

i,j=1

kui � ujk for a given set of distinct points {u1, u2, . . . , um} ⇢ Rp.250

The functional J is clearly minimized for any collection of ui that are all identical. Con-251

sequently, any collection of distinct ui represents a suboptimal configuration of centroids252

and therefore admits a descent direction that leads to a decrease in energy. The power of253

Lemma 3.1 is that it identifies a direction that guarantees a large amount of decrease in J .254

To see this, we write down the directional derivative of J explicitly.255

The directional derivative of moving uj in direction v 2 Rp, normalized to kvk = 1 is256
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computed as257
⌧

@J

@uj
, v

�
= lim

t!0

1

t

X

i 6=j

kui � (uj + tv)k � kui � ujk

= lim
t!0

1

t

X

i 6=j

q⌦
ui � (uj + tv), ui � (uj + tv)

↵
� kui � ujk

=
X

i 6=j

lim
t!0

1

t

✓q
kui � ujk2 � 2t hui � uj , vi+ t2 � kuj � uik

◆

= �
X

i 6=j

⌧
ui � uj

kui � ujk
, v

�
.

(3.2)258

The expression for the directional derivative given in (3.2), in conjunction with Lemma 3.1,259

shows that it is always possible to find one point such that moving it � in a certain direction260

decreases the entire functional by at least (n/2)�. The existence of a direction of guaranteed261

minimum decrease in J will be essential in proving Theorem 2.1.262

263

The following variant of Lemma 3.1 will also be useful in applications.264

Lemma 3.2. For every set S = {u1, . . . , un} ⇢ Rp of n � 3 points such that not all of them
are in the same place, there exists

u 2 S \ @ convS and v 2 Rp satisfying kvk = 1

such that265

1

n

nX

i=1
ui 6=u

⌧
ui � u

kui � uk , v
�

� 1

4
.(3.3)266

Before proceeding to proofs of the geometric lemmata and main result, we also note the267

following consequence because of its intrinsic interest. We give a proof of Corollary 3.3 in268

Appendix C.269

Corollary 3.3. Let S = {u1, . . . , un} ⇢ Rp be a set of distinct points. Then there exist at270

least n/6 points u 2 S having the property that for some kvk = 1271

1

n

nX

i=1
ui 6=u

⌧
ui � u

kui � uk , v
�

� 1

4
.272

This simple statement has non-trivial implications: Lemma 3.1 may seem like these van-273

tage points from which to observe the entirety of the set without having too many small inner274

products are rare. To the contrary, Corollary 3.3 declares that the property is surprisingly275

common and enjoyed by a universal fraction of all points. While we do not use Corollary 3.3276

in the proof of our main result, we believe this result to be of substantial independent interest277

since it can be interpreted as a basic statement (with universal constants) in a general Hilbert278

space. It could be of interest to further pursue this line of investigation.279
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12 E. C. CHI AND S. STEINERBERGER

4. Proofs. We now prove Lemma 3.1, Lemma 3.2, and Theorem 2.1.280

4.1. Geometric Lemmata.281

Proof of Lemma 3.1. Let S = {u1, u2, . . . , un}. Select an arbitrary u 2 @S \ convS, and282

let y 2 S be a point in the set furthest from u (there may be more than one such point),283

formally284

ku� yk = max
1in

ku� uik(4.1)285

It is easy to see that y resides on the boundary of the convex hull; y is in fact an extreme286

point. We now show that u, equipped with the viewing direction vector v1 = (y�u)/ky�uk,287

or y, equipped with the viewing direction vector v2 = �v1, has the desired property. We first288

show that for every ui /2 {u, y}289

⌧
ui � u

kui � uk , v1
�
+

⌧
ui � y

kui � yk , v2
�

� 1.(4.2)290

Since we are only dealing with three points u, y, and ui, all angles are determined by the cor-291

responding triangle, which we can assume without loss of generality to reside in R2. Moreover,292

the invariance under dilation, translation and rotation enables us to assume that u = (0, 0)293

and y = (1, 0). If we write ui = (a, b), then the expression on the left hand side of (4.2)294

simplifies to295

⌧
ui � u

kui � uk , v1
�
+

⌧
ui � y

kui � yk , v2
�

=
ap

a2 + b2
+

1� ap
(1� a)2 + b2

,(4.3)296

and the condition on the distances ku� uik and ky � uik required by (4.1) implies that297

max
�
a2 + b2, (1� a)2 + b2

 
 1.(4.4)298

Minimizing the expression in (4.3) subject to the constraint in (4.4) gives us the desired299

inequality in (4.2); almost equality is attained for ui very close to either u or y and equality300

is attained for (a, b) = (1/2,
p
3/2). We then sum the left and right hand sides of (4.2) over301

i = 1, . . . , n to arrive at the inequality302

nX

i=1
ui 6=u

⌧
ui � u

kui � uk , v1
�
+

nX

i=1
ui 6=y

⌧
ui � y

kui � yk , v2
�

� n,(4.5)303

which follows from realizing that each of the sums contains one term that is equal to 1 and304

that the remaining sum runs over all ui /2 {u, y} yielding at least a total of n � 2. Thus at305

least one of the two terms is size n/2 and we obtain the desired result.306

Proof of Lemma 3.2. Let S = {u1, u2, . . . , un} be a set of points not all of which are in
the same place. Then the diameter of the set is not 0 and there exist two points, that we call
w.l.o.g. u1 and u2 such that ku1 � u2k = diam(S). Let us suppose the number of points that
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RECOVERING TREES WITH CONVEX CLUSTERING 13

are co-located with u1 is n1, the number of points that are co-located with u2 is n2 and the
number of points everywhere else is n3. Clearly,

n1 + n2 + n3 = n.

The main idea is now to derive two independent lower bounds. One of them will be tighter307

when n1+n2 is large (compared to n) and one will be tighter when n1+n2 is small (compared308

to n). We can then always apply the stronger of the two bounds and that will end up in309

resulting a lower bound of n/4 regardless of what the values of n1 and n2 are.310

311

Bound 1. We could pick u to be u1 and its viewing direction vector v1 = (u2�u1)/ku2�
u1k or, conversely, the point u2 and the vector v2 = (u2 � u1)/ku2 � u1k to be u and v
respectively. We note that, since we chose the points to be of maximal distance, all arising
inner products are nonnegative. Therefore

nX

i=1
ui 6=u1

⌧
ui � u1

kui � u1k
, v1

�
� n2

and
nX

i=1
ui 6=u2

⌧
ui � u2

kui � u2k
, v2

�
� n1.

Altogether, there is a pair of vectors u and v that achieves a sum of inner products of at least312

max {n1, n2}, which is a good bound when either of those two numbers is large (but true in313

all cases). On the other hand, since we are only considering that small subset of points, the314

bounds naturally become quite loose when n1 + n2 is small.315

316

Bound 2. On the other hand, we can remove all the points co-located with either u1 or
u2 except for one in each set, leaving us with n� n1 � n2 + 2 points. We can now apply the
previous argument which guarantees the existence of a vector u and a vector v with

nX

i=1
ui 6=u

⌧
ui � u

kui � uk , v
�

� n� n1 � n2 + 2

2
.

We see that this bound is quite good when n1 and n2 are small, in particular we recover the317

original bound for distinct points whenever n1 = n2 = 1.318

319

Conclusion. Having both bounds at our disposal, we can always guarantee the existence320

of a pair u and v such that the lower bound is at least321

max

⇢
n� n1 � n2 + 2

2
, n1, n2

�
� 1

2

✓
n� n1 � n2 + 2

2
+

n1 + n2

2

◆
� n

4
322
323

where the last line makes use of the inequality

max {x, y, z} � x

2
+

y

4
+

z

4
for all x, y, z � 0

since the maximum has to exceed every weighted average.324
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14 E. C. CHI AND S. STEINERBERGER

4.2. Main Theorem. Outline: The proof is based on the self-similarity of the statement.325

We essentially show that points at the lowest level fuse in the right way with points in the326

same leaves (those who have mutual a�nity 1). Once they are fused, we show that they stay327

fused for all subsequent values of �. The newly emerging problem turns out to be exactly of328

the same type as the original one: we re-interpret fused points as single points with a mutual329

interaction now at scale ⇠ " (which becomes the dominant scale since points with wij = 1330

are already fused). This makes crucial use of the geometry of the 1-norm. At every step, the331

arguments will go through provided " is su�ciently small (but positive) and since the tree is332

of finite height, the result follows. To be more precise, the argument will proceed as follows.333

1. We assume that the xi are fixed and that the ui are solutions of the minimization
problem

inf
u1,...,un

2

4
nX

i=1

kxi � uik2 + �
nX

i,j=1

wijkui � ujk

3

5 .

Plugging in an example shows that the minimal energy is uniformly bounded in �.334

This has some basic implications: the ui cannot be too far away from the xi and not335

too far away from each other.336

2. We then study a subset of points {x1, . . . , xn} contained in a leaf of the tree. This337

means that their mutual a�nity satisfies wij = 1 and the a�nity between any of these338

points to any other point not in the leaf of the partition is at most ".339

3. We then focus exclusively on these point sets and prove that for � su�ciently large,340

these sets are necessarily fused in a point. This is where Lemma 3.2 will be applied.341

4. Once we establish that for � su�ciently large, the point sets in the leaf are fused into342

exactly one point as desired, the full statement essentially follows by induction since343

these fused points interact exactly as individual points used to do; having common344

parents in the tree becomes the next-level analogue of being associated to the same345

leaf. The result then follows.346

Proof. We introduce the energy of the minimal energy configuration for � > 0 as347

E(�) = inf
u

E�(u) = inf
u

2

4
nX

i=1

kxi � uik2 + �
X

i<j

wijkui � ujk

3

5 .348

By setting u1 = u2 = · · · = un and putting these points in the center of mass of {x1, . . . , xn},349

we observe that this energy is uniformly bounded for all �350

Esup = sup
�>0

E(�) 
nX

i=1

�����xi �
1

n

nX

i=1

xi

�����

2

< 1.351

We decompose the energy functional E(�) as352

E(�) = E1(�) + E2(�),(4.6)353

where354

E1(�) =
nX

i=1

kxi � uik2 + �
X

(i,j)2E1

kui � ujk,355
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RECOVERING TREES WITH CONVEX CLUSTERING 15

where E1 = {(i, j) : wij = 1} and356

E2(�) = �
X

(i,j)2E2

wijkui � ujk,357

where E2 = {(i, j) : wij  " < 1}. The decomposition (4.6) makes explicit that, for " su�-358

ciently small, the functional E2(�) can be interpreted as an error term, while the dominant359

dynamics are determined by E1(�). We now claim that for � su�ciently large (where su�-360

ciently large depends on everything except the parameter ") any subset of the points ui whose361

mutual a�nities are 1 (i.e. all the members of one of the leaves in the tree) are fused in a362

point. The argument can be made quantitative and we will give an explicit bound on � that363

will be su�cient.364

365

We will now ensure that we can assume that all points are distinct. The energy E is a366

continuous functional. This means that we can move any potentially clumped points apart367

by accepting an arbitrarily small increase of energy; the remainder of the argument works368

as follows: if points happen to be clumped together – but not in exactly one point but in369

several – then we may move all of them an arbitrarily small bit. We can accept an arbitrarily370

small increase of energy as long as we are able to then deduce a definite decrease in energy371

afterwards (that will depend on the diameter of the ui); this contradiction shows that the372

clumping has to occur in exactly one point. The next step in the argument is dynamical: we373

compute the e↵ect of moving one of the points an infinitesimal amount (this is already using374

the assumption that all ui are distinct). Reusing the computation in (3.2), we see that375

⌧
@E

@uj
, v

�
= 2 huj � xj , vi � �

nX

i=1
i 6=j,(i,j)2E1

⌧
ui � uj

kui � ujk
, v

�
(4.7)376

+

*
@

@uj
�

X

(i,j)2E2

wijkui � ujk, v
+
.377

The first term on the right hand side of (4.7) is bounded above by378

2 |huj � xj , vi|  2kxj � ujk  2
p

Esup,(4.8)379

and the third term on the right hand side of (4.7) is bounded above by380

������
@

@uj
�

X

(i,j)2E2

wijkui � ujk

������
= �

������

X

i:(i,j)2E2,i 6=j

wij
ui � uj

kui � ujk

������
 �"n.(4.9)381

Lemma 3.2 guarantees that there exists uj for which the second term on the right hand
side of (4.7) is

��
nX

i=1
i 6=j,(i,j)2E1

⌧
ui � uj

kui � ujk
, v

�
 ��

4
# {1  i  n : (i, j) 2 E1} .
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16 E. C. CHI AND S. STEINERBERGER

The proof of Lemma 3.1 is even stronger and guarantees that if kui�ujk = diam {u1, . . . , un},382

then either ui or uj has the desired property and can be moved in a suitable direction v.383

Plugging the uj and v from Lemma 3.1 into both sides of (4.7) and applying inequalities (4.8)384

and (4.9), we arrive at the following inequality.385

⌧
@E

@uj
, v

�
 D(�) = 2

p
Esup + �"n� �

4
# {1  i  n : (i, j) 2 E1} .(4.10)386

A crucial observation is that for

" <
1

4n
# {1  i  n : (i, j) 2 E1}

we can conclude the existence of � su�ciently large (depending on all the other parameters)
so that D(�) < 0. This, however, means the point configuration {u1, . . . , un} cannot be a
minimizer of the functional since we found a point uj and a direction v such that moving
uj into direction v decreases the functional. This is a contradiction unless we are somehow
forbidden to apply Lemma 3.2: the only assumption in Lemma 3.2 is that not all points ui
are in the same place. Thus we see that, for � su�ciently large, all points in E1 are fused. A
simple computation shows that these points have to be fused for all

� �
4
p

Esup

# {1  i  n : (i, j) 2 E1}� 4"n
.

(This lower bound is not sharp; in practice, points will already be fused for smaller values of387

�.) A careful inspection of the proof shows that we do not require wij = 1 for points in the388

same partition: it su�ces if 1  wij  c for some constant c if subsequent parameter choices389

of � are allowed to depend on that. The full statement now follows by induction: points in390

leaves become a single point, their parent structure determines the next collection of leaves391

and the product of their a�nities determines the new a�nities. Since there are only finitely392

many levels to the tree, the process eventually terminates.393

5. Extensions of the Main Theorem. The proof of Theorem 2.1 relies on rather ele-394

mentary analysis and consequently is quite flexible. Indeed, the proof can be immediately395

extended to more general notions of energy of the type396

E�(u) = �(x1, . . . , xn, u1, . . . , un) + �
X

i<j

wij kui � ujkX ,397

where X is an arbitrary norm on Rp and � is assumed to satisfy the following properties:398

1. The function � : Rp⇥n ! R�0 is di↵erentiable and enforces some degree of data-fidelity399

and compactness. More precisely, at one extreme � should be minimized when ui = xi,400

for example � is nonnegative for all u and �(x1, . . . , xn, x1, . . . , xn) = 0. At the other401

extreme, � should diverge whenever kuk diverges. We want � to have the property402

of ensuring that minimizing the energy implies that all ui are trapped in a universal403

convex set (determined by the xi but independent of �). This amounts to a type of404

growth condition on � and many of the functions one would canonically choose will405

have that property.406
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2. For all u for which407

�(x1, . . . , xn, u1, . . . , un) + �
nX

i,j=1

wij kui � ujkX  inf
x2Rp

�(x1, . . . , xn, x, . . . , x),408

we have409

����
@

@ui
�(x1, . . . , xn, u1, . . . , un)

����  c410

where c only depends on � and {x1. . . . , xn}.411

The argument proceeds in exactly the same way and makes crucial use of the fact that412

any two norms in a finite-dimensional Euclidean space are equivalent up to constants, namely413

c5kxk`2  kxkX  c6kxk`2 .414

Since constants can always be absorbed in �, this reduces to our case, namely X = `2.415

416

Proof. (Sketch of the argument) Setting all ui = x and minimizing over x implies that the417

energy is uniformly bounded in � (with a bound depending only on {x1, . . . , xn}). Since the418

norm X is comparable to the Euclidean norm, this implies that any minimizing configuration419

{u1, . . . , un} has to have a bounded diameter (with a bound depending only on {x1, . . . , xn}).420

Then, for � su�ciently large (depending on c), Lemma 3.1 implies a direction of decay and421

thus points are eventually fused. We leave the precise details to the interested reader.422

We close this section by noting that the generality of our result opens the door to in-423

triguing applications. For example, one potential application of our extension is to construct424

partition trees of regression coe�cients in clustered regression [5, 22, 39, 48]. We leave these425

investigations as future work.426

6. Convex Clustering in High-dimensional Spaces. We now briefly provide some practi-427

cal guidance in using convex clustering in high-dimensional spaces. Beyer et al. showed in [4]428

that over a broad class of data distributions, as the ambient dimensional increases, distances429

from a point to its nearest neighbors become indistinguishable from distances to its farthest430

neighbors. Thus, at first glance, it is unclear whether tree organizations can be recovered431

from high-dimensional data using convex clustering, a method in which distance metrics play432

a central role. Fortunately, many high-dimensional data sets encountered in engineering and433

science can be approximated reliably by a lower dimensional representation or embedding. In434

some cases, high-dimensional data consist of many features that contain little to no informa-435

tion about the clustering structure and should be dropped. In this case, one may consider436

computing a sparse convex clustering solution path [46]. In other cases, where there are437

more nuanced relationships among most or even all the features, we may turn to nonlinear438

dimension reduction methods. Indeed, manifold learning [3, 13, 15, 43, 35] has proven to be439

e↵ective as a nonlinear dimension reduction technique in many scientific domains where very440

high-dimensional measurements are recorded such as in bioinformatics [17, 20, 27, 50] and441

neuroscience [7, 6, 8, 36, 40, 45]. Upon some reflection, this is not surprising, as these studies442
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18 E. C. CHI AND S. STEINERBERGER

collect high-dimensional data that are generated from natural processes that are subject to443

physical constraints and are thus intrinsically low-dimensional.444

In light of these observations, we recommend the following simple strategy. First, embed445

high-dimensional data into a low-dimensional space, and then compute a convex clustering446

solution path using the low-dimensional representation of the data. This strategy is especially447

natural if one uses di↵usion maps, since the di↵usion distance between two points in high-448

dimensions can be approximated by the Euclidean distance in the lower dimensional di↵usion449

maps space [13]. Once points are embedded in the di↵usion maps space, one can use Gaussian450

kernel a�nities and compute the convex clustering solution path using the Euclidean norm in451

the regularization term.452

7. Discussion. In this paper, we answered the question of when the convex clustering453

solution path can recover a tree. The key to ensuring the recovery of a well nested partition454

tree is the use of a�nities that encourage the fusions within a folder before fusions with455

higher level folders and so on as the tuning parameter � increases. By choosing the edge456

weight parameter " su�ciently small, di↵erent folders have very little incentive to interact,457

and the optimization problem is essentially decoupled. As � increases, the same procedure458

repeats itself.459

We end with a discussion on the relationship between convex and non-convex formulations460

of penalized regression based clustering. Although we focus in this paper on the ability of461

convex clustering to recover a potentially deep hierarchy of nested folders, our result also sheds462

light on a gap in theory and practice that convex clustering’s performance can be significantly463

improved when using non-uniform data-driven a�nities when seeking a shallow or single level464

of nested folders. In practice, Gaussian kernel a�nities have been observed to work well, but465

these a�nity choices have until now lacked formal justification.466

Indeed, non-uniform a�nities provide the link between convex clustering and other penal-467

ized regression-based clustering methods that use folded concave penalties. It is well known468

that 1-norm penalties lead to parameter estimates that are shrunk towards zero. This shrink-469

age toward zero is the price for simultaneously estimating the support, or locations of the470

nonzero entries, in a sparse vector as well the values of the nonzero entries. In the context471

of convex clustering, the centroid estimates ui are shrunk towards the grand mean x. Con-472

sequently, others have proposed employing a folded concave penalty instead of a norm in the473

regularization terms [31, 26, 49]. Folded concave penalties induce milder shrinkage in exchange474

for giving up convexity in the optimization problem, which means that iterative algorithms475

can typically at best converge only to a KKT point.476

Suppose we were to employ a folded concave penalty, such as the smoothly clipped absolute477

deviation [16] or minimax concave penalty [53], and seek to minimize the following alternative478

objective to (1.1)479

Ẽ�(u) =
1

2

nX

i=1

kxi � uik2 + �
X

i<j

' (kui � ujk) ,(7.1)480

where each ' : [0,1) 7! [0,1) has the following properties: (i) ' is concave and di↵erentiable481

on (0,1), (ii) ' vanishes at the origin, and (iii) the directional derivative of ' exists and is482

positive at the origin.483
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Since ' is concave and di↵erentiable, for all positive z and z̃484

'(z)  '(z̃) + '0(z̃)(z � z̃).485

In other words, the first order Taylor expansion of a di↵erentiable concave function ' provides486

a tight global upper bound at the expansion point z̃. Thus, we can construct a function that487

is a tight upper bound of the function Ẽ�(u)488

g�(u | ũ) = 1

2

nX

i=1

kxi � uik2 + �
X

i<j

wijkui � ujk+ c7,(7.2)489

where c7 is a constant that does not depend on u, and wij are a�nities that depend on ũ,490

namely491

wij = '0 (kũi � ũjk) .492

Note that if we take ũi to be the data xi, and '(z) to be the following variation on the error493

function494

'(z) =

Z z

0
e�

↵2

� d↵,495

then the bounding function given in (7.2) coincides, up to an irrelevant shift and scaling, with496

the convex clustering objective using Gaussian kernel a�nities.497

The function g�(u | ũ) is said to majorize the function Ẽ�(u) at the point ũ [24] and498

minimizing it corresponds to performing one step of the local linear-approximation algorithm499

[37, 55], which is a special case of the majorization-minimization (MM) algorithm [24]. Thus,500

we can see that employing Gaussian kernel a�nities corresponds to taking one step of a local501

linear-approximation algorithm applied to a penalized regression based clustering with an502

appropriately chosen folded concave penalty.503

In practice, variants that employ folded concave penalties take multiple steps of the local504

linear approximation. So at the kth step,505

u(k) = argmin
u

1

2

nX

i=1

kxi � uik2 + �
X

i<j

'0
⇣
ku(k�1)

i � u(k�1)
j k

⌘
kui � ujk.506

As a�nities represent a data-driven way to approximate the partition tree, one can see that507

employing folded concave penalties corresponds to implicitly recomputing the a�nities, which508

corresponds to refining our estimate of the partition tree based on the data.509

In light of this current work, this last observation raises two interesting questions: (i) what510

partition tree is being recovered by a solution path of a penalized regression-based clustering511

method that uses a folded concave penalty and (ii) when is the recovered partition tree sub-512

stantially di↵erent than the tree corresponding to a one-step local linear approximation? We513

leave these questions to future work.514
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Appendix A. Example of Non-Tree Solution Path.515

We recreate a configuration of points in R2 and a�nities similar to those used in [19],516

which yield a solution path that is not a tree. Consider the following four points, x1 =517

(�0.25, 3), x2 = (0.25, 3), x3 = (2, 0), and x4 = (�2, 0), and employ a�nities w12 = 9, w13 =518

w24 = 30, and wij = 1 for all remaining i and j pairs. Figure 8 shows snapshots of the519

evolution of the solution paths for u1(�) (red), u2(�) (blue), u3(�) (green), and u4(�) (purple)520

as � increases. We see that u1(�) = u2(�) for a continuous range of � greater than 10�2.05 and521

strictly less than 10�1.64 (Figure 8d and Figure 8e) but that u1(�) 6= u2(�) for a continuous522

range of � greater than 10�1.64 and less than 10�0.85 (Figure 8e, Figure 8f, and Figure 8g).523
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Figure 8: Snapshots of the solution path as the parameter � increases.

We emphasize that in order to generate this degenerate solution path, we needed to use524

a�nities that do not reflect the geometry of the data. The largest a�nities, w13 and w24, are525

between the two pairs of points that are furthest apart from each other.526

Appendix B. Comparison of Unit versus Gaussian Kernel A�nities on Vote Data.527

To illustrate the superiority of Gaussian kernel a�nities over unit a�nities often observed528

on real data, we compute the convex clustering solution paths under the two kinds of a�nities529

on US senate voting data in 2001 [1, 14]. We removed duplicate voting records, restricting our530

attention to 29 senators – 15 Democrats, 13 Republicans, and 1 Independent (Jim Je↵ords,531

who was a Republican prior to 2001) – and their votes on 13 issues ranging over domestic,532

foreign, economic, military, environmental, and social concerns. The raw data consisted of 29533
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Figure 9: US Senate Vote Data: Solution path as the parameter � increases.

binary vectors of length 13, which we centered and scaled. Figure 9 shows the solution paths534

under the two kinds of a�nities; for visualization purposes we projected ui(�) 2 R13 onto the535

first two principal components of the centered and scaled data matrix. We color coded the536

solution paths to reflect senator party a�liations: Democrats in blue, Republicans in red, and537

the Independent in green. As an aside, we identify an outlying Democrat in Zell Miller, who538

had a track record for supporting Republican policies during his tenure. He notably supported539

Republican President George W. Bush against John Kerry, the Democratic nominee in the540

2004 presidential election.541

Figure 9a and Figure 9b show the resulting clustering paths under unit a�nities, wij = 1542

for all i and j, and Gaussian kernel a�nities respectively. In the latter case, we use a commonly543

used data-driven strategy of choosing a local scale parameter �ij that is pair dependent [52],544

namely545

wij = exp

✓
�kxi � xjk22

�ij

◆
.546

We first compute a local measure of scale �i, which is the median Euclidean distance between547

the ith point xi and its 5-nearest neighbors. We then set �ij = �i�j .548

The solution path in Figure 9a exhibits exactly one fusion event as � increases, namely at549

the end of the solution path. In contrast, the solution path in Figure 9b exhibits fusions that550

initially group together senators in their respective parties, before the two main groups fuse551

at the end of the solution path. Figure 10a and Figure 10b show points along the solution552

paths obtained from unit and Gaussian kernel a�nities respectively, color coded according to553
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Figure 10: US Senate Vote Data: The number of unique ui(�) as a function of �.

the number of unique ui(�) as � varies. Figure 10c and Figure 10d plot the number of unique554

ui(�) as � varies under unit and Gaussian kernel a�nities respectively. Indeed, we see that in555

this real example, the unit a�nities produce a rather useless tree, namely one with no nesting556

at all. In contrast, the Gaussian kernel a�nities produce a tree that organizes the senators557

into partitions that respect party a�liations. Figure 10b also shows that John Cha↵ee, who558

was one of the more liberal Republicans, fuses somewhat later to the Republican group and559

also shows that John Breaux, whose centrist voting tendencies at times led Republicans to560

seek his help in swaying a few critical Democratic votes, fuses somewhat later to the Democrat561

group.562
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Appendix C. Proof of Corollary 3.3.563

Proof. Lemma 3.1 guarantees the existence of a point u, call it ũ1, and viewing direc-564

tion vector v1 that satisfies inequality (3.1). Remove ũ1 from the set S = {u1, . . . , un} and565

apply Lemma 3.1 to the new set S\S1, where S1 = {ũ1}. Repeat this procedure k times566

and let Sk denote the set of k points, {ũ1, . . . , ũk}, that satisfy inequality (3.1) for the sets567

S, S\S1, . . . , S\Sk�1 respectively. Lemma 3.1 guarantees the existence of a point u 2 S\Sk568

and viewing direction vector v such that569

1

n� k

X

ui2S\Sk
ui 6=u

⌧
ui � u

kui � uk , v
�

� 1

2
.(C.1)570

The Cauchy-Bunyakovsky-Schwarz inequality tells us that571

⌧
ui � u

kui � uk , v
�

� �1,(C.2)572

for all ui 2 Sk. Inequalities (C.1) and (C.2) together imply that573

nX

i=1
ui 6=u

⌧
ui � u

kui � uk , v
�

� n� k

2
� k(C.3)574

Finally, for k  n/6, we see that the right hand side of (C.3) is bounded below by n/4 which575

implies the desired result.576
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