Recovering Trees with Convex Clustering*

Eric C. Chi and Stefan Steinerberger!

Abstract. Hierarchical clustering is a fundamental unsupervised learning task, whose aim is to organize a
collection of points into a tree of nested clusters. Convex clustering has been proposed recently
as a new way to construct tree organizations of data that are more robust to perturbations in the
input data than standard hierarchical clustering algorithms. In this paper, we present conditions
that guarantee when the convex clustering solution path recovers a tree and also make explicit how
affinity parameters in the convex clustering formulation modulate the structure of the recovered tree.
The proof of our main result relies on establishing a novel property of point clouds in a Hilbert space,
which is of potentially independent interest.
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1. Introduction. Hierarchical clustering is a fundamental unsupervised learning task,
whose aim is to organize a collection of points into a tree of nested clusters. To reinforce
the idea that we seek a collection of nested clusters, we will often also refer to clusters as
folders in this paper.

As an illustration, Figure 1 shows a collection of points in R?, labeled 1 to 18, that we seek
to organize. Based on the Euclidean distances between the points, an intuitive organization
is the following hierarchy of nested clusters. At the finest and first level of clustering, we
partition the set {1,...,18} into five subsets or folders:

Fii = {1,2,3,4,5}, Fio = {6,7,8}, Fis = {9,10,11,12,13},
Fiy = {14,15,16}, and F,5 = {17,18}.

At the second level of clustering, we merge the folders from the first level into a partition of
two folders: F271 = F171 U FLQ and FQ,Q = F1’3 U F174 U F175.

Finally, at the third level of clustering, we merge the folders from the second level into
a single folder: F3; = Fy1 U Fy9. Figure 2 illustrates the described tree organization. Since
each level of the tree consists of a partition of the data points, we refer to such hierarchical
organizations as “partition trees.”

There are many existing algorithms for automatically constructing partition trees, but
perhaps the most often used algorithms in practice are collectively known as agglomerative
hierarchical clustering methods [18, 21, 23, 30, 47]. Given a collection of points in RP, agglom-
erative hierarchical clustering methods recursively merge the points which are closest together
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Figure 1: Eighteen points in R? to organize.

Figure 2: Partition Tree.

until all points are joined. Different choices in the definition of closeness lead to the different
variants. Figure 3 shows two trees computed by two variants of the agglomerative hierarchical
clustering. For each tree, the eighteen points reside in the “leaves” which are organized into
a hierarchy of nested clusters that captures an increasingly coarser grouping structure as one
progresses from the leaves to the root of the tree. The branch lengths in the tree quantify the
similarity between pairs of points, or clusters at higher levels. We see that both trees recover
binary partition trees that are similar to the ideal partition tree shown in Figure 2.
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Figure 3: Hierarchical clustering of data in Figure 1 under two different agglomeration meth-
ods.

1.1. Convex Hierarchical Clustering?. Although agglomerative hierarchical methods are
widely used in practice, the greedy manner in which trees are constructed often results in an
unstable mapping between input data and output tree. Indeed, agglomerative hierarchical
clustering methods have been shown to be highly sensitive to perturbations in the input data,
namely the resulting output trees can vary drastically with the addition of a little Gaussian
noise to the data [10].

One promising alternative strategy for constructing trees stably relies on formulating the
clustering problem as a continuous optimization problem. Following up on the initial proposal
by [33], several recent works have shown that solving a sequence of convex optimization
problems can recover tree organizations [9, 12, 19, 25, 32, 41]. Given n points x1,..., 2, in
RP| we seek cluster centers (centroids) u; in RP attached to point z; that minimize the convex
criterion

1 n
(1.1) Ey(u) = 52”%—uz‘l\2+72wijlluz‘—wll,
i=1 i<j

where v is a nonnegative tuning parameter, w;; is a nonnegative affinity that quantifies the
similarity between x; and z;, and u is the vector in R™ obtained by stacking the vectors
Ui, ..., U, on top of each other. For now, we assume all norms are Euclidean norms; we will
later consider arbitrary norms. The sum of squares data-fidelity term in (1.1) quantifies how
well the centroids u; approximate the data x;, while the sum of norms regularization term
penalizes the differences between pairs of centroids u; and u;. To expand on the latter, the
regularization term is a composition of the group lasso [51] and the fused lasso [44] and incen-

s manuscript is for review purposes only.
This manuscript is for review purposes only



61
62
63
64
65
66
67
68
69
70
71
72
73
1

N 3

76
T
78
79
80
81
82
83
84
85

4 E. C. CHI AND S. STEINERBERGER

4 1 .1 v 0 o1
o2 .3 2 .3
8 38
7 7
*6 *6
«9 9
10 10
13 \ *13
o1 o12
11 11
Jidy 14,
16 N 16 15
.10718 .10718
(a) Gaussian Kernel Affinities (b) Unit Affinities

Figure 4: Solution paths of convex clustering using different affinities w;;.

tivizes sparsity in the pairwise differences of centroid pairs. Overall, £, (u) can be interpreted
as the energy of a configuration of centroids w for a given relative weighting v between data-
fidelity and model complexity as quantified by the regularization term. We next elaborate
how w(+y) varies as the tuning parameter  varies.

Because the objective function E(u) in (1.1) is strongly convex, for each value of 7 it
possesses a unique minimizer u(7y), whose n subvectors in R” we denote by w;(7y). The tuning
parameter ~ trades off the relative emphasis between data fit and differences between pairs
of centroids. When ~ = 0, the minimum is attained when u; = x;, namely when each point
occupies a unique cluster. As - increases, the regularization term encourages cluster centroids
to fuse together. Two points x; and x; with u; = u; are said to belong to the same cluster.
For sufficiently large ~, the u; fuse into a single cluster, namely u; = T, where T is the average
of the data z; [12, 42]. Moreover, the unique global minimizer u(7y) is a continuous function
of the tuning parameter v [10]; we refer to the continuous paths u;(), traced out from each
x; to T as 7 varies, collectively as the solution path. Thus, by computing u;(7y) for a sequence
of v over an appropriately sampled range of values, we hope to recover a partition tree.

Figure 4 plots the u; as a function of « for two different sets of affinities w;;. We will discuss
the differences in the recovered trees shortly, but for now we point out that computing u(vy) for
a range of v indeed appears to recover trees that bear similarity to the desired partition tree
in Figure 2. Moreover, the u;(vy) are 1-Lipschitz functions of the data x; [11]. Consequently,
small perturbations to the input data x;, are guaranteed to mot result in disproportionately
large variations in the output w;(7).

At this point, the solution path of convex clustering appears to stably recover partition
trees as desired. Nonetheless, questions remain as to whether convex clustering is a form
of convex hierarchical clustering. Specifically, (i) when is the solution path guaranteed to
produce a tree, and (ii) how do the affinities modulate the branch formation in the recovered
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RECOVERING TREES WITH CONVEX CLUSTERING 5

tree?

Hocking et al. provide a partial answer to the first question [19]. They prove that if unit
affinities are used, namely w;; = 1 for all 7 and j, and if 1-norms are used in the regularization
term in (1.1), then the solution path must be a tree. On the other hand, in the same paper,
they also provide an example, using the Euclidean norm in the regularization term, where
the solution path can fail to be a tree. Specifically, as the tuning parameter + increases, it is
possible for centroids to initially fuse and then “unfuse” before eventually fusing again. We
provide an example of this phenomenon in Appendix A.

The differences in the two recovered trees shown in Figure 4 motivate the second question.
Figure 4a shows the solution path when using Gaussian kernel affinities, namely for all 4 and

J
2
i = exp (=),
g

where ¢ is a positive scale parameter. Gaussian kernel affinities have been empirically shown
to provide more aggressive fusion of folders closer to the leaves, and consequently more infor-
mative, hierarchical clustering results [10, 12, 19]. Figure 4b shows the solution path when
using unit affinities. We see that Gaussian kernel affinities can generate a solution path that
recovers the partition tree in Figure 2, while unit affinities can generate a solution path that
recovers a less “nested” approximation to the partition tree in Figure 2. The same sets of
points and folders are getting shrunk together in Figure 4a and Figure 4b, but less aggres-
sively in the latter as « increases. In Appendix B, we provide an additional real data example
highlighting how different the recovered trees can be under the two sets of affinities. Our
main result will complement these empirical observations with a theoretical argument for why
certain data-driven affinities, including but not limited to Gaussian kernel affinities, should
be preferred over others.

1.2. Contributions. In this paper, we answer the open questions of (i) why the solution
path of convex clustering can recover a tree and (ii) how affinities can be chosen to guarantee
recovery of a given partition tree on the data. We first answer these questions in the case
when Euclidean norms are employed in (1.1) and then later describe how our results can be
extended to more general data-fidelity terms and arbitrary norms in the regularization term.

We clarify how the theoretical contributions in this paper differ from existing theoretical
results in the convex clustering literature. Radchenko and Mukherjee in [34] present a pop-
ulation model for the convex clustering procedure and provide an analysis of the asymptotic
properties of the sample convex clustering procedure. We note that their analysis is specific
to using 1-norms in the regularization term, while we consider first the Euclidean norm before
generalizing to arbitrary ones. Zhu et al. in [54] provide conditions under which two true un-
derlying clusters can be identified by solving the convex clustering problem with appropriately
chosen affinities. Similarly, She [39] and Sharpnack et al. [38] present results when the convex
clustering solution can consistently recover groupings. Others present finite sample prediction
error bounds for recovery of a latent set of clusters [42, 46].

Our contributions differ from these prior works in two ways. First, we provide conditions
on the affinities that ensure that the solution path reconstructs an entire hierarchical partition
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6 E. C. CHI AND S. STEINERBERGER

tree and clarify how these affinities can be explicitly tuned to recover a specific target tree.
With the exception of the work by Radchenko and Mukherjee in [34], all of the other works
present theoretical guarantees for recovering a single partition level rather than a nested
hierarchy of partitions. Second, in contrast to all of the previous work, we do not make any
distributional assumptions on the data. Instead, we focus in this paper on understanding the
behavior of the solution path as a function of the affinities used in the regularization term.
By understanding this dependency, we gain insight into why a commonly used data-driven
affinities choice, namely the Gaussian kernel, works so well in practice.

1.3. Outline. The rest of this paper proceeds as follows. In Section 2, we define structures
needed to construct affinities that will enable us to recover a desired partition tree and once
equipped with the necessary building blocks, give an overview of our main result. In Section 3,
we introduce a geometric lemma that is key to proving our main result. In Section 4, we
give proofs of the geometric lemma and our main theorem. In Section 5, we show how our
main result can be generalized to other data-fidelity terms and regularization term norms. In
Section 7, we conclude with a discussion on our results within the broader context of penalized

regression methods for clustering.

2. Setup and Overview of Main Result. Our main result shows that if the affinities
w;; arise from an underlying partition tree, then that tree can be reconstructed from the
solution path of the convex clustering problem. To proceed, we will need a formal definition
of a partition tree and then a judicious assignment of weights to the edges in the tree graph
corresponding to the partition tree.

2.1. Partition Tree. Let Q = {z1,...,z,} C RP be an arbitrary collection of points and
let [n] denote the set of indices {1,...,n}. Following the notation and language employed in
[2] and [29, 28], we say that 7 is a partition tree on the collection of points {2 consisting of
Po, - - ., Pr, partitions of 2 if it has the following properties:

1. The partition P; = {F}1,..., Fi,,} at level [ consists of n; disjoint non-empty subsets
of indices in {1,...,n}, termed folders and denoted by Fj;,i € [ry].
2. The finest partition Py contains ng = n singleton “leaf” folders, namely Fp; = {i}.
3. The coarsest partition P, contains a single “root” folder, namely Fy,; = [n].
4. Partitions are nested; if F' € P, then F' C F’ for some F’ € P, 1, namely each folder
at level [ — 1 is a subset of a folder from level . Note that we allow for F' = F’.
A partition tree 7 on € can be seen as the collection of all folders at all levels, namely
T = {Flﬂ :0<I<L,ie [nl]}

2.2. Weighted Tree Graph. We next assign every folder F}; € 7 to a node and draw an
edge between nested folders in adjacent levels. Thus, if F' € P, F’ € P4y, and F C F’, then
we draw an edge (F,F’) between F' and F’. If we let £ denote the set of all edges between
nested folders in adjacent levels, then the resulting graph G = (£,7) is a tree.

We next assign weights on the edges in £ as follows. Let € > 0 be a fixed parameter,
whose value we will elaborate on shortly. Edges between level 0 folders and level 1 folders
receive a weight of 1. Edges between level 1 folders and level 2 folders receive a weight of
. Edges between level 2 folders and level 3 folders receive a weight of €2 and so on. Thus,
edges between level [ folders and level [ + 1 folders receive a weight of /. Figure 5a shows the
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169 weighted tree graph G derived from the partition tree given in Figure 2.

(a) Weighted Tree Graph (b) The path p15 from 1 to 5 produces wis = 1.

099090@0@@@

D@OEOWEE® ® @31 i)i12630 6 @ @iﬁ
(c) The path pi7 from 1 to 7 produces wi7 = €. (d) The path p19 from 1 to 9 produces wig = e?

Figure 5: Weighted Tree: Edges that are solid lines have weight 1. Edges that are dashed
lines have weight ¢. Edges that are dotted lines have weight £.

170 We are finally ready to construct w;; from the weighted tree graph. Let Fp; and Fp; be
171 leaf nodes in the graph G and let p;; be the sequence of edges in £ that form the path between
172 Fp; and Fp ;. Then we set w;; to be the smallest weight of edges contained in p;;. In other
173 words, w;; is the smallest edge weight one sees in traveling from ¢ to j. Figure 5b shows that
174 the path pi5 from 1 to 5 in the weighted graph G leads to the affinity assignment w5 = 1.
175 Figure 5¢ and Figure 5d show additional examples of how affinities are derived from the edge
176 weights in G.

177 2.3. Main Result. We now state our main result.

178 Theorem 2.1. There exists €g > 0, depending on the data and the tree structure (which we
179 assume defines the wi; as outlined above in Section 2.2), so that for all € € (0,&¢) the solution
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path

n

n
u(y) = argmin Y [lz; —wl® + 7 Y wijllui = uyl),
1

1yeesUn = 7,,]:1

as parametrized by v € (0,70) traces out exactly the partition tree structure underlying the
affinities w;; before collapsing into a point for some large, but finite, o.

Informally speaking, this means that as - increases, elements from the same folder collapse
into a single point, these folders (now single points) move themselves (or rather, the fused
points move in a coordinated manner) and then collapse again in a way predicted by the tree
(i.e. folders sharing a parent folder collapse). This evolution continues on until all points have
collapsed into a single point (which happens for a finite value 7). We have no precise bound
on the times v at which these collapses happen but by making ¢ sufficiently small, there is
an arbitrary long time between stages of collapsing. The proof of Theorem 2.1 also gives a
bound on 7y as a byproduct.

Remarks Several additional remarks are in order.

1. At first blush, it appears that the data x; plays no role in the recovered partition tree
as the affinities w;; dictate the trajectory of the solution path. In practice, however,
one would never use w;; that did not depend on the data. We study the convex
clustering solution path separate of any particular data-driven choice of the affinities,
but intuitively the affinity w;; should be inversely proportional to the distance between
x; and xj. Theorem 2.1 further clarifies a sufficient condition on how rapidly (i.e.
geometrically fast) the affinity w;; should decrease as the distance between x; and z;
increases for all pairs of data points, to ensure the solution path is a tree. To further
clarify the importance of using w;; that respect the geometry of the data, we give an
example of a solution path that is not a tree as a consequence of using w;; that do not
respect the geometry of the data in Appendix A.

2. The affinities do not need to have exactly the structure described in Section 2.2.
A more precise statement would be that there exists an g such that whenever we
associate weight 1 € (0,g9) to the first level, then there exists an e (depending on
everything and £¢,€1) such that if we associate weight g5 € (0,¢) to the second level
there exists an 3 (depending on everything and ¢, €1, 2 etc.). Simply put, it suffices
to have a sufficiently clear separation of scales encoded in the affinities.

Indeed, Figure 6 shows the Gaussian kernel affinities w; between z1 and the remain-
ing z; for j = 2,...,18 from the example in Figure 1. We observe clear separation
of scales encoded in the Gaussian kernel affinities that align with the partition tree
and corresponding weighted graph G in Figure 5a. Similar plots of the set of affinities
associated with each data point reveal alignment with the partition tree and corre-
sponding weighted graph G. The key quality of the Gaussian kernel should be readily
apparent, namely the Gaussian kernel naturally encodes, in a data-driven way, a ge-
ometric decay in weights that is sufficient to reconstruct a partition tree embedded
in Euclidean space. We emphasize, however, that there is nothing special about the
Gaussian kernel, and its rapid decay in weights is not even necessary. Any data-driven
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Figure 6: Gaussian kernel affinities wy; between z1 and the other x; from the example in
Figure 1.

affinities possessing a sufficient separation of scales will produce similar trees.

3. The result is completely independent of where the {z1,...,x,} € RP are located in
space. Their location, however, affects the critical scale gg.

4. The statement guarantees that points u; fuse together with respect to the folder struc-
ture before moving to fuse with other points and their respective folder structure,
however, we do not have clear control over whether they intersect (in the sense of two
u;, u; belonging to different folders occupying the same point in space for some value
of ) in between or not. Generically, this will not happen but, for a non-generic set of
x;, it is possible to arrange for the u; to indeed intersect, then move apart again before
finally fusing for a larger value of . This is a consequence of our lack of conditions
on the position of the points x;. If the x; are located in space in a way that actually
reflects the tree structure, then they will fuse upon intersecting for the first time.

3. A Geometric Lemma. We establish a geometric Lemma that is of intrinsic interest:
it states that for any set of distinct points {u1,...,u,} € RP, one of these points u (indeed,
one on the boundary of the convex hull of all the points) has the property that for a suitable
“viewing direction” v € RP most points are clearly visible when standing in the point u and
looking towards the viewing direction (in the sense of having a large inner product). We now
phrase this more precisely below. Recall that the convex hull of a set .S, denoted by conv S is
the smallest convex set containing the set S.

Lemma 3.1. For every set S = {u1,...,u,} CRP of n > 3 distinct points, there exists

u€eSNdconvsS and veRP satisfying ||v]| =1
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such that

1) Ly () 2
' n = \|lui—ul” /=2
u; Fu

The statement can be summarized as follows: for a suitable point v € S N dconv .S, if we
map the direction to all other points onto the unit sphere SP, then convexity implies that there
is a great circle on SP such that all these directions are on one side of the great circle or on it.
This can be interpreted as the dualization of the fact that there is a supporting hyperplane
touching the boundary of the convex hull in such a way that all of conv S is on one side. The
statement claims the existence of a boundary point u such that the average projection point
is bounded away from that great circle by a universal constant.

u

Figure 7: A set of points in R?: there exists a point u on the boundary of the convex hull and
a direction v such that the average inner product of (u; — u)/||u; — u|| and v is bounded away
from 0 by a universal constant.

We will use Lemma 3.1 to study the regularization term in (1.1), namely the functional

m
J(u) = Z lui — ujl| for a given set of distinct points {u1,ug,...,un} C RP.
ij=1

The functional J is clearly minimized for any collection of u; that are all identical. Con-
sequently, any collection of distinct wu; represents a suboptimal configuration of centroids
and therefore admits a descent direction that leads to a decrease in energy. The power of
Lemma 3.1 is that it identifies a direction that guarantees a large amount of decrease in J.
To see this, we write down the directional derivative of J explicitly.

The directional derivative of moving u; in direction v € RP, normalized to [jv]| = 1 is

s manuscript 1s for review purposes c .
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computed as

aJ .1
(Gw) = lim Sl = G+ 0] = =]

i#j
1
= gg%t;¢<ui—<uj+tv>,ui—<uj+tv>>—||uz-—uj||
1F]
(3.2) h
= St (Vw20 42 = g - )
i#£]
_ Z<u—wv>
2\ =]

The expression for the directional derivative given in (3.2), in conjunction with Lemma 3.1,
shows that it is always possible to find one point such that moving it § in a certain direction
decreases the entire functional by at least (n/2)d. The existence of a direction of guaranteed
minimum decrease in J will be essential in proving Theorem 2.1.

The following variant of Lemma 3.1 will also be useful in applications.

Lemma 3.2. For every set S = {u1,...,u,} CRP of n > 3 points such that not all of them
are in the same place, there exists

ueSNodconvS and veRP satisfying ||v|| =1

such that

1 & U — U 1
. ~ — ) >,
(33) ) =

Before proceeding to proofs of the geometric lemmata and main result, we also note the
following consequence because of its intrinsic interest. We give a proof of Corollary 3.3 in
Appendix C.

Corollary 3.3. Let S = {uq,...,un} C RP be a set of distinct points. Then there exist at
least n/6 points u € S having the property that for some ||v] =1
1 " U — U 1
— Z V) 2
n e <||uz' — ul > 4
w;#u
This simple statement has non-trivial implications: Lemma 3.1 may seem like these van-
tage points from which to observe the entirety of the set without having too many small inner
products are rare. To the contrary, Corollary 3.3 declares that the property is surprisingly
common and enjoyed by a universal fraction of all points. While we do not use Corollary 3.3
in the proof of our main result, we believe this result to be of substantial independent interest
since it can be interpreted as a basic statement (with universal constants) in a general Hilbert
space. It could be of interest to further pursue this line of investigation.
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12 E. C. CHI AND S. STEINERBERGER

4. Proofs. We now prove Lemma 3.1, Lemma 3.2, and Theorem 2.1.
4.1. Geometric Lemmata.

Proof of Lemma 3.1. Let S = {u1,ug,...,u,}. Select an arbitrary u € S N conv S, and
let y € S be a point in the set furthest from u (there may be more than one such point),
formally
(4.1 Ju =yl = masx u = i
It is easy to see that y resides on the boundary of the convex hull; ¥ is in fact an extreme
point. We now show that u, equipped with the viewing direction vector vy = (y —u)/[|y —u/|,

or y, equipped with the viewing direction vector v9 = —v1, has the desired property. We first
show that for every w; ¢ {u,y}

(4.2) <“i_“,v1>+<w,v2> > 1.

Jwi = ul| [[ui =yl
Since we are only dealing with three points u, y, and u;, all angles are determined by the cor-
responding triangle, which we can assume without loss of generality to reside in R?. Moreover,
the invariance under dilation, translation and rotation enables us to assume that u = (0,0)
and y = (1,0). If we write u; = (a,b), then the expression on the left hand side of (4.2)
simplifies to

U; — U U; — Y a 1—a
PP (AN S . |
(43) (i o)~ VEs® | i

and the condition on the distances ||u — u;|| and ||y — ;|| required by (4.1) implies that

(4.4) max {a® + b%, (1 — a)® + b*} < 1.

Minimizing the expression in (4.3) subject to the constraint in (4.4) gives us the desired
inequality in (4.2); almost equality is attained for u; very close to either u or y and equality
is attained for (a,b) = (1/2,/3/2). We then sum the left and right hand sides of (4.2) over
i=1,...,n to arrive at the inequality

n n
U; — U U; — Y
L5 WQ* <,w>>m
(45) Z;@m—m 2\ =yl
u;Fu u; #y

which follows from realizing that each of the sums contains one term that is equal to 1 and
that the remaining sum runs over all u; ¢ {u,y} yielding at least a total of n — 2. Thus at
least one of the two terms is size n/2 and we obtain the desired result. [ |

Proof of Lemma 3.2. Let S = {uq,ug,...,u,} be a set of points not all of which are in
the same place. Then the diameter of the set is not 0 and there exist two points, that we call
w.l.o.g. u; and uy such that ||u; — ug|| = diam(S). Let us suppose the number of points that
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RECOVERING TREES WITH CONVEX CLUSTERING 13

are co-located with uq is nq, the number of points that are co-located with us is ns and the
number of points everywhere else is ng. Clearly,

ni + ng + N3 = n.

The main idea is now to derive two independent lower bounds. One of them will be tighter
when nj 4+ ny is large (compared to n) and one will be tighter when nj +ng is small (compared
to n). We can then always apply the stronger of the two bounds and that will end up in
resulting a lower bound of n/4 regardless of what the values of ny and ng are.

Bound 1. We could pick u to be u; and its viewing direction vector v1 = (ug —uq)/||us —
ui|| or, conversely, the point ug and the vector vy = (ug — u1)/[|ug — u1] to be v and v
respectively. We note that, since we chose the points to be of maximal distance, all arising
inner products are nonnegative. Therefore

= U — U
Z <Z1,Ul> e
=\ [Ju; — |
ujFuy

" Ug u9
-
E —— 9 ) > nq.
— <|Ui—u2||7 >
ujFuUQ

and

Altogether, there is a pair of vectors v and v that achieves a sum of inner products of at least
max {n1,ng}, which is a good bound when either of those two numbers is large (but true in
all cases). On the other hand, since we are only considering that small subset of points, the
bounds naturally become quite loose when n; + ns is small.

Bound 2. On the other hand, we can remove all the points co-located with either w; or
ug except for one in each set, leaving us with n — n; — ng + 2 points. We can now apply the
previous argument which guarantees the existence of a vector v and a vector v with

zn:<ui—u >>n—n1—n2+2
v .
2 \Tui=ul") >~ 2
u;Fu

We see that this bound is quite good when n; and ny are small, in particular we recover the
original bound for distinct points whenever n; = ne = 1.

Conclusion. Having both bounds at our disposal, we can always guarantee the existence
of a pair u and v such that the lower bound is at least

A n—n1—n2+2’n1,n2 21 TL—’I’L1—7’L2+2+’I’Ll+7’LQ Zﬁ
2 2 2 2 4

where the last line makes use of the inequality

max{x,y,z}ngr%JrZ for all z,y,2 >0

since the maximum has to exceed every weighted average. |
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4.2. Main Theorem. Outline: The proof is based on the self-similarity of the statement.
We essentially show that points at the lowest level fuse in the right way with points in the
same leaves (those who have mutual affinity 1). Once they are fused, we show that they stay
fused for all subsequent values of . The newly emerging problem turns out to be exactly of
the same type as the original one: we re-interpret fused points as single points with a mutual
interaction now at scale ~ ¢ (which becomes the dominant scale since points with w;; = 1
are already fused). This makes crucial use of the geometry of the 1-norm. At every step, the
arguments will go through provided ¢ is sufficiently small (but positive) and since the tree is
of finite height, the result follows. To be more precise, the argument will proceed as follows.

1. We assume that the z; are fixed and that the u; are solutions of the minimization
problem

n n

: 2

i, |2 i = il Mmz—l wijljus = g
Plugging in an example shows that the minimal energy is uniformly bounded in 7.
This has some basic implications: the u; cannot be too far away from the x; and not
too far away from each other.

2. We then study a subset of points {x1,...,2,} contained in a leaf of the tree. This
means that their mutual affinity satisfies w;; = 1 and the affinity between any of these
points to any other point not in the leaf of the partition is at most €.

3. We then focus exclusively on these point sets and prove that for 7 sufficiently large,
these sets are necessarily fused in a point. This is where Lemma 3.2 will be applied.

4. Once we establish that for v sufficiently large, the point sets in the leaf are fused into
exactly one point as desired, the full statement essentially follows by induction since
these fused points interact exactly as individual points used to do; having common
parents in the tree becomes the next-level analogue of being associated to the same
leaf. The result then follows.

Proof. We introduce the energy of the minimal energy configuration for v > 0 as

n
Bly) = inf By(u) = inf |3 llos =l +4 3 wijljus — ]
i=1 i<j

By setting u3 = ug = - -+ = u,, and putting these points in the center of mass of {z1,...,z,},
we observe that this energy is uniformly bounded for all

Esup = sup E(’Y> <
¥>0

We decompose the energy functional E(vy) as
(4.6) E(y) = Ex(7) + Ea(v),

where

n
Ei) =Y Nz —will? 47 3 s —wll,
=1

(7'7.7)681
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where & = {(4,7) : w;; = 1} and

Bs(V) =~ Y wijllui —ull,
(17'])652

where & = {(i,7) : wij < e < 1}. The decomposition (4.6) makes explicit that, for e suffi-
ciently small, the functional Es(7) can be interpreted as an error term, while the dominant
dynamics are determined by Fj(v). We now claim that for v sufficiently large (where suffi-
ciently large depends on everything except the parameter €) any subset of the points u; whose
mutual affinities are 1 (i.e. all the members of one of the leaves in the tree) are fused in a
point. The argument can be made quantitative and we will give an explicit bound on v that
will be sufficient.

We will now ensure that we can assume that all points are distinct. The energy F is a
continuous functional. This means that we can move any potentially clumped points apart
by accepting an arbitrarily small increase of energy; the remainder of the argument works
as follows: if points happen to be clumped together — but not in exactly one point but in
several — then we may move all of them an arbitrarily small bit. We can accept an arbitrarily
small increase of energy as long as we are able to then deduce a definite decrease in energy
afterwards (that will depend on the diameter of the w;); this contradiction shows that the
clumping has to occur in exactly one point. The next step in the argument is dynamical: we
compute the effect of moving one of the points an infinitesimal amount (this is already using
the assumption that all u; are distinct). Reusing the computation in (3.2), we see that

OF _ o _ - Ui — Uj
o (Fem)=2t-mi—r ¥ (=)

i=1
i#5,(4,7) €€

0
+ <8»7 > wiglui - uj|,U> :
u;
(17])652
The first term on the right hand side of (4.7) is bounded above by
(4.8) 2[{uj = zj,v) < 2||zj — il < 2v/ Esup,

and the third term on the right hand side of (4.7) is bounded above by

0 U — U
(4.9) el Do wilu =l =~ D wum < 7en.
T (ij)eg i:(i,5) €2 i#] L

Lemma 3.2 guarantees that there exists u; for which the second term on the right hand
side of (4.7) is

—y Z <“Z"“J"U>§_Z#{1gign:(z‘,j)e&}.

= \llwi =yl
i#3,(1,5) €€,
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16 E. C. CHI AND S. STEINERBERGER

The proof of Lemma 3.1 is even stronger and guarantees that if ||u; —u;|| = diam {u1, ..., u,},
then either u; or u; has the desired property and can be moved in a suitable direction v.
Plugging the u; and v from Lemma 3.1 into both sides of (4.7) and applying inequalities (4.8)
and (4.9), we arrive at the following inequality.

(4.10) <gf,v> < D(v) = 2y/Esup + ven — %#{1 <i<n:(i,j) €&}.
j

A crucial observation is that for
1
5<%#{1§i§n:(i,j)e€1}

we can conclude the existence of 7 sufficiently large (depending on all the other parameters)
so that D(y) < 0. This, however, means the point configuration {ui,...,u,} cannot be a
minimizer of the functional since we found a point u; and a direction v such that moving
u; into direction v decreases the functional. This is a contradiction unless we are somehow
forbidden to apply Lemma 3.2: the only assumption in Lemma 3.2 is that not all points u;
are in the same place. Thus we see that, for v sufficiently large, all points in & are fused. A
simple computation shows that these points have to be fused for all

44/ Esup

> .
TEHEN<i<n:(i,j) €&} —den

(This lower bound is not sharp; in practice, points will already be fused for smaller values of
7v.) A careful inspection of the proof shows that we do not require w;; = 1 for points in the
same partition: it suffices if 1 < w;; < ¢ for some constant c if subsequent parameter choices
of v are allowed to depend on that. The full statement now follows by induction: points in
leaves become a single point, their parent structure determines the next collection of leaves
and the product of their affinities determines the new affinities. Since there are only finitely
many levels to the tree, the process eventually terminates. |

5. Extensions of the Main Theorem. The proof of Theorem 2.1 relies on rather ele-
mentary analysis and consequently is quite flexible. Indeed, the proof can be immediately
extended to more general notions of energy of the type

E (u) = ¢(x1,...,Tn,ut,...,Uy) +7Zwi]— lug — i,
1<)
where X is an arbitrary norm on RP and ¢ is assumed to satisfy the following properties:

1. The function ¢ : RP*™ — R> is differentiable and enforces some degree of data-fidelity
and compactness. More precisely, at one extreme ¢ should be minimized when u; = z;,
for example ¢ is nonnegative for all u and ¢(x1,...,2Zn, 21, ...,2,) = 0. At the other
extreme, ¢ should diverge whenever |lu|| diverges. We want ¢ to have the property
of ensuring that minimizing the energy implies that all u; are trapped in a universal
convex set (determined by the z; but independent of 7). This amounts to a type of
growth condition on ¢ and many of the functions one would canonically choose will
have that property.
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2. For all u for which

n
A(T1, .o Ty ULy - ey Up) + 7Y Z wij |u; — ujll < xiengpd)(:vl,...,xn,:r,...,x),
ij=1
we have
0
8Ui¢(:c1,...,xn,ul,...,un) <c
where ¢ only depends on v and {z7....,%,}.

The argument proceeds in exactly the same way and makes crucial use of the fact that
any two norms in a finite-dimensional Euclidean space are equivalent up to constants, namely

csllzlle < llzllx < coll@fle-

Since constants can always be absorbed in v, this reduces to our case, namely X = /2.

Proof. (Sketch of the argument) Setting all u; = 2 and minimizing over x implies that the
energy is uniformly bounded in v (with a bound depending only on {x1,...,z,}). Since the
norm X is comparable to the Euclidean norm, this implies that any minimizing configuration
{u1,...,u,} has to have a bounded diameter (with a bound depending only on {z1,...,2,}).
Then, for v sufficiently large (depending on ¢), Lemma 3.1 implies a direction of decay and
thus points are eventually fused. We leave the precise details to the interested reader. |

We close this section by noting that the generality of our result opens the door to in-
triguing applications. For example, one potential application of our extension is to construct
partition trees of regression coefficients in clustered regression [5, 22, 39, 48]. We leave these
investigations as future work.

6. Convex Clustering in High-dimensional Spaces. We now briefly provide some practi-
cal guidance in using convex clustering in high-dimensional spaces. Beyer et al. showed in [4]
that over a broad class of data distributions, as the ambient dimensional increases, distances
from a point to its nearest neighbors become indistinguishable from distances to its farthest
neighbors. Thus, at first glance, it is unclear whether tree organizations can be recovered
from high-dimensional data using convex clustering, a method in which distance metrics play
a central role. Fortunately, many high-dimensional data sets encountered in engineering and
science can be approximated reliably by a lower dimensional representation or embedding. In
some cases, high-dimensional data consist of many features that contain little to no informa-
tion about the clustering structure and should be dropped. In this case, one may consider
computing a sparse convex clustering solution path [46]. In other cases, where there are
more nuanced relationships among most or even all the features, we may turn to nonlinear
dimension reduction methods. Indeed, manifold learning [3, 13, 15, 43, 35] has proven to be
effective as a nonlinear dimension reduction technique in many scientific domains where very
high-dimensional measurements are recorded such as in bioinformatics [17, 20, 27, 50] and
neuroscience [7, 6, 8, 36, 40, 45]. Upon some reflection, this is not surprising, as these studies
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18 E. C. CHI AND S. STEINERBERGER

collect high-dimensional data that are generated from natural processes that are subject to
physical constraints and are thus intrinsically low-dimensional.

In light of these observations, we recommend the following simple strategy. First, embed
high-dimensional data into a low-dimensional space, and then compute a convex clustering
solution path using the low-dimensional representation of the data. This strategy is especially
natural if one uses diffusion maps, since the diffusion distance between two points in high-
dimensions can be approximated by the Euclidean distance in the lower dimensional diffusion
maps space [13]. Once points are embedded in the diffusion maps space, one can use Gaussian
kernel affinities and compute the convex clustering solution path using the Euclidean norm in
the regularization term.

7. Discussion. In this paper, we answered the question of when the convex clustering
solution path can recover a tree. The key to ensuring the recovery of a well nested partition
tree is the use of affinities that encourage the fusions within a folder before fusions with
higher level folders and so on as the tuning parameter = increases. By choosing the edge
weight parameter ¢ sufficiently small, different folders have very little incentive to interact,
and the optimization problem is essentially decoupled. As « increases, the same procedure
repeats itself.

We end with a discussion on the relationship between convex and non-convex formulations
of penalized regression based clustering. Although we focus in this paper on the ability of
convex clustering to recover a potentially deep hierarchy of nested folders, our result also sheds
light on a gap in theory and practice that convex clustering’s performance can be significantly
improved when using non-uniform data-driven affinities when seeking a shallow or single level
of nested folders. In practice, Gaussian kernel affinities have been observed to work well, but
these affinity choices have until now lacked formal justification.

Indeed, non-uniform affinities provide the link between convex clustering and other penal-
ized regression-based clustering methods that use folded concave penalties. It is well known
that 1-norm penalties lead to parameter estimates that are shrunk towards zero. This shrink-
age toward zero is the price for simultaneously estimating the support, or locations of the
nonzero entries, in a sparse vector as well the values of the nonzero entries. In the context
of convex clustering, the centroid estimates u; are shrunk towards the grand mean Z. Con-
sequently, others have proposed employing a folded concave penalty instead of a norm in the
regularization terms [31, 26, 49]. Folded concave penalties induce milder shrinkage in exchange
for giving up convexity in the optimization problem, which means that iterative algorithms
can typically at best converge only to a KKT point.

Suppose we were to employ a folded concave penalty, such as the smoothly clipped absolute
deviation [16] or minimax concave penalty [53], and seek to minimize the following alternative
objective to (1.1)

- 1
(7.1) Ey(u) = §lel‘i—uz’||2+7290(||ui—uj\|)7
i=1 i<j
where each ¢ : [0,00) — [0, 00) has the following properties: (i) ¢ is concave and differentiable

on (0,00), (ii) ¢ vanishes at the origin, and (iii) the directional derivative of ¢ exists and is
positive at the origin.
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Since ¢ is concave and differentiable, for all positive z and 2z

p(2) < @(2) + ¢/ () (2 — 2).

In other words, the first order Taylor expansion of a differentiable concave function ¢ provides
a tight global upper bound at the expansion point Z. Thus, we can construct a function that
is a tight upper bound of the function £, (u)

I
(7.2) g%uhw=5§:M«—WW+7§:wNw—um+wn
i=1 i<j

where c7 is a constant that does not depend on u, and w;; are affinities that depend on 4,
namely

wij = ¢ (|| — 1)) -

Note that if we take @; to be the data z;, and ¢(z) to be the following variation on the error
function

z qg
cp(z):/ e~ 7 dao,
0

then the bounding function given in (7.2) coincides, up to an irrelevant shift and scaling, with
the convex clustering objective using Gaussian kernel affinities.

The function g, (u | i) is said to majorize the function E,(u) at the point @ [24] and
minimizing it corresponds to performing one step of the local linear-approximation algorithm
[37, 55], which is a special case of the majorization-minimization (MM) algorithm [24]. Thus,
we can see that employing Gaussian kernel affinities corresponds to taking one step of a local
linear-approximation algorithm applied to a penalized regression based clustering with an
appropriately chosen folded concave penalty.

In practice, variants that employ folded concave penalties take multiple steps of the local
linear approximation. So at the kth step,

n

1 k—1 k—1
u® = argmin > las = wll? +7 Y@ (™ = ul V) flus - )
“ i=1 i<j

As affinities represent a data-driven way to approximate the partition tree, one can see that
employing folded concave penalties corresponds to implicitly recomputing the affinities, which
corresponds to refining our estimate of the partition tree based on the data.

In light of this current work, this last observation raises two interesting questions: (i) what
partition tree is being recovered by a solution path of a penalized regression-based clustering
method that uses a folded concave penalty and (ii) when is the recovered partition tree sub-
stantially different than the tree corresponding to a one-step local linear approximation? We
leave these questions to future work.
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20 E. C. CHI AND S. STEINERBERGER

Appendix A. Example of Non-Tree Solution Path.

We recreate a configuration of points in R? and affinities similar to those used in [19],
which yield a solution path that is not a tree. Consider the following four points, z; =
(—0.25,3), 29 = (0.25,3),23 = (2,0), and x4 = (—2,0), and employ affinities wis = 9, w13 =
woy = 30, and w;; = 1 for all remaining ¢ and j pairs. Figure 8 shows snapshots of the
evolution of the solution paths for uq () (red), ua(vy) (blue), us(y) (green), and ug(y) (purple)
as v increases. We see that u () = uz(7y) for a continuous range of y greater than 10~ and
strictly less than 107164 (Figure 8d and Figure 8e) but that () # ua(7y) for a continuous
range of  greater than 10756 and less than 107985 (Figure 8e, Figure 8f, and Figure 8g).

3 X110 oXo 3- X1 e oXo 3 X1 e ®Xo 3 X1 0 oXo
" |
2 2- 2 2
1 1 1 1
0Xg @ eX3 (0Xg@ eX3 (QiXge@ eX3 (OiXge@ ® X3
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
(a) v = 0 (b) v = 1072 63 (C) o 10—219 (d) = 10—2.05
3 X1 e oXo 3 X1 e oXo 3 X1 e oXo 3 X1 e @Xo
| I | \
2 2- 2 2
1 1 1 1
0Xg @ eX3 (0Xge eX3 (QiXge@ eX3 (0iXge@ ® X3
2 -1 0 1 2 2 -1 0 1 2 2 4 0 1 2 2 1 0 1 2
(e) N = 10—164 (f) e 10—1,39 (g) = 10—112 (h) = 1070.85

Figure 8: Snapshots of the solution path as the parameter ~ increases.

We emphasize that in order to generate this degenerate solution path, we needed to use
affinities that do mot reflect the geometry of the data. The largest affinities, w13 and way, are
between the two pairs of points that are furthest apart from each other.

Appendix B. Comparison of Unit versus Gaussian Kernel Affinities on Vote Data.

To illustrate the superiority of Gaussian kernel affinities over unit affinities often observed
on real data, we compute the convex clustering solution paths under the two kinds of affinities
on US senate voting data in 2001 [1, 14]. We removed duplicate voting records, restricting our
attention to 29 senators — 15 Democrats, 13 Republicans, and 1 Independent (Jim Jeffords,
who was a Republican prior to 2001) — and their votes on 13 issues ranging over domestic,
foreign, economic, military, environmental, and social concerns. The raw data consisted of 29
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Figure 9: US Senate Vote Data: Solution path as the parameter « increases.

binary vectors of length 13, which we centered and scaled. Figure 9 shows the solution paths
under the two kinds of affinities; for visualization purposes we projected u;(y) € R onto the
first two principal components of the centered and scaled data matrix. We color coded the
solution paths to reflect senator party affiliations: Democrats in blue, Republicans in red, and
the Independent in green. As an aside, we identify an outlying Democrat in Zell Miller, who
had a track record for supporting Republican policies during his tenure. He notably supported
Republican President George W. Bush against John Kerry, the Democratic nominee in the
2004 presidential election.

Figure 9a and Figure 9b show the resulting clustering paths under unit affinities, w;; = 1
for all ¢ and j, and Gaussian kernel affinities respectively. In the latter case, we use a commonly
used data-driven strategy of choosing a local scale parameter o;; that is pair dependent [52],

namely
)2
wij = exp (—sz J‘fr]b) .
ij

We first compute a local measure of scale ¢;, which is the median Euclidean distance between
the ith point x; and its 5-nearest neighbors. We then set o;; = 0;0;.

The solution path in Figure 9a exhibits exactly one fusion event as = increases, namely at
the end of the solution path. In contrast, the solution path in Figure 9b exhibits fusions that
initially group together senators in their respective parties, before the two main groups fuse
at the end of the solution path. Figure 10a and Figure 10b show points along the solution
paths obtained from unit and Gaussian kernel affinities respectively, color coded according to
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(a) Unit Affinities (b) Gaussian Kernel Affinities
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Figure 10: US Senate Vote Data: The number of unique w;(7y) as a function of ~.

554  the number of unique u;(y) as y varies. Figure 10c and Figure 10d plot the number of unique
u;(7y) as v varies under unit and Gaussian kernel affinities respectively. Indeed, we see that in
this real example, the unit affinities produce a rather useless tree, namely one with no nesting
at all. In contrast, the Gaussian kernel affinities produce a tree that organizes the senators
into partitions that respect party affiliations. Figure 10b also shows that John Chaffee, who
was one of the more liberal Republicans, fuses somewhat later to the Republican group and
also shows that John Breaux, whose centrist voting tendencies at times led Republicans to
561 seek his help in swaying a few critical Democratic votes, fuses somewhat later to the Democrat

group.
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563 Appendix C. Proof of Corollary 3.3.

564 Proof. Lemma 3.1 guarantees the existence of a point w, call it 4;, and viewing direc-
565 tion vector vy that satisfies inequality (3.1). Remove @ from the set S = {uq,...,u,} and
566 apply Lemma 3.1 to the new set S\S7, where S; = {@1}. Repeat this procedure k times
567 and let Sy denote the set of k points, {1, ..., 4k}, that satisfy inequality (3.1) for the sets
568 S, S8\51,...,S5\Sk_1 respectively. Lemma 3.1 guarantees the existence of a point u € S\ Sk
569 and viewing direction vector v such that

1 Ui —u 1

"‘—,' . A Nar — all > 2

570 (C 1) n—=k 625\:5 <||U'L _u||’v> 2
w; k

u;Fu

571  The Cauchy-Bunyakovsky-Schwarz inequality tells us that

U; — U
572 (02) <||M_u||,’U> Z —1,

573 for all u; € S. Inequalities (C.1) and (C.2) together imply that

1 (C.3) ST L) > n—k_ .
— \ui —ufl 2

u;Fu

5 Finally, for k < n/6, we see that the right hand side of (C.3) is bounded below by n/4 which

6 implies the desired result. |
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