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A B S T R A C T

A model that describes macroscopic plasticity behavior of additively manufactured 304L stainless steel, in terms
of its stress state-dependent microstructural austenite-to-α’ martensite phase transformation is developed.
Specifically, a stress state-, texture-, and chemistry-dependent strain-induced martensitic transformation kinetics
equation was coupled to an isotropic hardening law in order to explicitly link the macroscopic strain hardening
behavior in this material to its microstructural evolution. The plasticity model was implemented into a finite
element code, calibrated using experimental data under uniaxial tension, uniaxial compression, pure shear, and
validated using experimental data under combined tension and shear loading. The simulated results were in
good agreement with the corresponding experimental data for all stress states studied for calibration and vali-
dation, demonstrating the predictiveness of the plasticity model developed.

1. Introduction

Additive manufacturing (AM) can be used to fabricate near net-
shaped 3-dimensional components layer-by-layer. Laser-, powder-based
directed energy deposition (DED) AM of metals involves a repetitive
process of the delivery of powder by nozzles to a location within a 2D
layer of a 3D part, melting of the powder by a laser beam, rapid cooling
of the melt pool, and fusion of the cooled material to the substrate or
layer below [1–3]. Due to the complex thermal history in AM, the
microstructures and mechanical properties of additively manufactured
materials differ from those of their conventionally processed counter-
parts [4–11].

A key benefit of AM is its potential to fabricate complex shaped
structural components [1,12]. However, when geometrically complex
components are subjected to load, both the stress level and the stress
state will be location dependent. While previous research has focused
on understanding the mechanical behavior of additively manufactured
materials subjected to uniaxial tension and compression [13–24], these
uniaxial stress states are insufficient for describing how additively
manufactured materials will perform under more realistic multiaxial
stress states.

In this work, the multiaxial plasticity behavior of AISI type 304L
austenitic stainless steel (SS304L) fabricated by DED AM was studied,

and a plasticity model for this material is proposed. When plastically
deformed, austenitic stainless steels have the potential to undergo a
microstructural strain-induced phase transformation from a relatively
soft face centered cubic (fcc) austenite to a relatively strong body
centered cubic (bcc) α’ martensite, resulting in an increase in strain
hardening on the macroscale [25–36]. The phase transformation ki-
netics are influenced by temperature, chemical composition, texture,
stress state, strain, and strain rate [29,30,37,38].

Both micromechanical and phenomenological constitutive plasticity
models have been developed for texture-free conventionally processed
austenitic stainless steels undergoing strain-induced martensitic phase
transformation [25,32,39–50]. Micromechanics-based models involve
the modeling of the phase evolution due to martensitic transformation,
and the prediction of the macroscopic constitutive behavior using
homogenization methods varying from a simple rule of mixtures
[25,42–45] to more advanced methods [32,46–49,51]. Hallberg et al.
[44] proposed a micromechanical constitutive model for austenitic
stainless steels, in which the yield surface is determined by using a
nonlinear mixture rule to combine the yield stresses of austenite and α’
martensite. Post et al. [45] proposed a model to describe the con-
stitutive behavior of stainless steel with strain-induced martensitic
transformation, in which the flow stresses of austenite and martensite
are determined by dislocation density, phase fraction, and plastic strain,
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and the macroscopic flow stress is computed by combining the flow
stresses of the two phases using a nonlinear rule of mixtures. In a self-
consistent homogenization plasticity model proposed by Stringfellow
and Parks [32,37] for alloys with strain-induced martensitic transfor-
mation, the macroscopic stress is described by the volume fraction,
plastic strain, and rate-dependent mechanical properties of austenite
and α’ martensite. Bhattacharyya and Weng [47] proposed a con-
stitutive model for metals with strain-induced martensitic phase
transformation in which the effective flow stress is estimated based on
the potential energy and change in the Gibbs free energy due to phase
transformation, and the effective strain was taken to be the sum of
plastic strain and transformation strain, computed using the lattice
parameters of austenite and α’ martensite.

Unlike micromechanics-based models, phenomenological models
directly define the constitutive equations at the macroscopic scale.
Miller and McDowell [50] proposed a macroscopic plasticity model for
fcc metals with strain-induced martensitic transformation, in which the
effect of martensitic transformation on mechanical behavior was in-
corporated in the hardening function. Hansel et al. [39] proposed a
temperature-dependent plasticity model for TRansformation Induced
Plasticity (TRIP) steels, which includes a von Mises yield surface and an
isotropic hardening law, in which the flow stress is a function of α’
martensite content, temperature, and plastic strain. Mohr and Jac-
quemin [40] developed a macroscopic plasticity model for anisotropic
austenitic stainless steels, consisting of a Hill’48 yield surface [52], an
associated flow rule, and a non-associated anisotropic hardening law to
capture direction-dependent strain hardening. Beese and Mohr [41]
proposed a stress state-dependent plasticity model for austenitic stain-
less steels, composed of a Hill’48 yield surface [52] with a nonlinear
kinematic hardening law, an associated flow rule, and an isotropic
hardening law coupled with a stress state-dependent strain-induced
martensitic transformation kinetics equation to account for strain
hardening due to phase transformation.

While plasticity models for texture-free conventionally processed
austenitic stainless steels undergoing strain-induced martensitic trans-
formation have been developed [25,32,39–41,43–50], thus far, no work
has experimentally characterized or computationally predicted the
multiaxial behavior of additively manufactured stainless steels, which
may have preferred crystallographic texture. The objective of this work
was to experimentally investigate, and propose a model for, the mul-
tiaxial plasticity behavior of additively manufactured SS304L. The
proposed model consists of a von Mises yield surface, an associated flow
rule, and an isotropic hardening law that is coupled with a stress state-,
texture-, and chemistry-dependent, martensitic transformation kinetics
equation proposed in a companion study by the authors [53]. The
plasticity model was implemented into a finite element software, and
calibrated using experimental data under uniaxial tension, uniaxial
compression, and pure shear, and validated through combined tension
and shear experiments. This newly proposed model can be used to
capture the microstructure-dependent, stress state-dependent, con-
stitutive behavior of textured metastable austenitic stainless steels.

2. Experimental methods

2.1. Materials

A previous study by the authors on additively manufactured SS304L
showed that no martensitic transformation was observed in as-built
components deposited using 100% pre-alloyed SS304L powder, as the
powder was gas atomized in nitrogen, which stabilizes austenite [54].
Thus, to investigate the effect of powder chemistry on strain-induced
martensitic transformation and mechanical behavior, two walls mea-
suring 140mm long, 104mm tall, and 14mm thick were built onto
annealed 304L stainless steel substrates (ASTM A479 standard [55]) by
DED AM from mixtures of pre-alloyed SS304L powder and pure iron
powder. One wall was made using 90 vol% pre-alloyed SS304L powder

mixed with 10 vol% iron powder, denoted as the 90% SS304L wall, and
the other was made using 80 vol% pre-alloyed SS304L powder mixed
with 20 vol% iron powder, denoted as the 80% SS304L wall. The pre-
alloyed SS304L powder was gas atomized in nitrogen (Carpenter
Powder Products, Corp.) and had the elemental composition given in
Table 1. The iron powder was made by hydrogen reduction (Atlantic
Equipment Engineers), and had a purity of 99.8%. The diameters of the
both types of powder used ranged from 45 µm to 145 µm.

Both walls were fabricated using a custom-built DED AM system
equipped with an ytterbium fiber laser (IPG Photonics® YLR-12000-L)
operating at a wavelength of 1070–1080 nm. A laser power of 2 kW,
scanning speed of 10.6mm/s, and laser spot size of 4mm in diameter
were used in deposition. Pre-mixed powder was fed at a powder flow
rate of 15.5 g/min by four nozzles about 10mm above the substrate.
The hatch spacing was 2.5mm and the layer thickness was 1.1mm.
These parameters were selected because previous components made
using these processing parameters were found to be fully dense [54].

2.2. Uniaxial tension

Longitudinal and transverse uniaxial tension specimens, whose
gauge regions measured 21.5mm long, 4mm wide, and 1.5 mm thick,
complying with ASTM E8 [56], were extracted from the two as-built
walls by wire electrical discharge machining (EDM). As discussed in
previous studies by the authors, the mechanical properties varied in the
vertical build direction due to two key factors. First, volatile elements
selectively vaporized from the melt pool as the melt pool temperature
increased with distance from the baseplate due to heat buildup during
fabrication. Second, the austenite grain size increased with distance
from the substrate, also due to heat buildup during fabrication that
resulted in decreasing cooling rate with increasing distance from the
substrate. These spatial variations in chemistry and grain size along the
vertical direction of the builds resulted in location-dependent micro-
structural transformation, and therefore mechanical properties, in these
walls [54,57]. In order to eliminate the effect of spatial variations in
chemistry and grain size on the mechanical behavior, all of the me-
chanical test specimens in this study were extracted such that their
gauge centers were located at the same height, about 40mm above the
bottom of each wall. The residual stresses present in the as-built wall
were assumed to be relieved in the relatively small extracted test spe-
cimens [53]. The chemical compositions of this location in both walls
are given in Table 1.

Uniaxial tension tests were performed on an electromechanical test
frame (Instron 4202, 10 kN load cell) at a strain rate of 1.2× 10−3 /s.
The deformation fields of the gauge region were measured using Digital
Image Correlation (DIC). For DIC, each sample was painted white with
a black speckle pattern on top. The images of the deformed gauge re-
gion were captured by a digital camera (Point Grey GRAS-50S5M-C) at
1 Hz during deformation. The surface deformation fields were calcu-
lated by applying a cubic B-spline interpolation algorithm in the cor-
relation software (Vic2D, Correlated Solutions). For this analysis, a
subset of 21 pixels and a step size of 5 pixels were used, resulting in a
virtual strain gauge size of 56 pixels or 1.5mm [58]. The axial strain
was measured using a 21mm-long vertical virtual extensometer. The
evolution of the volume fraction of α’ martensite was measured through
magnetic permeability measurements using a feritescope (Fisher

Table 1
Elemental composition (wt%) of the pre-alloyed SS304L powder and specimens
extracted from the 80% and 90% SS304L walls (balance Fe).

C N Si Mn Cr Ni Mo

SS304L powder 0.01 0.08 0.50 1.50 19.0 10.3 0.01
80% SS304L 0.01 0.09 0.63 1.27 16.73 9.08 0.05
90% SS304L 0.01 0.09 0.7 1.31 17.05 9.47 0.05
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Feritescope FMP 30), as described in the companion study by the au-
thors [53].

2.3. Uniaxial compression

Longitudinal and transverse cylindrical compression specimens
measuring 16mm in length and 8mm in diameter were extracted by
wire EDM from the two as-built walls. Uniaxial compression tests were
performed at a strain rate of 1.5× 10−5/s on a hydraulic test frame
(MTS Systems Corp.). The evolution of α’ martensite was characterized
by in situ neutron diffraction using the VULCAN instrument at the
Spallation Neutron Source at Oak Ridge National Laboratory [59–61].
The details of neutron diffraction results can be found in the companion
study [53].

2.4. Multiaxial loading

Longitudinal plasticity specimens, with dimensions shown in Fig. 1,
were also extracted from the two as-built walls by wire EDM for a
1.5 mm thick 2D contour, with milling used for the reduced thickness
gauge section. The width-to-height ratio of 10 and thin gauge region
results in plane strain along the transverse (T), or vertical build, di-
rection and plane stress through the thickness (z direction) in these
specimens [62].

Multiaxial loading tests were performed using a custom-built dual
actuator hydraulic test frame (MTS Systems Corp.). The test frame is
equipped with two 100 kN load cells to measure the vertical force and
one 50 kN load cell to measure the horizontal force. The ratio of the
applied vertical force to applied horizontal force, F

F
v
h
, is described by a

biaxial loading angle, β, as:

=tan F
F

v

h (1)

such that β=0° corresponds to pure shear, β=90° corresponds to
plane strain tension, and 0° < β < 90° corresponds to combined ten-
sion and shear. In this study, β values of 0°, 30°, and 60° were examined
and the loading conditions for all the tests are given in Table 2.

DIC was used to analyze the strain fields of the gauge center with a
subset of 25 pixels and a step size of 6 pixels, corresponding to a virtual
strain gauge size of 67 pixels or 0.8mm [58]. To compute vertical and
horizontal strains, 3 mm-long vertical and horizontal virtual ex-
tensometers were used. The evolution of α’ martensite content with

respect to plastic strain was measured using a feritescope, as described
in [53].

3. Plasticity model

A macroscopic constitutive model was developed to describe the
multiaxial plasticity behavior of additively manufactured SS304L with
preferred crystallographic texture under quasi-static loading at room
temperature. The proposed model includes a yield surface, an asso-
ciated flow rule, and an isotropic hardening law. The hardening law
incorporates the effect of martensite content on multiaxial plasticity
behavior through the coupling of the microstructural transformation
kinetics equation to the hardening law. The hardening law also in-
corporates typical, dislocation-driven, strain hardening. The model was
implemented into the commercial finite element software (ABAQUS/
Explicit 6.14 [63]), calibrated, and validated.

3.1. Yield surface

The yield surface is defined by:

= =f k 0 (2)

where is the equivalent stress and k is the deformation resistance or
flow stress.

Previous studies by the authors [54,57] showed that there was no
notable anisotropy in the yield strength of the additively manufactured
SS304L. Therefore, the isotropic von Mises yield criterion was adopted,
and Eq. (2) becomes:

=k 0vM (3)

where vM is the von Mises equivalent stress, defined as:

= = s sJ3 3
2 ¯̄ ¯̄vM 2 (4)

where J2 is the second invariant of the deviatoric stress tensor, s
¯̄ .In the plane stress condition, the normal and shear stress compo-

nents in the z direction are negligible, and therefore, approximated as
zero. Thus, the stress tensor, ¯̄ , can be expressed by a stress vector, ¯

,
as:

=
¯

{ , , }L T
T (5)

where L and T are normal stresses along the longitudinal (L) and
transverse (T) directions, as shown in Fig. 1, and is the in-plane shear
stress.

Under plane stress, the von Mises yield equivalent stress becomes:

= + +3vM L L T T
2 2 (6)

3.2. Associated flow rule

An associated flow rule is used to describe the evolution of plastic
strain with applied stress, which is given as:

= dd
¯̄

¯̄

P vM

(7)

where d
¯̄

P is the increment of plastic strain, and d is the plastic mul-
tiplier.

Fig. 1. Geometry of a multiaxial plasticity specimen (units: mm), with the or-
ientations of the vertical force, Fv , and horizontal force, Fh, along with the
biaxial loading angle, β, drawn. Sample geometry adapted from [62]. L is the
longitudinal direction, parallel to the length of the wall, T is the vertical build
direction, and z is the wall thickness direction.

Table 2
Loading conditions for pure shear and combined loading.

Stress rate in vertical direction Strain or stress rate in horizontal direction

Pure shear 0MPa/s 1.3× 10−4 /s
Combined loading with β=30o 2.1MPa/s 3.6MPa/s
Combined loading with β=60o 3.6MPa/s 2.1MPa/s
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3.3. Isotropic hardening law

In SS304L, the strain hardening is due to both dislocation interac-
tions and the increase in volume fraction of the stronger martensite
phase during plastic deformation due to the isotropic strain-induced
martensitic phase transformation [53]. To account for the contribution
from both of these effects, an isotropic hardening law is adopted from
[41] to describe the evolution of deformation resistance, k, with plastic
deformation, and given as:

= +dk H d H dcvM
P

c (8)

where Hε and Hc are hardening moduli, d vM
P is the increment of von

Mises equivalent plastic strain, and dc is the increment of α’ martensite
volume fraction.

The first term in Eq. (8) describes the strain hardening from dis-
location pileup during plastic deformation and is assumed to follow a
Swift hardening law [64], as:

= + +k A k( )vM
P m

0 0 (9)

where A is the stress amplitude, 0 is the strain shift parameter, m is the
hardening exponent, and k0 is the stress shift parameter. As a result, the
hardening modulus, Hε, is expressed as:

= = +H dk
d

Am ( )
vM
P vM

P m
0

1

(10)

As Eqs. (9) and (10) describe the strain hardening only due to dis-
location interactions, A, 0, m, and k0 are assumed to be the same for the
two walls with different chemistries.

The second term in Eq. (8) describes the strain hardening due to the
increase of α’ martensite content. As the influence of chemistry on
strain-induced martensitic transformation is captured by dc, which is
described in Section 3.4, the hardening modulus, Hc, is assumed to be
chemistry independent.

3.4. Strain-induced martensitic transformation kinetics

The stress state-, texture- and chemistry-dependent strain-induced
martensitic transformation kinetics equation developed in the compa-
nion study [53] is adopted here to describe the α’ martensite volume
fraction as a function of plastic strain. The stress state may be defined
by two parameters: the stress triaxiality and Lode angle parameter
[33,65]. The stress triaxiality, η, is defined as:

= m

vM (11)

where σm is the hydrostatic stress, which is proportional to the first
invariant, I1, of the stress tensor, which is = =I tr (¯̄ )m

1
3 1

1
3 .

The Lode angle parameter, , is a function of the second and third
invariants of the deviatoric stress tensor, J2 and J3, and is expressed as:

= = sarccos J
J

J det1 2 3 3
2

and (¯̄ ).3

2
3 3

(12)

The values of stress triaxiality and Lode angle parameter of the
stress states studied are given in Table 3. The effect of texture on strain-
induced martensitic transformation is captured by the driving force for
austenite-to-α’ martensite transformation,W, which depends on texture
and applied stress state [53].

The differential form of the strain-induced martensitic

transformation kinetics equation adopted from [53] is given as:

=dc c c nD D d( ) ( )max vM
P n

vM
P1 (13)

where cmax is the saturation value of the volume fraction of strain-in-
duced α’ martensite, and n and D are material parameters. Here, we
assume that the parameter D may be taken to be a function of η, , and
W, as:

= + + + +D D a a a a WW0 1 2
2 (14)

where D0, a , a 1, a 2, and aW are material parameters, in which a , a 1,
a 2, and aW describe the effect of η, , and W on the rate of phase
transformation [53]. Among all the parameters in Eqs. (13) and (14),
cmax and n are taken to be chemistry dependent, D0, a , a , and aW are
taken to be chemistry-independent material constants, and D is taken to
be stress state- and texture-dependent.

4. Results and discussion

4.1. Overview

As described in the companion study [53], the as-built SS304L walls
studied herein consisted of elongated austenite grains along the vertical
build direction. This resulted in a predominant crystallographic texture
of {111}<110 > in these walls, in which<111>was parallel to the
longitudinal direction and<110 >was parallel to the transverse di-
rection of the walls.

Representative stress-strain curves for longitudinal specimens from
the two walls are given in Fig. 2. Within the same wall, the strain
hardening rate, defined as the slope of the stress-strain curve, was
highest under uniaxial compression, followed by uniaxial tension, and
lowest under pure shear, which can be explained by the stress state-
dependent martensitic transformation kinetics. As shown in this study's
companion paper [53], the rate of strain-induced martensitic transfor-
mation with respect to plastic strain from high to low was uniaxial
compression, uniaxial tension, and pure shear, which is consistent with
the trend in strain hardening rate with respect to stress state seen here.

Under the same stress state, and for any given plastic strain, the 80%
SS304L wall had a higher flow stress than the 90% SS304L wall. With
increasing iron, the relative content of elements that increase the
stacking fault energy in austenite, and therefore impede austenite-to- α’
martensite phase transformation (silicon, manganese, chromium, and
nickel), decreased. This decrease in stacking fault energy with the de-
crease in the relative concentration of alloying elements resulted in the
increase in the rate of strain-induced martensitic transformation with
respect to plastic strain [57]. Therefore, the 80% SS304L wall had a
higher martensitic transformation rate and flow stress at a given plastic
strain, compared to the 90% SS304L wall.

4.2. Model calibration

The experimentally measured 0.2% offset yield strengths under
different stress states, for both walls, are plotted on the von Mises yield
surface, as shown in Fig. 3. As all the points lie on or close to the yield
surface, the von Mises yield criterion is sufficient to describe the yield
surfaces for the walls studied. Note that the textured microstructures in
the two walls did not result in anisotropic yield strength, which may be
partially due to the notable variability in properties of samples along
the same orientation.

Table 3
Initial values of stress triaxiality, η, and Lode angle parameter, , for the stress states studied.

Combined loading with β=60° Uniaxial tension Combined loading with β=30° Pure shear Uniaxial compression

η 0.38 0.33 0.16 0 −0.33
0.85 1 0.46 0 −1
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The plasticity model was implemented into a commercial finite
element code (ABAQUS/Explicit 6.14 [63]). A shell element (type S4R)
with a side length of 1mm and a thickness of 1.5mm was used to re-
present the gauge center of each specimen. The strain-induced mar-
tensitic transformation kinetics equation parameters (cmax, n, D0, a , a 1,
a 2, and aW ) were calibrated for the 80% and 90% SS304L walls in the
companion study [53]. The remaining model parameters that required
identification in this study were the strain hardening parameters
(A m k, , , ,0 0 and Hc). These parameters were first estimated using ex-
perimentally measured true stress-strain curves from uniaxial tension,
and a range defined as 0.5 x estimated value to 1.5 x estimated value
was assigned to each parameter. To calibrate the model parameters, the
stress-strain behavior under three stress states (uniaxial tension, uni-
axial compression, and shear), and for each of the walls, was computed
using over 1000 simulations with different combinations of the varying
model inputs. For each simulation, a set of parameters si
= A m k H{ , , , , }c0 0 Hc, each within their prescribed range, was ran-
domly selected based on the assumption of a uniform value distribution
within each range. Using these parameters, the stress, s( )sim j i, , was
computed for a given experimentally studied strain history, where j is
the number of stress states used for model calibration. A cost function
was evaluated for each set of parameters, defined as:

=
=

s
s

( )
( )

i
j

J
sim j i exp j

exp j1

, ,

, (15)

where exp j, is the experimentally measured engineering stress. The
optimized set of model parameters was chosen to minimize .

In the present study, experimental stress-strain curves of long-
itudinal specimens from uniaxial tension, uniaxial compression, and
pure shear from the two walls were used for model calibration, giving
J=6. Lack-of-fusion pores along the laser scanning direction, or per-
pendicular to the vertical build direction, were observed in the two
walls. When tension is applied along the build direction, the presence of
these pores reduces the ductility of the sample, thus limiting the
amount of plastic strain achieved, and therefore, the amount of strain-
induced martensite that develops [57]. Therefore, only data from
longitudinal specimens were used for model calibration and validation.
The calibrated model parameters are given in Table 4.

4.3. Comparison between simulation and experimental results

The experimentally measured engineering stress–strain curves
under uniaxial tension, uniaxial compression, and pure shear from the
two walls are plotted in Fig. 4 together with those produced by the
calibrated model. Table 5 summarizes the maximum stress difference
between simulation and experimental results for each stress state. As
shown in Table 5, among all the stress states, the simulations have a
maximum difference in flow stress of 5% from the experimental stress
level in the 80% SS304L wall and 4% in the 90% SS304L wall. The good
agreement between the computationally modeled and experimentally
measured results indicates that the plasticity model coupled with the
underlying phase transformation equation is able to capture the mul-
tiaxial plasticity behavior of additively manufactured SS304L.

Fig. 2. Von Mises equivalent stress, vM , versus von Mises equivalent plastic strain, vM
P , for representative tests on samples extracted from the (a) 80% SS304L wall,

and (b) 90% SS304L wall.

Fig. 3. Engineering yield stress in the transverse direction,
σT, versus engineering yield stress in the longitudinal di-
rection, σL, for plane stress, in the 80% and 90% SS304L
walls as measured by experiments (symbols). The fitted
von Mises yield surface, based on uniaxial tension in the
longitudinal direction, is shown as a solid line.
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4.4. Model validation

In order to validate the plasticity model, simulations of combined
tension/shear loading with β=30° and 60° were performed and com-
pared to the experimentally measured data for these same two loading
conditions. The finite element simulations were also conducted using a
shell element (S4R) with a side length of 1mm and a thickness of
1.5 mm. The predicted engineering stress-strain curves are in good
agreement with experimentally measured curves, as shown in Fig. 4.
The maximum stress difference between simulation predictions and
experimental results is also given in Table 5, which shows the difference

between the simulation and experimental results is within 7% from the
experimental stress level in the 80% SS304L wall and 9% in the 90%
SS304L wall under combined loading. The small difference between
computationally predicted and experimentally measured curves in-
dicates that the proposed plasticity model is able to predict the me-
chanical behavior of additively manufactured SS304L under multiaxial
stress states.

While some existing plasticity models can presumably be calibrated
to capture the mechanical behavior of texture-free austenitic stainless
steels [25,32,39–50], these do not couple the stress-state micro-
structural evolution with crystallographic texture. In additively manu-
factured austenitic stainless steels, texture is observed due to the co-
lumnar grain growth along the vertical build direction. The newly
proposed plasticity model provides insights into experiments needed to
measure, and a modeling approach to capture and predict, the multi-
axial plasticity behavior of textured austenitic stainless steels.

5. Summary and conclusions

Two walls, with chemical compositions varying from the AISI
SS304L prescribed composition, were fabricated by DED AM and sub-
jected to a range of stress states to investigate the multiaxial plasticity
behavior of these materials. This understanding of multiaxial behavior
is imperative for the adoption of AM, for which complex shaped com-
ponents under load will be subjected to a range of stress states. Based on
the experimental observations, a macroscopic plasticity model is

Table 4
Calibrated plasticity model parameters for the 80% and 90% SS304L walls.

80% SS304L 90% SS304L

A (MPa) 776.5 776.5
ε0 0.01 0.01
m 0.55 0.55
k0 (MPa) 384.2 384.2
Hc (MPa) 4.5 4.5
cmax (vol%) 60 46
n 3.6 3.9
D0 2.7 2.7
aη 3.0 3.0
aθ1 −1.8 −1.8
aθ2 1.4 1.4
aW 1.6 1.6

Fig. 4. Normal engineering stress-strain curves for specimens under uniaxial tension, uniaxial compression, and combined loading for the (a) 80% SS304L wall and
(c) 90% wall. Shear engineering stress-strain curves for specimens under pure shear and combined loading for the (b) 80% SS304L wall and (d) 90% SS304L wall.
Symbols correspond to experimental results and lines correspond to results predicted by the calibrated plasticity model. Curves obtained under uniaxial tension,
uniaxial compression, and pure shear were used for model calibration and curves under combined loading were used for model validation.
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proposed for the materials. The primary findings of this study are as
follows:

• The plasticity behavior of additively manufactured SS304L walls
depends on stress state and chemistry. In a single wall subjected to
multiaxial stress states, the strain hardening rate (with respect to
plastic strain) was highest in uniaxial compression, lowest in pure
shear, and intermediate in uniaxial tension. In the two walls under
the same stress state, the wall with lower stacking fault energy, and
therefore, lower austenite stability due to lower amounts of alloying
elements, had a higher rate of strain-induced martensitic transfor-
mation and flow stress at a given plastic strain.
• A plasticity model consisting of a von Mises yield surface, an asso-
ciated flow rule, and an isotropic hardening law coupled with a
stress state-, texture-, and chemistry-dependent strain-induced
martensitic transformation kinetics equation is able to capture and
predict the constitutive behavior of additively manufactured SS304L
under multiaxial stress states. This is due to the fact that the hard-
ening equation takes into consideration the combined effects of
strain hardening from dislocation mechanisms and the strain hard-
ening due to the microstructural phase transformation, or the in-
crease in the volume fraction of the harder martensite phase with
plastic deformation.
• The plasticity model proposed provides a framework for describing
and predicting the constitutive behavior of texture-free and textured
metastable austenitic stainless steels in structural applications under
multiaxial stress states, and in particular, linking the macroscopic
deformation behavior to the physical strengthening mechanisms at
the microscale.
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