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ABSTRACT

Various research applications require detailed metrics to describe the form and composition of cities at fine scales,
but the parameter computation remains a challenge due to limited data availability, quality, and processing cap-
abilities. We developed an innovative big data approach to derive street-level morphology and urban feature
composition as experienced by a pedestrian from Google Street View (GSV) imagery. We employed a scalable deep
learning framework to segment 90-degree field of view GSV image cubes into six classes: sky, trees, buildings,
impervious surfaces, pervious surfaces, and non-permanent objects. We increased the classification accuracy by
differentiating between three view directions (lateral, down, and up) and by introducing a void class as training
label. To model the urban environment as perceived by a pedestrian in a street canyon, we projected the segmented
image cubes onto spheres and evaluated the fraction of each surface class on the sphere. To demonstrate the
application of our approach, we analyzed the urban form and composition of Philadelphia County and three
Philadelphia neighborhoods (suburb, center city, lower income neighborhood) using stacked area graphs. Our
method is fully scalable to other geographic locations and constitutes an important step towards building a global
morphological database to describe the form and composition of cities from a human-centric perspective.

* Corresponding author at: School of Arts, Media and Engineering, School of Computing, Informatics and Decision Systems Engineering, Arizona State University,
950 S. Forest Mall, Stauffer B, Tempe, AZ 85281, USA.
E-mail addresses: ariane.middel@asu.edu (A. Middel), j_lukasczy09@informatik.uni-kl.de (J. Lukasczyk), zakrzewski@cs.uni-kl.de (S. Zakrzewski),
intelligent-design@protonmail.com (M. Arnold), rmacieje@asu.edu (R. Maciejewski).

https://doi.org/10.1016/j.landurbplan.2018.12.001
Received 22 October 2017; Received in revised form 2 December 2018; Accepted 3 December 2018

Available online 14 December 2018

0169-2046/ © 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).


http://www.sciencedirect.com/science/journal/01692046
https://www.elsevier.com/locate/landurbplan
https://doi.org/10.1016/j.landurbplan.2018.12.001
https://doi.org/10.1016/j.landurbplan.2018.12.001
mailto:ariane.middel@asu.edu
mailto:j_lukasczy09@informatik.uni-kl.de
mailto:zakrzewski@cs.uni-kl.de
mailto:intelligent-design@protonmail.com
mailto:rmacieje@asu.edu
https://doi.org/10.1016/j.landurbplan.2018.12.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.landurbplan.2018.12.001&domain=pdf
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1. Introduction

Urban composition and urban form—i.e. the physical characteristics
of built environments including the configuration, shape, size, and
density of urban features—are important parameters for analyses in
urban climate, ecology, planning, and design. Research has shown that
urban form and composition impact local and micro-scale climate
(Coutts, Beringer, & Tapper, 2007; Middel, Hab, Brazel, Martin, &
Guhathakurta, 2014; Stewart & Oke, 2012), ecosystem performance
(Alberti & Marzluff, 2004; Tratalos, Fuller, Warren, Davies, & Gaston,
2007), outdoor human thermal comfort (Johansson, 2006; Middel,
Lukasczyk, & Maciejewski, 2017; Middel, Selover, Hagen, & Chhetri,
2016), land surface temperature (Li, Li et al., 2016; Zhang, Murray, &
Turner, 2017; Zhou, Huang, & Cadenasso, 2011), energy use (Anderson,
Kanaroglou, & Miller, 1996; Ewing & Rong, 2008), travel behavior
(Dieleman, Dijst, & Burghouwt, 2002; Handy, 1996), physical activity
and public health (Frank & Engelke, 2001; Hankey & Marshall, 2017;
Jackson, Dannenberg, & Frumkin, 2013), traffic safety (Dumbaugh &
Rae, 2009), crime (Cozens, 2011), and environmental services such as
water use (Shandas & Parandvash, 2010).

The composition and configuration of built-up environments is of
particular interest to the urban climate modeling and urban planning
communities because the vertical dimension of cities (height-to-width
ratio of buildings and streets, sky view factor, etc.) plays a crucial role
in model parameterizations and sustainable neighborhood design.
Large scale urban morphological datasets have traditionally been sub-
ject to a tradeoff between resolution and spatial coverage. New datasets
have become increasingly available - e.g., from LIDAR (Light Detection
and Ranging) — but are often expensive, do not account for the rich
geometric and semantic structures of cities, or do not provide city-wide,
regional, or global coverage.

Due to the limited availability of extensive, yet detailed urban
morphological datasets, remotely sensed images such as NAIP (National
Agriculture Imagery Program), Quickbird, and Landsat have been used
to describe the configuration and composition of urban areas (Kane,
Connors, & Galletti, 2014; Li et al., 2011; Li, Li et al., 2016; Li,
Kamarianakis, Ouyang, Turner, & Brazel, 2017; Myint et al., 2015),
especially in the context of land surface architecture that seeks to ad-
dress the mosaic of land units (Turner, Janetos, Verbug, & Murray,
2013; Turner, 2016). However, land cover segmentations from satellite
imagery fail to capture ground surfaces that are obstructed by hor-
izontal features such as tree canopies and do not explicitly represent the
vertical dimension of urban features; therefore, satellite imagery does
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not explicitly account for shading effects. At the individual person scale,
satellite-derived products do not meet the requirements of hetero-
geneous urban areas (Vanos, Middel, McKercher, Kuras, & Ruddell,
2016), and the land cover configuration and composition does not
correspond to how people experience cityscapes, which is crucial for
human impact assessments.

In recent years, street-level urban imagery from online products
such as Google Street View (GSV), Baidu Maps, and Mapillary have
increasingly become available to the public. Those images are acquired
within urban street canyons and provide a human-centric view of the
built environment. With the increasing availability of high-resolution
imagery, big data approaches that yield detailed urban morphology
have become feasible (Bechtel et al., 2017; Li, Zhang, Li, Ricard et al.,
2015; Li, Zhang, Li, Kuzovkina, & Weiner, 2015; Middel, Lukasczyk,
Maciejewski, Demuzere, & Roth, 2018).

We present an innovative approach to assess the configuration and
composition of cities at high spatial resolution (approximately 10 m at
street level) from a human-centric, within-street-canyon perspective
using GSV imagery. These images are evaluated semantically through
deep learning—a machine learning technique that has been successfully
employed for automatic land cover classification (Xu, Zhu, Fu, Dong, &
Xiao, 2017), to detect objects in photographs (Chen, Papandreou,
Kokkinos, Murphy, & Yuille, 2018; Girshick, Donahue, Darrell, & Malik,
2014; Ren, He, Girshick, & Sun, 2015; Yin, Cheng, Shao, Wang, & Wu,
2017), extract buildings from remotely sensed images (Maltezos,
Doulamis, Doulamis, & Ioannidis, 2017; Zhang, Zhang & Du, 2016;
Zhang, Wang, Liu, Liu, & Wang, 2016), and to count building floors
from photographs (Iannelli & Dell’Acqua, 2017).

We focus on urban surface type classes that are most relevant for
climate and planning applications, i.e. buildings, trees and plants, im-
pervious surfaces, pervious surfaces, sky, and non-permanent objects.
To quantify the composition of surface types that pedestrians experi-
ence in the street canyon, we project segmented image cubes onto a
unit sphere that surrounds each GSV image location and calculate the
area of each surface type class on the sphere. Our approach is in-
novative because it creates a unique description of urban form and
composition as experienced by a pedestrian in a street canyon and is
therefore more relevant to the human experience of cities when com-
pared to planar bird’s eye views from satellite data. The methodology is
fully scalable to large urban areas and, if applied city-wide, yields a
high-resolution urban form and composition dataset that can inform
urban design, assist in land cover and green space management, facil-
itate climate model parameterizations at various scales, and is a step

calculating spherical fractions to
produce maps of urban form and
composition

Fig. 1. Workflow for image retrieval (a), segmentation (b), spherical surface type fraction calculation (c), and mapping (d).
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towards building a global morphological database of cities.
2. Materials and methods

Our approach consists of three steps: image acquisition, segmenta-
tion, and spherical fraction processing (Fig. 1). First, we retrieved all
available GSV locations and corresponding imagery for a given area
using the methodology presented by Middel et al. (2018). Second, we
fine-tuned a pre-trained fully convolutional neural network (FCN) for
three image view directions, i.e., lateral, up, and down with manually
labeled GSV images from various cities around the world (Section 2.1).
Finally, we derived spherical surface type fractions from the segmented
images at each location using a cube-to-sphere projection and evaluated
image pixel areas on the sphere through the concept of spherical excess
(Section 2.2).

2.1. Image segmentation

Neural networks have gained popularity over the past few years due
to the availability of parallel computing resources, large amounts of
labeled data, and the availability of deep learning frameworks such as
Caffe (Jia et al., 2014) and Tensorflow (Abadi et al., 2016). Such fra-
meworks have shifted the paradigm of hand-crafting features towards
end-to-end learning, where learning feature embeddings is part of the
optimization process. Neural network research has shown that stacking
convolutional hidden layers with non-linear activation functions can
build hierarchies of abstractions. In these convolutional neural net-
works (CNNs), lower layers usually encode simple features, such as
colors and gradients, while higher layers go from representing parts of
objects and simple local features to the representation of faces and
objects. A special case of CNNs is the fully convolutional network
(FCN), which is built only from locally connected layers. That enables
the use of variable image sizes and reduces the number of parameters
and computation time. For a comprehensive comparison of various
deep learning implementations over a wide range of parameter con-
figurations and a performance analysis of CNNs we refer to Sze, Chen,
Yang, and Emer (2017) and Li, Zhang, Huang, Wang, and Zheng (2016).

To segment GSV images into different urban features, we used the
Caffe deep learning framework (Jia et al., 2014), which is based on an
FCN. The quality of the segmentation strongly depends on the network's
training and layout. It is challenging to achieve good segmentation
results with a limited amount of labeled data, as small datasets are
inherently biased and cannot account for the vast variability of unseen
data. For the same reason, a network trained on lateral photographs of
daytime scenes does not perform well if it is tasked to segment night-
time, fisheye, panorama, or upwards facing images, since such images
were not represented in the training dataset (Fig. 2).

We utilized an instance of the FCN by Long, Shelhamer, and Darrell

Landscape and Urban Planning 183 (2019) 122-132

(2015) that became famous for its superior efficiency at semantic seg-
mentation during the “Pascal Visual Object Classification” challenge in
2012. It is fully convolutional as it derives, for each individual input
signal (the pixels of an image), a corresponding output signal (a pixel
label) independent of pixel position. The FCN is based on the SIFT Flow
dataset (Liu, Yuen, & Torralba, 2011), a collection of 2688 images with
pixel labels for 33 semantic classes (Table 1). We aggregated these
classes into four surface type categories (trees and plants, buildings,
pervious surfaces, impervious surfaces), sky, and non-permanent ob-
jects that are not part of the urban fabric (bird, boat, bus, car, cow,
person).

The original FCN was trained on lateral (landscape oriented) pho-
tographs, but we require a network that can reliably segment upwards
and downwards facing views as part of the 6-directional GSV image
dataset. To avoid significant segmentation errors, such as those shown
in Fig. 2, we fine-tuned the FCN, i.e., initialized it with weights from the
already trained network and trained on our own GSV dataset from the
bottom up. To fine-tune the network, we retrieved 2,634 GSV images
for locations around the world representing a wide range of urban
forms, designs, and materials (Table 2).

We manually segmented the images into sky, building, impervious,
pervious, tree, and non-permanent object classes for a pixel-wise pre-
diction. To generate a ground truth dataset, a total of 257 lateral view
images, 232 upwards facing view images, and 237 downwards facing
view images were classified using the original FCN-8s. Segmentation
errors were identified visually through a MatLab user interface and then
manually corrected in a “paint-by-number” fashion. Additionally, 40
upwards facing view images and 346 downwards facing view images
were available that contained only one label class and therefore did not
have to be corrected. As the segmentation quality strongly depends on
the size of the training dataset, yet labeling is time consuming, we in-
troduced a void label, similar to the work done by Cordts et al. (2016): a
class that is ignored in the calculation of the weight-gradient during
training (Fig. 3). The void label ensures that only representative pixels
of a given class are selected during the manual labeling process, while
features such as fences, power lines, and small objects are ignored
during training. Lastly, to increase the amount of ground truth and
balance the frequency of labels, images that contained at least two
different classes were mirrored vertically and added to the training
dataset.

The set of labeled images for each view direction was randomly split
into a training and testing dataset at a ratio of 4:1. We then trained the
network using unsorted images, a stepwise refinement from 32 strides
(FCN-32-s, meaning the filter convolves around the input image by
shifting 32 units at a time) to 8 strides (FCN-8-s), and a separate model
for each view direction (lateral, down, and up). Training and testing
were performed in the deep learning framework Caffe (Jia et al., 2014)
on a single NVIDIA TITAN X Pascal graphics card. Average processing

sky

building

pervious surface
impervious surface
tree

non-permanent object

oEEfdom

Fig. 2. Image segmentation results for a fisheye photo and upwards facing photograph, performed with a fully convolutional network trained on conventional photos

and a pixel accuracy of 90.3% (Long et al., 2015).
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Table 1
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Mapping from 33 original SIFT flow model categories (Liu et al., 2011) to six classes that describe urban features.

(1) Sky (Blue) (2) Trees & plants (3) Buildings (LIGHT

(4) Impervious surfaces (DARK

(5) Pervious surfaces (6) Non-permanent objects

(GREEN) GREY) GREY) (YELLOW) (PURPLE)

moon (16) plant (19) awning (01) bridge (05) field (14) bird (03)

sky (28) tree (32) balcony (02) crosswalk (10) grass (15) boat (04)

sun (31) building (06) desert (11) river (21) bus (07)
door (12) road (22) sea (25) car (08)
fence (13) rock (23) cow (09)
pole (20) sand (24) person (18)
sign (27) sidewalk (26)
streetlight (30) staircase (29)
window (33)

Table 2 cos(4) — cos(B)cos(C)

Cities around the world that are included in the Google Street View image
training dataset used for fine-tuning.

North America Europe Elsewhere

Arlington, VA Amsterdam, NL Buenos Aires, AR

Boston, MA Athens, GR Capetown, ZA
Chicago, IL Barcelona, ES Dhaka, BD
Las Vegas, NV Bonn, DE Dubai, AE
Los Angeles, CA Dublin, IE Hong Kong, HK
Manhattan, NY Gothenburg, SE Jerusalem, IL
Philadelphia, PA London, GB Melbourne, AU
Phoenix, AZ Monaco, MC Moskau, RU
San Francisco, CA Nizza, IT Rio de Janeiro, BR
Seattle, WA Oslo, NO Seoul, KR
Tempe, AZ Paris, FR Singapore, SG
Vancouver, CA Prag, CZ Tel Aviv, IL
Washington, DC Sofia, BG Tokyo, JP
Stockholm, SE
Zurich, CH

time per image was 0.114s.

2.2. Spherical surface fractions from segmented image cube

To calculate the composition of surface type fractions as experi-
enced by a pedestrian in an urban street canyon at a given location, we
projected the segmented GSV image cube onto a unit sphere and
computed the area contribution for each surface type class on the
sphere (Fig. 4). We determined the surface area of each pixel on the
sphere — also known as the spherical excess (Zwillinger, 1995) — by
partitioning each pixel into two triangles; projecting the triangle nodes
onto the unit sphere; computing the arc lengths and angles between the
points, and; determining the surface area of the projected triangles.

We project a corner (u, v) € [—1; 112 onto the unit sphere with the
map:

p(u,v) =

1 1
—|u|
Jur+vi+1 (v]

The latitude ¢ and longitude 6 of each projected corner point x are
given by

(€8]

X% X
$(x) = arcsin—=— and 8(x) = arctan=L,
[IxIl Xo

respectively. We compute the arc length d on the sphere between the
two points (¢,, 6,) and (¢,, 6,) as follows:

d(@y, G0, ¢y, 61) = 2arcsi;'1\/si;'12 (¢1;¢°) + cos (¢, ) cos (p,)sin? (@).
(2)

For one triangle with arc lengths A, B, and C computed by Eq. (2),
we derive the angles

a = arccos - -
sin(B)sin(C)

cos(B) — cos(C)cos(A)

- - , and
sin(C)sin(A)

B = arccos

cos(C) — cos(A)cos(B)
sin(A)sin(B)

Y = arccos

H

to finally compute the spherical excess E of the projected triangle via

E=a+pB+y—nm. 3

On the unit sphere, the spherical excess corresponds to the area of
the triangle projected on its surface. Hence, we can compute the area
per pixel covered on the sphere’s surface. Since the spherical excess per
pixel is the same for all six view directions, we can pre-compute the
pixel areas and store them in a lookup table. To calculate the fractions,
we summarize all pixel excesses according to their labeled surface

types.

3. Results
3.1. Model accuracy

We report four widely accepted metrics to assess the accuracy and
performance of our fine-tuned FCN model (Table 3): (a) pixel accuracy
Zi n;;/ Zi t;, (b) mean accuracy (1/n.)(PA), (c) mean intersection over

union (IoU) (1/n4) 3, n,-,-/(t,- + Zj nj; — n,-,-), and (d) frequency weighted

intersection over union (3, )™, tin,-i/(ti + Zj nj; — nil-). Here, n;
denotes the number of pixels of class i that were predicted to class j (out
of n, classes, with the total number of pixels f; = Z,- n;; in class i). For
semantic segmentation, mean IoU is a good bench-marking metric,
because it controls for the total number of pixels in a class, is not
dominated by the assessment of background pixels, and, as opposed to
mean accuracy, penalizes for false positives. Our FCN-8s prediction
achieved over 95% pixel accuracy for all fine-tuned nets, with a rea-
sonable mean IoU for lateral views (0.841) and excellent classification
results for the upwards and downwards facing views (mean IoU 0.939
and 0.984, respectively). Decreasing the stride to 4 did not further
improve the quality of the classification.

The confusion matrices for the FCN-8s prediction (Fig. 5) show that
the network performs best at detecting sky, roads, buildings, and trees
(Fig. 6 a-h) and performs worse for detecting non-permanent objects
and pervious surfaces (Fig. 6i-p). Since the non-permanent object class
has the least characteristic features and can appear anywhere in the
image, it is often mistaken for other classes, such as buildings or roads
(Fig. 6n-p). Another problem is that some surfaces might look like other
classes, e.g., dry grass is falsely classified as road (Fig. 6j-k). Accuracy
metrics based on the confusion matrix (Precision, Recall, and F1) are
summarized in Table 4.
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B tree
= void

[1 pervious surface
Il impervious surface

= sky
[1 building

[ non-permanent object

Fig. 3. Manually labeled images for network fine-tuning; lateral images (a-b, e-f, i-j), downwards facing images (c, g, k), and upwards facing images (d, h, 1).
Segmentation classes are sky (blue), pervious surfaces (yellow), trees (green), buildings (grey), impervious surfaces (dark grey), and non-permanent objects (purple);
void class (turquoise) denotes pixels that were not labeled to belong to one of the six classes and is ignored during the training process. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

L.
7

Fig. 4. (a) Projection p (1,v) (Eq. (1)) to map a 90-degree image (black) onto
the surface of the unit sphere (red). (b) Spherical excess computation for the
projected points (a, b, c) where we first compute their respective arc lengths (4,
B, C) and then their spherical angles to finally compute the surface area E (Eq.
(3)). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Table 3

Classification accuracy results for the fine-tuned FCN-8s: Training loss (the
error on the training set of data), accuracy, mean accuracy, mean Intersection
over Union, and Frequency weighted Intersection over Union (unbalanced, si-
milar to pixel accuracy).

loss accuracy mean mean IoU Frequency
accuracy weighted IoU
FCN-8s lateral  39,676.1 0.950 0.919 0.841 0.907
FCN-8s down  8409.5 0.989 0.971 0.939 0.979
FCN-8s up 4496.6 0.995 0.992 0.984 0.989
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3.2. Urban environment composition

We computed surface fractions on a complete sphere for all GSV
outdoor locations in Philadelphia County, yielding 1,149,047 data
points (Fig. 7). On average, the impervious fraction is the largest frac-
tion (0.29 * 0.07), followed by sky (0.24 = 0.10), trees
(0.23 = 0.17), buildings (0.13 = 0.14), pervious surfaces
(0.07 = 0.06), and non-permanent objects (0.04 = 0.04). The mean
fractional contribution of non-permanent objects exhibits high varia-
bility and is dependent on the time of day and day of the week when the
Google images were taken. The impervious surface fraction has a low
standard deviation because most locations are on asphalt roads with
similar coverage on the lower hemisphere. Pervious surface cover is
underrepresented across the urban area because GSV images do not
include complete coverage of parks, green spaces, and backyards.

As all surface fractions are evaluated on a sphere, the sky fraction
generally does not exceed 0.50. Yet, in special cases when the images
were acquired at elevated locations, such as a bridge or hill, the sky
fraction can slightly exceed 0.50. Please note that doubling the sky
fraction is not equal to the Sky View Factor (SVF), which is defined as
the fraction of sky observed from a point as a proportion of the total
possible sky hemisphere (Oke, 1981). In contrast to the spherical sky
fraction, the SVF is evaluated on a planar surface using annular rings
(Steyn et al., 1986). Here, we use the spherical sky fraction for con-
sistency with other fraction types.

We focused on three sub areas in Philadelphia County to examine
the differences in urban form and composition: Philadelphia Center City
(downtown area characterized by midrise to high-rise buildings and few
trees); a suburb north of Philadelphia (detached single-family homes
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(a) (b)

Sky Tree Bldg. Road Perv. Other

Sky [(KZE] 0.014/0.008 0.005 0.039 0.002
Sky

Tree 10.005 [EZ1Y 0.009 0.001 0.056 0.005

Building 0.009 0.031 [XZ1] 0.020 0.013 0.115
T Tree

Road }0.0010.003 0.012 (X318 0.099 0.110

Pervious |0.000 0.011  0.001 ‘o.oos (%231 0.003
I ! Building

Other |0.000/0.001 0.010‘0.009 (XYY 0.766
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(C) Other

Road Grass

Building

0.9
0.8
0.7
0.6
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0.4
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0.2
0.1

Road

0.970

Grass

Other

Fig. 5. Confusion matrix of ground truth (x-axis) vs. classified (y-axis) for lateral views (a), upward view (b), and downward view (c).

with sizeable yards), and; a lower-income area. These sites were se-
lected because they exhibit significant differences in urban form (low,
medium, and high density), vegetation cover (low to high), and socio-
economic status. According to the American Community Survey from
2016, median income in those neighborhoods ranges from $141,302
(suburb) to $70,204 (Center City) to $52,552 (lower-income neigh-
borhood).

We created stacked area graphs to illustrate the fractional

distribution of each surface type per study area (Fig. 8) and the com-
position of fractions at each location per study area (Fig. 9). While the
lower-income neighborhood shows a dominant building fraction for
values 0.5 to 1, the total amount of locations that yield such high
fractions are relatively low (Fig. 8). Buildings generally have the largest
fractions except in the suburb. The lower income neighborhood has the
least amount of tree canopy cover and the suburban area the highest.
The distribution of impervious areas is roughly the same for all four

B tree

[1 pervious surface

B sky

[ building

[ impervious surface [ non-permanent object

Fig. 6. Sample image segmentation results illustrating segmentations with an accuracy > 95% (a-h) and an accuracy < 95% (i-p).
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Table 4
Classification accuracy results for the fine-tuned FCN-8s: Precision, Recall, and
F1.

Precision Recall F1
Lateral View sky 0.985 0.954 0.969
tree 0.940 0.962 0.951
building 0.960 0.948 0.954
road 0.961 0.964 0.963
pervious 0.791 0.874 0.831
non-permanent objects 0.766 0.813 0.789
Lateral View Overall 0.901 0.919 0.909
Upward View sky 0.996 0.997 0.997
tree 0.984 0.987 0.986
building 0.994 0.993 0.994
Upward View Overall 0.992 0.992 0.992
Downward View road 0.994 0.993 0.994
grass 0.970 0.969 0.970
other 0.932 0.950 0.941
Downward View Overall 0.966 0.971 0.968

areas because GSV images are biased towards asphalt road ground
surfaces (Fig. 8). Although non-permanent objects introduce un-
certainty as they obscure the surfaces behind them, they can be used as
an indicator for human activity, since they are more prominent in
inner-city areas (Fig. 8 a-c) than in suburban areas (Fig. 8 d). The sky
fraction does not exceed 0.5 as, for street views, the sky cannot cover
more than the entire upper hemisphere. The fraction composition graph
(Fig. 9) further highlights the lack of green infrastructure in the lower-
income neighborhood (both trees and grass) as well as a reduced per-
vious surface cover in the downtown area. The suburb and Center City
exhibit a similar distribution of sky fraction, which is reduced com-
pared to the lower-income neighborhood and Philadelphia County as a
whole. In the suburb, the horizon limitation is caused by trees, while
the downtown area features taller buildings.

4. Discussion

Our methodology to assess urban form and composition from a
human-centric perspective has several advantages over existing ap-
proaches. Compared to remote sensing techniques that analyze urban
environments from a bird’s eye view (Li et al., 2011; Li et al., 2017;
Myint et al., 2015; Turner et al., 2013), our approach incorporates the
vertical dimension of urban features and captures areas that are ob-
structed by horizontal features, such as surfaces under tree canopies.
Heterogeneous urban areas are evaluated at the individual person scale,
and the resulting composition and configuration of street-level features
corresponds to how pedestrians experience cities, which is critical for
human impact assessments.

GSV images are an excellent resource to derive urban parameters at
street level. As opposed to previous studies that use GSV imagery (Li,
Zhang, Li, Ricard et al., 2015; Shen et al., 2017), we employ a com-
prehensive sampling with full coverage of all available outdoor GSV
locations and their entire spherical environment, yielding > 1 million
points for Philadelphia County with an average spacing of ca. 10 m.
However, GSV image locations are biased towards streets and do not
offer complete coverage of parks and open areas at this point. To pro-
vide even more coverage, Google has started to sample parks, university
campuses, and hiking trails around the world using cameras mounted
on backpacks. Until full coverage of urban areas is available, GSV data
could be complemented with satellite-based or drone-captured data to
cover missing areas.

Several approaches exist that process segmented GSV data to derive
metrics such as green cover (Li, Zhang, Li, Ricard et al., 2015; Li, Zhang,
Li, Kuzovkina et al., 2015) or sky exposure (Shen et al., 2017). These
GSV image-based segmentation studies use pre-trained networks such
as SegNet (Badrinarayanan, Kendall, & Cipolla, 2015) and process
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lateral views only, thus missing tree canopies, bridges, and sometimes
whole building facades. To compensate for the missing vertical in-
formation, SegNet was also used to process panorama images (Liang
et al., 2017), which leads to segmentation errors due to distortions that
are introduced by the cylindrical projection. These errors occur because
SegNet was not trained on panorama images. Our GSV image seg-
mentation improves existing classification strategies by fine-tuning
three separate networks that distinguish between lateral, upwards fa-
cing, and downwards facing image orientations instead of using a single
off-the-shelf neural network for all views that was not adequately
trained to process non-lateral images. Including ground truth from ci-
ties all over the world into our fine-tuning, we achieved accuracies of
IoU = 0.841 (lateral), IoU = 0.939 (down), and IoU = 0.984 (up) with
an overall accuracy of 0.950 (lateral), 0.989 (down), and 0.995 (up). In
comparison, Shen et al. (2017) reported an off-the-shelf SegNet accu-
racy of 0.828 (lateral), and Liang et al. (2017) reported an achieved
accuracy of 0.961 for sky pixels.

Existing approaches derive urban form by counting pixels of seg-
mented lateral images. In contrast, our method models how the en-
vironment is perceived by pedestrians at street level by evaluating the
surrounding urban feature classes on a sphere. We currently employ six
urban surface types, but the list of urban features could be refined to
include building types or tree species, which would require con-
siderably more ground truth and fine-tuning. A shortcoming of our
segmentation is the absence of a water label. Water bodies are rare in
GSV images but could be included in the segmentation if enough
ground truth was labeled. We classified water bodies as pervious sur-
faces, which is the most appropriate class considering the thermal
properties of all available categories.

Our methodology is scalable to other cities, and efforts to build a
global urban morphological database are underway (Ching et al., 2018;
Ching et al., under review). The approach is also transferable to other
big data image repositories, such as Baidu or Open Street Map, and can
be extended to high resolution drone image data or point-based LIDAR
data. Efforts are currently underway to create Sky View Factor (SVF)
and spherical fraction datasets from GSV imagery for 70 cities around
the world (Ching et al., under review; Middel et al., 2018) that will be
hosted on the World Urban Database and Access Portal Tools (WU-
DAPT) website along with other urban canopy parameters for multi-
scale climate modeling. The SVFs and spherical fractions have already
been used to evaluate local climate zones in various studies (Bechtel
et al., 2019; Demuzere et al., under review; Wang et al., 2018) and to
assess the accuracy of procedural 3D city model generation (Ching
et al., under review). A recent study integrated the spherical fractions
with traditional planar land cover fractions from remote sensing and
socio-economic data to estimate daytime and nighttime land surface
temperature (LST) in Phoenix, Arizona (Zhang et al., under review).
Results show that the spherical fractions explain more of the variability
in LST, because they capture the verticality of vegetation and building
walls that results in shade.

As the spherical fractions represent urban form and land cover
composition from a human-centric perspective, a natural use is to relate
them to physical activity, outdoor thermal comfort, and heat stress.
Kosaka et al. (2018) and Vanos et al. (2019) used the SVF from GSV
imagery to model heat stress experienced by marathon runners during
the Tokyo 2020 Olympics. We see various other applications and po-
tential uses of the spherical surface fractions. For example, the non-
permanent object fraction could be a proxy for the amount of human
activity and anthropogenic heat in urban areas. The spherical tree
fraction could be used in urban forestry studies and biodiversity as-
sessments. Since the tree fraction represents the amount of vegetation
from a vertical perspective, it could be employed to evaluate the
availability of shade for heat mitigation in hot urban areas. It would
further be interesting to relate the tree fraction to the number of road
injuries, traffic safety, and neighborhood crime in cities.
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Fig. 7. Spherical sky fraction (a), building fraction (b), tree fraction (c), and non-permanent objects fraction (d) for Philadelphia County, including a suburb (1),

Center City (2), and a lower-income neighborhood (3).

5. Conclusions

We presented an innovative big data approach that uses GSV ima-
gery to assess urban form and composition of cities from a human-
centric perspective. In contrast to traditional satellite-based assess-
ments, our methodology accounts for the vertical dimension of urban
features and calculates their configuration and composition as experi-
enced by a pedestrian in urban street canyons. To calculate surface
fractions of the urban environment at high spatial resolution, we fine-
tuned a fully convolutional neural network for three image view di-
rections (lateral, down, and up) and segmented GSV image cubes into
classes that are relevant for urban planning and climate applications:
sky, trees, buildings, impervious surfaces, pervious surfaces, and non-
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permanent objects. The segmented image cubes were projected onto a
sphere, and the area of each feature class was evaluated using spherical
excess. Our methodology is fully scalable to any geographic location
where street level image cube data or point based classified LIDAR data
are available. Spherical urban surface fractions at street level have high
potential to inform urban design and assist in land cover and green
space management. Applied over a large area, our methodology yields a
novel dataset of spherical urban surface fractions for use in climate
model parameterizations at various scales. The approach also estab-
lishes a universal pathway towards building a global urban morpholo-
gical database. Above all, this work has the potential to transform how
we describe the form and composition of cities towards a more human-
centric perspective.
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