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Abstract
When looking at drawings of graphs, questions about graph density, community structures, local clustering and other graph
properties may be of critical importance for analysis. While graph layout algorithms have focused on minimizing edge crossing,
symmetry, and other such layout properties, there is not much known about how these algorithms relate to a user’s ability to
perceive graph properties for a given graph layout. In this study, we apply previously established methodologies for perceptual
analysis to identify which graph drawing layout will help the user best perceive a particular graph property. We conduct a
large scale (n = 588) crowdsourced experiment to investigate whether the perception of two graph properties (graph density
and average local clustering coefficient) can be modeled using Weber’s law. We study three graph layout algorithms from three
representative classes (Force Directed - FD, Circular, and Multi-Dimensional Scaling - MDS), and the results of this experiment
establish the precision of judgment for these graph layouts and properties. Our findings demonstrate that the perception of graph
density can be modeled with Weber’s law. Furthermore, the perception of the average clustering coefficient can be modeled as
an inverse of Weber’s law, and the MDS layout showed a significantly different precision of judgment than the FD layout.

1. Introduction

Given a particular graph, there are multiple graph drawing algo-
rithms for producing a graph visualization. These algorithms re-
move edge crossings, depict symmetric substructures, and orga-
nize vertices and edges according to various heuristics and op-
timization techniques. Each graph drawing algorithm attempts to
improve a user’s ability to interpret a graph [Pur97] through its
own optimization criteria and computational method. Experiments
that compare the performance of different graph layout algorithms
typically consider the visual properties of the graph drawings (e.g.
vertex size [LLW16]), the extent to which common aesthetics are
emphasized [Pur98], or their computational complexity. However,
graphs can be characterized in many different quantitative ways,
not only the number of vertices and edges, but also the structure
of the graph (e.g., density, diameter, clustering coefficient, degree
distribution etc.). To date, most comparisons between graph layout
algorithms have focused on theoretical properties such as the com-
putational complexity of an algorithm, but little work has explored
the perception of graph properties with respect to a graph layout.

In this paper, we present the results of two experiments that fo-
cus on comparing graph layout algorithms with respect to the ex-
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tent to which they support the perception of underlying properties
of the graph. We hypothesize that some graph layout algorithms
may make it easier for a viewer to discern graph properties than
others. Following the example of perception studies in psychology
and the work of Rensink et al. [RB10], we focus on measuring the
just noticeable difference (JND) – that is, the smallest difference
between two property values that can be perceived by humans –
for two graph properties across three different graph layout algo-
rithms. Rensink et al. [RB10] used a JND approach for the percep-
tion of correlation in scatterplots, showing that such perception can
be modeled using Weber’s law – that is, the JND between the per-
ception of a given correlation (the target stimulus) and a different
one is a constant ratio of the original target stimulus. Harrison et
al. [HYFC14] used this JND methodology as a means of compar-
ing nine different ways in which correlation can be visualized (e.g.
scatterplot, parallel coordinates, donut charts). Subsequent work by
Kay and Heer [KH16] revisited the data collected by Harrison et
al. [HYFC14] and enhanced the analysis with log transformation
and censored regression to inclusively embrace all individual data
points. This same methodology offers a means for comparing graph
layout algorithms with respect to perception of graph properties,
providing a quantifiable means of determining which algorithms
outperform others with respect to perception of important proper-
ties. For example, if a communication network is to be drawn so
that people can easily discern the density of the network – which is
the best layout algorithm to use?
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We apply the experimental methodology of Rensink et
al. [RB10] to determine if the perception of graph properties
can also be modeled following Weber’s law. As in Harrison et
al. [HYFC14], we adopt this methodology for a crowdsourcing en-
vironment on Amazon’s Mechanical Turk, and applied it to two
graph properties (graph density and average local clustering coef-
ficient) across three different graph layout algorithms (Force Di-
rected - FD [Hu05], Circular [DMM96], and Multi-Dimensinal
Scaling - MDS [BP09]). In this way, we are able to:

• Demonstrate that the perception of graph properties can (some-
times) be modeled using Weber’s law;

• Provide a means for comparing the effectiveness of different
graph layouts for perceiving graph properties.

This work is important because graph drawings are increasingly
being used in a variety of non-research areas (e.g., fraud detection,
criminal networks, marketing) and depicting them in a way that
makes the salient properties easy to perceive will make them more
useful for the appropriate domain task. All stimuli and responses
used in this experiment can be retrieved at http://vader.
lab.asu.edu/GraphAnalytics/.

2. Related Work

Here we review related work in graph layout algorithms, graph
mining and graph properties, and the perception of properties.

2.1. Graph Layout Algorithms

Research on the best way to automatically visualize relational
data with node-link diagrams has been active for several decades.
The early primer by Di Battista et al. [DETT99] provides a good
overview of the field of graph layout algorithms, and researchers in
this area continue to develop new approaches and improve on ex-
isting ones. More recent are comprehensive surveys of the area by
von Landesberger et al. [VLKS∗11] and Gibson et al. [GFV12].

Graph layout algorithms fall into different categories. Force-
Directed algorithms [Kob13] are based on a physical springs model
and attempt to achieve minimum energy. Dimension Reduction
algorithms project high-dimensional data onto low dimensional
space, typically preserving the graph-theoretic distance between
pairs of vertices [CB09]. Orthogonal layout methods insist that all
edges are horizontal or vertical [EFK01]. Circular algorithms place
all vertices on the circumference of a circle in careful ordering so as
to reduce edge crossings [DMM96]. Other graph layout techniques
have also been proposed to facilitate fast calculation of large net-
works and human-centered designs. Galán and Mengshoel [GM18]
proposed a neighborhood beautification layout technique which has
each node passing messages to its neighbors to adjust their position.
This approach gives a trade-off between the layout quality reached
by force-directed methods and the fast runtime achieved by alge-
braic methods. HOLA [KDMW16] was proposed as an automatic
network layout algorithm that learns aesthetic criteria from users
and encodes these criteria to its layout. There are also specific al-
gorithms for trees [RT81] and planar graphs [NR04]. Each graph
layout algorithm attempts to optimize one or more specified crite-
ria (sometimes called “aesthetics”) in an attempt to make the graph

easy to interpret – for example, minimizing the number of edge
crossings, or fixing vertices and edges to a grid [Pur97].

In this paper we use three layout algorithms commonly im-
plemented across a variety of different graph drawing sys-
tems, and each algorithm is an example of a different category.
The first one is a multi-level force-directed algorithm by Yifan
Hu [Hu05], available as sfdp (scalable force-directed placement)
in GraphViz [EGK∗01] and as YifanHu in Gephi [BHJ∗09]. We
use the implementation provided in Gephi. The second algorithm
is one of the most effective dimensionality reduction algorithms, as
shown in an experimental study by Brandes and Pich [BP09]. This
algorithm applies classical multi-dimensional scaling, followed by
stress majorization. We use the implementation provided in the
MDSJ library in Gephi (https://gephi.org/plugins/#/
plugin/mdslayout). The third algorithm is a circular lay-
out [DMM96]. It places all vertices evenly spaced along a circle
and attempts to reduce the number of crossings. We use the imple-
mentation provided in Gephi. The first two algorithms chosen are
representative of the major methods (force-directed and MDS re-
specitively), while the third algorithm (circular) is a good “generic"
option provided by most graph drawing systems. Other algorithms
and layout categories should be explored in the future; however,
in this work we focus on these algorithms due to their ubiquity in
freely available graph drawing systems.

2.2. Graph Properties and Graph Mining

The structure of any graph can be characterized by a set of graph-
theoretic properties, the most trivial being order (number of ver-
tices) and size (number of edges). These properties describe the na-
ture of a graph, independent of the way it is drawn – other examples
include density (the proportion of the number of edges to the max-
imum possible), diameter (the longest shortest path between pairs
of vertices), number of connected components (subgraphs with a
path between any pair of vertices), vertex degree distribution (rep-
resented as a histogram), and clustering coefficient (the extent to
which vertices are clustered together by edges).

Graph mining (as a type of structured data mining) is the ac-
tivity of identifying patterns in graphs. Rehman et al. provide
a comprehensive review of graph mining approaches [RKF12].
Chakrabarti and Faloutsos address the issue of generating synthetic
graphs that match the patterns within real-world (especially large)
graphs [CF06]. In particular, they emphasize the importance of be-
ing able to say that two different graphs are similar to each other
with respect to given properties. The PEGASUS system handles
very large graphs (with “billions” of vertices), to find connected
components, diameter, and vertex proximities [KTF09].

Visualization is commonly used for depicting the values of graph
properties, although this is not always using the common node-link
diagram. Kairam et al. describe GraphPrism [KMSH12], which
visualizes several graph properties using stacked histograms and
color encoding, including connectivity, transitivity, and density.
Their user study asked participants to choose a synthetic graph
(from a set of ten, all represented in the GraphPrism diagram for-
mat) that best matched the summary statistics of a real graph. Visual
analysis of large graphs represented by adjacency matrices is con-
sidered by van Ham et al. [VHSD09]. The tabular interactive tool
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ManyNets [FPSG10] can visualize a large number (“up to several
thousand”) of graphs, allowing visual comparison based on prop-
erties including degree distribution and clustering coefficient. The
Visone system [BW04] integrates both analysis and visualization of
social networks, focusing on properties associated with the struc-
tural importance of vertices (e.g. in-degree, closeness, authority).
Vizter [HB05] also produces node-link drawings of graphs, in this
case identifying and highlighting communities in social networks.
More recent and ongoing work also considers whether the aesthetic
criteria of graph layouts contribute to human understanding of the
relational data [HEH14, KPS14].

This prior work reinforces the need for properties of graphs to be
made evident to users – either through a supplementary visualiza-
tion (as in ManyNets [FPSG10]), or as part of the node-line depic-
tion (as in Visone [BW04]). Being able to compare two graphs ac-
cording to their properties is particularly important when synthetic
graphs are to be used in place of larger real-world ones [CF06], but
no studies so far have considered this question from an empirical
human perception perspective. Specifically, can humans detect dif-
ferences in the properties of graphs when depicted as graph draw-
ings, and are there particular layout algorithms that best support the
visual perception of graph properties?

2.3. Perception of Properties: Just Noticeable Difference

Experiments in the psychology of perception use the “Just Notice-
able Difference” (JND) as a means of determining the minimum
distinguishable property difference between two stimuli. Such ex-
periments ask participants to indicate which of the two stimuli has a
greater value of a given measurable property (e.g., which square is
greener). The JND is the value difference between two stimuli that
is noticed at least 50% of the time by participants. The JND experi-
mental method can be applied to any type of perception. For exam-
ple, Goodfellow [Goo34] studied sound, vision and touch, Mahy et
al. [MEO94] considered color, and Wilson et al. [WHBH11] stud-
ied thermal perception. Weber’s law states that if P is the property
value of a stimulus, the ratio of the JND to P will be constant.

While Weber’s law experiments typically focus on low-level per-
ceptual properties, they can be applied to any stimuli for measur-
able properties. For example, de Silva et al. [DSFW∗10] looked
at the 3D stereoscopic vision, Cornelissen et al. [CGCT16] inves-
tigated visual biases in the perception of body weight, Camacho
et al. [CDGS15] considered the perception of viscosity in bever-
ages, and Chowdhury et al. [CCS15] looked at travel time and
route taking decisions. Datasets also have properties; for exam-
ple, a set of numbers has a mean, median, and standard deviation,
and two variables have a correlation coefficient [RB10]. Harrison
et al. [HYFC14] and Kay and Heer [KH16] used a JND approach
for correlation coefficient, as shown in scatterplots and other visu-
alizations.

We apply the same JND methodologies for the perception of
graph properties. We aim to determine whether the perception of
two graph properties (graph density and average local clustering
coefficient) follow Weber’s law, and which of the three graph layout
algorithms (FD, MDS, and circular) best supports the perception of
property difference.

Figure 1: (a) A sample starting comparison with target value d =
0.2 on the left and d = 0.3 on the right. Participants were asked
to choose which one has a higher graph density. (b) The staircase
procedure converges to the JND by gradually making comparisons
more difficult: d = 0.3 on the left and d = 0.28 on the right.

3. Methodology

The goal of this work is to quantitatively evaluate human perception
of selected graph properties and compare the way in which different
graph layout algorithms support the perception of these properties.
We conducted five user studies to quantify the just noticeable dif-
ferences (JNDs) of two graph properties and measured how these
JNDs fit as a function of the property value in three different layout
contexts. We hypothesize that some graph layout algorithms will
be better than others at revealing graph properties.

In order to test this hypothesis, we chose two graph prop-
erties, graph density (GD) and average local clustering coeffi-
cient (ALCC), and three graph layout algorithms, Force Directed
Layout [Hu05], Circular [DMM96], and Multi-Dimensional Scal-
ing [BP09]. Graph density was chosen due to its simplicity to ex-
plain to participants and importance in expressing the connected-
ness of a graph. Previous studies have also explored the ability
of humans to perceive density within plots [CM∗85] indicating
that (minimally) perception of graph density should be measurable.
Average local clustering coefficient is a measure of the degree to
which vertices in a graph tend to cluster together and is commonly
analyzed with respect to small world networks. Given the recent
importance of visualizing small world networks in the context of
social network graphs, average local clustering coefficient was cho-
sen as our second property to measure.

We performed two experiments. Experiment 1 consists of three
user studies analyzing the perception of graph density over three
layout algorithms. Experiment 2 consists of two user studies anayz-
ing the perception of the average local clustering coefficient over
two layout algorithms.
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3.1. Experimental Method

Based upon the perceptual analysis of correlation done by Rensink
and Baldridge [RB10] and Harrison et al. [HYFC14], we applied
the same adaptive psychophysical method, a staircase procedure,
to derive JNDs for the perception of the graph properties. For each
user study, a list of evenly separated property values in a possible
value range is designed as base values. Each base value graph draw-
ing is compared to a graph drawing with another property value
using two approaches (above or below). This means, for each prop-
erty base value, the JND will be approached from above and below
in two sets of comparisons using a staircase procedure.

To evaluate JND, participants are shown two stimuli side-by-side
(in this case node-link graph drawings generated by the same al-
gorithm), and participants will be asked to indicate which graph
has a higher property value (see Figure 1 as an example of graph
density). One of the two graph drawings has the base value, and
the other graph drawing represents a smaller property value in the
below approach or a larger property value in the above approach.
Initially, the difference in the value of the properties between the
two stimuli is set by a specified initial-difference. There is also a
step-size parameter which is tuned to adjust the two stimuli in the
staircase procedure. For example, if a participant is assigned the
base value of 0.5, with a below approach, and the initial-difference
is 0.1 and the step-size is 0.01, the first pair will have property val-
ues of 0.5 and 0.4. The participant is asked to select the graph draw-
ing with the higher value of the property. Using a similar staircase
methodology to Harrison et al. [HYFC14], if the correct choice is
made (0.5), the next pair presented will be 0.5 and 0.41 (a decrease
of 0.01 of the difference, making the task more difficult). If the
participant answers incorrectly (0.4), the next pair will be 0.5 and
0.37 (an increase of 0.03 of the difference, making the task eas-
ier). A similar procedure is followed for the above approach. The
distance changes allow the process to converge to a state such that
the difference in properties between two side-by-side stimuli can
be discriminated 75% of the time.

The staircase procedure ends when it reaches one of the follow-
ing two conditions: (1) the participant has done a maximum num-
ber of judgments (e.g, 50), or (2) the participant reaches the JND
indicated by a convergence criterion. This convergence criterion
is the same as that of Harrison et al. [HYFC14] and Rensink and
Baldridge [RB10]. Specifically, the convergence criteria uses the
last 24 judgments to determine if the participant’s ability to dis-
criminate between the two property values from the given graph
drawings has stabilized. To test the stability, these 24 judgments
are segmented into 3 groups of 8 sequential judgments in each, and
an F-test(F(2,21),α = 0.1) is applied on these 3 groups. When the
F-test shows no significant difference between these three groups,
convergence is assumed and the staircase procedure ends. No mat-
ter which ending condition a participant reaches, the final JND of
the base value and the approach (above or below) is calculated by
taking the average of the difference between the stimuli over the
final 24 judgments.

For each trial in the experiment, the location of the base value
graph is randomized (i.e., the base value graph will randomly be
the left image or the right image). For each property value (both
the base values and the interim values), we created a large number

of possible graph drawings to choose from, thus mitigating against
any possible learning effect or unanticipated confounding factors.
All graph drawings are pre-computed and images used are cho-
sen through random selection from our pre-generated graph draw-
ing pool. The same methodology is applied to both the graph den-
sity and the average local clustering coefficient experiment. Exper-
iments differ only in the choice of base values, initial-difference,
and step-size which were designed after preliminary experiments
were conducted to determine feasibility.

3.2. Data Analysis Method

Once data is collected, our goal is to determine if the data can be
modeled using Weber’s law. Prior to model fitting, we analyzed the
data to remove any base value and approach conditions that suf-
fer from the ceiling effect, which means the obtained JND is con-
strained by the range of the property value available in our experi-
ment and therefore we could not observe the true JND. The ceiling
effect is quantified in our experiment over the last 24 judgments.
If over 50% of the judgments are performed on data within .05 of
the upper or lower bounds of the data range, then participants are
bounded by a ceiling effect. The hit rate is the percentage of par-
ticipants that are bounded by a ceiling effect within a group (value,
approach). Outliers outside of 3 median absolute deviations from
the median in each base value and approach condition are also re-
moved prior to model fitting.

After data cleaning, results from the experiment were analyzed
in a three-step process. First, the JNDs in each user study (where an
user study consists of a single graph layout algorithm being tested
for a single graph property) are tested by fitting a model of Weber’s
law. The fitting methodology is modeled on that of Rensink and
Baldridge [RB10] and Harrison et al. [HYFC14]. Average JNDs are
calculated for each base value and approach condition. The prop-
erty values used in the model are adjusted from the base value by
adding (or removing) 0.5× JND within each base value and ap-
proach condition. To test for Weber’s law, the JNDs and the ad-
justed values are fit using a linear regression model. Next, individ-
ual data points are fit without averaging and property value adjust-
ment using linear regression with both continuous and categorical
variables, following the methodology by Kay and Heer [KH16].
This is followed by an analysis to test if some data transformation
is required for an adequate model. Finally, results are compared be-
tween layouts using Mann-Whitney U test to see if the perception
ability in different layout algorithms has comparable distributions.

4. Experiment 1: graph density

Our first experiment explores the effects of graph layouts on per-
ceiving graph density. In this experiment, we only consider undi-
rected graphs where graph density is defined as:

D =
2|E|

|V |(|V |−1)
(1)

where E is the number of edges and V is the number of vertices
in the graph. Graph density describes how dense a graph is, and,
for a fixed number of vertices, the more edges a graph has, the
higher the graph density value. In a simple and connected graph,
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Table 1: Examples of the graph drawings by the three layout algorithms at several graph density values.

D = 0.2 D = 0.4 D = 0.6 D = 0.8

FD

Circular

MDS

the maximum D is 1 (for complete graphs) and the minimum D is
2
|V | (for having |V| - 1 edges connecting all vertices).

In our experiment, the goal is to quantitatively analyze people’s
perception of graph density given different layout algorithms. To
achieve this goal, mixed design experiments were conducted such
that just noticeable differences (JNDs) were collected by asking
participants to compare the graph drawings of two different graph
density values. We conducted three user studies with three different
graph layout algorithms (FD, Circular, and MDS). Note that the
formula of graph density we used here is nonlinear with respect
to the graph order. Changing the number of nodes could result in
a different perceptual model [Mel06]. In this experiment, we only
study graphs with 100 nodes, and future work should explore how
perceptual discrimination responds as the graph size changes.

4.1. Graph Generation

To study the perception of graph density, graphs with varying den-
sity need to be generated and visualized. Considering the size of the
display and potential cluttering issues of node-link diagrams, we
chose our graph order to be |V | = 100 in all experiments. There-
fore, a simple connected graph has its graph density range from
0.02 to 1. Graphs are generated for every value in this range at in-
tervals of 0.01, resulting in 99 different graph density values.

We generate a simple, connected graph G with graph density D
stochastically by an iterative procedure. The initial graph has 100

vertices and 99 edges connecting the vertices in a path. At each
step, a vertex is randomly selected and connected to another vertex
that is not already its neighbor. This increases the edge count and
thus the graph density. This process is repeated until the graph den-
sity comes within the range D±T . Here T is a tolerance parameter
to define the accuracy of the output graph density and the value we
use is 0.001. Algorithm 1 thoroughly describes this procedure.

Due to its stochastic nature, Algorithm 1 generates different
graph structures for same graph density D. Different graph struc-
tures with the same graph density may vary on other graph prop-
erties, which cannot always be directly controlled for in our study.
To mitigate the impact of perception on other graph properties as-
sociated with one particular graph structure, 50 graph structures for
each D are generated and will be used randomly in the experiment.

Once graph structures are generated, the layout algorithm is ap-
plied to create graph drawings. The following three layout algo-
rithms in different categories are used in our study based on their
popularity and ease of use: FD [Hu05], Circular Layout [DMM96],
and MDS [BP09]. These layout algorithms also have random fac-
tors when they position the vertices. To mitigate this impact, we
randomly create 20 graph drawings using each layout algorithm
for every graph structure. Therefore, for graph density, we have
99,000 (99(values)× 50(structures)× 20(layouts)) graph draw-
ings by each layout algorithm. This is the pre-generation of our
graph drawing pool used in our experiment, and Table 1 lists some
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Algorithm 1: Generate graph with given graph density
Input : Number of Vertices(N), Required graph density(D),

Tolerance(T )
Output: connected simple graph G with graph density D
Create a path graph G with N vertices v1,v2, . . . ,vn having

edges {vi,vi+1} where i = 1,2, . . . ,n−1. Let set of vertices
be V = {v1,v2, . . . ,vn};

Calculate the graph density of G as Dnew ;
while |D−Dnew|> T do

Randomly select a vertex vi with uniform probability ;
Find its current neighbors Ni ;
Randomly select a vertex vk with uniform probability from

the set V \{Ni∪ vi} ;
Add an edge {vi,vk} to graph G ;
Recalculate graph density dnew ;

end

example graph drawings by these three layout algorithms for dif-
ferent graph density values.

We recognize that the order of the graph (the number of vertices)
may also relate to a participant’s ability to perceive JND. However,
as the order of a graph increases, many algorithms converge to-
wards a hairball layout. The goal of this experiment was to use a
constant (modest) graph order to evaluate the perception of graph
properties with respect to layout. Future studies will explore the
range of graph orders in which graph properties are perceptible.

4.2. Procedure

The experimental procedure is a mixed 7×2 design in which there
are 7 base values (0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8) and two ap-
proach conditions (above and below). For each base value, D, the
JND will be estimated from above and below.

Graph density may not be a widely known term and it is possible
that our participants on Amazon Mechanical Turk (AMT) may not
know about this concept. As such, we present an introduction page
describing the meaning of graph density and present example graph
drawings with low and high density values. To verify that partici-
pants understand the concept of graph density, they have to pass
a screening session with 20 judgments. These judgments are de-
signed to be easy (difference value > 0.2 between the two stimuli)
so as to not exclude participants based on their perceptual ability.
The goal of the screening is only to ensure that they understand the
concept and know what the task is. For the first 5 judgments, par-
ticipants will receive feedback on their choice. If they choose in-
correctly, they have to explicitly make the right choice before they
can move to the next judgment. For the final 15 judgments of the
screening, there is no feedback, and the participant has to make at
least 10 correct choices to continue to the real session.

For each layout algorithm, the conditions in this experiment in-
clude the seven base values and two approaches (above and be-
low). Each participant is randomly assigned two base values and
both above and below trials will be conducted for each base value.
This results in four trials per participant and each trial consists of at

Table 2: Parameters in the Model of Weber’s Law

Property Layout β0 β1 R2 r RMS

GD
FD .0277 .0402 .904 .95 .0026

Circular .0235 .0582 .832 .91 .0052
MDS .0337 .0261 .438 .66 .0059

ALCC
FD .5763 -.6478 .823 -.90 .033

Circular – – – – –
MDS .3619 -.3796 .911 -.95 .013

most 50 judgments. After each judgment, the screen will flash gray
to notify participants that a new set of images to be judged have
been rendered. In practice, the experiment takes approximately 10
minutes to complete. Following the completion of all four trials,
a demographics questionnaire was given to participants. Finally, a
short debriefing is provided. Payout rates were $.50 per participant.

4.3. Results

We recruited 105 participants for the user study of Circular layout,
105 participants for the user study of the MDS layout, and 102 par-
ticipants for the user study of the FD layout. For each user study,
this yields 30 data samples for every base value and approach con-
dition and 420 (408 for FD) data samples in total. Prior to analysis,
we removed outliers that are outside of 3 median absolute devia-
tions from the median in each base value and approach condition.
37, 12 and 21 samples were removed for FD, MDS, and Circular
respectively (< 10%). No group level ceiling effects were observed.

Among all the participants that shared their gender and age in-
formation post study, the age and gender distribution in the Cir-
cular, MDS and FD layout experiments were 60 females and 42
males(age varying from 18-68), 64 females and 39 males (age vary-
ing from 18-76), and 62 females and 34 males (age varying from
19-71) respectively.

4.3.1. The Model of Weber’s Law

Following classical work on perceptual laws [RB10,Ste57], we av-
erage individual JNDs over (value, approach) groups and calculate
the adjusted graph density value off the base value before fitting
a regression model. The adjusted density value, DA, of each base
density value, D, is calculated by shifting towards the approach di-
rection by half of the average JND of the group.

DA = D+0.5×ai× JND (2)

ai =

{
1 if approach is from above
−1 if approach is from below

(3)

The average JNDs are further fit by the adjusted graph density val-
ues through a linear regression.

JND = β0 +β1DA + ε (4)

The same modeling process is applied to the data collected in
the three user studies about graph density with different layout al-
gorithms. The model coefficients (β0 and β1), R2, the root-mean-
square (RMS) error, and the correlation (r) between DA and JNDs

c© 2018 The Author(s)
Computer Graphics Forum c© 2018 The Eurographics Association and John Wiley & Sons Ltd.

174



U. Soni, Y. Lu, B. Hansen, H. Purchase, S. Kobourov & R. Maciejewski / Graph Properties Visual Perception

(a) (b)

Figure 2: Regression results for graph density user studies. (a) The model fit for the averaged individual JNDs. (b) The model fit for individual
points after the Box-Cox transformation where the colored area indicates the 95% confidence interval.

are listed in Table 2. Figure 2a shows the fit lines for the three lay-
out algorithms along with the observed average JNDs. Among the
three layout algorithms (FD, Circular, and MDS), both FD and Cir-
cular layout have a high goodness-of-fit (R2 ≈ 90% and R2 ≈ 83%
respectively) and appear to follow Weber’s law. For these layouts,
participants were able to better discriminate between graphs when
the density is lower and such ability decreases linearly when graph
density increases.

While the perception of density in the FD and Circular layout
follow Weber’s law, we find that the linear model for the MDS lay-
out only explains 44% of the variance. We see in Figure 2a (green)
that when the graph density becomes large, the model fails to fit
the underlying data. However, applying a quadratic regression to
the MDS data results in a better goodness-of-fit (R2 = 0.53), as
shown in Figure 2a (green dashed line). Furthermore, calculating
Cook’s D [Coo77] for the MDS data, we find one leverage point
of D = 0.8 and approach above (which has the largest Cook’s D =
1.14, ∼ 8 times the mean Cook’s D of observations). After remov-
ing this observation, the goodness-of-fit of a linear model increased
to R2 = 0.70. This indicates that the MDS layout may follow We-
ber’s law within a smaller range (specifically, [0.2, 0.7]) of graph
density values.

4.3.2. Fitting Individuals

While we were able to fit models to the data, averaging individual
JNDs could result in a loss of individual variance [KH16,CHM82].
As such, we have also analyzed the data following the approach
of Kay and Heer [KH16], who re-analyzed Harrison et al.’s data
to include individual variance. Taking the raw base value of graph
density and the individual JNDs, we fit a linear regression model
that includes the approach (above/below) as a categorical variable,
ai, which is defined in Equation 3. This model uses the raw base
value of graph density, approach, and the interaction of these two

variables and is defined as:

JNDi = β0 +β1×Di +β2×ai +β3×ai×Di + εi (5)

To test the model’s adequacy, we examined the residual distribu-
tions (Figure 3 (left)). By observation, we find that the residuals are
skewed compared to a normal distribution, and a Box-Cox transfor-
mation for each dataset was applied using Equation 6. We then fit
the model to the transformed data, Figure 2b.

JND(λ)
i = β0 +β1×Di +β2×ai +β3×ai×Di + εi (6)

We take λ = −0.5 in our final model and this value is in the
95% confidence interval of the estimated λ for all three layout al-
gorithms. Figure 3 (right) shows that residual distributions after
this transformation become more normal. This indicates that the
perception of graph density with the drawings given by the FD,
Circular, and MDS layout algorithms may not follow an exactly
linear relationship to the property value when individual variances
are considered; instead, a power transformation may be required.

4.3.3. Comparison Between Layout Algorithms

In our experiment, workers are randomly recruited on AMT for
each user study. In this way, subjects are considered as independent
between conditions (layout algorithms) and the individual JNDs are
independent measures. To compare the effect of the three layout al-
gorithms (FD, Circular, and MDS) with respect to their ability to
discriminate on graph density, the individual JNDs (as opposed to
the mean JNDs) are used and following the work of Harrison et
al. [HYFC14], a pairwise Mann-Whitney U test was applied. We
applied Bonferroni correction for three pairs and set α = 0.0166
in each test between two layouts. Results indicate that there are no
significant differences in their individual JND distributions. Simi-
larly, when the test is separately applied to the averaged JND, there
was no significant difference found.

To further compare the three layout algorithms with respect to
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Figure 3: The left shows that residual distributions were skewed
before the transformation and the right shows the distribution is
more Normal after the transformation.

the discrimination of graph density, we examined the linear fit for
the model of Weber’s law (see Figure 2a). The clear overlap be-
tween all the layout algorithms for JND < 0.55 confirm our previ-
ous statistical findings that the three layout algorithm are not signif-
icantly different when perceiving graph density. Finally, we show
our best model fit for all the individual points in Figure 2b where
the colored area shows the 95% confidence interval of the model.
This plot shows even more overlap across the entire range of D val-
ues confirming that all the three layouts are roughly equivalent for
discriminating graph density.

5. Experiment 2: average local clustering coefficient

While graph density is a relatively straight forward property to vi-
sually explain, a primary aim for the second experiment was to
begin exploring perception in graph layouts with respect to more
complex graph properties. In real-world networks, vertices tend to
create tightly connected groups and form clusters. This generates
more clustering than random graphs. Along with scale-free prop-
erty where degree distribution follows a power law, a high clus-
tering coefficient is one critical characteristic of complex networks
and plays an important role in graph analysis. As such, our sec-
ond experiment focused on the perception of clustering in a simple,
connected, undirected graph. In this experiment, we studied the per-
ception of a global clustering measure, the average local clustering
coefficient (ALCC), which is defined as:

C =
1
|V |

|V |

∑
i=1

2
∣∣{e jk : v j,vk ∈Vi,e jk ∈ E

}∣∣
ki(ki−1)

. (7)

Algorithm 2: Generate Graph with tunable ALCC
Input : Number of Vertices (N), Number of edges for each

vertex (m), Probability of Triad Formation (Pt )
Output: Connected simple scale-free graph with ALCC = C
Initialize graph G with small number of vertices, m0, and no

edges. Let V be the set of vertices of G, and kv be the degree
of vertex v ;

while the number of vertices in G < N do
Add a vertex v with m edges to the graph G ;
Select another vertex w of G with probability Pw which is

proportional to its degree;

Pw =
kw

∑v∈V kv
(8)

Add an edge connecting v and w ;
while unattached edges remain in v do

Perform the following TF step with probability Pt or
PA step with probability 1−Pt ;

TF: add an edge between v and a neighbor of w;
PA: select a new vertex w′ other than v and w with

probability, Pw′ given by Equation 8 and add an edge
between v and w′. Update w with w′. ;

end
end

This is the average of the local clustering coefficients of all the
vertices measured by Watts and Strogatz [WS98] for ‘small-world’
analysis. In this equation, V is the vertex set and E is the edge set.
Vi represents the immediately connected neighbors of a vertex vi,
and ki is the degree of the vertex vi.

In our experiment, we quantify how well people perceive clus-
tering given graph drawings with different average local clustering
coefficients and different layout algorithms. From an initial inspec-
tion among the three layout algorithms (Table 3), the circular lay-
out with random vertex position provides little obvious discrimina-
tion between two graph drawings with large differences in ALCC.
Therefore, the Circular layout is removed from this experiment. We
conducted two user studies with the FD and MDS layout algorithms
respectively for average local clustering coefficient.

5.1. Graph Generation

For this experiment, we generate graphs of |V |= 100 with varying
ALCC while keeping the scale-free property. Specifically, we keep
the number of edges the same across all graphs generated in order to
keep graph density constant. However, by keeping the above prop-
erties, we can get only a limited range of ALCC value, C [HK02].
With |V | = 100 and |E| = 194, C ranges from 0.07 to 0.75. Note
that the range of ALCC for any graph is 0 to 1.

We used the graph generation procedure of Holme et al. [HK02]
that produces scale-free graphs with tunable clustering. It is an ex-
tension of Barábasi and Albert model (BA model) [BA99]. Algo-
rithm 2 describes the procedure of our graph generation for varying
C. In this algorithm, the Preferential Attachment (PA) step comes
from the BA model and the Triad Formation (TF) step is an ex-
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Table 3: Examples of the graph drawings from the three layout algorithms at several average local clustering coefficient values.

C = 0.1 C = 0.3 C = 0.5 C = 0.7

FD

Circular

MDS

tension by Holme et al. [HK02]. Note that the PA step ensures the
scale-free property of graph G, while the TF step increases C. Thus,
by varying the probability Pt of taking a TF step, different values
of C can be achieved.

We used Algorithm 2 with m = 2, and varied Pt to get graphs
with different C. Similar to the graph generation for graph density,
graphs are generated given every ALCC value, C, in the range of
[0.07, 0.75] with step equals to 0.01. This results in 69 different
average local clustering coefficient values. For each C, 50 graph
structures are generated and each graph structure is visualized in 20
different graph drawings using the corresponding layout algorithm.
Example graph drawings for varying C are shown in Table 3.

5.2. Procedure

Similar to Experiment 1, we present participants on AMT an in-
troduction page to describe the meaning of clustering followed by
two examples of graph drawings with high clustering and low clus-
tering. Following the introduction, participants are required to take
a screening session with 20 judgments which are designed to be
highly discriminable. In each judgment, one graph has a low clus-
tering value in [0.1, 0.3], and the other graph has a high clustering
value in [0.5, 0.7]. For the first 5 judgments, the participants will re-
ceive feedback, and if the participant chooses incorrectly they have
to explicitly choose the correct one to move on. For the final 15
judgments, there is no feedback and the participant has to make at
least 10 correct choices to continue.

The experimental procedure for the average local clustering co-
efficient and MDS layout is identical to the procedure for graph
density but with a different base value and step-size. This proce-
dure has a 5× 2 design in which there are 5 base values (0.2, 0.3,
0.4, 0.5, and 0.6) and two approach conditions (above and below)
for each base value. The initial-difference is 0.1 and the step-size
is 0.01, and the maximum number of judgments is set to be 50. For
each average local clustering coefficient base value, C, the JND is
estimated from above and below using the methodology presented
in section 3.1. Each participant was randomly assigned two base
values with both the above and the below approach.

The same procedure was applied for average local clustering co-
efficient and the FD layout. However, when collecting preliminary
data for the FD layout, we found that participants suffered from
a severe ceiling effect, which means the JND is bounded by the
possible values we can generate. For example, we have C = 0.07
as the minimum average local clustering coefficient, and when we
run (0.2, below), the furthest distance we can achieve is 0.13. This
range is not discriminable by participants and prevents us from
quantifying the the true JND for small values of C. Furthermore,
during our preliminary data collection for the FD layout, we found
that many of the participants completed all 50 judgments, which
means that the experiment may have ended prior to the participant
reaching a stabilized discrimination. Based on this information, we
modified the base values and initial-difference for the full study.
For the final FD experiment, we used a 10×2 design in which the
base values for above and below are different. For the above ap-
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(a) (b)

Figure 4: Regression results for the average local clustering coefficient user studies. (a) The model fit for the averaged individual JNDs (b)
The model fit for individual points after the Box-Cox transformation where the colored area indicates the 95% confidence interval.

proach, lower base values (0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45,
0.5, and 0.55) are used, and for the below approach, higher base
values (0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75) are used.
To help participants reach their JND faster, the initial-difference is
enlarged to 0.2. This value was chosen because the average JNDs
of each base value we estimated in the Preliminary FD study either
reached the ceiling or was larger than 0.2. Finally, we increased the
maximum number of judgments to 75 to help participants reach a
stable discrimination state.

5.3. Results

For the MDS layout, we recruited 75 participants. Each partici-
pant was assigned two base values with both above and below ap-
proaches. This gives us 30 data samples for every (value, approach)
pair and 300 data samples in total. For the FD layout experiment,
we recruited 201 participants. Each participant was assigned two
base values, one from each approach. This gives us 20 data samples
for every (value, approach) pair and 402 samples in total. Among
all the participants that shared their gender and age information
post study, the MDS layout study had 43 females and 32 males
(age varying from 19-69) while the FD study had 110 females and
88 males (age varying from 18-70) respectively.

Before we model the JNDs for the ALCC, we analyzed the dis-
tribution of JNDs for each (value, approach) condition to identify
outliers as well as groups that suffer from the ceiling effect (hit rate
> 50%). In the collected JNDs for the MDS layouts, two groups,
(C = 20, approach = below) and (C = 30, approach = below), had
a hit rate greater than 50% (80.42% and 62.08% respectively). We
removed these samples from our analysis as their true JND is not
accurately measured. No outliers (points that fall outside 3 median
deviations for each (value, approach) pair) were found.

Following the same procedure for the FD layouts, we removed
the observations for C ∈ {30,35,40} with approach = below. Af-
ter removing groups due to the ceiling effect, outliers that fall out-

side 3 median deviation for each (value, approach) pair were also
removed. In total, 60 samples were removed because of ceiling ef-
fects and 1 sample was removed as an outlier. 341 samples of the
402 samples collected are used in our analysis.

5.3.1. The Model of Weber’s Law

After the observations were removed under the conditions men-
tioned, we averaged the JNDs in each group (base value × ap-
proach) and adjusted each base value C, following the same anal-
ysis procedure as section 4.3.1. The linear regression model with
the adjusted base value CA was fit for the averaged JNDs for both
the FD layout and the MDS layout. The fit coefficients (β0, β1), R2

and RMS error, and the correlation between CA and JNDs are listed
in Table 2. Results indicate that MDS has a better goodness-of-fit
(R2 ≈ 91.1%) than FD layout (R2 ≈ 82.3%), while the average per-
ceptions of ALCC displayed by both layout algorithms follow We-
ber’s law with a negative linear relationship of the property value
as illustrated in Figure 4a.

5.3.2. Fitting Individuals

As in Section 4.3.2, we also modeled all individual points without
taking the average of the JNDs in each group. First, a linear model
with base value C, approach, and their interaction term was fit for
individual JNDs. Then, the residuals were analyzed against normal
distribution. To correct the skewness of the residual distribution,
a Box-Cox transformation was applied (λ = 0.2518 with Confi-
dence Interval (0.08,0.42) for FD, and λ = −0.058 with Confi-
dence Interval (−0.279,0.165) for MDS). This indicates that a log
transformation for MDS and a power transformation with λ≈ 0.24
could fit the data better than a linear model when individual vari-
ance is considered. Figure 5 shows that residual distributions after
this transformation become more normal.
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Figure 5: The left shows that residual distributions were skewed
before the transformation and the right shows the distribution is
more Normal after the transformation.

5.3.3. Comparison Between Layout Algorithms

Similar to section 4.3.3, we conducted a Mann-Whitney U test with
α = 0.05 to compare FD and MDS for presenting average local
clustering coefficient. With p-value < 0.05 for both the test on in-
dividual JNDs and the test on the averaged JNDs, we find that there
is a significant difference between the JNDs observed for the FD
and MDS layout algorithm.

To further compare the two layout algorithms with respect to
the discrimination of the average local clustering coefficient, we
examined their best-fit linear regression models, Figure 4a. Here
we see that the MDS layout algorithm provides a better perceptual
discrimination of the average local clustering coefficient across the
entire range of tested values.

Finally, we show our best model fit for all the individual points
in Figure 4b with the colored area representing the 95% confidence
interval of the model. This plot indicates that the MDS layout al-
gorithm performs better then FD for perceiving the average local
clustering coefficient.

6. Conclusion

To our knowledge, this is the first experiment designed to model
humans’ ability to perceptually discriminate graph properties. Such
experiments provide us a means of quantitatively comparing graph
layout algorithms with respect to their ability to communicate
graph properties. The models and results presented in this work
demonstrate that for the two graph properties tested, different lay-
out algorithms can be modeled using Weber’s law. Our experiment
analyzed discriminations from 588 participants. Results in the per-
ception of graph density showed that the three layout algorithms
explored (Force Directed - FD, Circular, Multi-Dimensional Scal-
ing - MDS) could be modeled using Weber’s law and there was no
significant difference between the layout algorithms. Results in the
perception of average local clustering coefficient demonstrated that

Table 4: Common graph properties

Property Definition

Global
Clustering
Coefficient

It is given by 3∗ n∆/nΛ where nΛ is the number
of connected triplets (connected subgraph with
3 vertices and 2 edges) and n∆ is the number of
triangles.

Degree
Distribu-
tion

Probability distribution of node degrees over the
whole graph.

Average
Path
Length

Average of shortest distance between all pairs of
vertices in a graph.

Assortativity
Coefficient

Tendency of the vertices in a graph to be con-
nected to other vertices with similar values of
some vertex property (e.g., degree distribution).

Network
Diameter

Greatest distance between any pair of vertices.

the two algorithms considered (MDS and FD) can be modeled us-
ing Weber’s law. This time there is a significant difference between
the algorithms, as the MDS algorithm is better at discriminating
ALCC than the FD algorithm.

In this study we explore only two graph properties and instances
of graph layouts for three categories of algorithms. However, a
large variety of graph properties remain to be studied; see Table
4 for a summary. Future work should explore more such properties
and correlations between them, as well as more layout algorithms.
An additional limitation is that all graphs tested in this experiment
were of fixed order (number of vertices). As graphs become larger,
some layout algorithms tend to produce hairball layouts. Future ex-
periments should explore the effects of graph type, graph order,
and screen size on perception to determine at what settings the dis-
crimination of graph properties becomes infeasible, and how (or
if) perception is affected. Furthermore, a comparison of perception
within classes of layout algorithms should be done to explore if all
layout algorithms that fall within a class (e.g., force directed algo-
rithms) have the same basic underlying perceptual properties. Fi-
nally, more graph properties need to be explored. This experiment
only scratches the surface of potential combinations. However, this
serves as an initial step in demonstrating that (at least for some)
graph properties can be discriminated. By identifying the different
conditions and classes of algorithms that improve discrimination,
future work can inform ideas of new design spaces for graph layout
algorithms that not only focus on layouts for graph aesthetics, but
also on conditions for graph perception.
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