

1 Mutation in the vasopressin gene eliminates the sex difference in social reinforcement in
2 adolescent rats.
3
4

5 Schatz K.C.¹, Martin C.D.², Ishiwari K.², George A.M.², Richards J.B.², and Paul M.J.^{1,3,4}
6
7

8 ¹Department of Psychology, ²Clinical and Research Institute on Addictions, ³Neuroscience
9 Program, and ⁴Evolution, Ecology and Behavior Program, University at Buffalo, Buffalo, NY,
10 USA
11
12

13 Kelcie C. Schatz: kelciesc@buffalo.edu
14

15 Connor D. Martin: connor.d.martin@gmail.com
16

17 Keita Ishiwari: keitaish@buffalo.edu
18

19 Anthony M. George: george27@buffalo.edu
20

21 Jerry B. Richards: jrichard@ria.buffalo.edu
22

23 Matthew J. Paul: mjpaul@buffalo.edu
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

30 Corresponding Author:
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

30 Kelcie C. Schatz
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

30 Department of Psychology
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

30 204 Park Hall
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

30 University at Buffalo, SUNY
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

30 Buffalo, NY 14260, USA
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

30 Short Title: Vasopressin impacts sex differences in adolescent social reinforcement
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

30 Figures: 6
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

30 Tables: 2 (1 in text, 1 supplemental)
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59 27 **Abstract**
60
61 28 The neuropeptide, arginine vasopressin (AVP), is thought to contribute to sex differences in
62
63 29 normative and pathological social development by regulating social motivation. Recent studies
64
65 30 using Brattleboro rats that have a mutation in the *Avp* gene, however, have suggested that AVP
66
67 31 impacts adolescent social behaviors of males and females in a similar manner through actions
68
69 32 on behavioral state (i.e., arousal). In the present study, we made use of a recently developed
70
71 33 operant conditioning paradigm to test whether the chronic, lifelong AVP deficiency caused by
72
73 34 the Brattleboro mutation impacts the reinforcement value of social stimuli during adolescence.
74
75 35 Operant responding for access to a familiar conspecific was assessed in male and female
76
77 36 adolescent wild type (WT; normal AVP), heterozygous Brattleboro (HET), and homozygous
78
79 37 Brattleboro (HOM) rats. Following the social reinforcement test, rats were tested in the same
80
81 38 operant paradigm except that the social reinforcer was replaced with a light reinforcer to
82
83 39 determine whether effects of the Brattleboro mutation were specific to social stimuli or a general
84
85 40 characteristic of operant conditioning. WT males directed a greater proportion of their
86
87 41 responding toward the social and light stimuli than WT females; only males exhibited a
88
89 42 preference for these reinforcers over unreinforced ports. The sex difference in social
90
91 43 reinforcement was absent in HOM rats, whereas the sex difference in light reinforcement was
92
93 44 present in all genotypes. These data indicate that adolescent males are more sensitive to the
94
95 45 reinforcing properties of social and light stimuli, and that the sex difference in social, but not
96
97 46 light, reinforcement depends upon normal levels of AVP. These findings support the hypothesis
98
99 47 that AVP plays a critical role in sex differences in social development by acting on factors that
100
101 48 influence social motivation.
102
103 49
104 50 **Keywords**
105
106 51 Brattleboro rat, vasopressin, sex differences, adolescence, social reinforcement, light
107
108 52 reinforcement
109
110
111
112

113
114
115 53 **1. Introduction**
116
117 54 Several neurodevelopmental disorders that impact social behavior exhibit striking sex
118
119 55 differences in incidence, severity, onset, and/or response to treatment. For example, autism
120
121 56 spectrum disorders are more prevalent in boys than girls (4.2 males: 1 female); and
122
123 57 schizophrenia, for which social withdrawal is a major symptom, is more prevalent (1.4 males: 1
124
125 58 female), develops earlier, and is more severe in males [1–3]. Sex differences in the
126
127 59 neurobiology of social development likely account for why one sex is more vulnerable, and the
128
129 60 other more resilient, to the social deficits that accompany neurodevelopmental disorders. Sex
130
131 61 differences in the brain and behavior arise from organizational and activational actions of
132
133 62 gonadal hormones, direct effects of genes on the sex chromosomes, and environmental factors
134
135 63 [reviewed in 4,5]. The downstream neurobiology on which these factors act to regulate sex
136
137 64 differences in social development, however, is not understood.
138
139 65
140
141 66 The neuropeptide, arginine vasopressin (AVP), has been implicated in several
142
143 67 neurodevelopmental disorders including autism spectrum disorders and schizophrenia [6–9].
144
145 68 AVP regulates several social and anti-social behaviors both in adulthood and during
146
147 69 development [reviewed in 10–13]. Notably, AVP's influence on social behaviors often differs
148
149 70 depending on sex. For example, AVP infusions into the anterior hypothalamus stimulate
150
151 71 aggression in male Syrian hamsters, but inhibit aggression in females [14–16]. During
152
153 72 development, ICV and septal infusions of a V1aR antagonist have opposite actions on the social
154
155 73 play of male and female juvenile rats [17,18], and septal infusions of AVP enhance social
156
157 74 recognition in female but not in male juvenile rats [19]. Hence, AVP is considered a prime
158
159 75 candidate substrate for regulating sex differences in social behavior and social development
160
161 76 [20].
162
163 77
164
165
166
167
168

169
170
171 78 The Brattleboro rat is a useful model for studying chronic, lifelong disruptions to AVP function.
172
173 79 Brattleboro rats have a single base-pair deletion in exon 2 of the *Avp* gene that disrupts the
174
175 production of AVP [21]. In this model, loss of AVP function at the level of the kidneys leads to
176
177 the development of diabetes insipidus [22]. Several social behaviors are also impacted,
178
179 presumably due to the loss of central AVP actions [23–25]. Few studies have tested both sexes
180
181 in the same experiment, but when comparing across studies adult male Brattleboro rats show
182
183 deficits in social discrimination, whereas adult female Brattleboro rats do not [26,27]. In juvenile
184
185 and adolescent rats, however, the Brattleboro mutation affects social interactions of males and
186
187 females in a similar manner – increases huddling and decreases social play and 50 kHz
188
189 ultrasonic vocalizations [28,29]. Hence, while acute intracranial pharmacological manipulations
190
191 of AVP are known to differentially impact male and female social behaviors, the data for chronic
192
193 AVP disruption are mixed.
194
195
196 90
197
198 91 AVP is thought to regulate social behavior through actions on social motivation, but few studies
199
200 directly test this conjecture. Complex behaviors can be influenced by many factors. Indeed,
201
202 adolescent Brattleboro rats do not exhibit deficits in a simple social approach test, but instead
203
204 exhibit a hypoaroused phenotype that is correlated with their decreased levels of social play
205
206 [29]. These findings raise the possibility that AVP influences social behavior through actions on
207
208 arousal. Recently, operant conditioning paradigms capable of testing social reinforcers have
209
210 been developed that allow for a direct assessment of social motivation and
211
212 reinforcement/reward value of social stimuli [30–33]. In the present experiment, we used one
213
214 such operant paradigm to test whether the Brattleboro mutation affects the social reinforcement
215
216 of adolescent male and female rats, and if so, whether it impacts the sexes in the same or
217
218 different manner. A previous study found that the Brattleboro mutation eliminated the sex
219
220 difference in a non-social learning task (extinction of a conditioned taste aversion) present in
221
222 adult Long Evans rats [34]. Hence, we also assessed operant responding to a light reinforcer,
223
224

225
226
227 104 which has been shown to function as a non-social reinforcer in operant paradigms [35–37], to
228 105 assess whether effects seen in the present experiment are specific to social reinforcement or
229 106 generalize to other types of operant conditioning.
230
231
232
233 107
234
235 108 **2. Materials and Methods**
236
237 109 *2.1. Subjects*
238
239 110 Experimental subjects were 14 wild type (WT; 6 female, 8 male) rats, 30 rats heterozygous for
240 111 the Brattleboro mutation (HET; 14 female, 16 male), and 20 rats homozygous for the Brattleboro
241 112 mutation (HOM; 10 female, 10 male) from our breeding colony, which was originally derived
242 113 from HET rats obtained from the Rat Resource and Research Center (University of Missouri,
243 114 Columbia, MO). All subjects were generated from HET male x HET female pairings in order to
244 115 generate offspring of all three genotypes within the same litter. Experimental subjects were
245 116 derived from 9 litters. All animals within each litter were used in experiments, except when a
246 117 same-sex, same-genotype cagemate was not available at weaning for pair housing. This
247 118 resulted in the following mean number of subjects for each sex/genotype per litter: 0.67 female
248 119 WTs, 0.89 male WTs, 1.56 female HETs, 1.78 male HETs, 1.11 female-HOMs, and 1.11 male-
249 120 HOMs. All rats were housed in plastic cages (44 cm X 22.5 cm X 20.5 cm) with wood shavings
250 121 and maintained on a 12 h light/12 h dark cycle throughout the experiment. Food and water
251 122 were available *ad libitum* and ambient temperature was maintained at 23°C. All experiments
252 123 were in accordance with the *Guide for the Care and Use of Laboratory Animals* and were
253 124 approved by the Animal Care and Use Committee at the University at Buffalo, State University
254 125 of New York.
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272 127 *2.2. Experimental Timeline*
273
274 128 Rats were genotyped on postnatal day (P)15 and subsequently weaned on P21 into same-sex,
275 129 same-genotype pairs; day of birth = P0. Between P21-P23, rats were transferred from the
276
277
278
279
280

281
282
283 130 North Campus animal facility to the animal facility at the Clinical and Research Institute on
284 131 Addictions (University at Buffalo, SUNY) for behavioral testing, at which point the time of lights
285 132 off was shifted from 6PM to 7AM EST to facilitate testing during the dark phase. All rats were
286 133 given at least 6 days to acclimate to the new building and altered light cycle. Rats were trained
287 134 and tested on a social reinforcement task (training P28-P34; testing P35-P41) then a light
288 135 reinforcement task (training P42-48; testing P49-P55; see methods below for details of the
289 136 operant apparatus and procedure). Hence, training and testing occurred from early to late
290 137 adolescence as defined by Vetter-O'Hagen and Spear [38]; early/mid adolescence = P28-42,
291 138 late adolescence = P42-55. After testing was complete, rats were transferred back to the North
292 139 Campus animal facility where they were individually housed and tested for 24-hour water intake
293 140 measures between 10-13 weeks of age.

304
305 141

306
307 142 *2.3. Genotyping Procedure*

308
309 143 Rats were genotyped prior to weaning using the method developed by Paul et al. [28]. Between
310 144 P13-P15, ear tissue was collected from rat pups using a sterile ear punch. Ear tissue was
311 145 digested and DNA extracted using the REDExtract-N-Amp Tissue PCR Kit (SigmaAldrich). The
312 146 DNA surrounding the single base pair Brattleboro deletion was amplified by PCR using the
313 147 forward primer, GACGAGCTGGGCTGCTTC, and reverse primer,
314 148 CCTCAGTCCCCACTTAGCC. The amplified DNA was then incubated at 37°C for 24 h with
315 149 the restriction endonuclease, Bcg1 (New England BioLabs). Following incubation with the
316 150 restriction endonuclease, samples were run on a 2% agarose gel using gel electrophoresis and
317 151 genotype designations determined by assessing the number and weight of DNA bands: WT = a
318 152 single 222 bp band; HOM = a single ~95 bp band; HET = two bands, one at 222 bp and one at
319 153 ~95 bp.

320
321 154

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

337
338
339 155 *2.4. Operant Testing Apparatus*
340

341 156 Social reinforcement was measured in a set of locally constructed operant chambers (Figure 1),
342
343 157 as previously published [31, for video, see supplemental material or <http://ratgenes.org/social->
344
345 158 reinforcement-monitor/]. The three-chamber apparatus was housed inside of a cooler (Model #
346
347 159 3000000187, Coleman, Wichita, KS), blocking external stimuli. The center of the test chamber
348
349 160 was made of a clear acrylic tube (diameter: 22.75 cm, height: 25.5 cm) and set on a grid floor
350
351 161 (1/8 inch stainless steel rods, 0.7 cm apart). Social stimulus chambers (diameter: 21.5 cm,
352
353 162 height: 16.5 cm) were located on the right and left sides of the test chamber. Lateral
354
355 163 observation ports made of 2-inch PVC pipe provided access between the test chamber and the
356
357 164 social stimulus chambers, allowing test and social stimulus rats to contact snouts and vibrissae,
358
359 165 as well as the passage of odor cues. The test chamber also had a center observation port
360
361 166 located on the far side of the chamber from the front face, capable of providing access to liquid
362
363 167 reinforcers; liquid reinforcers were not used in the present study, but the center port was
364
365 168 available as an unreinforced port. Left and right stimulus lights were located in the roof of the
366
367 169 test chamber above the social stimulus chambers. A ventilation fan was located on the back
368
369 170 wall of the enclosure. Air vents were placed in the bottom of the social stimulus chambers and
370
371 171 led to air holes in the bottom of the sound and light attenuating enclosures. A lid was placed on
372
373 172 the tops of the social stimulus chambers, ensuring that the ventilation fan would draw air
374
375 173 through the bottom of the social stimulus chambers into the observation port connected to the
376
377 174 central test chamber, thereby presenting the test rat with olfactory cues from stimuli placed into
378
379 175 the social stimulus chambers. Two obstruction bars (8-32 × 2.5 bolts placed 17.5 mm apart)
380
381 176 were placed in the PVC pipe between the test chamber and the social stimulus chambers to
382
383 177 prevent the test and social stimulus rats from escaping into the alternative chamber. Figure 1D
384
385 178 illustrates the sliding door that controls access of the test rat to the social stimulus chambers.
386
387 179 Infrared photo sensors bisected the observation port 17.5 mm from the test chamber wall and
388
389 180 detected snout pokes into the observation port. The swinging door was used to open or close
390
391
392

393
394
395 181 the passageway between the test and social stimulus chambers. The swinging door was
396
397 182 normally closed and was opened by operating a 24-volt rotating solenoid (Ledex H-1141-033,
398
399 183 Johnson Electric, Hong Kong). Operation of the solenoid opened the door and then held it open
400
401 184 against the stop, which allowed physical contact between the test and stimulus rats and the free
402
403 185 passage of odor cues. The photo detector circuit input and the solenoid output were connected
404
405 186 to a computer interface (Med Associates, St. Albans, VT) allowing the computer to control
406
407 187 access contingent upon snout poke responses.
408
409 188
410
411 189 *2.5. Operant Procedure*
412
413 190 A social stimulus (the cage-mate) was first placed into either the left or right stimulus chamber
414
415 191 (counterbalanced). Stimulus chambers were removable and could be placed on either side of
416
417 192 the apparatus. Separate chambers were designated for stimulus animals versus empty
418
419 193 chambers; stimulus animal chambers were never used as empty chambers and vice versa to
420
421 194 prevent accumulation of odors in the empty chambers. For each test rat, the same rat served
422
423 195 as the stimulus rat for all the test sessions. The test rat was placed into the center test
424
425 196 chamber, and the number of snout poke responses into the three observation ports during an
426
427 197 18-min test session was recorded. The opening of the sliding doors to all observation ports was
428
429 198 response-contingent according to a variable-interval (VI) 1 min schedule of reinforcement,
430
431 199 separate for each port. Each rat was given 1 week to train on this task then tested during the
432
433 200 second week. Training/testing sessions occurred three days per week (every other day) for a
434
435 201 total of six training/testing sessions. Data from the three test sessions for each rat were
436
437 202 combined and used for analysis. The order in which animals were tested and the side of
438
439 203 reinforcement were randomized. House light stimuli used in the light reinforcement task (see
440
441 204 below) were never turned on during the social reinforcement portion of the experiment.
442
443 205
444
445
446
447
448

449
450
451 206 Following social reinforcement training and testing, rats completed an additional two weeks of
452
453 207 training and testing using the same schedule except that the social stimulus was replaced with a
454
455 208 house light. The light reinforcement port and active house light were on the opposite side to the
456
457 209 prior social reinforcement port and social stimulus. The same VI 1 min schedule of
458
459 210 reinforcement was used. Once activated, the light remained on for 5 seconds. As with social
460
461 211 reinforcement, the last three test sessions were combined and used for analysis.
462
463 212
464
465 213 *2.6. Water Intake Measures*
466
467 214 We have previously validated our genotyping procedure using sequencing [28]. In the present
468
469 215 experiment, we further confirmed HOM genotype designations by assessing each animal's 24-h
470
471 216 water intake. Rats were individually housed and the weights of their water bottles were
472
473 217 recorded. The bottles were weighed again 24 and 48 hours later and the average 24-h
474
475 218 decrease in weight over this period was used as a measure of water intake, reported in milliliters
476
477 219 (1g water = 1ml water).
478
479 220
480
481 221 *2.7. Statistical Analyses*
482
483 222 Social and light reinforcement measures were calculated as the proportion of responses
484
485 223 directed at the reinforcer (reinforcer nose pokes/total nose pokes). Group differences in
486
487 224 reinforcement and total responses during the testing phase as well as during the first session of
488
489 225 the training phase were assessed using a 2 x 3 ANOVA, with Sex and Genotype as the
490
491 226 independent variables. Reinforcement across the 3 training sessions for each genotype was
492
493 227 analyzed using repeated-measures ANOVA, with Sex and Session as independent variables. If
494
495 228 main effects or interactions of the overall ANOVA were significant, *post hoc* tests were
496
497 229 conducted using Fisher's PLSD. Preference for and aversion to the social or light reinforcer
498
499 230 were determined by comparing the confidence intervals of reinforcement measures for each
500
501 231 experimental group with the proportion of responses expected by chance. Given that there
502
503
504

505
506
507 232 were 3 possible ports, a random distribution of port responses would result in 33% of responses
508 233 directed toward each port, i.e. a proportion of 0.33 for each port. Hence, if the lower confidence
509 234 interval for the reinforced port was greater than 0.33, a preference was assumed and if the
510 235 higher confidence interval for the reinforced port was less than 0.33 than an aversion was
511 236 assumed. Outliers were identified using the Box and Whiskers plot on SPSS, which defines
512 237 outliers as measures greater than 1.5 times the interquartile range and were removed prior to
513 238 conducting the overall ANOVA or assessing preference; see Supplemental Table for number of
514 239 outliers within each group for each measure. Final sample sizes are indicated within the bars of
515 240 each figure or in the figure legend. All analyses were conducted using SPSS v23.0 (IBM).
516 241 Significance was assumed when $P < 0.05$.
517
518 242
519 243 **3. Results**
520
521 244 *3.1. Lifelong AVP-deficiency eliminates the sex difference in social reinforcement*
522
523 245 During the testing phase, there was a significant main effect of Sex on social reinforcement
524 246 ($P < 0.05$, ANOVA). This was due to WT males directing a higher proportion of responses
525 247 toward the social reinforcer than WT females (Fig. 2A; $P < 0.05$, Fisher's PLSD). This sex
526 248 difference, however, was not significant in HET rats ($P = 0.19$, Fisher's PLSD) and was absent in
527 249 HOM rats ($P = 0.90$, Fisher's PLSD). WT, HET, and HOM males as well as HET and HOM
528 250 females responded greater than chance for the social reinforcer indicating a preference for the
529 251 social port over the unreinforced ports, a preference not present in WT females (Table 1). While
530 252 the WT females did not prefer the social port, they also did not find it aversive (Table 1). Total
531 253 responding during the social reinforcement test was not impacted by the sex or genotype of the
532 254 animals (Fig. 2B; $P > 0.21$, main effect of Sex, main effect of Genotype, and the interaction
533 255 between Sex and Genotype, ANOVA).
534
535 256
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

561
562
563 257 Analysis of the training phase revealed that the sex difference in social reinforcement was not
564
565 258 present upon first exposure to the operant procedure and there were no differences among the
566
567 259 genotypes (Fig. 3A; $P>0.39$, main effect of Sex, main effect of Genotype, and the interaction
568
569 260 between Sex and Genotype on session 1). However, a sex difference in social reinforcement
570
571 261 emerged in WT and HET animals over subsequent sessions (Fig. 3B,C; $P<0.05$, main effect of
572
573 262 Sex in WT animals, interaction between Sex and Session in HET animals, repeated-measures
574
575 263 ANOVA). In HET animals, the sex difference was significant on sessions 2 and 3 ($P<0.05$,
576
577 264 Fisher's PLSD), whereas in WT animals the sex difference was significant on session 3 only
578
579 265 ($P<0.05$, Fisher's PLSD). As seen during the testing phase, there was no evidence of a sex
580
581 266 difference during the training phase in the HOM rats (Fig. 3D; $P>0.31$, main effect of Sex, main
582
583 267 effect of Session, and the interaction between Sex and Session, repeated measures ANOVA).
584
585 268
586
587 269 *3.2. Males, but not females, exhibit a preference for light reinforcement*
588
589 270 During the testing phase of light reinforcement, there was also a main effect of Sex, with males
590
591 271 directing a higher proportion of responses to the light reinforcer than females (Fig. 4A; $P<0.05$,
592
593 272 ANOVA). In contrast to social reinforcement, however, this sex difference was present in all
594
595 273 genotypes ($P<0.05$, WT, HET, and HOM males versus WT, HET, and HOM females,
596
597 274 respectively, Fisher's PLSD). Furthermore, males, but not females, of all genotypes exhibited a
598
599 275 preference for the light port over the unreinforced ports (Table 1). Total responding during the
600
601 276 light reinforcement test was also impacted by sex, but in this measure females exhibited greater
602
603 277 responding than males (Fig. 4B; $P<0.05$, main effect of Sex, ANOVA). Although the mean total
604
605 278 responses of females was higher than that of males for each genotype, these differences fell
606
607 279 short of significance in the post hoc tests ($P=0.11$, 0.08 , and 0.10 for WT, HET, and HOM
608
609 280 comparisons, respectively, Fisher's PLSD).
610
611
612
613
614
615
616

617
618
619
620 282 In contrast to that seen on the first day of social reinforcement training, there were group
621
622 283 differences on the first day of light reinforcement training. There was a significant interaction
623
624 284 between Sex and Genotype on the first session of the training phase (Fig. 5A; $P<0.05$, ANOVA).
625
626 285 This was due to male-specific differences across genotypes: lower light responding in HOM
627
628 286 males compared to HET and WT males ($P<0.05$ for both comparisons, Fisher's PLSD).
629
630 287 Although there was a trend toward Sex differences in WTs (males > females) and HOMs
631
632 288 (females > males) on the first day of training, these comparisons did not reach significance
633
634 289 ($P=0.09$ for WT males vs. WT females; $P=0.07$ for HOM males vs. HOM females; Fisher's
635
636 290 PLSD). Note that the trend toward a sex difference on Session 1 for HOM rats reached
637
638 291 significance in the repeated-measures analysis due to the removal of 1 male that was an outlier
639
640 292 on session 3 (Fig. 5D; $P<0.05$, Fisher's PLSD). Analysis across the three training sessions
641
642 293 indicated that light responding for all groups was at their highest level on the first session (Figs.
643
644 294 5B-D). WT male and female rats maintained the same level of responding throughout the
645
646 295 training phase ($P>0.54$, main effect of Session and interaction between Sex and Session,
647
648 296 repeated-measures ANOVA). For HET and HOM rats, there was a female-specific decline in
649
650 297 light responding on session 2 that was maintained on session 3 ($P<0.05$ for HET and HOM
651
652 298 comparisons of session 1 vs. session 2 and 3, Fisher's PLSD). The sex difference in light
653
654 299 responding seen in the testing phase (males > females) tended to be present in WT rats
655
656 300 throughout the training phase ($P=0.055$, main effect of Sex, Repeated-measures ANOVA), but
657
658 301 this was only significant on session 3 ($P<0.05$, Fisher's PLSD). For HET rats, this sex
659
660 302 difference emerged on session 2 ($P<0.05$, Fisher's PLSD), but was not significant on session 3
661
662 303 ($P=0.16$, Fisher's PLSD). In HOM rats, females initially exhibited higher light responding on
663
664 304 session 1 ($P<0.05$, Fisher's PLSD), but this sex difference was absent on sessions 2 and 3
665
666 305 ($P>0.25$, session 1 vs. session 2 and 3, Fisher's PLSD).
667
668
669
670
671
672 306

673
674
675 307 *3.3. Confirmation of HOM genotype designation by drinking phenotype*
676
677 308 As expected, all rats designated as HOM by our genotyping procedure drank markedly more
678
679 309 water than WT and HET rats (Fig. 6), confirming HOM genotype assignments.
680
681 310
682
683 311 **4. Discussion**
684
685 312 The present findings demonstrate that chronic disruption of AVP disrupts sex differences in
686
687 313 adolescent social behavior, specifically the sex difference in adolescent social reinforcement.
688
689 314 Male adolescent WT rats directed a greater proportion of responses toward the social stimulus
690
691 315 than female adolescent WT rats. Indeed, WT males showed a significant preference for the
692
693 316 social stimulus over the unreinforced ports, whereas WT females did not. This sex difference
694
695 317 depended on a functional *Avp* gene: it was inconsistent in HET rats (i.e., present at the end of
696
697 318 training, but not during testing) and was completely absent in HOM rats. HET rats exhibit a
698
699 319 partial reduction in AVP mRNA expression and pituitary protein content [39]. Hence, a partial
700
701 320 reduction in AVP appears sufficient to diminish the sex difference in adolescent social
702
703 321 reinforcement. These findings support the hypothesis that AVP plays an important role in sex
704
705 322 differences in adolescent social development.
706
707 323
708
709 324 To our knowledge, the present study is the first to demonstrate increased operant responding
710
711 325 for social stimuli in male compared to female adolescent rats. Adolescent male rats often (but
712
713 326 not always) exhibit higher levels of social interactions, particularly social play behavior, than
714
715 327 their female counterparts [40–42][but see 43,44]. The sex difference in social reinforcement of
716
717 328 WT rats seen in the present study adds to the small but growing literature indicating that the
718
719 329 greater levels of social interactions in adolescent male rats is due, in part, to a greater sensitivity
720
721 330 of males to the reinforcing/rewarding properties of social stimuli compared to females.
722
723 331 Adolescent males exhibit a greater conditioned place preference (CPP) than females to a
724
725 332 compartment previously paired with social interactions [45]. The sex difference in CPP to social
726
727
728

729
730
731 333 interaction depends on housing conditions, being present in single-housed, but not pair-housed
732
733 334 rats [45–47]. In contrast, we detected the sex difference in social reinforcement preference
734
735 335 even though rats were pair-housed throughout the experiment. This suggests that the greater
736
737 336 sensitivity of males to social reinforcement/reward is present in group-housed rats and that
738
739 337 operant paradigms may be more sensitive in detecting such preferences than CPP.
740

741 338
742
743 339 Although often assumed, few studies directly test whether AVP influences social behavior by
744
745 340 regulating social motivation or reinforcement/reward value of social stimuli. Increased social
746
747 341 motivation is typically inferred by shortened latencies to approach another individual or
748
749 342 increased time spent in social contact [48]. The operant conditioning paradigm used in the
750
751 343 present experiment allowed us to more directly assess the role of AVP in social reinforcement.
752
753 344 The present findings support the hypothesis that AVP influences social behavior by modulating
754
755 345 the reinforcement/reward value of social stimuli.
756
757 346
758
759 347 We have previously found that male and female adolescent Brattleboro rats exhibit 1) an
760
761 348 atypical social behavior profile characterized by decreased active social behaviors (e.g., social
762
763 349 play, 50 kHz ultrasonic vocalizations) and increased passive social behaviors (e.g., huddling)
764
765 350 and 2) a hypoaroused phenotype characterized by decreased locomotor activity in an open field
766
767 351 and decreased marble burying [28,29]. Notably, decreased behavioral arousal is correlated with
768
769 352 decreased social play suggesting that the more passive social behavior phenotype of
770
771 353 Brattleboro rats is due, in part, to AVP's actions on arousal [29]. Perhaps AVP's actions on
772
773 354 arousal impact males and females to influence active versus passive social behaviors similarly
774
775 355 in both sexes, whereas AVP's actions on social reinforcement differentially impact the sexes to
776
777 356 modulate sex differences in social behaviors. AVP also regulates other factors that likely impact
778
779 357 complex behaviors – circadian timing and social recognition [19,49–51]. Hence, it is becoming
780
781
782
783
784

785
786
787 358 clear that AVP acts through multiple mechanisms to influence social behavior (e.g., social
788
789 359 motivation, behavioral state, behavioral timing, and social memory).
790
791 360
792
793 361 The results of the social reinforcement test are unlikely to be the result of sex-specific effects of
794
795 362 the Brattleboro mutation on learning. This possibility is raised by studies demonstrating 1) sex
796
797 363 differences in the performance on several learning and memory paradigms [52,53] and 2) AVP
798
799 364 influences on both social and non-social learning tasks, including operant conditioning [54,55].
800
801 365 Similar to the present findings, a previous study found that the Brattleboro mutation eliminates
802
803 366 the sex difference in extinction of a conditioned taste aversion to a sucrose-lithium chloride
804
805 367 pairing [34]. Nevertheless, in the present study rats learned the social reinforcement task within
806
807 368 the first session, at which point their social responding did not differ between groups. Instead,
808
809 369 the sex difference emerged in WT and HET animals as the social responding of females
810
811 370 declined in later training sessions. These data suggest that the loss of the sex difference in the
812
813 371 social reinforcement in HOM rats seen in the present study is not due to effects of the
814
815 372 Brattleboro mutation on learning.
816
817 373
818
819 374 Loss of the sex difference in operant responding of Brattleboro rats was specific to the social
820
821 375 stimulus, with males of all genotypes exhibiting a greater proportion of responses for the light
822
823 376 stimulus than their female counterparts during the testing phase. This too argues against a
824
825 377 general effect of the Brattleboro mutation on operant responding in the current behavioral
826
827 378 paradigm. Caution is warranted here, however, because all rats had undergone social
828
829 379 reinforcement testing before being subjected to light reinforcement. Hence, it is possible that
830
831 380 the different results seen for social and light reinforcers in HOM rats are due to interactions
832
833 381 between AVP-deficiency and the order of testing, with animals more adapted to the apparatus
834
835 382 and testing procedures during light reinforcement. In addition, the differing ages or pubertal
836
837 383 stages of animals during social versus light reinforcement could have also influence the results.
838
839
840

841
842
843 384 Adolescence is a time of remarkable neural, behavioral, and reproductive development, with
844 385 marked changes in social behavior and cognitive performance in both humans and rodents [56].
845
846 386 Pubertal factors, which differ markedly between early/mid-adolescence (when social
847 387 reinforcement was tested) to late adolescence (when light reinforcement was tested) [38], could
848
849 388 impact learning and memory although this topic is understudied [57]. The most compelling data
850
851 389 indicate a role for pubertal status and pubertal hormones in PFC-dependent cognitive flexibility
852
853 390 [58,59]. Given that the number of AVP cells and fibers increases during adolescence [60,61],
854
855 391 one would predict that AVP-deficiency would have a greater effect in late as opposed to early
856
857 392 adolescence, which is opposite to that seen in the present study. Nevertheless, future studies
858
859 393 are needed to determine whether AVP's role in reinforcement conditioning changes across
860
861 394 adolescence or is impacted by testing experience. Assessment of the training phase for light
862
863 395 reinforcement was also less clear. As seen with the social reinforcement task, rats learned the
864
865 396 light reinforcement task within the first session. Unlike in the social reinforcement task,
866
867 397 however, sex differences in light reinforcement were significant (in HOM rats) or approached
868
869 398 significance (in WT rats) on this session, raising the possibility of learning differences in the light
870
871 399 reinforcement task among groups. Here too, the order of testing could have impacted the data
872
873 400 as animals were extinguishing the social reinforcement task while acquiring the light
874
875 401 reinforcement task.
876
877 402
878
879 403 HOM and WT rats differ in their performance on a visual attention test – lateralized reaction time
880
881 404 task to a house light stimulus [62]. Notably, genotype differences are dependent on the duration
882
883 405 of the house light, with WT rats outperforming HOM rats at short durations (~0.2s) and HOM rats
884
885 406 outperforming WT rats at longer durations (~2s). The authors attributed these findings to
886
887 407 genotype differences in attention rather than light perception because varying the brightness of
888
889 408 the house light had no effect on performance in either genotype. Importantly, WT and HOM rats
890
891 409 performed similarly when the house light was presented for 4s, which is similar to the duration of
892
893
894
895
896

402
403 HOM and WT rats differ in their performance on a visual attention test – lateralized reaction time
404 task to a house light stimulus [62]. Notably, genotype differences are dependent on the duration
405 of the house light, with WT rats outperforming HOM rats at short durations (~0.2s) and HOM rats
406 outperforming WT rats at longer durations (~2s). The authors attributed these findings to
407 genotype differences in attention rather than light perception because varying the brightness of
408 the house light had no effect on performance in either genotype. Importantly, WT and HOM rats
409 performed similarly when the house light was presented for 4s, which is similar to the duration of
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
77100
77101
77102
77103
77104
77105
77106
77107
77108
77109
77110
77111
77112
77113
77114
77115
77116
77117
77118
77119
77120
77121
77122
77123
77124
77125
77126
77127
77128
77129
77130
77131
77132
77133
77134
77135
77136
77137
77138
77139
77140
77141
77142
77143
77144
77145
77146
77147
77148
77149
77150
77151
77152
77153
77154
77155
77156
77157
77158
77159
77160
77161
77162
77163
77164
77165
77166
77167
77168
77169
77170
77171
77172
77173
77174
77175
77176
77177
77178
77179
77180
77181
77182
77183
77184
77185
77186
77187
77188
77189
77190
77191
77192
77193
77194
77195
77196
77197
77198
77199
77200
77201
77202
77203
77204
77205
77206
77207
77208
77209
77210
77211
77212
77213
77214
77215
77216
77217
77218
77219
77220
77221
77222
77223
77224
77225
77226
77227
77228
77229
77230
77231
77232
77233
77234
77235
77236
77237
77238
77239
77240
77241
77242
77243
77244
77245
77246
77247
77248
77249
77250
77251
77252
77253
77254
77255
77256
77257
77258
77259
77260
77261
77262
77263
77264
77265
77266
77267
77268
77269
77270
77271
77272
77273
77274
77275
77276
77277
77278
77279
77280
77281
77282
77283
77284
77285
77286
77287
77288
77289
77290
77291
77292
77293
77294
77295
77296
77297
77298
77299
77300
77301
77302
77303
77304
77305
77306
77307
77308
77309
77310
77311
77312
77313
77314
77315
77316
77317
77318
77319
77320
77321
77322
77323
77324
77325
77326
77327
77328
77329
77330
77331
77332
77333
77334
77335
77336
77337
77338
77339
77340
77341
77342
77343
77344
77345
77346
77347
77348
77349
77350
77351
77352
77353
77354
77355
77356
77357
77358
77359
77360
77361
77362
77363
77364
77365
77366
77367
77368
77369
77370
77371
77372
77373
77374
77375
77376
77377
77378
77379
77380
77381
77382
77383
77384
77385
77386
77387
77388
77389
77390
77391
77392
77393
77394
77395
77396
77397
77398
77399
77400
77401
77402
77403
77404
77405
77406
77407
77408
77409
77410
77411
77412
77413
77414
77415
77416
77417
77418
77419
77420
77421
77422
77423
77424
77425
77426
77427
77428
77429
77430
77431
77432
77433
77434
77435
77436
77437
77438
77439
77440
77441
77442
77443
77444
77445
77446
77447
77448
77449
77450
77451
77452
77453
77454
77455
77456
77457
77458
77459
77460
77461
77462
77463
77464
77465
77466
77467
77468
77469
77470
77471
77472
77473
77474
77475
77476
77477
77478
77479
77480
77481
77482
77483
77484
77485
77486
77487
77488
77489
77490
77491
77492
77493
77494
77495
77496
77497
77498
77499
77500
77501
77502
77503
77504
77505
77506
77507
77508
77509
77510
77511
77512
77513
77514
77515
77516
77517
77518
77519
77520
77521
77522
77523
77524
77525
77526
77527
77528
77529
77530
77531
77532
77533
77534
77535
77536
77537
77538
77539
77540
77541
77542
77543
77544
77545
77546
77547
77548
77549
77550
77551
77552
77553
77554
77555
77556
77557
77558
77559
77560
77561
77562
77563
77564
77565
77566
77567
77568
77569
77570
77571
77572
77573
77574
77575
77576
77577
77578
77579
77580
77581
77582
77583
77584
77585
77586
77587
77588
77589
77590
77591
77592
77593
77594
77595
77596
77597
77598
77599
77600
77601
77602
77603
77604
77605
77606
77607
77608
77609
77610
77611
77612
77613
77614
77615
77616
77617
77618
77619
77620
77621
77622
77623
77624
77625
77626
77627
77628
77629
77630
77631
77632
77633
77634
77635
77636
77637
77638
77639
77640
77641
77642
77643
77644
77645
77646
77647
77648
77649
77650
77651
77652
77653
77654
77655
77656
77657
77658
77659
77660
77661
77662
77663
77664
77665
77666
77667
77668
77669
77670
77671
77672
77673
77674
77675
77676
77677
77678
77679
77680
77681
77682
77683
77684
77685
77686
77687
77688
77689
77690
77691
77692
77693
77694
77695
77696
77697
77698
77699
77700
77701
77702
77703
77704
77705
77706
77707
77708
77709
77710
77711
77712
77713
77714
77715
77716
77717
77718
77719
77720
77721
77722
77723
77724
77725
77726
77727
77728
77729
77730
77731
77732
77733
77734
77735
77736
77737
77738
77739
77740
77741
77742
77743
77744
77745
77746
77747
77748
77749
77750
77751
77752
77753
77754
77755
77756
77757
77758
77759
77760
77761
77762
77763
77764
77765
77766
77767
77768
77769
77770
77771
77772
77773
77774
77775
77776
77777
77778
77779
77780
77781
77782
77783
77784
77785
77786
77787
77788
77789
77790
77791
77792
77793
77794
77795
77796
77797
77798
77799
77800
77801
77802
77803
77804
77805
77806
77807
77808
77809
77810
77811
77812
77813
77814
77815
77816
77817
77818
77819
77820
77821
77822
77823
77824
77825
77826
77827
77828
77829
77830
77831
77832
77833
77834
77835
77836
77837
77838
77839
77840
77841
77842
77843
77844
77845
77846
77847
77848
77849
77850
77851
77852
77853
77854
77855
77856
77857
77858
77859
77860
77861
77862
77863
77864
77865
77866
77867
77868
77869
77870
77871
77872
77873
77874
77875
77876
77877
77878
77879
77880
77881
77882
77883
77884
77885
77886
77887
77888
77889
77890
77891
77892
77893
77894
77895
77896
77897
77898
77899
77900
77901
77902
77903
77904
77905
77906
77907
77908
77909
77910
77911
77912
77913
77914
77915
77916
77917
77918
77919
77920
77921
77922
77923
77924
77925
77926
77927
77928
77929
77930
77931
77932
77933
77934
77935
77936
77937
77938
77939
77940
77941
77942
77943
77944
77945
77946
77947
77948
77949
77950
77951
77952
77953
77954
77955
77956
77957
77958
77959
77960
77961
77962
77963
77964
77965
77966
77967
77968
77969
77970
77971
77972
77973
77974
77975
77976
77977
77978
77979
77980
77981
77982
77983
77984
77985
77986
77987
77988
77989
77990
77991
77992
77993
77994
77995
77996
77997
77998
77999
77100
77101
77102
77103
77104
77105
77106
77107
77108
77109
77110
77111
77112
77113
77114
77115
77116
77117
77118
77119
77120
77121
77122
77123
77124
77125
77126
77127
77128
77129
77130
77131
77132
77133
77134
77135
77136
77137
77138
77139
77140
77141
77142
77143
77144
77145
77146
77147
77148
77149
77150
77151
77152
77153
77154
77155
77156
77157
77158
77159
77160
77161
77162
77163
77164
77165
77166
77167
77168
77169
77170
77171
77172
77173
77174
77175
77176
77177
77178
77179
77180
77181
77182
77183
77184
77185
77186
77187
77188
77189
77190
77191
77192
77193
77194
77195
77196
77197
77198
77199
77200
77201
77202
77203
77204
77205
77206
77207
77208
77209
77210
77211
77212
77213
77214
77215
77216
77217
77218
77219
77220
77221
77222
77223
77224
77225
77226
77227
77228
77229
77230
77231
77232
77233
77234
77235
77236
77237
77238
77239
77240
77241
77242
77243
77244
77245
77246
77247
77248
77249
77250
77251
77252
77253
77254
77255
77256
77257
77258
77259
77260
77261
77262
77263
77264
77265
77266
77267
77268
77269
77270
77271
77272
77273
77274
77275
77276
77277
77278
77279
77280
77281
77282
77283
77284
77285
77286
77287
77288
77289
77290
77291
77292
77293
77294
77295
77296
77297
77298
77299
77300
77301
77302
77303
77304
77305
77306
77307
77308
77309
77310
77311
77312
77313
77314
77315
77316
77317
77318
77319
77320
77321
77322
77323
77324
77325
77326
77327
77328
77329
77330
77331
77332
77333
77334<br

897
898
899 410 the light stimulus in the present study (5s). Hence, it is unlikely that genotype differences in the
900 411 perception of the house light influenced the light reinforcement in the present study.
901

902 412 Furthermore, genotype differences in light perception would not account for the presence or
903 413 absence of sex differences within a given genotype.
904
905
906

907 414
908
909 415 Activity can also impact performance on operant responding [reviewed in 52], and previous
910 416 studies have demonstrated sex differences in locomotor activity (females > males) as well as
911 417 decreased locomotor activity in HOM Brattleboro rats [29,63–66]. However, in contrast to the
912 418 effect on social reinforcement, the Brattleboro mutation impacts locomotor activity of adolescent
913 419 males and females in a similar manner [29]. Furthermore, in the present study there were no
914 420 sex or genotype differences in the total number of responses during the social reinforcement
915 421 task and data were analyzed as proportion of responses directed toward the social stimulus,
916 422 thereby controlling for any potential differences in activity. Hence, the present findings are more
917 423 consistent with differences in goal-directed responses than in overall activity.
918
919

920 424
921
922 425 Sex differences in brain and behavior arise from organizational actions of prenatal, early
923 426 postnatal, and pubertal gonadal hormones; activational actions of gonadal hormones; direct
924 427 effects of genes on the sex chromosomes; and environmental factors [reviewed in 4,5]. The sex
925 428 difference in adolescent social reinforcement is likely the result of several of these factors acting
926 429 on AVP circuits, the primary candidate being the sexually dimorphic AVP pathway that
927 430 originates from cells in the bed nucleus of the stria terminalis (BNST) and medial amygdala
928 431 (MeA). Males of most species that have been assessed have greater numbers of AVP cells and
929 432 more dense projections than females [reviewed in 67,68] due to interactions between
930 433 organizational hormone actions, activational hormone actions, and direct effects of genes on the
931 434 sex chromosomes [69–73]. Given that the BNST and MeA of rodents receive extensive
932 435 chemosensory input, sex differences in this pathway could contribute to sex differences in social
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952

953
954
955 436 behavior through differential modulation of chemosensory input [74]. Nevertheless, selective
956 437 ablation of AVP cells in the BNST decreased same-sex social investigation by males, without
957 438 altering their detection of social odors or habituation and discrimination of non-social odors [75].
958
959 439 These findings suggest that BNST AVP can act through non-chemosensory mechanisms to
960 440 regulate sex differences in social behavior. The BNST/MeA pathway is thought to link brain
961 441 areas that regulate social behavior (the Social Behavior Network) with the mesocorticolimbic
962 442 dopamine system [12,76–78]. In juveniles/early adolescents, AVP manipulations in the septum,
963 443 a projection area of BNST/MeA cells, modulate local dopamine release [79] and social play
964 444 [17,18] in sex-specific ways. Furthermore, septal injections of the dopamine agonist,
965 445 apomorphine, counteract the depressive effects of a vasopressin receptor 1a antagonist on play
966 446 behavior [79]. These data suggest that vasopressin interacts with dopamine in the lateral
967 447 septum to regulate sex differences in reward-associated social behaviors of juveniles/early
968 448 adolescents. Future studies using social reinforcement paradigms are needed to determine
969 449 whether this AVP/dopamine mechanism in the septum (or elsewhere) regulates sex differences
970 450 adolescent social behaviors through sex-specific modulation of social motivation.
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008

451 452 **5. Conclusions**

453 The present findings demonstrate that AVP plays a critical role in sex differences in adolescent
454 social reinforcement. This adds to the growing list of social behaviors that are influenced by
455 AVP during adolescence (e.g., social play, social recognition, 50 kHz USVs, huddling)
456 [17,19,28,80]. Furthermore, it supports the hypothesis that AVP influences adolescent social
457 behaviors, in part, by modulating the reinforcement/reward value of social stimuli. AVP has also
458 been implicated in several neurodevelopmental disorders that impact social behavior [8,9,81–
459 87]. Hence, understanding the neurobiology through which AVP influences social development
460 is critical for our understanding of normative and pathological development, both of which
461 exhibit striking sex differences in humans [1–3,56,88,89].

1009
1010
1011
1012
1013 462

1014 463 **Acknowledgements**

1015 464 The authors thank the University at Buffalo Laboratory Animal Facility personnel for providing
1016
1017 465 excellent care to the animals used in these studies.
1018
1019 466
1020
1021 467 **Funding**
1022

1023 468 This work was supported by the University at Buffalo Research Foundation (UBF) and the
1024
1025 469 National Science Foundation (NSF; IOS-1754878). UBF and NSF had no role in study design;
1026
1027 470 in the collection, analysis and interpretation of data; in the writing of the report; and in the
1028
1029 471 decision to submit the article for publication.
1030
1031 472
1032
1033 473 **Declarations of Interest**
1034
1035 474 None
1036
1037 475
1038
1039 476 **References**
1040

1041 477 [1] E. Fombonne, Epidemiology of pervasive developmental disorders, *Pediatr. Res.* 65
1042 478 (2009) 591–598. doi:10.1203/PDR.0b013e31819e7203.
1043 479 [2] J.M. Goldstein, S. Cherkerzian, M.T. Tsuang, T.L. Petryshen, Sex differences in the
1044 480 genetic risk for schizophrenia: history of the evidence for sex-specific and sex-
1045 481 dependent effects, *Am. J. Med. Genet. B Neuropsychiatr. Genet.* 162B (2013) 698–710.
1046 482 doi:10.1002/ajmg.b.32159.
1047 483 [3] H. Loke, V. Harley, J. Lee, Biological factors underlying sex differences in neurological
1048 484 disorders, *Int. J. Biochem. Cell Biol.* 65 (2015) 139–150.
1049 485 doi:10.1016/j.biocel.2015.05.024.
1050 486 [4] M.M. McCarthy, A.P. Arnold, Reframing sexual differentiation of the brain, *Nat.*
1051 487 *Neurosci.* 14 (2011) 677–683. doi:10.1038/nn.2834.
1052 488 [5] A.P. Arnold, A general theory of sexual differentiation, *J. Neurosci. Res.* 95 (2017) 291–
1053 489 300. doi:10.1002/jnr.23884.
1054 490 [6] M. Heinrichs, B. von Dawans, G. Domes, Oxytocin, vasopressin, and human social
1055 491 behavior, *Front. Neuroendocrinol.* 30 (2009) 548–557.
1056 492 doi:10.1016/j.yfrne.2009.05.005.
1057 493 [7] A. Meyer-Lindenberg, G. Domes, P. Kirsch, M. Heinrichs, Oxytocin and vasopressin in
1058 494 the human brain: social neuropeptides for translational medicine, *Nat. Rev. Neurosci.*
1059 495 12 (2011) 524–538. doi:10.1038/nrn3044.
1060
1061
1062
1063
1064

1065
1066
1067
1068 [8] L.H. Rubin, C.S. Carter, J.R. Bishop, H. Pournajafi-Nazarloo, L.L. Drogos, S.K. Hill, A.C.
1069 Ruocco, S.K. Keedy, J.L. Reilly, M.S. Keshavan, G.D. Pearlson, C.A. Tamminga, E.S.
1070 Gershon, J.A. Sweeney, Reduced levels of vasopressin and reduced behavioral
1071 modulation of oxytocin in psychotic disorders, *Schizophr. Bull.* 40 (2014) 1374–1384.
1072 doi:10.1093/schbul/sbu027.
1073 [9] L.H. Rubin, H.J. Wehring, H. Demyanovich, C. Sue Carter, H. Pournajafi-Nazarloo, S.M.
1074 Feldman, A.K. Earl, S. August, J.M. Gold, D.L. Kelly, Peripheral oxytocin and vasopressin
1075 are associated with clinical symptom severity and cognitive functioning in midlife
1076 women with chronic schizophrenia, *Schizophr. Res.* 195 (2018) 409–411.
1077 doi:10.1016/j.schres.2017.09.041.
1078 [10] O.J. Bosch, I.D. Neumann, Both oxytocin and vasopressin are mediators of maternal
1079 care and aggression in rodents: from central release to sites of action, *Horm. Behav.* 61
1080 (2012) 293–303. doi:10.1016/j.yhbeh.2011.11.002.
1081 [11] A.M. Kelly, J.L. Goodson, Social functions of individual vasopressin-oxytocin cell groups
1082 in vertebrates: what do we really know?, *Front. Neuroendocrinol.* 35 (2014) 512–529.
1083 doi:10.1016/j.yfrne.2014.04.005.
1084 [12] H.K. Caldwell, H.E. Albers, Oxytocin, Vasopressin, and the Motivational Forces that
1085 Drive Social Behaviors, *Curr. Top. Behav. Neurosci.* 27 (2016) 51–103.
1086 doi:10.1007/7854_2015_390.
1087 [13] R. Bredewold, A.H. Veenema, Sex differences in the regulation of social and anxiety-
1088 related behaviors: insights from vasopressin and oxytocin brain systems, *Curr. Opin.*
1089 *Neurobiol.* 49 (2018) 132–140. doi:10.1016/j.conb.2018.02.011.
1090 [14] C.F. Ferris, R.H.M. Jr, G. Koppel, K.W. Perry, R.W. Fuller, Y. Delville,
1091 Vasopressin/Serotonin Interactions in the Anterior Hypothalamus Control Aggressive
1092 Behavior in Golden Hamsters, *J. Neurosci.* 17 (1997) 4331–4340.
1093 [15] S.J. Gutzler, M. Karom, W.D. Erwin, H.E. Albers, Arginine-vasopressin and the
1094 regulation of aggression in female Syrian hamsters (*Mesocricetus auratus*), *Eur. J.*
1095 *Neurosci.* 31 (2010) 1655–1663. doi:10.1111/j.1460-9568.2010.07190.x.
1096 [16] J.I. Terranova, Z. Song, T.E. Larkin, N. Hardcastle, A. Norville, A. Riaz, H.E. Albers,
1097 Serotonin and arginine-vasopressin mediate sex differences in the regulation of
1098 dominance and aggression by the social brain, *Proc. Natl. Acad. Sci. U.S.A.* 113 (2016)
1099 13233–13238. doi:10.1073/pnas.1610446113.
1100 [17] A.H. Veenema, R. Bredewold, G.J. De Vries, Sex-specific modulation of juvenile social
1101 play by vasopressin, *Psychoneuroendocrinology.* 38 (2013) 2554–2561.
1102 doi:10.1016/j.psyneuen.2013.06.002.
1103 [18] R. Bredewold, C.J.W. Smith, K.M. Dumais, A.H. Veenema, Sex-specific modulation of
1104 juvenile social play behavior by vasopressin and oxytocin depends on social context,
1105 *Front. Behav. Neurosci.* 8 (2014) 216. doi:10.3389/fnbeh.2014.00216.
1106 [19] A.H. Veenema, R. Bredewold, G.J. De Vries, Vasopressin regulates social recognition in
1107 juvenile and adult rats of both sexes, but in sex- and age-specific ways, *Horm. Behav.*
1108 61 (2012) 50–56. doi:10.1016/j.yhbeh.2011.10.002.
1109 [20] M.J. Paul, J.I. Terranova, C.K. Probst, E.K. Murray, N.I. Ismail, G.J. De Vries, Sexually
1110 dimorphic role for vasopressin in the development of social play, *Front. Behav.*
1111 *Neurosci.* 8 (2014) 58. doi:10.3389/fnbeh.2014.00058.
1112 [21] H. Schmale, D. Richter, Single base deletion in the vasopressin gene is the cause of
1113 diabetes insipidus in Brattleboro rats, *Nature.* 308 (1984) 705–709.
1114
1115
1116
1117
1118
1119
1120

1121
1122
1123
1124 [22] H. Valtin, H.A. Schroeder, Familial hypothalamic diabetes insipidus in rats (Brattleboro
1125 strain), *Am. J. Physiol.* 206 (1964) 425–430.
1126
1127 [23] M. Engelmann, R. Landgraf, Microdialysis administration of vasopressin into the
1128 septum improves social recognition in Brattleboro rats, *Physiol. Behav.* 55 (1994)
1129 145–149.
1130
1131 [24] D. Feifel, S. Mexal, G. Melendez, P.Y.T. Liu, J.R. Goldenberg, P.D. Shilling, The brattleboro
1132 rat displays a natural deficit in social discrimination that is restored by clozapine and
1133 a neuropeptidyl analog, *Neuropsychopharmacology.* 34 (2009) 2011–2018.
1134 doi:10.1038/npp.2009.15.
1135
1136 [25] R.E. Lin, L. Ambler, E.N. Billingslea, J. Suh, S. Batheja, V. Tatard-Leitman, R.E.
1137 Featherstone, S.J. Siegel, Electroencephalographic and early communicative
1138 abnormalities in Brattleboro rats, *Physiol. Rep.* 1 (2013) e00100.
1139 doi:10.1002/phy2.100.
1140
1141 [26] J. Varga, B. Klausz, Á. Domokos, S. Kálmán, M. Pákáski, S. Szűcs, D. Garab, Á. Zvara, L.
1142 Puskás, J. Kálmán, J. Tímár, G. Bagdy, D. Zelena, Increase in Alzheimer's related
1143 markers precedes memory disturbances: studies in vasopressin-deficient Brattleboro
1144 rat, *Brain Res. Bull.* 100 (2014) 6–13. doi:10.1016/j.brainresbull.2013.10.010.
1145
1146 [27] A. Fodor, K.B. Kovács, D. Balázsfi, B. Klausz, O. Pintér, K. Demeter, N. Daviu, C. Rabasa,
1147 D. Rotllant, R. Nadal, D. Zelena, Depressive- and anxiety-like behaviors and stress-
1148 related neuronal activation in vasopressin-deficient female Brattleboro rats, *Physiol.*
1149 *Behav.* 158 (2016) 100–111. doi:10.1016/j.physbeh.2016.02.041.
1150
1151 [28] M.J. Paul, N.V. Peters, M.K. Holder, A.M. Kim, J. Whylings, J.I. Terranova, G.J. de Vries,
1152 Atypical social development in vasopressin-deficient Brattleboro rats, *ENeuro.* 3
1153 (2016). doi:10.1523/ENEURO.0150-15.2016.
1154
1155 [29] K.C. Schatz, R.F. Kyne, S.L. Parmeter, M.J. Paul, Investigation of social, affective, and
1156 locomotor behavior of adolescent Brattleboro rats reveals a link between
1157 vasopressin's actions on arousal and social behavior, *Horm. Behav.* 106 (2018) 1–9.
1158 doi:10.1016/j.yhbeh.2018.08.015.
1159
1160 [30] L. Martin, H. Sample, M. Gregg, C. Wood, Validation of operant social motivation
1161 paradigms using BTBR T+tf/J and C57BL/6J inbred mouse strains, *Brain Behav.* 4
1162 (2014) 754–764. doi:10.1002/brb3.273.
1163
1164 [31] C.D. Martin, H.M. Bool, A.M. George, K.A. Carr, L.H. Epstein, L.W. Hawk, J.B. Richards,
1165 Social reinforcement as alternative to sucrose reinforcement is increased by nicotine
1166 and methylphenidate in male Fischer-344 rats, *Psychopharmacology (Berl.).* 235
1167 (2018) 1981–1985. doi:10.1007/s00213-018-4896-6.
1168
1169 [32] E.J.M. Achterberg, L.W.M. van Kerkhof, M. Servadio, M.M.H. van Swieten, D.J. Houwing,
1170 M. Aalderink, N.V. Driel, V. Trezza, L.J.M.J. Vanderschuren, Contrasting roles of
1171 dopamine and noradrenaline in the motivational properties of social play behavior in
1172 rats, *Neuropsychopharmacology.* 41 (2016) 858–868. doi:10.1038/npp.2015.212.
1173
1174 [33] J.M. Borland, K.J. Frantz, L.M. Aiani, K.N. Grantham, Z. Song, H.E. Albers, A novel
1175 operant task to assess social reward and motivation in rodents, *J. Neurosci. Methods.*
1176 287 (2017) 80–88. doi:10.1016/j.jneumeth.2017.06.003.
1177
1178 [34] M.D. Brot, I.L. Bernstein, D.M. Dorsa, Vasopressin deficiency abolishes a sexually
1179 dimorphic behavior in Brattleboro rats, *Physiol. Behav.* 51 (1992) 839–843.
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2

1177
1178
1179
1180 586 [35] A.M. Gancarz, M.A. Robble, M.A. Kausch, D.R. Lloyd, J.B. Richards, Association between
1181 587 locomotor response to novelty and light reinforcement: Sensory reinforcement as a
1182 588 rodent model of sensation seeking, *Behav. Brain Res.* 230 (2012) 380–388.
1183 589 [36] D.R. Lloyd, A.M. Gancarz, L. Ashrafioun, M.A. Kausch, J.B. Richards, Habituation and the
1184 590 reinforcing effectiveness of visual stimuli, *Behav. Processes.* 91 (2012) 184–191.
1185 591 doi:10.1016/j.beproc.2012.07.007.
1186 592 [37] R. Eisenberger, Explanation of rewards that do not reduce tissue needs, *Psychol. Bull.*
1187 593 77 (1972) 319–339.
1188 594 [38] C.S. Vetter-O'Hagen, L.P. Spear, Hormonal and physical markers of puberty and their
1189 595 relationship to adolescent-typical novelty-directed behavior, *Dev. Psychobiol.* 54
1190 596 (2012) 523–535. doi:10.1002/dev.20610.
1191 597 [39] D.M. Dorsa, L. Bottemiller, Age-related changes of vasopressin content of
1192 598 microdissected areas of the rat brain, *Brain Res.* 242 (1982) 151–156.
1193 599 [40] M. Olioff, J. Stewart, Sex differences in the play behavior of prepubescent rats, *Physiol.*
1194 600 *Behav.* 20 (1978) 113–115. doi:10.1016/0031-9384(78)90060-4.
1195 601 [41] S.M. Pellis, E.F. Field, L.K. Smith, V.C. Pellis, Multiple differences in the play fighting of
1196 602 male and female rats. Implications for the causes and functions of play, *Neurosci.*
1197 603 *Biobehav. Rev.* 21 (1997) 105–120.
1198 604 [42] E.I. Varlinskaya, E.M. Truxell, L.P. Spear, Ethanol intake under social circumstances or
1199 605 alone in sprague-dawley rats: impact of age, sex, social activity, and social anxiety-like
1200 606 behavior, *Alcohol. Clin. Exp. Res.* 39 (2015) 117–125. doi:10.1111/acer.12604.
1201 607 [43] D.H. Thor, W.R. Holloway, Sex and social play in juvenile rats (*Rattus norvegicus*), *J.*
1202 608 *Comp. Psychol.* 98 (1984) 276–284. doi:10.1037/0735-7036.98.3.276.
1203 609 [44] K.J. Argue, M.M. McCarthy, Characterization of juvenile play in rats: importance of sex
1204 610 of self and sex of partner, *Biol. Sex Differ.* 6 (2015) 16. doi:10.1186/s13293-015-0034-
1205 611 x.
1206 612 [45] L.A. Douglas, E.I. Varlinskaya, L.P. Spear, Rewarding properties of social interactions in
1207 613 adolescent and adult male and female rats: impact of social versus isolate housing of
1208 614 subjects and partners, *Dev. Psychobiol.* 45 (2004) 153–162. doi:10.1002/dev.20025.
1209 615 [46] J.R. Yates, J.S. Beckmann, A.C. Meyer, M.T. Bardo, Concurrent choice for social
1210 616 interaction and amphetamine using conditioned place preference in rats: effects of age
1211 617 and housing condition, *Drug Alcohol Depend.* 129 (2013) 240–246.
1212 618 doi:10.1016/j.drugalcdep.2013.02.024.
1213 619 [47] V.G. Weiss, R.S. Hofford, J.R. Yates, F.C. Jennings, M.T. Bardo, Sex differences in
1214 620 monoamines following amphetamine and social reward in adolescent rats, *Exp. Clin.*
1215 621 *Psychopharmacol.* 23 (2015) 197–205. doi:10.1037/ph0000026.
1216 622 [48] M.M. Lim, L.J. Young, Neuropeptidergic regulation of affiliative behavior and social
1217 623 bonding in animals, *Horm. Behav.* 50 (2006) 506–517.
1218 624 doi:10.1016/j.yhbeh.2006.06.028.
1219 625 [49] R. Dantzer, G.F. Koob, R.M. Bluthé, M. Le Moal, Septal vasopressin modulates social
1220 626 memory in male rats, *Brain Res.* 457 (1988) 143–147.
1221 627 [50] I.F. Bielsky, S.-B. Hu, X. Ren, E.F. Terwilliger, L.J. Young, The V1a vasopressin receptor
1222 628 is necessary and sufficient for normal social recognition: a gene replacement study,
1223 629 *Neuron.* 47 (2005) 503–513. doi:10.1016/j.neuron.2005.06.031.
1224
1225
1226
1227
1228
1229
1230
1231
1232

1233
1234
1235
1236 630 [51] J.-D. Li, W.-P. Hu, Q.-Y. Zhou, The circadian output signals from the suprachiasmatic
1237 631 nuclei, *Prog. Brain Res.* 199 (2012) 119–127. doi:10.1016/B978-0-444-59427-
1238 632 3.00028-9.

1239 633 [52] F. van Haaren, A. van Hest, R.P. Heinsbroek, Behavioral differences between male and
1240 634 female rats: effects of gonadal hormones on learning and memory, *Neurosci. Biobehav.
1241 635 Rev.* 14 (1990) 23–33.

1242 636 [53] C. Dalla, T.J. Shors, Sex differences in learning processes of classical and operant
1243 637 conditioning, *Physiol. Behav.* 97 (2009) 229–238. doi:10.1016/j.physbeh.2009.02.035.

1244 638 [54] A. Sahgal, A critique of the vasopressin-memory hypothesis, *Psychopharmacology
1245 639 (Berl.).* 83 (1984) 215–228.

1246 640 [55] M. Engelmann, Vasopressin in the septum: not important versus causally involved in
1247 641 learning and memory--two faces of the same coin?, *Prog. Brain Res.* 170 (2008) 389–
1248 642 395. doi:10.1016/S0079-6123(08)00432-9.

1249 643 [56] D.M. Walker, M.R. Bell, C. Flores, J.M. Gulley, J. Willing, M.J. Paul, Adolescence and
1250 644 Reward: Making Sense of Neural and Behavioral Changes Amid the Chaos, *J. Neurosci.*
1251 645 37 (2017) 10855–10866. doi:10.1523/JNEUROSCI.1834-17.2017.

1252 646 [57] J.M. Juraska, J. Willing, Pubertal onset as a critical transition for neural development
1253 647 and cognition, *Brain Res.* 1654 (2017) 87–94. doi:10.1016/j.brainres.2016.04.012.

1254 648 [58] J. Willing, C.M. Drzewiecki, B.A. Cuenod, L.R. Cortes, J.M. Juraska, A role for puberty in
1255 649 water maze performance in male and female rats, *Behav. Neurosci.* 130 (2016) 422–
1256 650 427. doi:10.1037/bne0000145.

1257 651 [59] D.J. Piekarski, J.R. Boivin, L. Wilbrecht, Ovarian Hormones Organize the Maturation of
1258 652 Inhibitory Neurotransmission in the Frontal Cortex at Puberty Onset in Female Mice,
1259 653 *Curr. Biol.* 27 (2017) 1735–1745.e3. doi:10.1016/j.cub.2017.05.027.

1260 654 [60] P. Szot, D.M. Dorsa, Differential timing and sexual dimorphism in the expression of the
1261 655 vasopressin gene in the developing rat brain, *Brain Res. Dev. Brain Res.* 73 (1993)
1262 656 177–183.

1263 657 [61] G.J. De Vries, R.M. Buijs, D.F. Swaab, Ontogeny of the vasopressinergic neurons of the
1264 658 suprachiasmatic nucleus and their extrahypothalamic projections in the rat brain--
1265 659 presence of a sex difference in the lateral septum, *Brain Res.* 218 (1981) 67–78.

1266 660 [62] J.D. Jentsch, P.A. Arguello, L.A. Anzivino, Null mutation of the arginine-vasopressin
1267 661 gene in rats slows attentional engagement and facilitates response accuracy in a
1268 662 lateralized reaction time task, *Neuropsychopharmacology.* 28 (2003) 1597–1605.
1269 663 doi:10.1038/sj.npp.1300198.

1270 664 [63] J.L. Dawson, Y.M. Cheung, R.T. Lau, Developmental effects of neonatal sex hormones on
1271 665 spatial and activity skills in the white rat, *Biol. Psychol.* 3 (1975) 213–229.

1272 666 [64] W.W. Beatty, R.G. Fessler, Ontogeny of sex differences in open-field behavior and
1273 667 sensitivity to electric shock in the rat, *Physiol. Behav.* 16 (1976) 413–417.

1274 668 [65] A.K. Slob, H. Bogers, M.A. van Stolk, Effects of gonadectomy and exogenous gonadal
1275 669 steroids on sex differences in open field behaviour of adult rats, *Behav. Brain Res.* 2
1276 670 (1981) 347–362.

1277 671 [66] J.F. Hyde, T.P. Jerussi, Sexual dimorphism in rats with respect to locomotor activity
1278 672 and circling behavior, *Pharmacol. Biochem. Behav.* 18 (1983) 725–729.

1279 673 [67] G.J. De Vries, G.C. Panzica, Sexual differentiation of central vasopressin and vasotocin
1280 674 systems in vertebrates: different mechanisms, similar endpoints, *Neuroscience.* 138
1281 675 (2006) 947–955. doi:10.1016/j.neuroscience.2005.07.050.

1282
1283
1284
1285
1286
1287
1288

1289
1290
1291
1292 676 [68] G.J. De Vries, C.T. Fields, N.V. Peters, J. Whylings, M.J. Paul, Sensitive periods for
1293 677 hormonal programming of the brain, *Curr. Top. Behav. Neurosci.* 16 (2014) 79–108.
1294 678 doi:10.1007/7854_2014_286.

1295 679 [69] G.J. De Vries, R.M. Buijs, A.A. Sluiter, Gonadal hormone actions on the morphology of
1296 680 the vasopressinergic innervation of the adult rat brain, *Brain Res.* 298 (1984) 141–
1297 681 145.

1298 682 [70] G.J. De Vries, Z. Wang, N.A. Bullock, S. Numan, Sex differences in the effects of
1299 683 testosterone and its metabolites on vasopressin messenger RNA levels in the bed
1300 684 nucleus of the stria terminalis of rats, *J. Neurosci.* 14 (1994) 1789–1794.

1301 685 [71] G.J. De Vries, E.F. Rissman, R.B. Simerly, L.-Y. Yang, E.M. Scordalakes, C.J. Auger, A.
1302 686 Swain, R. Lovell-Badge, P.S. Burgoyne, A.P. Arnold, A model system for study of sex
1303 687 chromosome effects on sexually dimorphic neural and behavioral traits, *J. Neurosci.* 22
1304 688 (2002) 9005–9014.

1305 689 [72] M.A. Miller, G.J. De Vries, H.A. al-Shamma, D.M. Dorsa, Decline of vasopressin
1306 690 immunoreactivity and mRNA levels in the bed nucleus of the stria terminalis following
1307 691 castration, *J. Neurosci.* 12 (1992) 2881–2887.

1308 692 [73] Z. Wang, N.A. Bullock, G.J. De Vries, Sexual differentiation of vasopressin projections of
1309 693 the bed nucleus of the stria terminals and medial amygdaloid nucleus in rats,
1310 694 *Endocrinology.* 132 (1993) 2299–2306. doi:10.1210/endo.132.6.8504734.

1311 695 [74] A. Petrus, Chemosignals and hormones in the neural control of mammalian sexual
1312 696 behavior, *Front. Neuroendocrinol.* 34 (2013) 255–267.
1313 697 doi:10.1016/j.yfrne.2013.07.007.

1314 698 [75] N. Rigney, J. Whylings, M. Mieda, G. de Vries, A. Petrus, Sexually Dimorphic
1315 699 Vasopressin Cells Modulate Social Investigation and Communication in Sex-Specific
1316 700 Ways, *ENeuro.* 6 (2019). doi:10.1523/ENEURO.0415-18.2019.

1317 701 [76] S.W. Newman, The medial extended amygdala in male reproductive behavior. A node
1318 702 in the mammalian social behavior network, *Ann. NY Acad. Sci.* 877 (1999) 242–257.

1319 703 [77] J.L. Goodson, The vertebrate social behavior network: evolutionary themes and
1320 704 variations, *Horm. Behav.* 48 (2005) 11–22. doi:10.1016/j.yhbeh.2005.02.003.

1321 705 [78] L.A. O'Connell, H.A. Hofmann, The vertebrate mesolimbic reward system and social
1322 706 behavior network: a comparative synthesis, *J. Comp. Neurol.* 519 (2011) 3599–3639.
1323 707 doi:10.1002/cne.22735.

1324 708 [79] R. Bredewold, N.F. Nascimento, G.S. Ro, S.E. Cieslewski, C.J. Reppucci, A.H. Veenema,
1325 709 Involvement of dopamine, but not norepinephrine, in the sex-specific regulation of
1326 710 juvenile socially rewarding behavior by vasopressin, *Neuropsychopharmacology.* 43
1327 711 (2018) 2109–2117. doi:10.1038/s41386-018-0100-2.

1328 712 [80] S.-Y. Cheng, Y. Delville, Vasopressin facilitates play fighting in juvenile golden
1329 713 hamsters, *Physiol. Behav.* 98 (2009) 242–246. doi:10.1016/j.physbeh.2009.04.019.

1330 714 [81] S.-J. Kim, L.J. Young, D. Gonen, J. Veenstra-VanderWeele, R. Courchesne, E. Courchesne,
1331 715 C. Lord, B.L. Leventhal, E.H. Cook, T.R. Insel, Transmission disequilibrium testing of
1332 716 arginine vasopressin receptor 1A (AVPR1A) polymorphisms in autism, *Mol.*
1333 717 *Psychiatry.* 7 (2002) 503–507. doi:10.1038/sj.mp.4001125.

1334 718 [82] T.H. Wassink, J. Piven, V.J. Vieland, J. Pietila, R.J. Goedken, S.E. Folstein, V.C. Sheffield,
1335 719 Examination of AVPR1a as an autism susceptibility gene, *Mol. Psychiatry.* 9 (2004)
1336 720 968–972. doi:10.1038/sj.mp.4001503.

1340
1341
1342
1343
1344

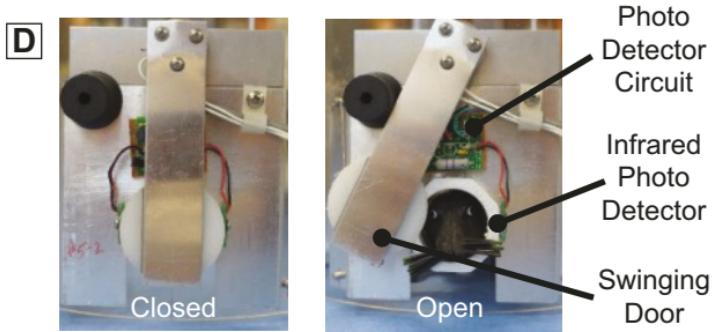
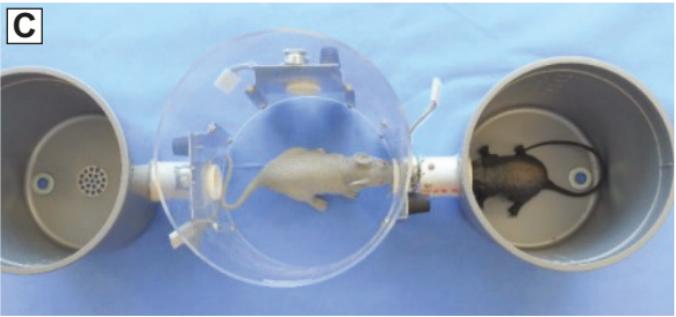
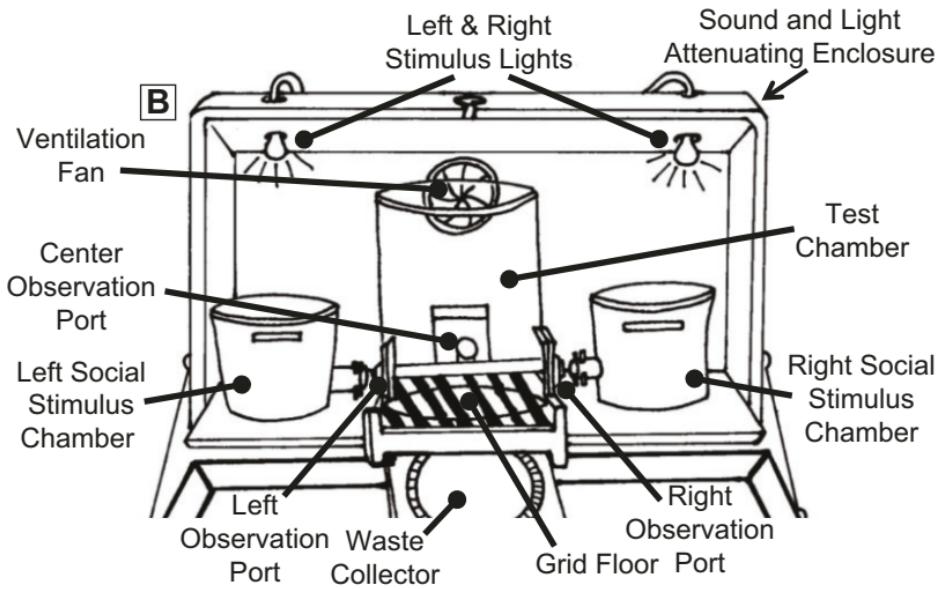
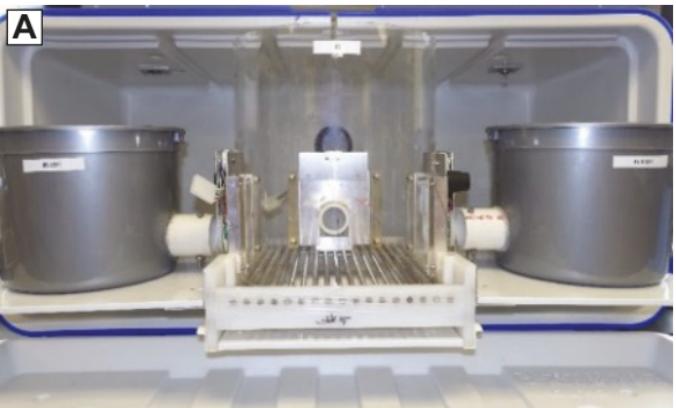
1345
1346
1347
1348 721 [83] N. Yirmiya, C. Rosenberg, S. Levi, S. Salomon, C. Shulman, L. Nemanov, C. Dina, R.P.
1349 722 Ebstein, Association between the arginine vasopressin 1a receptor (AVPR1a) gene and
1350 723 autism in a family-based study: mediation by socialization skills, *Mol. Psychiatry*. 11
1351 724 (2006) 488–494. doi:10.1038/sj.mp.4001812.
1352 725 [84] D. van West, J. Del-Favero, D. Deboutte, C. Van Broeckhoven, S. Claes, Arginine
1353 726 vasopressin receptor gene-based single-nucleotide polymorphism analysis in
1354 727 attention deficit hyperactivity disorder, *Psychiatr. Genet.* 19 (2009) 102–103.
1355 728 doi:10.1097/YPG.0b013e32832a0b2b.
1356 729 [85] O. Teltsh, K. Kanyas-Sarner, A. Rigbi, L. Greenbaum, B. Lerer, Y. Kohn, Oxytocin and
1357 730 vasopressin genes are significantly associated with schizophrenia in a large Arab-
1358 731 Israeli pedigree, *Int. J. Neuropsychopharmacol.* 15 (2012) 309–319.
1359 732 doi:10.1017/S1461145711001374.
1360 733 [86] A. Jobst, S. Dehning, S. Ruf, T. Notz, A. Buchheim, K. Henning-Fast, D. Meißner, S. Meyer,
1361 734 B. Bondy, N. Müller, P. Zill, Oxytocin and vasopressin levels are decreased in the
1362 735 plasma of male schizophrenia patients, *Acta Neuropsychiatr.* 26 (2014) 347–355.
1363 736 doi:10.1017/neu.2014.20.
1364 737 [87] X.-J. Shou, X.-J. Xu, X.-Z. Zeng, Y. Liu, H.-S. Yuan, Y. Xing, M.-X. Jia, Q.-Y. Wei, S.-P. Han, R.
1365 738 Zhang, J.-S. Han, A Volumetric and Functional Connectivity MRI Study of Brain
1366 739 Arginine-Vasopressin Pathways in Autistic Children, *Neurosci. Bull.* 33 (2017) 130–
1368 740 142. doi:10.1007/s12264-017-0109-2.
1369 741 [88] K.M. Abel, R. Drake, J.M. Goldstein, Sex differences in schizophrenia, *Int. Rev.
1370 742 Psychiatry*. 22 (2010) 417–428. doi:10.3109/09540261.2010.515205.
1371 743 [89] M. Hines, Sex-related variation in human behavior and the brain, *Trends Cogn. Sci.
1372 744 (Regul. Ed.)*. 14 (2010) 448–456. doi:10.1016/j.tics.2010.07.005.
1373 745
1374
1375 746
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400

1401
1402
1403 747 **Figure Legends**
1404
1405 748 Figure 1. Pictures and illustration of the operant testing apparatus from the (A,B) side and (C)
1406
1407 749 top view. (D) Observation port door that opens to the social stimulus or empty chamber.
1408
1409 750
1410
1411 751 Figure 2. The Brattleboro mutation eliminates the sex difference in social reinforcement. (A)
1412
1413 752 Mean (\pm s.e.) proportion of responses directed toward the social reinforcement port in wild type
1414
1415 753 rats (WT), heterozygous Brattleboro rats (HET), and homozygous Brattleboro rats (HOM). (B)
1416
1417 754 Mean (\pm s.e.) total responses directed toward the social reinforcement and unreinforced ports.
1418
1419 755 *Indicates significant sex difference within genotype (P<0.05, Fisher's PLSD).
1420
1421 756
1422
1423 757 Figure 3. Sex differences emerge in WT and HET rats, but not HOM rats, during the latter
1424
1425 758 stages of the social reinforcement training phase. Mean (\pm s.e.) proportion of responses
1426
1427 759 directed toward the social reinforcement port in WT, HET, and HOM rats on the (A) first training
1428
1429 760 session and (B-D) across all training sessions. Sample sizes for panels B-D: WT females = 6,
1430
1431 761 WT males = 8, HET females = 10, HET males = 16, HOM females = 9, HOM males = 10.
1432
1433 762 *Indicates significant sex difference within genotype (P<0.05, Fisher's PLSD). Abbreviations
1434
1435 763 defined in Figure 1.
1436
1437 764
1438
1439 765 Figure 4. Males show a greater preference than females for the light reinforcer, irrespective of
1440
1441 766 genotype. (A) Mean (\pm s.e.) proportion of responses directed toward the light reinforcement port.
1442
1443 767 (B) Mean (\pm s.e.) total responses directed toward the light reinforcement and unreinforced ports.
1444
1445 768 *Indicates significant sex difference within genotype (P<0.05, Fisher's PLSD). Inset of panel B
1446
1447 769 illustrates the main effect of Sex on total number of responses (P<0.05, ANOVA). Abbreviations
1448
1449 770 defined in Figure 1.
1450
1451 771
1452
1453
1454
1455
1456

1457
1458
1459 772 Figure 5. Acquisition data for light reinforcement training. Mean (\pm s.e.) proportion of responses
1460 773 directed toward the light reinforcement port in WT, HET, and HOM rats on the (A) first training
1461 774 session and (B-D) across all training sessions. Sample sizes for panels B-D: WT females = 6,
1462 775 WT males = 8, HET females = 13, HET males = 16, HOM females = 10, HOM males = 9.
1463
1464
1465
1466 776 *Indicates significant sex difference within genotype (P<0.05, Fisher's PLSD). #Indicates
1467 777 significant difference between HOM male rats and males of other genotypes (P<0.05, Fisher's
1468 PLSD). Abbreviations defined in Figure 1.
1469
1470
1471 778
1472
1473 779
1474
1475 780 Figure 6. Boxplot of mean daily water intake of rats genotyped as WT, HET, and HOM rats (see
1476 781 methods for genotyping details). The lower and upper ends of the boxes represent the first and
1477 782 third quartile range, respectively. Lines within the boxes represent the median. Whiskers
1478 783 represent the lowest and highest values within the group, excepting outliers. The single outlier
1479 784 is indicated by a shaded circle. Abbreviations defined in Figure 1.
1480
1481
1482
1483 785
1484
1485
1486
1487 786
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512

1513
 1514
 1515 787 Table 1. Lower and upper confidence intervals for proportion responding to social and light
 1516
 1517 788 reinforcers
 1518

Genotype	Sex	Social Responding		Light Responding	
		Lower CI	Upper CI	Lower CI	Upper CI
WT	Females	0.28	0.45	0.27	0.47
	Males	0.40*	0.61	0.42*	0.62
HET	Females	0.35*	0.44	0.31	0.49
	Males	0.38*	0.53	0.45*	0.56
HOM	Females	0.34*	0.57	0.32	0.41
	Males	0.38*	0.51	0.41*	0.54





1519 789 *Indicates significant preference for social or light reinforcer.
 1520
 1521
 1522
 1523
 1524
 1525
 1526
 1527
 1528
 1529
 1530
 1531
 1532
 1533
 1534 790
 1535 791
 1536 792
 1537
 1538
 1539
 1540
 1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565
 1566
 1567
 1568

1531 790
 1532 791
 1533 Supplemental Table. Outliers removed in each analysis.
 1534 792

Genotype	Sex	Social Reinforcement			Total Responses	Light Reinforcement			Total Responses		
		Social Responses				Light Responses					
		Training Session 1	All Training Sessions	Testing Phase		Training Session 1	All Training Sessions	Testing Phase			
WT	Females	0	0	0	0	0	0	0	0		
	Males	0	0	0	1	0	1	0	0		
HET	Females	0	4	0	1	1	1	0	1		
	Males	0	0	0	1	0	0	0	0		
HOM	Females	0	1	0	1	0	0	1	1		
	Males	0	0	0	0	1	2	0	0		

793

Figure 1

Figure 2

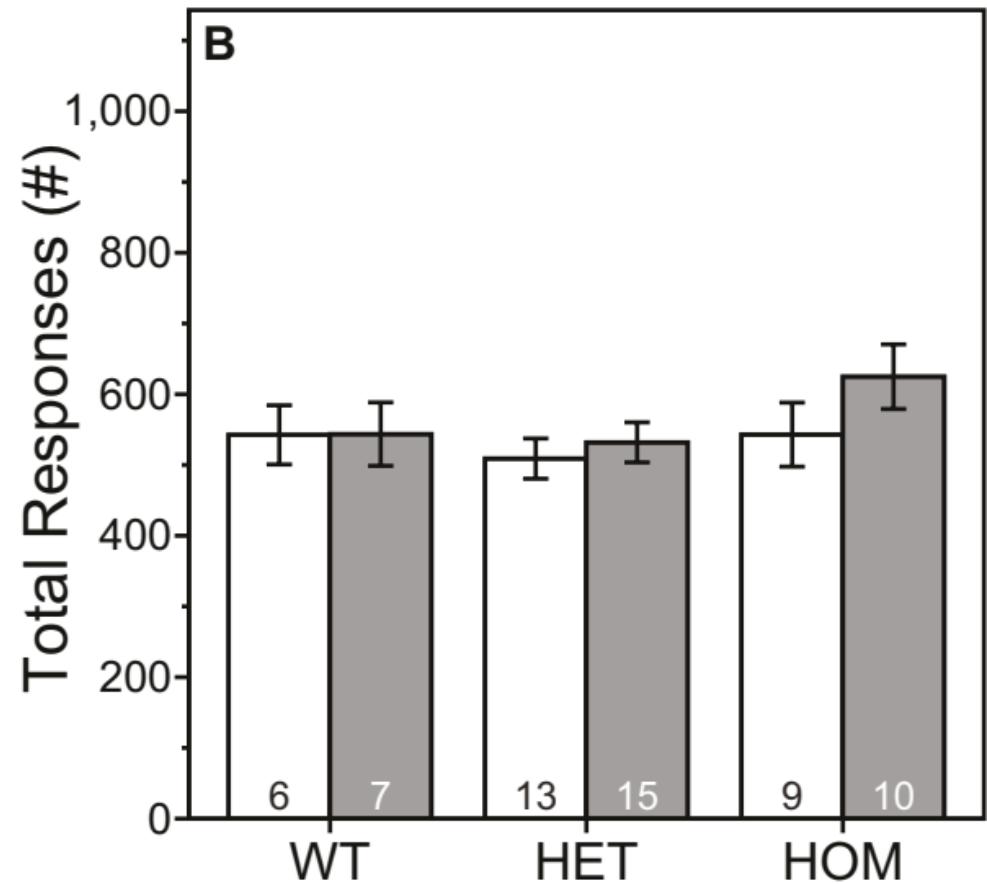
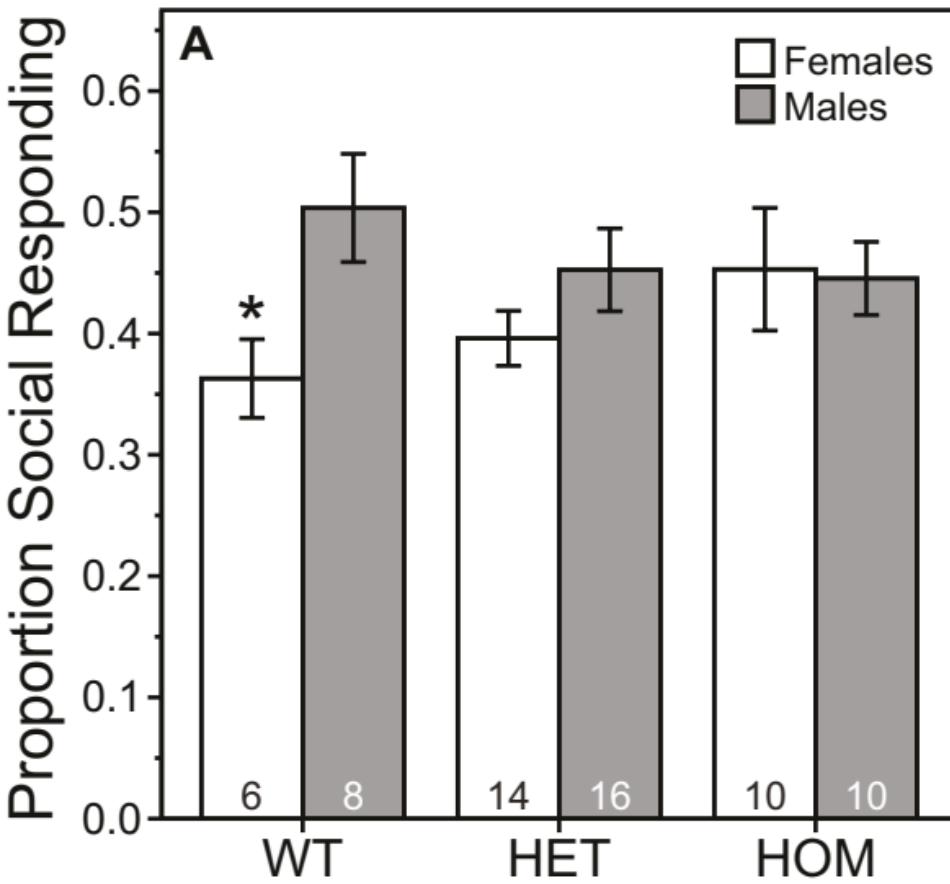
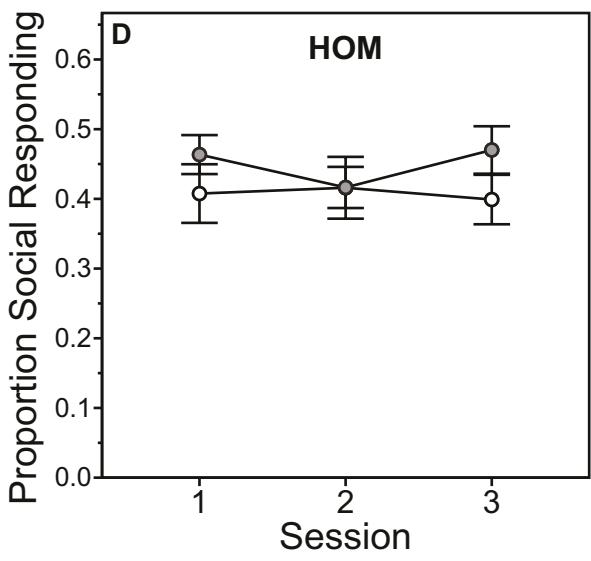
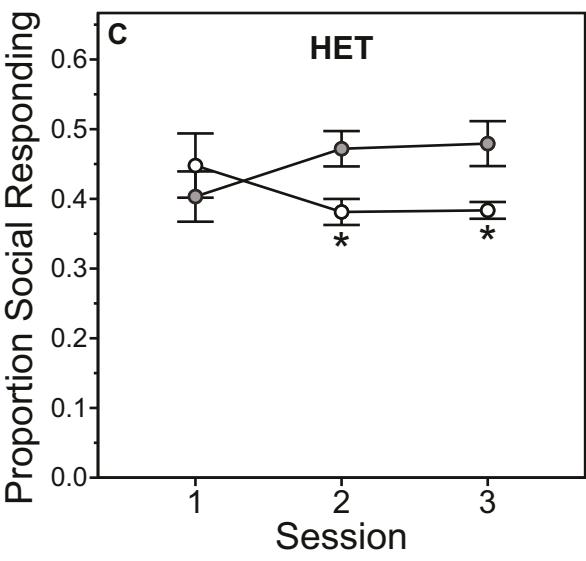
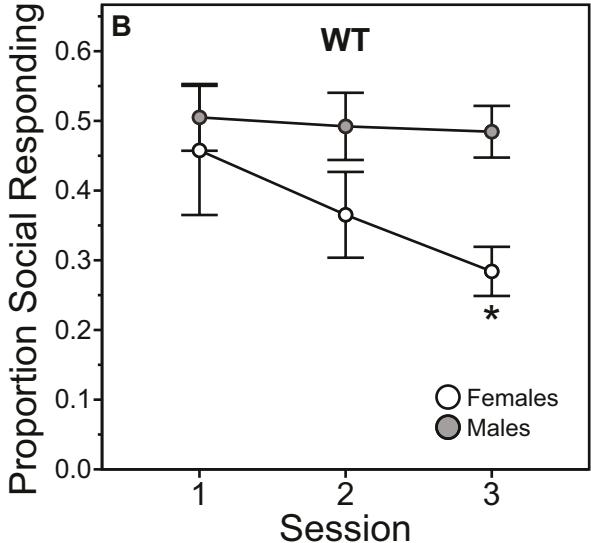
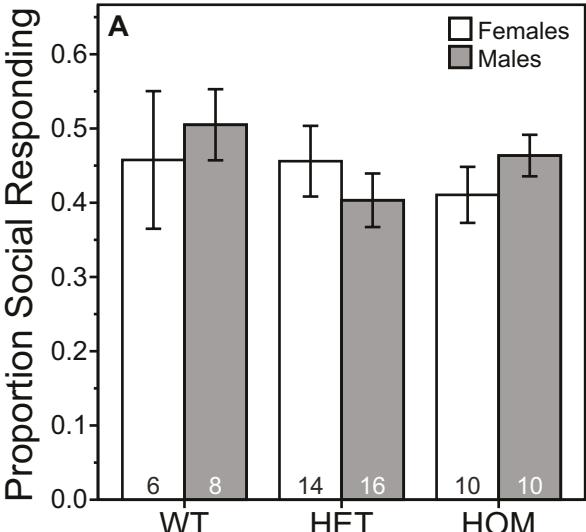







Figure 3

Figure 4

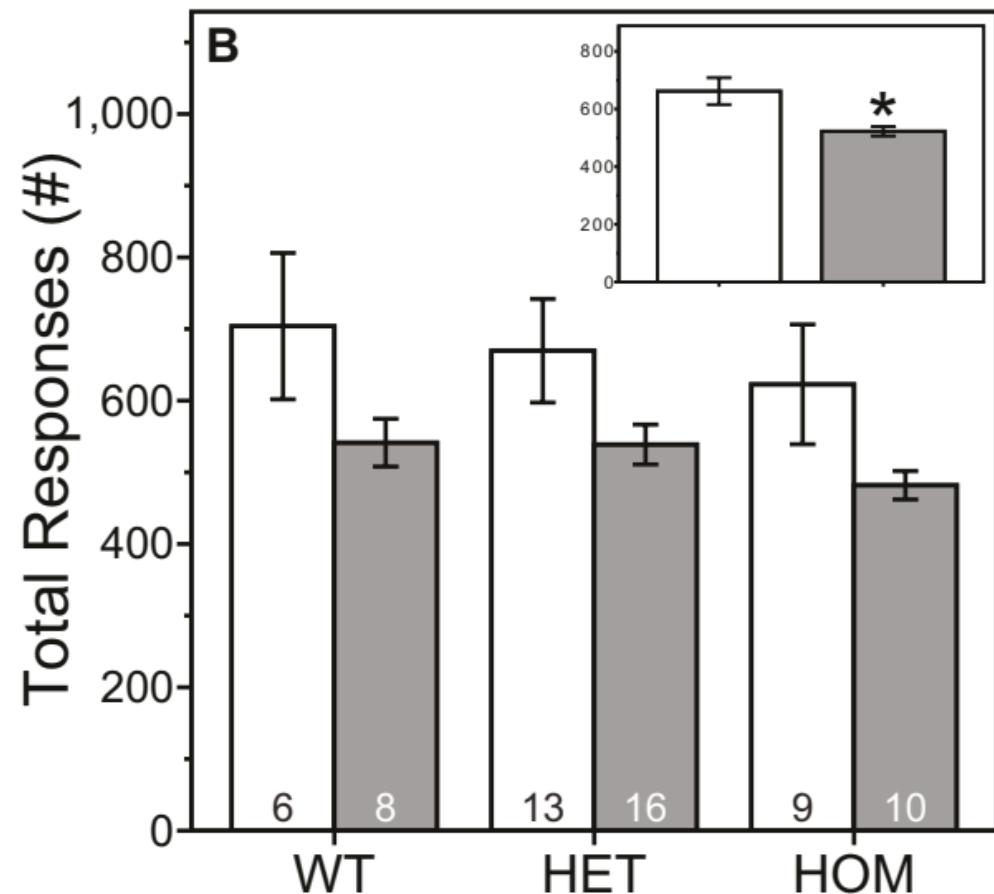
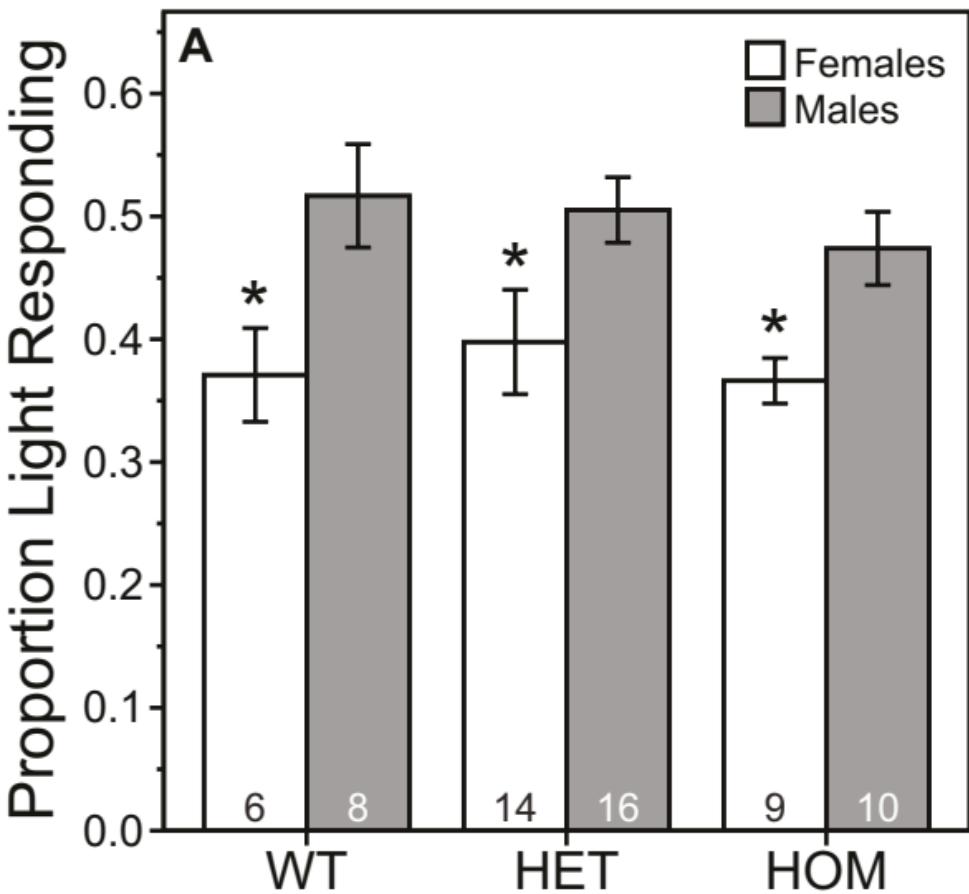
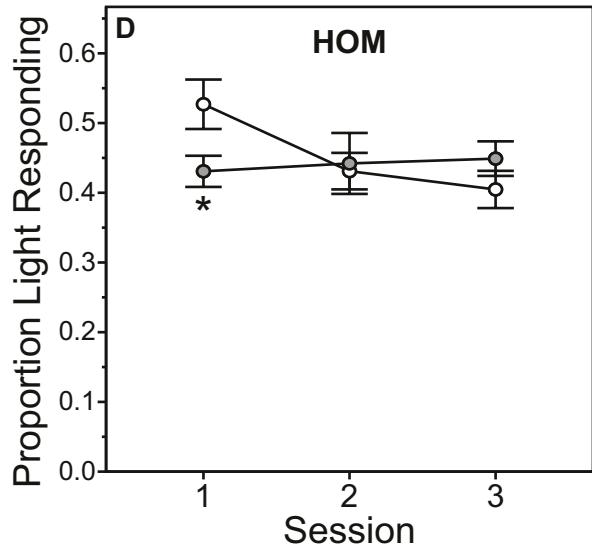
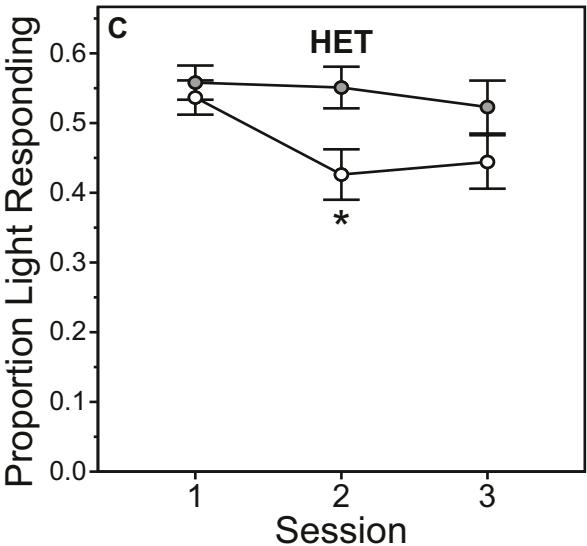
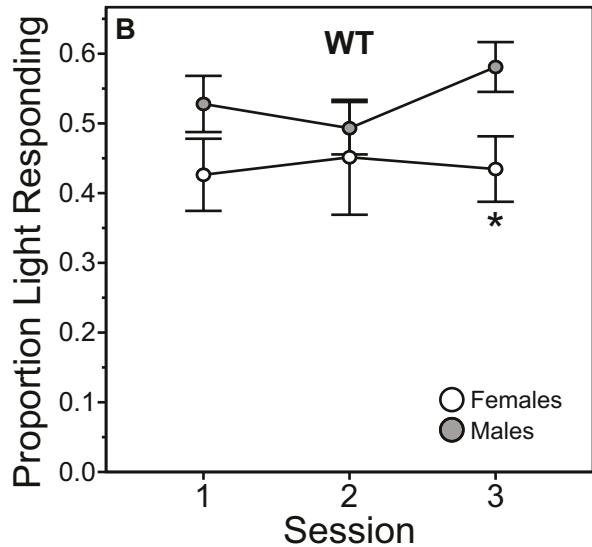
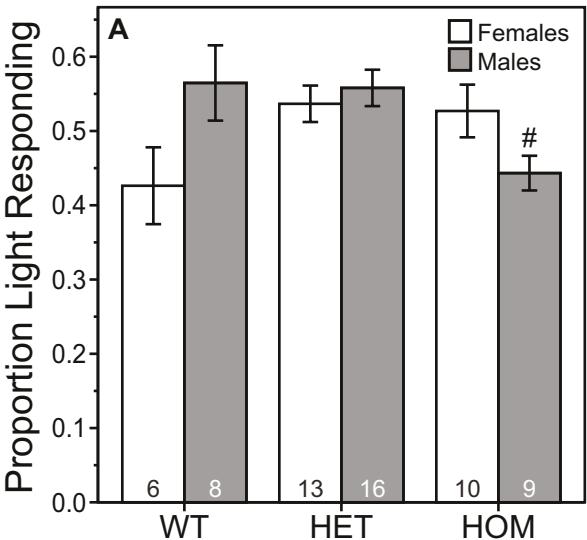
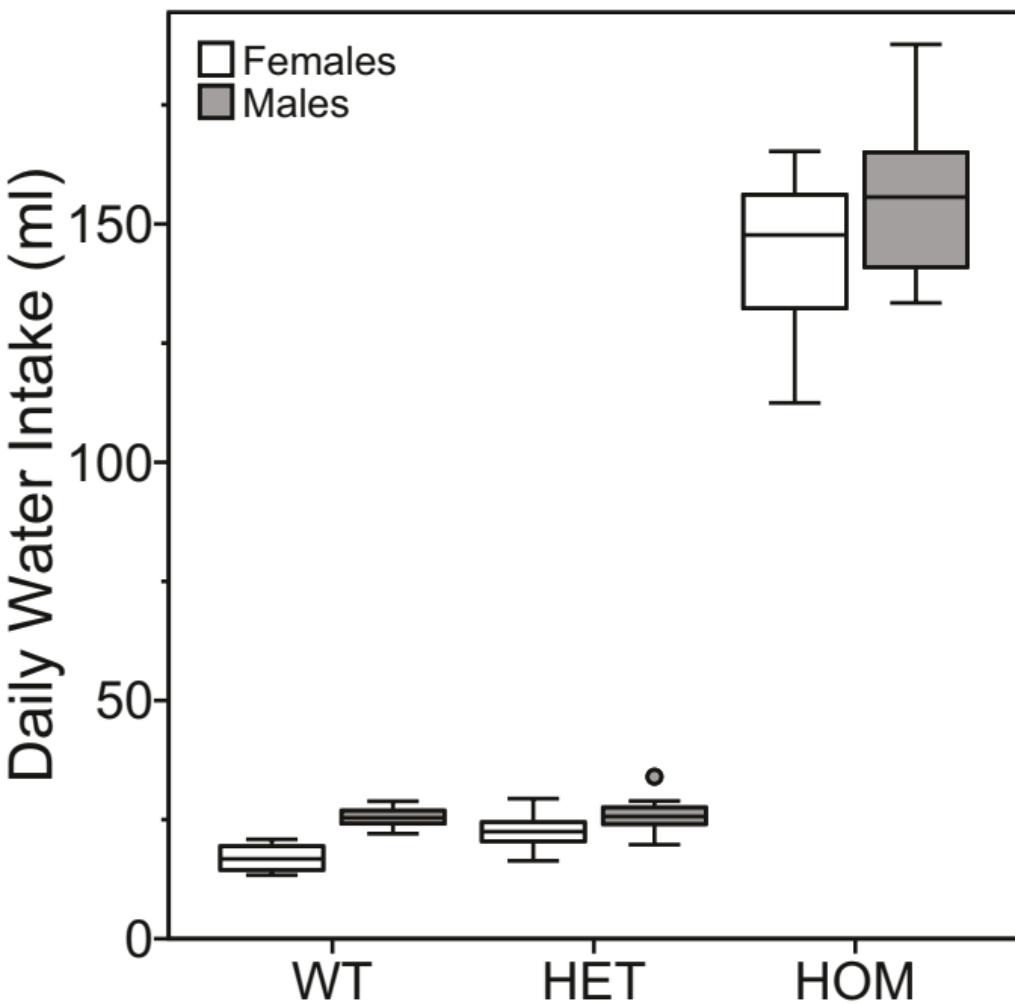








Figure 5

Figure 6

