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Abstract

The neuropeptide, arginine vasopressin (AVP), is thought to contribute to sex differences in
normative and pathological social development by regulating social motivation. Recent studies
using Brattleboro rats that have a mutation in the Avp gene, however, have suggested that AVP
impacts adolescent social behaviors of males and females in a similar manner through actions
on behavioral state (i.e., arousal). In the present study, we made use of a recently developed
operant conditioning paradigm to test whether the chronic, lifelong AVP deficiency caused by
the Brattleboro mutation impacts the reinforcement value of social stimuli during adolescence.
Operant responding for access to a familiar conspecific was assessed in male and female
adolescent wild type (WT; normal AVP), heterozygous Brattleboro (HET), and homozygous
Brattleboro (HOM) rats. Following the social reinforcement test, rats were tested in the same
operant paradigm except that the social reinforcer was replaced with a light reinforcer to
determine whether effects of the Brattleboro mutation were specific to social stimuli or a general
characteristic of operant conditioning. WT males directed a greater proportion of their
responding toward the social and light stimuli than WT females; only males exhibited a
preference for these reinforcers over unreinforced ports. The sex difference in social
reinforcement was absent in HOM rats, whereas the sex difference in light reinforcement was
present in all genotypes. These data indicate that adolescent males are more sensitive to the
reinforcing properties of social and light stimuli, and that the sex difference in social, but not
light, reinforcement depends upon normal levels of AVP. These findings support the hypothesis
that AVP plays a critical role in sex differences in social development by acting on factors that

influence social motivation.

Keywords
Brattleboro rat, vasopressin, sex differences, adolescence, social reinforcement, light

reinforcement
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1. Introduction

Several neurodevelopmental disorders that impact social behavior exhibit striking sex
differences in incidence, severity, onset, and/or response to treatment. For example, autism
spectrum disorders are more prevalent in boys than girls (4.2 males: 1 female); and
schizophrenia, for which social withdrawal is a major symptom, is more prevalent (1.4 males: 1
female), develops earlier, and is more severe in males [1-3]. Sex differences in the
neurobiology of social development likely account for why one sex is more vulnerable, and the
other more resilient, to the social deficits that accompany neurodevelopmental disorders. Sex
differences in the brain and behavior arise from organizational and activational actions of
gonadal hormones, direct effects of genes on the sex chromosomes, and environmental factors
[reviewed in 4,5]. The downstream neurobiology on which these factors act to regulate sex

differences in social development, however, is not understood.

The neuropeptide, arginine vasopressin (AVP), has been implicated in several
neurodevelopmental disorders including autism spectrum disorders and schizophrenia [6-9].
AVP regulates several social and anti-social behaviors both in adulthood and during
development [reviewed in 10—13]. Notably, AVP’s influence on social behaviors often differs
depending on sex. For example, AVP infusions into the anterior hypothalamus stimulate
aggression in male Syrian hamsters, but inhibit aggression in females [14—16]. During
development, ICV and septal infusions of a V1aR antagonist have opposite actions on the social
play of male and female juvenile rats [17,18], and septal infusions of AVP enhance social
recognition in female but not in male juvenile rats [19]. Hence, AVP is considered a prime
candidate substrate for regulating sex differences in social behavior and social development

[20].
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The Brattleboro rat is a useful model for studying chronic, lifelong disruptions to AVP function.
Brattleboro rats have a single base-pair deletion in exon 2 of the Avp gene that disrupts the
production of AVP [21]. In this model, loss of AVP function at the level of the kidneys leads to
the development of diabetes insipidus [22]. Several social behaviors are also impacted,
presumably due to the loss of central AVP actions [23-25]. Few studies have tested both sexes
in the same experiment, but when comparing across studies adult male Brattleboro rats show
deficits in social discrimination, whereas adult female Brattleboro rats do not [26,27]. In juvenile
and adolescent rats, however, the Brattleboro mutation affects social interactions of males and
females in a similar manner — increases huddling and decreases social play and 50 kHz
ultrasonic vocalizations [28,29]. Hence, while acute intracranial pharmacological manipulations
of AVP are known to differentially impact male and female social behaviors, the data for chronic

AVP disruption are mixed.

AVP is thought to regulate social behavior through actions on social motivation, but few studies
directly test this conjecture. Complex behaviors can be influenced by many factors. Indeed,
adolescent Brattleboro rats do not exhibit deficits in a simple social approach test, but instead
exhibit a hypoaroused phenotype that is correlated with their decreased levels of social play
[29]. These findings raise the possibility that AVP influences social behavior through actions on
arousal. Recently, operant conditioning paradigms capable of testing social reinforcers have
been developed that allow for a direct assessment of social motivation and
reinforcement/reward value of social stimuli [30—33]. In the present experiment, we used one
such operant paradigm to test whether the Brattleboro mutation affects the social reinforcement
of adolescent male and female rats, and if so, whether it impacts the sexes in the same or
different manner. A previous study found that the Brattleboro mutation eliminated the sex
difference in a non-social learning task (extinction of a conditioned taste aversion) present in

adult Long Evans rats [34]. Hence, we also assessed operant responding to a light reinforcer,
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which has been shown to function as a non-social reinforcer in operant paradigms [35-37], to
assess whether effects seen in the present experiment are specific to social reinforcement or

generalize to other types of operant conditioning.

2. Materials and Methods

2.1. Subjects

Experimental subjects were 14 wild type (WT; 6 female, 8 male) rats, 30 rats heterozygous for
the Brattleboro mutation (HET; 14 female, 16 male), and 20 rats homozygous for the Brattleboro
mutation (HOM; 10 female, 10 male) from our breeding colony, which was originally derived
from HET rats obtained from the Rat Resource and Research Center (University of Missouri,
Columbia, MO). All subjects were generated from HET male x HET female pairings in order to
generate offspring of all three genotypes within the same litter. Experimental subjects were
derived from 9 litters. All animals within each litter were used in experiments, except when a
same-sex, same-genotype cagemate was not available at weaning for pair housing. This
resulted in the following mean number of subjects for each sex/genotype per litter: 0.67 female
WTs, 0.89 male WTs, 1.56 female HETs, 1.78 male HETSs, 1.11 female-HOMs, and 1.11 male-
HOMs. All rats were housed in plastic cages (44 cm X 22.5 cm X 20.5 cm) with wood shavings
and maintained on a 12 h light/12 h dark cycle throughout the experiment. Food and water
were available ad libitum and ambient temperature was maintained at 23°C. All experiments
were in accordance with the Guide for the Care and Use of Laboratory Animals and were
approved by the Animal Care and Use Committee at the University at Buffalo, State University

of New York.

2.2. Experimental Timeline
Rats were genotyped on postnatal day (P)15 and subsequently weaned on P21 into same-sex,

same-genotype pairs; day of birth = PO. Between P21-P23, rats were transferred from the
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North Campus animal facility to the animal facility at the Clinical and Research Institute on
Addictions (University at Buffalo, SUNY)) for behavioral testing, at which point the time of lights
off was shifted from 6PM to 7AM EST to facilitate testing during the dark phase. All rats were
given at least 6 days to acclimate to the new building and altered light cycle. Rats were trained
and tested on a social reinforcement task (training P28-P34; testing P35-P41) then a light
reinforcement task (training P42-48; testing P49-P55; see methods below for details of the
operant apparatus and procedure). Hence, training and testing occurred from early to late
adolescence as defined by Vetter-O’Hagen and Spear [38]; early/mid adolescence = P28-42,
late adolescence = P42-55. After testing was complete, rats were transferred back to the North
Campus animal facility where they were individually housed and tested for 24-hour water intake

measures between 10-13 weeks of age.

2.3. Genotyping Procedure

Rats were genotyped prior to weaning using the method developed by Paul et al. [28]. Between
P13-P15, ear tissue was collected from rat pups using a sterile ear punch. Ear tissue was
digested and DNA extracted using the REDExtract-N-Amp Tissue PCR Kit (SigmaAldrich). The
DNA surrounding the single base pair Brattleboro deletion was amplified by PCR using the
forward primer, GACGAGCTGGGCTGCTTC, and reverse primer,
CCTCAGTCCCCCACTTAGCC. The amplified DNA was then incubated at 37°C for 24 h with
the restriction endonuclease, Bcg1 (New England BioLabs). Following incubation with the
restriction endonuclease, samples were run on a 2% agarose gel using gel electrophoresis and
genotype designations determined by assessing the number and weight of DNA bands: WT = a
single 222 bp band; HOM = a single "95 bp band; HET = two bands, one at 222 bp and one at

“95 bp.
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2.4. Operant Testing Apparatus

Social reinforcement was measured in a set of locally constructed operant chambers (Figure 1),
as previously published [31, for video, see supplemental material or http://ratgenes.org/social-
reinforcement-monitor/]. The three-chamber apparatus was housed inside of a cooler (Model #
3000000187, Coleman, Wichita, KS), blocking external stimuli. The center of the test chamber
was made of a clear acrylic tube (diameter: 22.75 cm, height: 25.5 cm) and set on a grid floor
(1/8 inch stainless steel rods, 0.7 cm apart). Social stimulus chambers (diameter: 21.5 cm,
height: 16.5 cm) were located on the right and left sides of the test chamber. Lateral
observation ports made of 2-inch PVC pipe provided access between the test chamber and the
social stimulus chambers, allowing test and social stimulus rats to contact snouts and vibrissae,
as well as the passage of odor cues. The test chamber also had a center observation port
located on the far side of the chamber from the front face, capable of providing access to liquid
reinforcers; liquid reinforcers were not used in the present study, but the center port was
available as an unreinforced port. Left and right stimulus lights were located in the roof of the
test chamber above the social stimulus chambers. A ventilation fan was located on the back
wall of the enclosure. Air vents were placed in the bottom of the social stimulus chambers and
led to air holes in the bottom of the sound and light attenuating enclosures. A lid was placed on
the tops of the social stimulus chambers, ensuring that the ventilation fan would draw air
through the bottom of the social stimulus chambers into the observation port connected to the
central test chamber, thereby presenting the test rat with olfactory cues from stimuli placed into
the social stimulus chambers. Two obstruction bars (8-32 x 2.5 bolts placed 17.5 mm apart)
were placed in the PVC pipe between the test chamber and the social stimulus chambers to
prevent the test and social stimulus rats from escaping into the alternative chamber. Figure 1D
illustrates the sliding door that controls access of the test rat to the social stimulus chambers.
Infrared photo sensors bisected the observation port 17.5 mm from the test chamber wall and

detected snout pokes into the observation port. The swinging door was used to open or close
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the passageway between the test and social stimulus chambers. The swinging door was
normally closed and was opened by operating a 24-volt rotating solenoid (Ledex H-1141-033,
Johnson Electric, Hong Kong). Operation of the solenoid opened the door and then held it open
against the stop, which allowed physical contact between the test and stimulus rats and the free
passage of odor cues. The photo detector circuit input and the solenoid output were connected
to a computer interface (Med Associates, St. Albans, VT) allowing the computer to control

access contingent upon snout poke responses.

2.5. Operant Procedure

A social stimulus (the cage-mate) was first placed into either the left or right stimulus chamber
(counterbalanced). Stimulus chambers were removable and could be placed on either side of
the apparatus. Separate chambers were designated for stimulus animals versus empty
chambers; stimulus animal chambers were never used as empty chambers and vice versa to
prevent accumulation of odors in the empty chambers. For each test rat, the same rat served
as the stimulus rat for all the test sessions. The test rat was placed into the center test
chamber, and the number of snout poke responses into the three observation ports during an
18-min test session was recorded. The opening of the sliding doors to all observation ports was
response-contingent according to a variable-interval (VI) 1 min schedule of reinforcement,
separate for each port. Each rat was given 1 week to train on this task then tested during the
second week. Training/testing sessions occurred three days per week (every other day) for a
total of six training/testing sessions. Data from the three test sessions for each rat were
combined and used for analysis. The order in which animals were tested and the side of
reinforcement were randomized. House light stimuli used in the light reinforcement task (see

below) were never turned on during the social reinforcement portion of the experiment.
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Following social reinforcement training and testing, rats completed an additional two weeks of
training and testing using the same schedule except that the social stimulus was replaced with a
house light. The light reinforcement port and active house light were on the opposite side to the
prior social reinforcement port and social stimulus. The same VI 1 min schedule of
reinforcement was used. Once activated, the light remained on for 5 seconds. As with social

reinforcement, the last three test sessions were combined and used for analysis.

2.6. Water Intake Measures

We have previously validated our genotyping procedure using sequencing [28]. In the present
experiment, we further confirmed HOM genotype designations by assessing each animal’s 24-h
water intake. Rats were individually housed and the weights of their water bottles were
recorded. The bottles were weighed again 24 and 48 hours later and the average 24-h
decrease in weight over this period was used as a measure of water intake, reported in milliliters

(1g water = 1ml water).

2.7. Statistical Analyses

Social and light reinforcement measures were calculated as the proportion of responses
directed at the reinforcer (reinforcer nose pokes/total nose pokes). Group differences in
reinforcement and total responses during the testing phase as well as during the first session of
the training phase were assessed using a 2 x 3 ANOVA, with Sex and Genotype as the
independent variables. Reinforcement across the 3 training sessions for each genotype was
analyzed using repeated-measures ANOVA, with Sex and Session as independent variables. If
main effects or interactions of the overall ANOVA were significant, post hoc tests were
conducted using Fisher's PLSD. Preference for and aversion to the social or light reinforcer
were determined by comparing the confidence intervals of reinforcement measures for each

experimental group with the proportion of responses expected by chance. Given that there
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were 3 possible ports, a random distribution of port responses would result in 33% of responses
directed toward each port, i.e. a proportion of 0.33 for each port. Hence, if the lower confidence
interval for the reinforced port was greater than 0.33, a preference was assumed and if the
higher confidence interval for the reinforced port was less than 0.33 than an aversion was
assumed. Outliers were identified using the Box and Whiskers plot on SPSS, which defines
outliers as measures greater than 1.5 times the interquartile range and were removed prior to
conducting the overall ANOVA or assessing preference; see Supplemental Table for number of
outliers within each group for each measure. Final sample sizes are indicated within the bars of
each figure or in the figure legend. All analyses were conducted using SPSS v23.0 (IBM).

Significance was assumed when P<0.05.

3. Results

3.1. Lifelong AVP-deficiency eliminates the sex difference in social reinforcement

During the testing phase, there was a significant main effect of Sex on social reinforcement
(P<0.05, ANOVA). This was due to WT males directing a higher proportion of responses
toward the social reinforcer than WT females (Fig. 2A; P<0.05, Fisher's PLSD). This sex
difference, however, was not significant in HET rats (P=0.19, Fisher's PLSD) and was absent in
HOM rats (P=0.90, Fisher's PLSD). WT, HET, and HOM males as well as HET and HOM
females responded greater than chance for the social reinforcer indicating a preference for the
social port over the unreinforced ports, a preference not present in WT females (Table 1). While
the WT females did not prefer the social port, they also did not find it aversive (Table 1). Total
responding during the social reinforcement test was not impacted by the sex or genotype of the
animals (Fig. 2B; P>0.21, main effect of Sex, main effect of Genotype, and the interaction

between Sex and Genotype, ANOVA).
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Analysis of the training phase revealed that the sex difference in social reinforcement was not
present upon first exposure to the operant procedure and there were no differences among the
genotypes (Fig. 3A; P>0.39, main effect of Sex, main effect of Genotype, and the interaction
between Sex and Genotype on session 1). However, a sex difference in social reinforcement
emerged in WT and HET animals over subsequent sessions (Fig. 3B,C; P<0.05, main effect of
Sex in WT animals, interaction between Sex and Session in HET animals, repeated-measures
ANOVA). In HET animals, the sex difference was significant on sessions 2 and 3 (P<0.05,
Fisher's PLSD), whereas in WT animals the sex difference was significant on session 3 only
(P<0.05, Fisher's PLSD). As seen during the testing phase, there was no evidence of a sex
difference during the training phase in the HOM rats (Fig. 3D; P>0.31, main effect of Sex, main

effect of Session, and the interaction between Sex and Session, repeated measures ANOVA).

3.2. Males, but not females, exhibit a preference for light reinforcement

During the testing phase of light reinforcement, there was also a main effect of Sex, with males
directing a higher proportion of responses to the light reinforcer than females (Fig. 4A; P<0.05,
ANOVA). In contrast to social reinforcement, however, this sex difference was present in all
genotypes (P<0.05, WT, HET, and HOM males versus WT, HET, and HOM females,
respectively, Fisher's PLSD). Furthermore, males, but not females, of all genotypes exhibited a
preference for the light port over the unreinforced ports (Table 1). Total responding during the
light reinforcement test was also impacted by sex, but in this measure females exhibited greater
responding than males (Fig. 4B; P<0.05, main effect of Sex, ANOVA). Although the mean total
responses of females was higher than that of males for each genotype, these differences fell
short of significance in the post hoc tests (P=0.11, 0.08, and 0.10 for WT, HET, and HOM

comparisons, respectively, Fisher's PLSD).



617

618
g;g 282  In contrast to that seen on the first day of social reinforcement training, there were group
2;; 283  differences on the first day of light reinforcement training. There was a significant interaction

g;i 284  between Sex and Genotype on the first session of the training phase (Fig. 5A; P<0.05, ANOVA).

g;g 285  This was due to male-specific differences across genotypes: lower light responding in HOM

g;; 286  males compared to HET and WT males (P<0.05 for both comparisons, Fisher's PLSD).

629 287  Although there was a trend toward Sex differences in WTs (males > females) and HOMs
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631 288 (females > males) on the first day of training, these comparisons did not reach significance
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633 289  (P=0.09 for WT males vs. WT females; P=0.07 for HOM males vs. HOM females; Fisher’s

222 290 PLSD). Note that the trend toward a sex difference on Session 1 for HOM rats reached

223 291  significance in the repeated-measures analysis due to the removal of 1 male that was an outlier
ggg 292  on session 3 (Fig. 5D; P<0.05, Fisher's PLSD). Analysis across the three training sessions

22(1) 293 indicated that light responding for all groups was at their highest level on the first session (Figs.
2j§ 294  5B-D). WT male and female rats maintained the same level of responding throughout the
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645 295  ftraining phase (P>0.54, main effect of Session and interaction between Sex and Session,
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647 296  repeated-measures ANOVA). For HET and HOM rats, there was a female-specific decline in
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gag 297  light responding on session 2 that was maintained on session 3 (P<0.05 for HET and HOM
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651 298 comparisons of session 1 vs. session 2 and 3, Fisher's PLSD). The sex difference in light
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299 responding seen in the testing phase (males > females) tended to be present in WT rats
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g:g 300 throughout the training phase (P=0.055, main effect of Sex, Repeated-measures ANOVA), but
223 301 this was only significant on session 3 (P<0.05, Fisher's PLSD). For HET rats, this sex

222 302 difference emerged on session 2 (P<0.05, Fisher's PLSD), but was not significant on session 3

22‘1’ 303 (P=0.16, Fisher's PLSD). In HOM rats, females initially exhibited higher light responding on

gg§ 304  session 1 (P<0.05, Fisher's PLSD), but this sex difference was absent on sessions 2 and 3
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3.3. Confirmation of HOM genotype designation by drinking phenotype
As expected, all rats designated as HOM by our genotyping procedure drank markedly more

water than WT and HET rats (Fig. 6), confirming HOM genotype assignments.

4. Discussion

The present findings demonstrate that chronic disruption of AVP disrupts sex differences in
adolescent social behavior, specifically the sex difference in adolescent social reinforcement.
Male adolescent WT rats directed a greater proportion of responses toward the social stimulus
than female adolescent WT rats. Indeed, WT males showed a significant preference for the
social stimulus over the unreinforced ports, whereas WT females did not. This sex difference
depended on a functional Avp gene: it was inconsistent in HET rats (i.e., present at the end of
training, but not during testing) and was completely absent in HOM rats. HET rats exhibit a
partial reduction in AVP mRNA expression and pituitary protein content [39]. Hence, a partial
reduction in AVP appears sufficient to diminish the sex difference in adolescent social
reinforcement. These findings support the hypothesis that AVP plays an important role in sex

differences in adolescent social development.

To our knowledge, the present study is the first to demonstrate increased operant responding
for social stimuli in male compared to female adolescent rats. Adolescent male rats often (but
not always) exhibit higher levels of social interactions, particularly social play behavior, than
their female counterparts [40—42][but see 43,44]. The sex difference in social reinforcement of
WT rats seen in the present study adds to the small but growing literature indicating that the
greater levels of social interactions in adolescent male rats is due, in part, to a greater sensitivity
of males to the reinforcing/rewarding properties of social stimuli compared to females.
Adolescent males exhibit a greater conditioned place preference (CPP) than females to a

compartment previously paired with social interactions [45]. The sex difference in CPP to social
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interaction depends on housing conditions, being present in single-housed, but not pair-housed
rats [45—-47]. In contrast, we detected the sex difference in social reinforcement preference
even though rats were pair-housed throughout the experiment. This suggests that the greater
sensitivity of males to social reinforcement/reward is present in group-housed rats and that

operant paradigms may be more sensitive in detecting such preferences than CPP.

Although often assumed, few studies directly test whether AVP influences social behavior by
regulating social motivation or reinforcement/reward value of social stimuli. Increased social
motivation is typically inferred by shortened latencies to approach another individual or
increased time spent in social contact [48]. The operant conditioning paradigm used in the
present experiment allowed us to more directly assess the role of AVP in social reinforcement.
The present findings support the hypothesis that AVP influences social behavior by modulating

the reinforcement/reward value of social stimuli.

We have previously found that male and female adolescent Brattleboro rats exhibit 1) an
atypical social behavior profile characterized by decreased active social behaviors (e.g., social
play, 50 kHz ultrasonic vocalizations) and increased passive social behaviors (e.g., huddling)
and 2) a hypoaroused phenotype characterized by decreased locomotor activity in an open field
and decreased marble burying [28,29]. Notably, decreased behavioral arousal is correlated with
decreased social play suggesting that the more passive social behavior phenotype of
Brattleboro rats is due, in part, to AVP’s actions on arousal [29]. Perhaps AVP’s actions on
arousal impact males and females to influence active versus passive social behaviors similarly
in both sexes, whereas AVP’s actions on social reinforcement differentially impact the sexes to
modulate sex differences in social behaviors. AVP also regulates other factors that likely impact

complex behaviors — circadian timing and social recognition [19,49-51]. Hence, it is becoming
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clear that AVP acts through multiple mechanisms to influence social behavior (e.g., social

motivation, behavioral state, behavioral timing, and social memory).

The results of the social reinforcement test are unlikely to be the result of sex-specific effects of
the Brattleboro mutation on learning. This possibility is raised by studies demonstrating 1) sex
differences in the performance on several learning and memory paradigms [52,53] and 2) AVP
influences on both social and non-social learning tasks, including operant conditioning [54,55].
Similar to the present findings, a previous study found that the Brattleboro mutation eliminates
the sex difference in extinction of a conditioned taste aversion to a sucrose-lithium chloride
pairing [34]. Nevertheless, in the present study rats learned the social reinforcement task within
the first session, at which point their social responding did not differ between groups. Instead,
the sex difference emerged in WT and HET animals as the social responding of females
declined in later training sessions. These data suggest that the loss of the sex difference in the
social reinforcement in HOM rats seen in the present study is not due to effects of the

Brattleboro mutation on learning.

Loss of the sex difference in operant responding of Brattleboro rats was specific to the social
stimulus, with males of all genotypes exhibiting a greater proportion of responses for the light
stimulus than their female counterparts during the testing phase. This too argues against a
general effect of the Brattleboro mutation on operant responding in the current behavioral
paradigm. Caution is warranted here, however, because all rats had undergone social
reinforcement testing before being subjected to light reinforcement. Hence, it is possible that
the different results seen for social and light reinforcers in HOM rats are due to interactions
between AVP-deficiency and the order of testing, with animals more adapted to the apparatus
and testing procedures during light reinforcement. In addition, the differing ages or pubertal

stages of animals during social versus light reinforcement could have also influence the results.
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Adolescence is a time of remarkable neural, behavioral, and reproductive development, with
marked changes in social behavior and cognitive performance in both humans and rodents [56].
Pubertal factors, which differ markedly between early/mid-adolescence (when social
reinforcement was tested) to late adolescence (when light reinforcement was tested) [38], could
impact learning and memory although this topic is understudied [57]. The most compelling data
indicate a role for pubertal status and pubertal hormones in PFC-dependent cognitive flexibility
[58,59]. Given that the number of AVP cells and fibers increases during adolescence [60,61],
one would predict that AVP-deficiency would have a greater effect in late as opposed to early
adolescence, which is opposite to that seen in the present study. Nevertheless, future studies
are needed to determine whether AVP’s role in reinforcement conditioning changes across
adolescence or is impacted by testing experience. Assessment of the training phase for light
reinforcement was also less clear. As seen with the social reinforcement task, rats learned the
light reinforcement task within the first session. Unlike in the social reinforcement task,
however, sex differences in light reinforcement were significant (in HOM rats) or approached
significance (in WT rats) on this session, raising the possibility of learning differences in the light
reinforcement task among groups. Here too, the order of testing could have impacted the data
as animals were extinguishing the social reinforcement task while acquiring the light

reinforcement task.

HOM and WT rats differ in their performance on a visual attention test — lateralized reaction time
task to a house light stimulus [62]. Notably, genotype differences are dependent on the duration
of the house light, with WT rats outperforming HOM rats at short durations ("0.2s) and HOM rats
outperforming WT rats at longer durations ("2s). The authors attributed these findings to
genotype differences in attention rather than light perception because varying the brightness of
the house light had no effect on performance in either genotype. Importantly, WT and HOM rats

performed similarly when the house light was presented for 4s, which is similar to the duration of
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the light stimulus in the present study (5s). Hence, it is unlikely that genotype differences in the
perception of the house light influenced the light reinforcement in the present study.
Furthermore, genotype differences in light perception would not account for the presence or

absence of sex differences within a given genotype.

Activity can also impact performance on operant responding [reviewed in 52], and previous
studies have demonstrated sex differences in locomotor activity (females > males) as well as
decreased locomotor activity in HOM Brattleboro rats [29,63—-66]. However, in contrast to the
effect on social reinforcement, the Brattleboro mutation impacts locomotor activity of adolescent
males and females in a similar manner [29]. Furthermore, in the present study there were no
sex or genotype differences in the total number of responses during the social reinforcement
task and data were analyzed as proportion of responses directed toward the social stimulus,
thereby controlling for any potential differences in activity. Hence, the present findings are more

consistent with differences in goal-directed responses than in overall activity.

Sex differences in brain and behavior arise from organizational actions of prenatal, early
postnatal, and pubertal gonadal hormones; activational actions of gonadal hormones; direct
effects of genes on the sex chromosomes; and environmental factors [reviewed in 4,5]. The sex
difference in adolescent social reinforcement is likely the result of several of these factors acting
on AVP circuits, the primary candidate being the sexually dimorphic AVP pathway that
originates from cells in the bed nucleus of the stria terminalis (BNST) and medial amygdala
(MeA). Males of most species that have been assessed have greater numbers of AVP cells and
more dense projections than females [reviewed in 67,68] due to interactions between
organizational hormone actions, activational hormone actions, and direct effects of genes on the
sex chromosomes [69-73]. Given that the BNST and MeA of rodents receive extensive

chemosensory input, sex differences in this pathway could contribute to sex differences in social
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behavior through differential modulation of chemosensory input [74]. Nevertheless, selective
ablation of AVP cells in the BNST decreased same-sex social investigation by males, without
altering their detection of social odors or habituation and discrimination of non-social odors [75].
These findings suggest that BNST AVP can act through non-chemosensory mechanisms to
regulate sex differences in social behavior. The BNST/MeA pathway is thought to link brain
areas that regulate social behavior (the Social Behavior Network) with the mesocorticolimbic
dopamine system [12,76—-78]. In juveniles/early adolescents, AVP manipulations in the septum,
a projection area of BNST/MeA cells, modulate local dopamine release [79] and social play
[17,18] in sex-specific ways. Furthermore, septal injections of the dopamine agonist,
apomorphine, counteract the depressive effects of a vasopressin receptor 1a antagonist on play
behavior [79]. These data suggest that vasopressin interacts with dopamine in the lateral
septum to regulate sex differences in reward-associated social behaviors of juveniles/early
adolescents. Future studies using social reinforcement paradigms are needed to determine
whether this AVP/dopamine mechanism in the septum (or elsewhere) regulates sex differences

adolescent social behaviors through sex-specific modulation of social motivation.

5. Conclusions

The present findings demonstrate that AVP plays a critical role in sex differences in adolescent
social reinforcement. This adds to the growing list of social behaviors that are influenced by
AVP during adolescence (e.g., social play, social recognition, 50 kHz USVs, huddling)
[17,19,28,80]. Furthermore, it supports the hypothesis that AVP influences adolescent social
behaviors, in part, by modulating the reinforcement/reward value of social stimuli. AVP has also
been implicated in several neurodevelopmental disorders that impact social behavior [8,9,81—
87]. Hence, understanding the neurobiology through which AVP influences social development
is critical for our understanding of normative and pathological development, both of which

exhibit striking sex differences in humans [1-3,56,88,89].
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Figure Legends
Figure 1. Pictures and illustration of the operant testing apparatus from the (A,B) side and (C)

top view. (D) Observation port door that opens to the social stimulus or empty chamber.

Figure 2. The Brattleboro mutation eliminates the sex difference in social reinforcement. (A)
Mean (zs.e.) proportion of responses directed toward the social reinforcement port in wild type
rats (WT), heterozygous Brattleboro rats (HET), and homozygous Brattleboro rats (HOM). (B)
Mean (zs.e.) total responses directed toward the social reinforcement and unreinforced ports.

*Indicates significant sex difference within genotype (P<0.05, Fisher's PLSD).

Figure 3. Sex differences emerge in WT and HET rats, but not HOM rats, during the latter
stages of the social reinforcement training phase. Mean (ts.e.) proportion of responses
directed toward the social reinforcement port in WT, HET, and HOM rats on the (A) first training
session and (B-D) across all training sessions. Sample sizes for panels B-D: WT females = 6,
WT males = 8, HET females = 10, HET males = 16, HOM females = 9, HOM males = 10.
*Indicates significant sex difference within genotype (P<0.05, Fisher's PLSD). Abbreviations

defined in Figure 1.

Figure 4. Males show a greater preference than females for the light reinforcer, irrespective of
genotype. (A) Mean (ts.e.) proportion of responses directed toward the light reinforcement port.
(B) Mean (ts.e.) total responses directed toward the light reinforcement and unreinforced ports.
*Indicates significant sex difference within genotype (P<0.05, Fisher's PLSD). Inset of panel B
illustrates the main effect of Sex on total number of responses (P<0.05, ANOVA). Abbreviations

defined in Figure 1.
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Figure 5. Acquisition data for light reinforcement training. Mean (zs.e.) proportion of responses
directed toward the light reinforcement port in WT, HET, and HOM rats on the (A) first training
session and (B-D) across all training sessions. Sample sizes for panels B-D: WT females = 6,
WT males = 8, HET females = 13, HET males = 16, HOM females = 10, HOM males = 9.
*Indicates significant sex difference within genotype (P<0.05, Fisher's PLSD). #Indicates
significant difference between HOM male rats and males of other genotypes (P<0.05, Fisher’s

PLSD). Abbreviations defined in Figure 1.

Figure 6. Boxplot of mean daily water intake of rats genotyped as WT, HET, and HOM rats (see
methods for genotyping details). The lower and upper ends of the boxes represent the first and
third quartile range, respectively. Lines within the boxes represent the median. Whiskers
represent the lowest and highest values within the group, excepting outliers. The single outlier

is indicated by a shaded circle. Abbreviations defined in Figure 1.
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Table 1. Lower and upper confidence intervals for proportion responding to social and light

reinforcers

Social Responding Light Responding
Genotype Sex Lower CI Upper CI Lower ClI Upper CI

WT Females 0.28 0.45 0.27 0.47
Males 0.40* 0.61 0.42 0.62

HET Females 0.35* 0.44 0.31 0.49
Males 0.38* 0.53 0.45* 0.56

HOM Females 0.34* 0.57 0.32 0.41
Males 0.38* 0.51 0.41* 0.54

*Indicates significant preference for social or light reinforcer.

Supplemental Table. Outliers removed in each analysis.

Social Reinforcement Light Reinforcement
Total Total
Social Responses Responses Light Responses Responses
All All

Training Training Testing Testing Training Training Testing Testing

Genotype Session 1 | Sessions Phase Phase Session 1 | Sessions Phase Phase
WT Females 0 0 0 0 0 0 0 0
Males 0 0 0 1 0 1 0 0
HET Females 0 4 0 1 1 1 0 1
Males 0 0 0 1 0 0 0 0
HOM Females 0 1 0 1 0 0 1 1
Males 0 0 0 0 1 2 0 0
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