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ABSTRACT
Distributed network optimization has been studied several years.
However, we still do not have a good idea of how to design schemes
that can simultaneously provide good performance across the di-
mensions of utility optimality, convergence speed, and delay. To
address these challenges, in this paper, we propose a new algo-
rithmic framework with all these metrics approaching optimality.
The salient features of our new algorithm are three-fold: (i) fast
convergence: it converges with only O(log(1/ϵ)) iterations, that is
the fastest speed among all the existing algorithms; (ii) low delay:
it guarantees optimal utility with finite queue length; (iii) simple
implementation: the control variables of this algorithm are based on
virtual queues that do not require maintaining per-flow information.
The new technique builds on a kind of inexact Uzawa method in
the Alternating Directional Method of Multiplier. A theoretical con-
tribution of independent interest is a new pathway we provide to
prove global and linear convergence rate of Uzawa-ADMMwithout
requiring the full rank assumption of the constraint matrix.
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1 INTRODUCTION
Consider a fixed data network G = {N ,L} shared by F end-to-
end flows, where N is the set of nodes and L is the set of edges.
Let |N | = N and |L| = L. For each node n, denote the sets of its
incoming links and outgoing links as I(n) and O(n), respectively.
Each flow f is described by its source-destination node pair (sf ,df )
and associated utility function Uf (·), without a priori established
routes. The set of source nodes are defined as F and |F | = F . The
set of destination nodes are defined as D = {df , f ∈ F }, and let
|D| = D. The network optimization problem is how does one jointly
choose the end-to-end data rate xf of each flow f , the schedule for
each link and the link rate for each flow to maximize the network
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utilities,

max
xf ,rdl

∑
f ∈F

Uf (xf ) (1)

s .t .
∑
f ∈F

xf 1{sf =n,df =d } +
∑

l ∈I(n)
rdl =

∑
l ∈O(n)

rdl ,∀d,n ∈ N\d,[ ∑
d ∈D

rdl

]
∈ C, rdl ≥ 0,∀d ∈ D, l ∈ L,

mf ≤ xf ≤ Mf ,∀f ∈ F .

where rdl represent the amount of capacity on link l that is allocated
for data towards destination d , C is the capacity region defined as
C ≜ Conv(Γ) and Γ = {r(1), r(2), . . . , r(I )} is the set of feasible
link rate vectors, and Conv(·) represents the convex hull operation.
The optimization problems of the above form plays a key role in
resource control and optimization for both wireline and wireless
networks.

In distributed network optimization, each iteration of the algo-
rithm corresponds to one communication among different nodes,
which could require a very large amount of information exchange
overhead. Therefore, one important metric to measure the per-
formance of algorithm is the convergence speed, i.e., how many
iterations are required to obtain an ϵ−accurate solution. In addition,
other important metrics are utility and the physical queue length
in steady state, which measures the throughput and transmission
delay that is achieved by the algorithm.

1.1 Existing Algorithms
The large body of work (see, e.g., [1, 2, 5–9], and [4] for a survey) in
this area has given rise to several efficient and distributed control
algorithmic frameworks. We first review the state-of-the-art of all
the existing algorithms.

First-order dual decomposition methods: This class of algo-
rithms apply the subgradient descent method to the dual function
of this problem and leads to a beautiful queue-length-based control
algorithmic (QCA) framework. However, the classical QCA method
achieves an O(1/K) utility optimality gap at an expense of O(K)
steady-state queue-length, where K > 0 is a system parameter.
Hence, a small utility gap from optimality will yield a large queuing
delay.

Second-order Newton method: To improve the convergence
speed, there have been many attempts in obtaining new algorithms
by applying the second-order method [5, 9]. This kind of algorithm
has a faster convergence rate, i.e.,O(log2(1/ϵ)) iterations. However,
it has several limitations: (i) the complexity of computing the Hes-
sian inverse in the second-order method is quite high and does not
scale well with the network size; (ii) a worse utility-delay tradeoff
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Table 1: Comparison of Existing Algorithms in Network Optimization

Optimality gap Queue-length Convergence speed Routing complexity Scheduling complexity1
Dual decomposition method O(1/K) O(K) O(1/ϵ2) O(F ) poly(L, F )

Proximal method optimal O(1) O∗(1/ϵ) O(F log(F )) unknown
Second-order method O(1/K) O(K2) O(log2(1/ϵ)) O(F 2 + L2) exp(L, F )
Momentum method O(1/K) O(

√
K) O(1/ϵ2) O(F ) poly(L, F )

Our new method optimal O(1) O(log(1/ϵ)) O(F log(F )) poly(L, F )
1 The scheduling complexity derives from the traditional node-exclusive interference model.
2 Momentum method refers to heavy-ball method and Nesterov’s accelerated method.

[O(1/K), O(K2)] in [5]; and (iii) it cannot efficiently handle the
wireless interference channel.

Proximal method: The proximal method was first introduced
in the work [3] to tackle the oscillation problem in a network
optimization problem with given routing paths. The work [10]
extends this method to the scenario of dynamic routing and prove
that the proximal method not only exhibits the feature of low-
latency, it also offers an improved convergence speed of O∗(1/ϵ).

It can be observed that all the existing algorithms sacrifice the
performance of one or more metrics to improve the others. In
particular, the slow convergence of all these algorithms will result
in large information exchange overhead. The key question that
we aim to answer in this paper is that: is it possible to develop a
joint congestion control, routing and scheduling algorithm with fast
convergence speed, routing complexity as low as the first-order method
and delay as low as the proximal method?

1.2 Our Results
In this paper, we positively answer this open question and propose a
new algorithmic framework. The comparison of our algorithm and
existing schemes in an L−links and F−flows network are listed in
TABLE 1. One can see that our algorithm offers the fastest conver-
gence speed, optimal utility, finite queue length, and low routing
and scheduling complexity compared with all existing methods.
The rationale behind our algorithm design is to utilize the Alter-
nating Directional Method of Multiplier (ADMM). Our key idea
is to reformulate the joint scheduling-routing-congestion control
problem as a 2−block separable optimization problem, and apply
the ADMM to the Augmented Lagrangian function of problem,
which then allows us to obtain an optimization framework with a
layered structure and only a limited degree of cross-layer coupling.

However, due to a number of technical challenges, developing
an ADMM-based method is highly non-trivial. First, the ADMM’s
focus is on minimizing the Augmented Lagrangian function that is
the summation of original utility function and a quadratic penalty
function of the constraints. It will produce a routing-scheduling
problem with a non-separable objective function regarding the rate
vector among different links. Therefore, it is difficult to be solved
in a low-complexity and distributed manner. Second, the structure
of this method is substantially different from both the dual decom-
position method and the proximal method. For example, the form
of the congestion control and routing components are different,
as is the coupling among the different functionalities. Hence, the
analytical techniques used in existing methods for utility optimality
and queue stability are not applicable. Third, in a wireless network
with interference constraints, unlike the clear relationship between

the linear program-based scheduling problem in the dual decom-
position method and the combinatorial optimization problem, i.e.,
maximumweighted matching [2], it is unclear how to solve the new
scheduling problem derived from the ADMM-based decomposition.

2 ALGORITHMIC FRAMEWORK
The main procedure of our new joint congestion control, routing
and scheduling method is described in Algorithm 1.
Algorithm 1 New Joint Congestion Control, Routing and
Scheduling Framework
Initialization:

Choose parameters ρ > 0, τ ∈ [1,
√
5+1
2 ) and βm,n > deg(m) +

deg(n),∀(m,n) ∈ L. Set t = 0. Let both physical and virtual
queues be empty at the initial state Qd

n [0] = λdn [0] = λdn [−1] =
0,∀d ∈ D and n ∈ N\{d}. Let injection rates xf [0] = 0,∀f ∈

F and service rates rdl [0] = 0,∀d ∈ D, l ∈ L.
Iteration: In each time slot t ≥ 1, repeat the following three steps.
1: Routing and Scheduling: For each destination d ∈ D and

node n ∈ N\{d}, calculate the new weight zdn [t] = (1 +
1/τ )λdn [t − 1] − λdn [t − 2]/τ . Let zdd [t] = 0,∀d ∈ D. Then
choose the link rate [rdl [t], l ∈ L,d ∈ D] as the solution to the
following quadratic program.

max
rdm,n

∑
(m,n)∈L

∑
d ∈D

(zdm [t] − zdn [t])r
d
m,n −

ρβm,n

2 (rdm,n − rdm,n [t − 1])2

s .t .
[∑

d r
d
m,n

]
∈ C, rdm,n ≥ 0,∀(m,n) ∈ L,d ∈ D . (2)

2: Congestion Control: For each node sf , calculate the injection
rate xf [t] as the solution to the following optimization problem.

max
xf ∈[mf ,Mf ]

Uf (xf )−(z
df
sf [t]+ρ∆rf [t])xf −

ρ

2 (xf −xf [t−1])
2. (3)

where the quantity ∆rf [t] is given by

∆rf [t] =
∑

l ∈I(sf )

(
r
df
l [t] − r

df
l [t − 1]

)
−

∑
l ∈O(sf )

(
r
df
l [t] − r

df
l [t − 1]

)
. (4)

3: Virtual Queue Update: For each destination d ∈ D and node
n ∈ N\{d}, update the virtual queue length by

λdn [t] =λ
d
n [t − 1] − ρτ

∑
l ∈O(n)

rdl [t] + ρτ
∑

l ∈I(n)

rdl [t]+

ρτ
∑
f ∈F

xf [t]1{sf =n,df =d } . (5)
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Figure 1: Comparison of Algorithm 1 and existing methods in a small-scale and a medium-scale wireline networks.
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Figure 2: The two left figures shows the impact of parameter τ on convergence and queue length. The two right figures compare
our algorithm and the momentum method for a wireless network with fading channel.

Table 2: Comparison of Convergence Speed and Queue Length per Link

Problem size Momentum method Second-order method Proximal method Our method
# Iterations Queue len # Iterations Queue len # Iterations Queue len # Iterations Queue len

(50, 150, 10) 4658 22.5 9600 35.1 369 1.10 207 0.66
(100, 300, 20) 9594 82.6 38900 145.2 512 1.94 298 0.83
(500, 1500, 100) > 105 > 103 > 105 > 103 853 8.15 371 3.92
(1000, 3000, 200) > 105 > 104 > 105 > 104 1921 15.30 639 6.61

benchmark 1044 31.2 1510 29.5 102 1.08 82 0.58

3 NUMERICAL ANALYSIS
We numerically compare our algorithm with existing algorithms.
We adopt the following two comparison metrics: (i) the relative
error of injection rate: ∥x[t] − x∗∥/∥x∗∥, where the x∗ is obtained
approximately by running our method with a strict stopping con-
dition; (ii) total physical queue length of all nodes and all flows:∑
d ∈D

∑
n∈N\d Q

d
n [t].

4 CONCLUSION
In this paper, we have proposed a new joint congestion control, rout-
ing and scheduling algorithmic framework for distributed network
optimization based on an inexact Uzawa method of the Alternating
Directional Method of Multiplier. This algorithm offers zero utility
optimality gap with finite queue length, the fastest convergence
speed to date, i.e., O(log(1/ϵ)) iterations, among all the existing
algorithms. Moreover, the virtual queue-based control provides an
extremely low-complexity implementation of this algorithm. These
results build a deep connection between the cross-layer decom-
position of network optimization and the variable splitting in the
multi-block Alternating Directional Method of Multiplier. One im-
portant theoretical contribution is that we prove that the ADMM
with an inexact Uzawa method converges globally and linearly
without requiring the full rank assumption of constraint matrix.
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