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Abstract: A random graph is given by a pair (𝔾, ℙ), where 𝔾 is a set of graphs and ℙ
is a probability distribution with support 𝔾. Random graphs have been studied since the
middle of the twentieth century and have witnessed a surge of interest since the turn of the
twenty-first century, fueled by the rise of the Internet and social networks and the growing
realization that today’s world is a connected world.

The classic and most widely studied models of random graphs are:

1. Bernoulli random graph model[1, 2]. Let 𝔾n be the set of all labelled graphs with n vertices. The
Bernoulli(p) random graph model assumes that edges are independent and identically distributed
Bernoulli(p) random variables, where p ∈ [0, 1] is the probability of an edge. Thus, the model assumes
that each graph Gn ∈ 𝔾n with n vertices and m ∈

{
0, … ,

(
n
2

)}
edges occurs with probability

ℙ(Gn) = pm (1 − p)
(

n
2

)
−m

, Gn ∈ 𝔾n

2. Uniform random graph model[3]. Let 𝔾n,m be the set of all labelled graphs with n vertices and m ∈{
0, … ,

(
n
2

)}
edges. The uniform random graph model assumes that each graph Gn,m ∈ 𝔾n,m occurs

with equal probability:

ℙ(Gn,m) =

((
n
2

)
m

)−1

, Gn,m ∈ 𝔾n,m

Both models are known as Erdős and Rényi random graphs. Indeed, the two models are closely related:
the Bernoulli(p) random graph model with edge probability p ∈ (0, 1) implies that the conditional prob-
ability of Gn, given that Gn has m ∈

{
0, … ,

(
n
2

)}
edges, is the discrete uniform distribution with sup-

port 𝔾n,m:

ℙ(Gn ∣ Gn ∈ 𝔾n,m) =
pm (1 − p)

(
n
2

)
−m((

n
2

)
m

)
pm (1 − p)

(
n
2

)
−m

=

((
n
2

)
m

)−1

, Gn ∈ 𝔾n,m
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Random Graphs

Under conditions which ensure that p is not too small and n is large, the behaviour of these two models
is similar: such conditions are reviewed in, for example, Section 1.1 of Frieze and Karoński[4].

Sections 1–3 focus on Erdős and Rényi random graphs, with an emphasis on the Bernoulli(p) random
graph model. An introduction to Erdős and Rényi random graphs and related random graph models can
be found in the monographs of Bollobás[5], Palmer[6], Janson et al.[7], Lovász[8] and Frieze and Karoński[4],
while the probabilistic method used to study random graphs is reviewed in the books of Alon and
Spencer[9], Molloy and Reed[10] and Chung and Lu[11]. We then discuss more complex random graph
models that go beyond Erdős and Rényi random graphs (Section 4). We conclude with the important
topic of statistical inference for random graphs (Section 5).

1 Phase Transitions of Erdős and Rényi Random Graphs

One of the most intriguing discoveries of classic random graph theory is that the structure of random
graphs undergoes dramatic changes as the edge probability p of the Bernoulli(p) random graph model
increases from 0 to 1, that is, as the random graph evolves from an empty graph without edges to a com-
plete graph with all possible edges. Such drastic changes in the structure of random graphs are known as
phase transitions.

To illustrate phase transitions, consider any monotone increasing graph property 𝒫 ⊆ 𝔾n, that is, any
graph property that is preserved by adding edges (e.g. connectivity). Bollobás and Thomason[12] showed
that, for every non-trivial, monotone increasing graph property 𝒫 ⊆ 𝔾n, there exists a threshold function
t𝒫 (n) such that

lim
n→∞

ℙ(Gn ∈ 𝒫 ) =
⎧⎪⎨⎪⎩

0 if
p

t𝒫 (n)
→ 0 as n → ∞

1 if
p

t𝒫 (n)
→ ∞ as n → ∞

In other words: with high probability, the random graph does not possess property 𝒫 when p ≪ t𝒫 (n),
but does possess property 𝒫 when p ≫ t𝒫 (n); note that p = p(n) is a function of n in the sparse-graph
regime where some of the most interesting phase transitions occur.

We give two examples of phase transitions. Consider the evolution of a Bernoulli(p) random graph as
p = p(n) increases from 0 to 1. If the random graph is very sparse in the sense that p n3∕2 → 0 as n → ∞,
then the random graph is the union of isolated vertices and edges with high probability. If the random
graph is less sparse in the sense that p n → 0, then with high probability the random graph is a forest. The
structure of the random graph undergoes a dramatic change when p reaches c∕n, where c = 1: while, with
high probability, the random graph consists of small components of order O(log n) when c < 1, it con-
sists of a giant component with a constant proportion of n vertices along with small components of order
O(log n) when c > 1. The abrupt emergence of a giant component is known as a phase transition. A second
phase transition occurs when p reaches the order of magnitude log n∕n: while the random graph with high
probability is not connected when p ≪ log n∕n, it is connected with high probability when p ≫ log n∕n.

These and other properties of Erdős and Rényi random graphs are reviewed in much more depth in the
books of Bollobás[5], Janson et al.[7] and Frieze and Karoński[4].

2 Other Properties of Erdős and Rényi Random Graphs

The theory of random graphs is not limited to dichotomous properties of random graphs, such as connec-
tivity.
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The distributions of non-dichotomous properties of functions of random graphs have been investigated
as well. Examples include the number of vertices of a given degree and Rank Statistics associated with
random graphs, such as the smallest and largest degree.

Often, the asymptotic distribution is concentrated at one or two discrete values: for example, with high
probability, the size of the largest clique (maximal connected subset of vertices) and the size of the largest
independent set (largest subset of vertices such that no pair of vertices is connected) assume one of at most
two values in the neighbourhood of 2 log n∕ log(1∕p) and 2 log n∕ log(1∕(1 − p)), respectively[13, 14]. More
interesting results concerning the chromatic number and other non-dichotomous properties of random
graphs are discussed in the books of Bollobás[5], Janson et al.[7] and Frieze and Karoński[4].

3 Applications of Erdős and Rényi Random Graphs

We mention some applications of Erdős and Rényi random graphs in classic random graph theory: random
trees, random tournaments and percolation on random lattices.

3.1 Random Trees

A random tree is a tree sampled at random from a given set of trees (see Tree-Structured Methods).
Properties studied include the number of vertices of a given degree, the distance of a given vertex from
the root (altitude), the number of vertices at a given altitude (width), the height of a rooted tree (the max-
imal altitude of its vertices) and the diameter of the random tree. Characteristics related to the length
of paths between specified vertices in a random tree have been studied as well. These and more general
structures, such as Random Forests, are reviewed in Moon[15] and Karoński[16].

3.2 Random Tournaments

A tournament with n players can be represented by a directed graph, where a directed edge (i, j) denotes
that player i defeated player j. If the outcomes of the tournament are random, the resulting random graph
is called a random tournament. Random tournaments can serve as a model of Multiple Comparison
Procedures. A wide range of problems and results on random tournaments is presented in the monograph
by Moon[17].

3.3 Percolation on Random Lattices

Consider a regular lattice and color edges (vertices) white or black with probabilities p and 1 − p, respec-
tively. Assume that a fluid spreads through the lattice, with the white edges (vertices) interpreted as “open”
and black ones as “closed.” Percolation Theory is concerned with the structural properties of such ran-
dom lattices. An overview on percolation theory can be found in monographs of Grimmet[18] and Bollobàs
and Riordan[19].

4 Beyond Erdős and Rényi Random Graphs

Since the turn of the twenty-first century, an increasing number of more complex random graph models
have been developed, fueled by the rise of the Internet and social networks and the growing realization
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that today’s world is a connected world (see Social Networks). Those more complex random graph mod-
els are motivated by the fact that edges in real-world networks are not believed to be independent and
identically distributed Bernoulli(p) random variables[20–24], necessitating the development of more com-
plex random graph models[25]. In general, more complex random graph models attempt to capture het-
erogeneity in the propensities of vertices to form edges and other subgraphs of interest and dependence
among edges[25].

4.1 Exchangeable Random Graph Models

A natural class of random graph models are models that possess invariance properties, such as Exchange-
ability[26]. Two broad classes of exchangeable random graph models can be distinguished, depending
on whether random graphs are invariant to the labelling of vertices[27] or the labelling of edges[28, 29].
Exchangeable random graph models include both dense and sparse random graph models[30].

4.2 Exponential-Family Models of Random Graphs

A large statistical framework that extends the Bernoulli(p) random graph model is given by exponential-
family models of random graphs, which are known as Exponential Random Graph Models (see
General Exponential Families; Special Exponential Families)[31–35]. The class of exponential-family
random graph models includes the Bernoulli(p) random graph model as a special case, because it is an
exponential-family model with the number of edges as sufficient statistic and the log odds of the edge
probability p as natural parameter. Well-specified exponential-family random graph models can model
sparse and dense random graphs, short- and long-tailed degree distributions and dependencies among
edges. Exponential-family models for dependent edges are closely related to other exponential-family
models for dependent random variables, such as Ising models in physics[36], Markov Random Fields in
spatial statistics[37] and Markov Networks in artificial intelligence, machine learning and statistics[38–40].
Several classes of models can be distinguished according to the dependence assumptions made. The
simplest class of models assumes that edges independent, which includes the Bernoulli(p) random
graph model[1, 2], 𝛽-models with vertex-dependent propensities to form edges[41] and p1-models with
vertex-dependent propensities to send and receive edges in directed random graphs[31]. A second class
of exponential-family models assumes Markov dependence[32, 42]. While some of those models have been
shown to be ill-behaved[43–47], well-behaved alternatives in the form of curved exponential-family models
have been developed[46, 48, 49]. Other exponential-family models induce local dependence within subsets
of vertices[50].

4.3 Random Graph Models with Latent Structure

A popular class of models are random graph models with latent structure, such as stochastic block models
with an unobserved partition of a set of vertices into subsets, which can be used to detect communities
in social networks[27, 51], and generalizations known as mixed membership models;[52] stochastic block
models with dependent edges within subsets of vertices;[50] latent space models which assume that ver-
tices have positions in an unobserved, metric space, which may be a Euclidean space or an ultrametric
space[53, 54], and which sometimes can be interpreted as an unobserved, social space;[53] combinations
of stochastic block models and latent space models;[55] random effects models and other latent variable
models;[30, 52, 56–60] and graphons[8], which can be viewed as latent variable models.
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4.4 Temporal Random Graph Models

Many real-world networks evolve over time, and models of time-evolving random graphs are therefore
of great interest. Two broad classes of models can be distinguished, depending on whether edges have
a duration (e.g. links between websites) or edges do not have a duration (e.g. e-mails). The first class of
models includes continuous-time Markov processes[61–63] and discrete-time Markov processes[64, 65] and
extensions of stochastic block models and latent space models to time-dependent random graphs[66–68].
The second class of models is known as relational event models[69]. Most of these models assume that the set
of vertices is time-invariant, but some models with time-evolving sets of vertices have been developed[70].

4.5 Small World and Scale-Free Random Graph Models

In physics and related fields, small world and scale-free random graph models with power-law degree
distributions have attracted much attention[71, 72]. While the mathematical properties of scale-free random
graphs are worth studying[73], the usefulness of scale-free random graphs in real-world applications has
been debated[74, 75].

5 Statistical Inference for Random Graphs

Sections 1–4 are concerned with deduction – deducing properties of random graphs when the model
is known. By contrast, Section 5 is concerned with induction – inferring properties of random graphs
when the model is unknown. In other words, Section 5 is concerned with statistical inference for random
graphs.

Consider a set of vertices of interest, called a population, and a population graph defined on the popu-
lation. Statistical inference may be of interest in the following scenarios:

• The whole population graph is observed, but the probability model that generated the population
graph is unknown and the goal of statistical inference is to estimate the probability model, based on
the observed population graph.

• The population graph is unobserved, but subgraphs of the population graph are sampled, and statistical
inference focuses on:
— Model-based inference given sampled subgraphs: Estimating the probability model that generated

the population graph, based on sampled subgraphs.
— Design-based inference given sampled subgraphs: Estimating functions of the population graph,

based on sampled subgraphs, without making assumptions about the probability model that gen-
erated the population graph.

We discuss sampling along with design-based and model-based inference below.

5.1 Sampling

There are many sampling designs for sampling subgraphs from population graphs: for example, one can
sample vertices at random and observe all edges of sampled vertices, which is a simple form of ego-
centric sampling[76, 77]. In addition, it may be possible to observe the edges of those vertices that are con-
nected to sampled vertices, which is a simple form of link-tracing[76, 78]. Special cases of link-tracing are
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snowball sampling[79] and respondent-driven sampling[80–82]. An alternative is sampling edges instead of
vertices[28].

5.2 Design-Based Versus Model-Based Inference

Two broad classes of statistical inference problems can be distinguished, design-based and model-based
inference.

In the first class of inference problems, no assumption is made about the probability model that generated
the population graph. A possible goal of statistical inference is to estimate functions of the population graph
based on sampled subgraphs, for example, the number of edges in the population graph. A classic example
of design-based estimators is Horvitz–Thompson estimators[83]. A disadvantage of Horvitz–Thompson
estimators is that they require knowledge of the sampling inclusion probabilities, which are unknown in
link-tracing sampling designs and other complex network sampling designs, limiting the usefulness of
design-based estimators in applications to random graphs[84].

In the second class of inference problems, it is assumed that the population graph was generated by
a probability model. The goal of statistical inference is to infer the probability model that generated the
population graph based on either a complete observation of the population graph or an incomplete obser-
vation of the population graph in the form of subgraphs sampled from the population graph.

5.3 Statistical Theory: Design-Based Inference

The properties of design-based estimators depend on the sampling design used to sample subgraphs of the
population graph.

One desirable property of statistical estimators is consistency. In design-based inference, there are at
least two forms of consistency. The first form of consistency is Fisher-consistency[85]. An estimator of
a population quantity is Fisher-consistent if the estimator is equal to the population quantity when the
whole population graph is observed: for example, an estimator of the proportion of edges in the popula-
tion graph based on the proportion of edges in sampled subgraphs is Fisher-consistent. The second form of
consistency is consistency and asymptotic normality under sampling. Depending on the sampling design,
design-based estimators may be consistent and asymptotically normal under sampling[77, 82].

5.4 Statistical Theory: Model-Based Inference

In general, the properties of model-based estimators depend on both the probability model that generates
the population graph and the sampling design that generates samples of subgraphs from the population
graph.

But, under some conditions, the sampling design is ignorable for the purpose of model-based inference.
The classic work of Rubin[86, 87], applied to random graphs, implies that the sampling design is ignorable
for the purpose of likelihood-based inference as long as the following two conditions are satisfied:[76, 84, 88]

• The probability of not observing whether two vertices are connected does not depend on whether the
two vertices are connected.

• The parameters of the complete-data generating process that generates the population graph and the
incomplete-data generating process that samples subgraphs are distinct.
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Two examples of ignorable sampling designs are ego-centric sampling and link-tracing sampling designs
based on random samples of vertices[76, 84, 88]. In both examples, the likelihood function can be obtained by
summing the probability mass function of the population graph with respect to the unobserved edges, and
the sampling design used to generate the sampled subgraphs can be ignored for the purpose of likelihood-
based inference[76, 84, 88].

One of the most studied statistical inference problems is the recovery of latent structure underlying ran-
dom graphs. The best-known example is the recovery of an unobserved partition of a set of vertices,which
arises in the study of stochastic block models and helps detect communities in social networks[27, 89–102]. A
related example is the recovery of latent structure in latent space models[103, 104] and graphons[99, 105, 106]. In
addition to the recovery of latent structure, statistical theory has studied the properties of estimators for the
parameters of random graph models, for example, random graph models with vertex-dependent propen-
sities to form edges, including 𝛽-models and p1-models[41, 107–109], and canonical and curved exponential-
family models of random graphs[110].
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