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Abstract. Multispecies microbiome systems are
known to be closely linked to human, animal, and
plant life processes. The growing field of metabo-
lomics presents the opportunity to detect changes
in overall metabolomic profiles of microbial spe-
cies interactions. These metabolomic changes
provide insight into function of metabolites as they
correlate to different species presence and the

observed phenotypic changes, but detection of

subtle changes is often difficult in samples with

complex backgrounds. Natural environments such as soil and food contain many molecules that convolute mass
spectrometry—based analyses, and identification of microbial metabolites amongst environmental metabolites is
an informatics problem we begin to address here. Our microbes are grown on solid or liquid cheese curd media.
This medium, which is necessary for microbial growth, contains high amounts of salts, lipids, and casein
breakdown products which make statistical analyses using LC-MS/MS data difficult due to the high background
from the media. We have developed a simple algorithm to carry out background subtraction from microbes grown
on solid or liquid cheese curd media to aid in our ability to conduct statistical analyses so that we may prioritize

metabolites for further structure elucidation.
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Introduction

lucidation of chemical species directly involved in a given

microbiome’s formation and their exact role in subsequent
microbial interactions is often difficult to assess because of the
large number of abiotic and biotic variables in complex multi-
domain microbial communities [1—4]. Despite these difficul-
ties, chemical elucidation of specialized metabolites that gov-
e these interactions has proven valuable [5, 6], such as the
recently described studies involving crop pathogens and the
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production and expression of the small molecules ralsolamycin
and bikaverin [7, 8]. Ralsolamycin was found via imaging
mass spectrometry to be important for how Ralstonia
solanacearum exhibits an endofungal lifestyle potentially
allowing it to persist in the environment in the absence of a
plant host, whereas bikaverin protects specific Fusarium and
Botrytis spp. from invasion by this crop bacterial pathogen.
Bikaverin is a weak antibiotic and ralsolamycin has antifungal
properties. It is our expectation that identifying known and
unknown secondary metabolites from microbial communities
in a system with reduced complexity will similarly lead to
further understanding of microbial chemical ecology and in-
crease discovery of therapeutically or industrially relevant mol-
ecules [2, 9].

Cheese rind-derived microbes allow for a simplified model
system and can be used as a means to study the mechanisms
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behind microbial community formation [2]. Aged cheeses can be
inoculated with desirable microbes yet many microbial species
present at the end of the aging process are not those found in
starter cultures and inoculations. The ability of similar genera to
consistently colonize cheese rinds worldwide suggests that there
are underlying mechanisms driving the formation of these
microbiomes. Highly reproducible patterns of microbial commu-
nity succession have been observed on cheese rinds with very
little regional variation, indicating that the process of formation in
this model system is not purely stochastic. Instead, community
formation is heavily dependent upon observable factors such as
environmental stressors and microbial interactions [10]. Elucidat-
ing these factors is feasible with cheese rind microbiomes mainly
because of the limited number of variables present [11]. On
average, a cheese rind contains 10-12 different species of bacteria
and fungi and the steps prior to aging are tightly controlled.
Abiotic factors such as salt and pH content can easily be measured
and manipulated while temperature and humidity are closely
regulated throughout aging [2]. Previous work has demonstrated
that biotic interactions are also crucial for proper species succes-
sion and there are likely metabolites that are unique to those biotic
interactions [10].

It is well established that production of metabolites is also
dependent on microbial natural environments and growing
partners [2, 12, 13]. Therefore, it is important to mimic those
natural environments in the laboratory as closely as possible.
Metabolomics experiments are commonly performed on com-
plex human and mammalian samples in a variety of applica-
tions and myriad tools exist for analysis of this data [14—16].
Often times, these experiments are limited to known bio-
markers or previous knowledge of the metabolites of interest
[17]. Metabolomics is challenging for experiments that delve
deeply into understudied systems which lack a wealth of stan-
dards and/or genomic information from the producing organ-
isms, such as fermented cheese-derived species. It is important
in these cases to retain and primarily focus on m/z values that
represent unknown metabolites associated with specific phe-
notypes [18]. At the same time, metabolomics performed on
complex samples, such as extractions of cheese curd media
with microbial growing partners, presents a challenge to sort
unknown metabolites from noise and high background of
proteins, peptides, and lipids.

Current metabolomics literature highlights the wide variety
of online tools and the applications and ease with which users
can access their potential [19, 20]. In order to properly use
existing online platforms for metabolomic analysis of mass
spectrometry data, it is often necessary to translate spectra that
are collected into a list of m/z values found in each sample with
intensity and, for liquid chromatography with tandem mass
spectrometry (LC-MS/MS) data, retention times. Many tools
exist to generate these lists; however, most of these tools
include all major peaks found in a spectrum and many of those
peaks are not of any biological interest in our case given the
high background from our media. Therefore, it is not always
beneficial to take fold change over media controls to indicate
that signals are uniquely produced metabolites as it is likely that

microbes alter the concentration of media metabolites in the
environment (i.e., the breakdown of casein to generate unique
peptides over time). The online MetaboAnalyst platform has
become a very useful tool for analysis of metabolomics data
and is capable of a variety of statistical tests [21]. In our case,
MetaboAnalyst tools such as principal component analysis
(PCA, Fig. la) are confounded by the presence of media
metabolites as evidenced by the loadings (Fig. 1b) that are
strongly driven by media-derived metabolites (m/z values
1461, 605, 414, 804).

To specifically identify m/z values that represent metabolites
produced by microbes grown on/in complex media, it would be
advantageous to completely eliminate m/z signals that are also
found in media controls regardless of the abundance. Thou-
sands of spectra are generated during one LC-MS/MS run and
metabolomics experiments require many LC-MS/MS runs with
biological and technical replicates for each sample. Manual
curation of these large datasets is not possible or necessary
when automation can be used to perform noise and blank or
media control subtraction. There are existing online platforms
to deal with different types of mass spectrometry data. For
example, this can be accomplished with online tools such as
the global natural product social molecular networking (GNPS)
for LC-MS/MS data by inputting all data into molecular net-
works and manually subtracting all media and blank nodes post
networking in Cytoscape [22]. However, GNPS is not capable
of removing these media controls prior to molecule networking
which lengthens analysis nor is it capable of processing matrix-
assisted laser desorption/ionization coupled with time-of-flight
mass spectrometry (MALDI-TOF MS) or LC-MS data and
therefore is limited. Many online and offline tools are similarly
capable of some level of blank and media subtraction but the
process can be somewhat convoluted. SubtractMZ is a function
found in the msPurity R package developed by Lawson et al.
that performs blank subtraction [23]. Schiffman et al. have also
incorporated blank subtraction into a metabolomics pipeline
[24]. However, while both algorithms perform blank removal,
the knowledge and ability to write/modify code is required to
implement blank removal. Moreover, the output of these tools
is incompatible for the input in other online tools such as GNPS
or MetaboAnalyst [19, 22]. Emerging technologies for utilizing
MALDI-TOF MS data to establish metabolomic profiles [25]
highlight the need to first remove media signals from data
before undergoing extensive analysis. We have created an
algorithm for subtracting noise, blanks, and media controls
from mass spectra data files without reliance on expertise with
online platforms or proprietary/commercial software, and have
performed subsequent analysis on LC-MS/MS and MALDI
data from cheese curd media microbial extracts.

Experimental
Microbial Culturing

All bacterial cultures were grown overnight in brain-heart
infusion (Bacto® BHI) liquid media (BD) at room temperature.
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Figure 1. (a) Principal component analysis (PCA) was performed using the MetaboAnalyst platform with list outputs of clustered
data from GNPS (available in Online Resource 1). (b) Loading for the PCA plots point out m/z values that contribute to variability in
samples. These m/z values are represented in their original networks in Fig. 3a

Liquid cultures were normalized to an optical density (ODgq0)
of 0.1 and bacterial cultures were diluted 10" for further
experiments. Fungal cultures were grown on plate count agar
milk salt (PCAMS; 1 g/L whole milk powder, 1 g/L dextrose,
2.5 g/L yeast extract, 5 g/L tryptone, 10 g/L sodium chloride,
15 g/L agar). Plates were kept at room temperature and spores
were harvested at 7 days (or until sporulation was observed) of
growth for subsequent experiments. Spores harvested from
fungi were put into 1X PBS and normalized to an O.D. of 0.1
for further experiments.

Extraction of Cultures

For extraction of solid agar plates, 5 pL of working cultures
were spotted onto 10% cheese curd agar (CCA 100 g/L lyoph-
ilized cheese curd, 5 g/L xanthan gum, 30 g/L NaCl, 17 g/L
agar, pH adjusted to 7.0). After at least 7 days of growth, agar
was removed from the petri plate and placed into 50 mL falcon
tubes. Five milliliters of acetonitrile was added to each tube and
all were sonicated for 30 min. All falcon tubes were centrifuged
and liquid was removed from the solid agar pieces and put into
15-mL falcon tubes. The falcon tubes containing agar were
then centrifuged and liquid was removed from any residual
solid debris and put into scintillation vials. These liquid extrac-
tions were then dried using a steady stream of air. Dried
extracts were then weighed and diluted with methanol to obtain
1 mg/mL solutions which were put into HPLC vials and
analyzed on a Thermo LCQ advantage max ion trap and a
Bruker Impact I qTOF.

Mass Spectrometry Data Collection

Low-resolution LC-MS/MS analysis was done on a Thermo
Finnigan LCQ Advantage Max mass spectrometer coupled to
an HP1050 HPLC (MassIVE accession MSV000083571). A

gradient of 10-100% methanol with 0.02% formic acid over
25 min was used for separation. The ESI conditions were set
with the source voltage at 5 kV and capillary temperature at
250 °C. The detection window was set from 200 to 2000 Da,
collision energy was at 35%, and isolation width was 3 m/z,
with three data dependent MS? events per MS' and dynamic
exclusion. High-resolution LC-MS/MS data was collected on a
Bruker impact II qTOF in positive mode with the detection
window set from 50 to 1500 Da, on a UPLC gradient of 10—
100% acetonitrile with 0.02% formic acid over 17 min. The
ESI conditions were set with the capillary voltage at 4.5 kV.
The detection window was set from 50 to 1500 Da and the top
three precursor ions from each MS' scan were subjected to
collision energies of 12 ¢V, 48 eV, and 60 eV for a total of nine
data-dependent MS? events per MS' with dynamic exclusion.

BLANKA

BLANKA (https://github.com/gtluu/blanka) is a command line
script written in Python that removes noise and background
(control) media signals without the need for user written code
(documentation found in Online Resource 2). It currently sup-
ports LC-MS (LC-MS/MS) and MALDI-TOF MS spectra, and
has been tested using data from a Thermo Finnigan LCQ
Advantage Max, Bruker MaXis, and a Bruker AutoFlex Speed
LRF. Raw data formats generated during data collection or
.mzXML can be used as input for BLANKA. Users may
specify a parent folder containing sample and control data,
and all subfolders will be searched for data. Multiple sample
datasets can be processed in one run as long as data is found
under the parent folder, and multiple control datasets can be
used to allow for technical/biological replicates. LC-MS data
should consist of one .mzXML file per LC-MS run. MALDI
data should consist of one .mzXML file per spot. In addition to
the files, it is necessary to have the metadata for each file in an
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Excel template containing the coordinates and identities of each
sample. If the user specifies raw data as the input, MSConvert
[26] is used to convert the data into .mzXML format as the first
step of the BLANKA algorithm. Once control and sample
datasets have been loaded using the mzXML module in
Pyteomics [27], noise removal is first performed on each
dataset based on a user-defined threshold; we recommend at
least a 4:1 signal to noise ratio as a starting cutoff, followed by
removal of signal peaks from the experimental spectrum (if
MS') and removal of the entire experimental spectrum (if MS?)
based on corresponding control spectra. By default, BLANKA
removes both noise and background signals, but the user may
choose to forego either step and perform only noise removal or
only blank removal. Several files are generated when running
BLANKA: (1) raw data in .mzXML format (if original input
was not . mzXML format), (2) an .mgf file with the noise/blank-
removed MS? spectra, (3) an .mgf file with the noise/blank-
removed MS' and MS? spectra, (4) an .mgf file with lists of
only removed background peaks from each spectra, (5) an .mgf
file with the noise-removed MS? spectra, and (6) an .mgf file
with the noise-removed MS' and MS? spectra (Online
Resource 2). If the user performs only blank removal, no noise
removal file will be output and vice versa. All files are output to
a user-specified directory, and in the event that no directory is
specified, files are output to the directory that the input data was
found in. The amount of files that can be simultancously
processed by BLANKA and the amount of time required is
dependent upon computer hardware and data file size, and as
we continue to test and develop BLANKA, general limitations
will become clear. For the analysis performed here, three blank
files were removed from six sample files in under 2 min for the
low-resolution files and two blank files were removed from
two sample files in under 5 min for the high-resolution data.

Results and Discussion
Noise Removal

To perform noise removal, BLANKA first calculates baseline
noise by averaging the n least intense peaks in a given spectrum
(n defined in Eq. 1)

n = 0.05 x number of peaks in spectrum (1)

Once the baseline noise has been calculated, peaks that are
less than or equal to the signal to noise ratio (SNR) specified are
removed from the spectrum, as illustrated in Fig. 2b.

LC-MS(/MS) Blank Removal

For each given spectrum in a sample dataset, a corresponding
spectrum with a matching retention time (rt) within a rt toler-
ance window (MS') is identified from the control dataset,
which can be comprised of one or more LC-MS runs. In the
case of LC-MS/MS data, matching rt within a rt tolerance
window as well as precursor ion mass within a precursor ion

mass tolerance window are identified from the control dataset.
Tolerance levels for both rt and precursor ion mass may be
specified by the user to adjust the algorithm for various instru-
ment specifications. In the event that multiple ion matches in a
rt threshold are found, the spectrum with the closest matching
criteria is selected as the control ion. If no ion matches in a
designated rt are found, the spectrum remains unmodified. It is
important to point out that BLANKA does not perform a peak
picking and rt alignment step which is common to many
metabolomics experiments. In BLANKA, peak picking is not
usually necessary because the data is centroided either prior to
input or during the conversion step if raw files are used as the
input. While the inspiration for this algorithm was to aid with
our metabolomics experiments, we intend BLANKA to be for
general use with mass spectrometry datasets and users should
be able to perform blank subtraction without needing technical
or biological replicates. If rt drift outside the defined tolerances
is expected and users have replicates, it would be beneficial to
perform rt alignment for LC-MS files using existing metabo-
lomics tools, such as XCMS. This is not as much of a concern
for LC-MS/MS files considering that the fragmentation data
associated with precursor ions is informative along with rt.
Tandem spectra data would still be identified to form a con-
sensus spectrum in tools such as GNPS.

MALDI Dried Droplet Blank Removal

In the case of MALDI-TOF MS data, the user will define the
control spectrum spot in the algorithm and the corresponding
spectrum is used for the subtraction and noise removal. In the
case where multiple technical and/or biological replicates are
present in the dataset, signal averaging is used to create a single
consensus control spectrum for subtraction. Each experimental
spectrum is then compared to the consensus control spectrum, and
matching peaks found in the control spectrum that correspond to a
signal within the signal ion mass tolerance in the experimental
spectrum are then removed from the experimental spectrum.

BLANKA Performance

To begin to assess BLANKA'’s performance, the GNPS mo-
lecular networking workflow was employed using six files
which correspond to three biological replicates each of
Penicillium sp. # 12 (fungus) with either E. coli K12 (bacteria
no. 1) or Pseudomonas psychrophila sp. JB418 (bacteria no. 2)
as growing partners [2]. Original datasets including controls
which were comprised of extracted cheese curd agar and those
with the controls removed using BLANKA were run through
identical workflow parameters and compared in Fig. 3 to
confirm that BLANKA was capable of removing nodes
resulting from blank and media controls. Networking parame-
ters can be viewed in Online Resource 2.

In the resulting molecular network without BLANKA sub-
traction (Fig. 3a), 24 out of all 66 nodes were found in controls
leaving 42 nodes that were only found in fungal cultures.
Fifteen of the control nodes were present also in samples and
should be removed by BLANKA in our processed datasets.
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Figure 2. MALDI mass spectra throughout the process of noise

and blank removal. (@) Baseline noise is visible in the original

spectra obtained and (b) removed by BLANKA. Media controls are considered blanks, and after blank spectra are removed, the
resulting spectra (c) displays m/z values that are uniquely found in samples. The x-axis m/z scale in the processed spectra is smaller
than previous scales because m/z values above 250 Da were also present in media controls and successfully removed by BLANKA

Inspection of the networks shows that all but two of those
control nodes (m/z 1461 and 378) were removed by BLANKA.
Manual inspection of the raw data demonstrated that m/z 1461
and 378 were indeed found in control files and not removed
with BLANKA due to differences in retention times of the
precursor ions. Theoretically, the BLANKA processed dataset
would all contain 42 nodes from the original dataset that were
considered fungal metabolites and the loss of nodes is likely
due to the wide tolerance settings used in BLANKA for a low-

resolution instrument. Data reduction is to be expected and the
user can set tolerances according to the tradeoffs between
adequate control removal and loss of real data.

The discrepancy here highlights a limitation to this algo-
rithm that can occur due to experimental error. In the case
observed here, the retention time matching was just out of the
user-defined tolerance window which can occur in our system
due to the lack of inline degasser on the LC. For this issue, the
inclusion of technical replicates with rt drift alignment
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Figure 3.

Molecular networks using GNPS platform. Nodes represent consensus fragmentation spectra and are labeled with

nominal precursor ion masses and color coded according to datasets. (a) Data files with controls were input into GNPS and (b) data
files that were pre-processed with BLANKA were input and control files were left out. BLANKA setting for this instrument were
defined as a rt tolerance of 10 s and precursor ion mass tolerance of 1.0 Da

performed using tools such as MZmine or XCMS would not
only circumvent this problem but would also aid in identifica-
tion of contaminants inherent to PEEK tubing and individual
instruments [28]. Taking this into consideration, the user
should be aware that BLANKA removes noise and media
controls based on matching retention times and should be used
only when retention times are comparable and take care to set
appropriate retention time thresholds.

Statistical analysis of the resulting BLANKA processed mo-
lecular networks showed that removal of media blanks and noise
resulted in a different set of m/z values that are considered
significant (Fig. 4) compared to the unprocessed data. Three
out of 11 identified m/z values in the unprocessed data were
due to media components (Fig. 4a) as opposed to one out of 9
m/z values identified by the processed data (Fig. 4b) that was not
removed by BLANKA, as described above. This serves to
highlight that as with all data visualization tools, manual inspec-
tion of the raw data is necessary before further validation of the
ions or metabolites is carried out. We would also point out that
removal of control peaks will result in different absolute values
for statistical analysis when a normalization step is included. For
example, the fold change of m/z values in these plots differs
because BLANKA treatment removes what are likely to be
intense control spectral peaks. The normalization applied in
MetaboAnalyst thus considers a different set of peaks and sub-
sequent calculations reflect that. The data displayed in Figs. 3
and 4 was processed using BLANKA settings adjusted for a
low-resolution instrument as the default settings are appropriate
for high-resolution instruments only. Tailoring these settings for
different datasets acquired on the users’ instruments is highly
advised in order to enhance the output.

The LC-MS/MS data acquired on a 3D ion trap unprocessed
data consists of six sample files (two different conditions with
three biological replicates of each) and five control files (three
media biological replicates and two solvent technical repli-
cates). LC-MS/MS data acquired on a qTOF unprocessed data
consists of two sample files and two control files (one media
and one solvent). Volcano plots are not displayed for qTOF
data as only one replicate of each sample was obtained and
statistical analyses would therefore not be appropriate. A com-
parison of the number of clusters and library hits found by
GNPS listed in Table 1 highlights the differences in processing
data with BLANKA versus including controls in datasets.

It is worth noting that the significant data reduction achieved
through processing with BLANKA on a small subset of samples
will likely be enhanced for experiments with many sample files.
To test this proposal, we ran BLANKA on an online public
dataset containing 26 files from a high-resolution instrument and
compared the processed and unprocessed data using GNPS
(Online Resource 2). The data from this MassIVE dataset
(MSV000080540) explores how Fusarium fujikuroi metabolical-
ly responds to wild type and a mutant strain of Ralstonia
solanacearum as well as high and low nitrogen conditions [7].
This dataset also contains media and solvent controls and biolog-
ical replicates making it an ideal test for high-resolution LC-MS/
MS data. We found on average a 73% reduction in the number of
nodes found in both sample and media and a 21% reduction in the
number of nodes found in samples only (Online Resource 2, Items
5 and 6). The reasons for the discrepancy between 100 and 73%
reduction of undesirable nodes and 0 and 21% reduction of
desirable nodes are likely multifaceted, but ultimately due to the
fact that GNPS considers fragmentation and not retention time
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Figure 4. Volcano plots of LC-MS/MS data show fold change between two sample sets on the x-axis and p values on the y-axis.
Data was exported from GNPS networks and reformatted for input into MetaboAnalyst (available in Online Resource 1). (a) Fold
changes between two different conditions highlight m/z values that are most significantly different between the two datasets. As only
two conditions can be considered, samples are directly compared without media blank data. This plot represents the data from the
molecular network in Fig. 3a while (b) represents the data from the molecular network in Fig. 3b. Removal of media blank m/z values
from all samples results in a similar but different set of m/z values from the original volcano plot and eliminated two m/z values from

the original plot that were media signals

while clustering spectra together while BLANKA consider reten-
tion time but not fragmentation while removing spectra. This
highlights the value in orthogonal use of GNPS to screen
BLANKA-processed files for media components that may not
match retention times (perhaps due to pH or choice of stationary

phase) but have similar or identical fragmentation. In general,
using BLANKA to reduce the amount of data that is input into
GNPS results in networks that are smaller and thus easier to
navigate, but it should not be considered a stand-alone blank
removal step.

Table 1. Comparison of Processed and Unprocessed Data Displays a Reduction in the Amount of Metabolites that are Considered in Analyses. LC-MS/MS qTOF

Data was Filtered to Consider only m/z Values from 200 to 2000 Da

Data input No. of library hits in GNPS No. of MS/MS clusters m/z values in volcano plots identified as significant

3D ion trap unprocessed data 0 66 1461, 1213, 878, 863, 856, 755, 695, 346, 316, 292, 254
3D ion trap processed with BLANKA 0 40 1461, 1213, 863, 856, 755, 695, 568, 316, 292

qTOF unprocessed data 50 1675 -

qTOF processed with BLANKA 40 1029 -
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We continue to identify and correct BLANKA performance
as our own sample size increases. Future iterations of
BLANKA will include the capacity to export files in .mzXML
format which will allow direct import into MetaboAnalyst and
circumvent the need to export clusters from GNPS. This ca-
pacity will also allow users to input files into XCMS which
performs peak picking and retention time alignment for direct
comparison of two different conditions, such as with cloud
plots, [29] without the complication of media components.

Conclusions

Blank and noise subtraction is necessary for the analysis of data
from nutrient-complex samples in order to quickly prioritize
signals for further validation based on statistical analyses from
the metabolomic information. Statistical tools for the analysis
of metabolomics datasets are useful for extracting valuable
information from large amounts of data. Removing data points
that represent media artifacts completely allows us to run
statistical analysis with more confidence in results, and we will
continue to develop BLANKA as we expand to larger datasets.
This simple algorithm prepares data for further analysis using
existing online platforms such as GNPS and MetaboAnalyst
with minimal effort by the user and is ideal for users that have
complex nutrient or media requirements to culture their cells or
microbial samples.
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