2019 IEEE International Symposium on High Performance Computer Architecture (HPCA)

String Figure: A Scalable and Elastic Memory Network Architecture

Matheus Almeida Ogleari**, Ye Yuf, Chen Qian*, Ethan L. Miller*#, Jishen Zhao*

*University of California, Santa Cruz
*{mogleari,cqian12,elm} @ucsc.edu

tUniversity of Kentucky
tye.yu@uky.edu

YPure Storage *University of California, San Diego

*{maogleari,jzhao} @eng.ucsd.edu

Abstract—Demand for server memory capacity and perfor- Sme 23?3
mance is rapidly increasing due to expanding working set g!: ®X1e
sizes of modern applications, such as big data analytics, in- w2 “©-Amazon EC2 stezm 27 1618
memory computing, deep learning, and server virtualization. % §4 A Microsoft Azure X1'

One promising techniques to tackle this requirements is mem- o8 S192 e

ory networking, whereby a server memory system consists = 2‘2

of multiple 3D die-stacked memory nodes interconnected by) g

a high-speed network. However, current memory network 580 '
n = 2012 2013 2014 2015 2016 2017

designs face substantial scalability and flexibility challenges.
This includes (1) maintaining high throughput and low latency
in large-scale memory networks at low hardware cost, (2)
efficiently interconnecting an arbitrary number of memory
nodes, and (3) supporting flexible memory network scale
expansion and reduction without major modification of the
memory network design or physical implementation.

To address the challenges, we propose String Figure', a high-
throughput, elastic, and scalable memory network architecture.
String Figure consists of (1) an algorithm to generate random
topologies that achieve high network throughput and near-
optimal path lengths in large-scale memory networks, (2) a
hybrid routing protocol that employs a mix of computation
and look up tables to reduce the overhead of both in routing,
(3) a set of network reconfiguration mechanisms that allow
both static and dynamic network expansion and reduction. Our
experiments using RTL simulation demonstrate that String
Figure can interconnect over one thousand memory nodes with
a shortest path length within five hops across various traffic
patterns and real workloads.

Keywords-Memory fabric; 3D die-stacked DRAM; memory
network; scalability; reconfiguration; routing; memory centric

INTRODUCTION

The volume of data has skyrocketed over the last decade,
growing at a pace comparable to Moore’s Law [1]. This
trend drives the popularity of big data analytics [2], [3],
in-memory computing [4], [5], deep learning [6], [7], [8],
and server virtualization [2], which are frequently insatiable
memory consumers. As a result, these applications demand
a continuous expansion of server memory capacity and
bandwidth to accommodate high-performance working data
access. As shown in Figure 1, cloud server memory capacity
has been rapidly growing since the debut of cloud service
for in-memory computing [9], [10], [11].

Unfortunately, DRAM capacity scaling falls far behind the

I'String Figure is a game formed by connecting strings between fingers
of multiple people. Our memory network topology appears like a string
figure formed using memory nodes.

Figure 1. Expanding server memory demand.

pace of the application demand with current DDRx based
architectures [12]. One conventional solution to increasing
server memory capacity is to add more CPU sockets to main-
tain additional memory channels. In commodity systems,
each processor can support up to 2TB memory. As a result,
EC2 1Xe adopts four CPU sockets to accommodate the 4TB
memory capacity [9]. Azure S960 servers can adopt 20 Intel
Xeon processors to accommodate 20TB of memory [11].
However, purchasing extra CPU sockets substantially in-
creases the total system cost [13], [14]. The extra hardware
cost adds significant, often nonlinear overheads to the system
budget, making this solution unsustainable.

A promising technique to tackle these memory challenges
is memory networking, whereby the server memory system
consists of multiple 3D die-stacked memory nodes inter-
connected by a high-speed network. The interconnected
memory nodes form a disaggregated memory pool shared
by processors from different CPU sockets in the server
(Figure 2). Ideally, the memory network can enable more
scalable performance and capacity than traditional DDRx-
based memory systems, as shown by academia [15], [14],
[16] and industry efforts from HPE [17] and IBM [18].
However, the memory network scalability relies on the scal-
ability of the memory fabric that interconnects the memory
nodes [16], [14].

Previous memory network designs investigated platforms
with limited numbers of memory nodes. Scalability and
flexibility were not considered in their the design goals.
Given that each memory node (a 3D memory stack) can
offer 8GB capacity [14], state-of-the-art 4TB server memory
system requires 512 memory nodes. Recent works have
proposed optimizing NoC network topologies to support
up to 128 memory nodes in integrated CPU+GPU (APU)
systems [16]. However, the design partitions clusters of
memory nodes to separate channels, where each processor

2378-203X/19/$31.00 ©2019 IEEE
DOI 10.1109/HPCA.2019.00016

647

IEEE
computer
psoaety

can only access a subset of the memory space. State-
of-the-art planar topologies [19], [20] offer high network
throughput at a large scale. However, the number of required
router ports and links increases as the network size grows,
which imposes undesirable cost in routers integrated with
memory nodes. The challenges of scaling up server memory
capacity still remain.

The goal of our paper is to design a high-performance,
scalable, and flexible memory network architecture that
can support over a thousand interconnected memory nodes
shared by processors in a cloud server. We elaborate our
design goal as follows:

Scalability. We need to support over a thousand memory
nodes shared by all CPU sockets in a server. As such,
the scalability requirement is three-fold. Path lengths:
When the network size (i.e., the number of memory
nodes) grows, the routing path lengths need to grow sub-
linearly. Routing overhead: The computation and storage
overheads of routing decision-making need to be sublinear
or independent of the network scale. Link overhead: The
number of required router ports and links is also either
sublinear or independent of the network size.

Arbitrary network scale. We need to maintain a high-
throughput interconnect of an arbitrary number of memory
nodes, without the shape balance limitation of traditional
topologies, such as a mesh or tree.

Elastic network scale. We need to support flexible ex-
pansion and reduction of the network size, in terms of
the number of memory nodes. The elastic network scale
allows effective power management by turning on and off
routers and corresponding links. It also enables design
and implementation reuse across various server system
configurations.

To achieve our goals, we propose String Figure, a scal-
able and elastic memory network architecture that consists
of three design components. First, we propose a network
construction scheme to efficiently generate random net-
work topologies that interconnect an arbitrary number of
memory nodes with high network throughput, near-optimal
path lengths, and limited router ports. Second, we develop
an adaptive greediest routing protocol, which significantly
reduces the computation and storage overhead of routing in
each router. Finally, we propose a network reconfiguration
scheme, which allows the network scale, topology, and
routing to change according to power management and
design reuse requirement. Performance and energy exper-
iments show that String Figure can interconnect up to 1296
memory nodes with significantly higher throughput and
energy efficiency than previous designs, across various of
synthetic and real workloads.

BACKGROUND AND MOTIVATION

In this section, we briefly discuss the limitations of con-
ventional DDRx-based memory systems, opportunities with

648

Memory Node Processor

55

A Quad-socket Server System

Figure 2. A disaggregated memory pool in a quad-socket server. Memory
modules are interconnected by a memory network shared by four proces-
Sors.

memory networks, and the challenges of scalable memory
network design.
Limitations of Commodity Server Memory Architectures

Traditional server memory systems face substantial chal-
lenges in scaling up memory capacity due to cost and
performance issues. Increasing the number of CPU sockets
enables adding more memory channels with more DIMMs.
However, extra CPU sockets, which are added for memory
capacity rather than compute requirement, can substantially
increase hardware cost in an economically infeasible man-
ner. Prior studies show that increasing memory capacity
from 2TB to 4TB by doubling the number of CPU sockets
can lead to over 3x increase in server system cost [13].
Commodity clusters allow us to develop scale-out memory
systems, which distribute the working set of applications
across multiple server nodes [21]. However, the scale-out
approach can only accommodate a limited subset of use
cases with data-parallel, light communication algorithms. In
remaining applications, the scale-out solution either requires
programmers to rewrite their software, or system architects
to adopt a low-latency interconnect fabric. This shifts the
memory scaling burden to the software and communication
infrastructures. However, recent studies that explored disag-
gregated memory system design [22], [23] require substan-
tial changes in the virtual machine system software, such
as a hypervisor. Our design is in line with recent industry
and academic approaches on implementing disaggregated
memory pool with memory fabric, such as Gen-Z [24] and
memory-centric system integration [15], [25], [14].
Memory Network

To address the memory capacity demand challenges,
recent works introduce memory network design [15], [25].
A memory network consists of a set of 3D die-stacked
memory nodes interconnected by a high-speed network.
Figure 2 shows an example server system with four CPU
sockets attached to a memory network. The processors can
be connected to any edge memory nodes in the network.
As 3D die-stacking technology is maturing, various 3D die-
stacked memory designs are either already used in com-
modity systems or close to the market [26], [27], [28], [29].
3D die-stacked memory typically employs several DRAM
dies on top of a logic die. For example, one type of die-
stacked memory, Hybrid Memory Cube (HMC) [29], [30],
offers 8GB capacity per memory stack with link speeds up to
30Gbps (versus 1.6Gbps supported by DDR4) and peak ag-

Our Goals: [Scalability Arbitrary Network Scale Elastic Network Scale]
T T T T T
Memor g - -
Node t{ {0(')00} B © I 4
Sm
— | ApOrt
Virtual Router
Space-1 7.
6" s’
(Always 4 ports in use)
== Random Connections
== == Short Cuts

v,

(a) String Figure topology.
Figure 3.

(b) Random network topology generation scheme.

(c) Short cuts generation. (d) Reconfigurable router.

An example of String Figure topology design with nine memory nodes (stacks) and four-port routers. (a) String Figure topology. (b) Virtual

space organization for random network generation. (c) Shortcuts generation for Node-0. (d) High-level design of a reconfigurable four-port router.

gregate bandwidth of 320GB/s/link. Recent studies show that
die-stacked memory capacity is likely to scale to 16GB [16].
Memory network design has attracted both academic [25],
[15], [14], [16], [31] and industry [17], [24], [18] efforts.
Recent studies demonstrate that memory network can lead
to more promising main memory expansion opportunities
than traditional DIMM-based memory systems.
Challenges of Memory Network Design

Memory networks are constructed by interconnecting a
large number of memory nodes. Therefore, performance
and scalability of the interconnect network are essential to
memory network performance and capacity scaling. Previous
studies investigated how to best adopt traditional Network-
on-Chip (NoC) topologies and protocols in memory network
design, such as mesh, ring, crossbar, chain, skip list, but-
terfly, and tree [25], [15], [14], [16]. However, traditional
memory network topologies can lead to substantial scala-
bility challenges. In fact, most previous memory network
designs can only interconnect tens of memory modes shared
by all CPU sockets [25], [15], [14], [16]. In order to support
terabytes of memory capacity, we need to interconnect hun-
dreds or over one thousand memory nodes with high network
throughput and low access latency. As such, we motivate our
work with the following scalability and flexibility challenges
that are not effectively addressed in prior works.

Network Scalability. As shown in recent studies, the
shortest path lengths of various traditional memory net-
work topologies can substantially increase with large-scale
memory networks [16]. Instead, topologies used in data
centers, such as Flattened Bufferfly [19], Dragonfly [20],
FatTree [32], and Jellyfish [33], can offer high bisection
bandwidth and short routing path lengths in large-scale
networks. However, these topologies are not directly appli-
cable to memory network due to following reasons. First,
data center networks adopt stand-alone network switches
with rich link and storage resources. Second, most of these
topologies require continuously increased router ports as
the network scales up [19], [20], [32]. Finally, routing
with most data center network topologies [33] requires

649

large routing tables to store global routing information; the
forwarding state cannot be aggregated. These issues hamper
the memory networks from adopting data center network
topologies in memory networks because of limited storage
resources in on-chip routers and the high-bandwidth memory
access requirement of in-memory applications. As a result,
neither traditional memory networks nor data center network
topologies can efficiently meet the scalability requirement of
memory networks.

Arbitrary Network Scale. Many rigid network topologies
require the number of routers and memory nodes to be
specific numbers, such as a power of two. This reduces
the flexibility of memory system scaling. Furthermore, these
constraints on the network scale can increase the upgrade
cost of memory systems and limit the potential of design
reuse. For example, say we have the budget to purchase one
more memory node to upgrade an existing memory network.
It is difficult to upgrade because the rigid network topology
only allows us to add certain number of memory nodes (or
none) to maintain the network scale as a power of two.

Elastic Network Size. Traditional memory systems allow
users to reconfigure the memory capacity to a certain extent.
For example, commodity computer systems typically reserve
a certain number of memory slots for users to expand the
memory capacity in the future. The same basic DIMM-based
memory system designs in each DDRx generation are also
shared across various design versions with different memory
capacities. This flexibility allows future memory network
designs to deliver cost-efficient memory system solutions.
Furthermore, support for dynamic scaling up and down
memory networks also enables efficient power management,
by power gating off under-utilized links and idle memory
nodes. Therefore, an elastic network size (static and dynamic
network expansion and reduction) is a missing yet preferable
feature for future memory networks.

DESIGN

Overview. To achieve our goals, we propose String Figure,
a scalable, flexible, and high-performance memory network

architecture. Figure 3 depicts an overview of our design
goals and components — arrows in the figure map our design
components to our goals. String Figure consists of three de-
sign principles. First, we propose an easy-to-implement ran-
dom network topology construction algorithm that enables
a) scalable memory network interconnecting large, arbitrary
number of memory nodes with arbitrary number of router
ports and b) support for elastic network scale. Second, we
propose a compute+table hybrid routing scheme, which re-
duces the computation and storage overhead of routing large-
scale networks by integrating a lightweight routing table
with greediest computation-based routing mechanisms. Fi-
nally, we propose a network reconfiguration scheme, which
enables elastic memory network scale. Beyond achieving
our scalability goals, String Figure further enables memory
access pattern aware performance optimization and efficient
memory network power management.

While our design is broadly applicable to a wide range
of server memory systems, we will use a working example
throughout this paper to make our proposal more concrete.
Our working example assumes a maximum 16TB memory
system that consists of 1296 interconnected 3D die-stacked
memory nodes shared by four CPU sockets (Figure 2). Each
memory node has one router and is 8GB, with the same
capacity and memory configuration parameters adopted in
previous works [16], [31], [14]. Detailed baseline system
configuration is described in Table I.

Network Topology Construction Scheme

Prior studies in data center networks, such as Jelly-
fish [33], demonstrated that “sufficiently uniform random
graphs” (i.e., graphs sampled sufficiently uniform-randomly
from the space of all r-regular graphs) empirically have
the scalability properties of random regular graphs [33] and
achieve throughput within several percent to the upper bound
on network throughput, at the scale of several thousand
nodes. Such random topologies compare favorably against
traditional fat-tree topologies, supporting a larger number of
nodes at full throughput. However, most previous random
topologies are developed for data center networks, which
need to tolerate large forwarding state storage. Directly
adopting these random topologies in memory networks,
which is constrained by the storage capacity in routers and
routing latency, can impose prohibitive scaling issues.

To address these challenges, we propose a novel network
topology String Figure inspired by S2 [34] to enable scalable
random topology in memory networks at low routing cost.
Our topology design also enables elastic memory network
scale, i.e., flexible expansion and reduction of network
scale. Our topology consists of a basic balanced random
topology and a set of shortcuts. The balanced random
topology ensures scalability, interconnection of arbitrary
number of memory nodes. The shortcuts provide extra links
that maintain high network throughput, when the network

650

(a) ALGORITHM 1. VIRTUAL SPACES CONSTRUCTION.
input: Number of memory nodes N
Number of ports per router p
output: {Coordinate x; in Virtual Space; | i=0..N-1, j=0..L-1}

L="]
forj=0.L-1
fori =0..N-1
x;; = BalancedCoordinateGen(X))
X; = sort(xy..x;)

1
2
3
4
5
6 return {X,.X; ;}

(b) ALGORITHM 2. BALANCED COORDINATE GENERATION.

input: Coordinates of k memory nodes X..X_;
output: Coordinate of a new memory node x,

1 if £ = 0 then return RandomNumber(0, /)
2 ifk=1
3 thena €x, b €x,+ 1
4 else
5 D(X,[, Xyz) = ml’i‘l{‘x,‘[7xr2|)’ I- ‘xrl 7)5/2‘}
6 find x,;, x,, among x,..x;.; such that
7 X,; < X, and D(x,;, x,,) is the smallest
8 ifx,—x,<%
9 thena €x,, b €x,,
10 else a €x,,, b €x,;+1

x, € RandomNumber(a +1734 1), b-154.1)
ifx, > I/ then x, €x,—/
return x,,

Figure 4. Algorithms for generating (a) balanced random topologies and
(b) the used balanced coordinate generation function BalancedCoordinate-
Gen(), where D is circular distance defined in our routing protocol.

scale is reconfigured (expansion or reduction) after being
deployed (Section III-C). Figure 3(a) illustrates an example
topology interconnecting nine memory nodes, where each
memory node has a four-port router. String Figure topology
is generated offline before the memory network is deployed.

Balanced random topology generation algorithm. To
simplify the topology construction process for system de-
velopers, we design a topology generation algorithm, which
answers two critical questions: (i) Randomness — how do we
ensure that the generated networks are uniformly-random?
(i1)) Balance — how do we ensure balanced connections?
Imbalanced connections are likely to increase congestion.
Figure 4 illustrates our random topology generation al-
gorithm. We use the example in Figure 3(b) to explain
our design. Inputs of our algorithm include the number of
memory nodes N and the number of router ports p. Our
approach consists of four steps:

Constructing L virtual spaces, where the number of virtual
space L = |&|. For example, a memory network with
four-port routers (not including the terminal port) will lead
to maximum two virtual spaces: Space-0 and Space-1.
Virtually (i.e., logically) distributing all the memory nodes
in each virtual space with a random order. We generate
random orders by assigning random coordinates to mem-
ory nodes. For example, the coordinates of Node-2 is 0.20
and 0.87 in Space-0 and Space-1, respectively.
Interconnecting the neighboring memory nodes in each

virtual space. For instance, Node-2 is connected with
Node-1 and Node-3 in Space-0; it is also connected with
Node-6 and Node-8.

Interconnecting pairs of memory nodes with free ports
remaining. For example, because Node-5 and Node-4 are
connected in both spaces, Node-5 will have a free port
left. Therefore, we can additionally connect Node-5 with
Node-3, which also has a free port. When multiple choices
exist, we select the pairs of memory nodes with the

longest distance.
The solid lines in Figure 3(a) illustrate an example of

generated basic random topology. Our topology generation
algorithm only determines which nodes are interconnected.
We allow both uni-directional and bi-directional connections
(discussed in Section IV). The four router ports in our
example are all used to connect to other memory nodes in
the network. To connect to processors, each router has an
additional port, i.e., each router in this example would have
five ports in total. Processors can be attached to any subset
memory nodes, or all of them (evaluated in Section VI).
Shortcuts generation. The goal of adding extra connections
is to maintain high network throughput, when we need to
scale down a memory network after it is deployed, e.g., by
shutting down (power-gating [14]) routers and corresponding
links (more details in Section III-C). To achieve this goal,
we generate shortcuts for each memory node to its two
and four hop neighbors — within short circular distance
— distributed in Virtual Space-0 in a clockwise manner
Figure 3(c) shows shortcuts generated for Node-0. We only
connect to a node with node number larger than itself. For
example, we do not connect Node-5 to Node-0, although
Node-0 is Node-5’s four-hop neighbor. As such, we limit
the link and router hardware overhead by adding maximum
two shortcut connections for each node. The connections not
existing in the basic balanced random topology are added
into the network (e.g., the red dash line between Node-0 and
Node-2). Figure 3(a) depicts the final topology combining
the basic random topology (black solid lines) and shortcuts
(red dash lines). The rationale behind is two-fold. First,
we demonstrate that one-, two-, and four-hop connections
efficiently accommodate data access of big-data workloads,
such as query in a distributed hash table [35]. Second, if we
divide Virtual Space-0 into four sectors (A, B, C, and D in
Figure 3(a)), the combination of our random topology and
the shortcuts ensures that the memory network has direct
connections between both short- and long-circular-distance
nodes in every two sectors; when the network is scaled
down, the shortcuts can maintain high throughput by fully
utilize router ports.

Sufficiently uniform randomness of our topology. To show
that String Figure provides sufficiently uniform random
graphs (SURGs), we compare the average shortest path
length of our topology with Jellyfish [33] and S2, which
are proved to offer SURG. Empirical results String Figure

651

o

IS

F/{,/Q—Iéi———f

[> Jeliyfish =52 ~+String Figure |

N

o

Shortest Path Lengths

100 200 400

Number of Nodes

800 1200

Figure 5. Comparison of shortest path lengths.
Node Din Din MD Node# Block. Valid Hop Space# Coordi.
Space-0 | Space-1 0 [1]1] o] o [o.00]|
7 049 | 062 |oae||2 T 1 [1[0 [0 [02]
0 020 | 070 |ozo||5_J 1 [1[0 1 |058]
3 0.13 0.44 |0.13 ‘Gl i | i ‘ 0 ‘ i ‘ 0 ‘
6 043 | 0412 Joaz||B_[1T 1T 1T 0 [033]
8 0.68 0.07 |0.07 \SILI i ‘ i ‘ 0 ‘ 065 ‘
(a) (b)
Figure 6. Greedy routing protocol. (a) Circular distances (D) and

minimum circular distances to Node-2 (M D) from Node-7 and Node-7’s
neighbors. (b) Routing table entries (16 entries in total).
topology leads to similar average shortest path lengths with
the same path length bounds across various network scales.
Routing Protocol

A desired routing protocol in memory network needs to be
scalable, deadlock free, while fully utilizing the bandwidth
of the network topology. Conventional routing schemes
on random topologies employ k-shortest path routing with
global information stored in the routing table (a look-up
table) of each router [33]. Given a memory network with N
memory nodes, the routing table size and routing algorithm
complexity can be up to O(NlogN) and O(NZ%logN). In
order to maintain sub-linear increase of routing overhead
— consisting of look-up table size and routing algorithm
complexity — we adopt a hybrid compute+table routing
scheme. Our deadlock freedom mechanism is discussed in
Section IV.

Greediest routing. To achieve high-performance routing
with small routing table storage, we employ a scalable
greedy routing protocol, namely greediest routing [34]. Most
previous greedy routing protocols only minimize distance to
the destination in a single space. Our basic random topology
consists of multiple virtual spaces. Therefore, we need to
design a routing protocol that can identify the shortest
distance to the destination among all neighbors in all virtual
spaces. To this end, we make forwarding decisions by a
fixed, small number of numerical distance computation and
comparisons. We define circular distance (D) as the distance
between two coordinates » and v in each virtual space:

D(z,y) = min{|u —v|,1 — |u —v|}

We then calculate the minimum circular distance between
two nodes as the following, given the two nodes with the set
of coordinates in L virtual spaces Lur >
and LU >

MD(U, V) = min{D(u;, v:)}

Forwarding decision making: To forward a packet

from Node-s to destination Node-t, the router in Node-

=< Ui, Uz, ..
=< 1,02, ..

s first _sg:legs a neighbor Node-w such that w minimizes
MD(Xy,Xt) to the destination. The packet is then for-
warded to Node-w. This process will continue until Node-
w 1is the destination. For instance, Node-7 needs to send a
packet to Node-2. Figure 6(a) shows the minimum circular
distances to Node-2 from Node-7 and Node-7’s one-hop
neighbors in our example (Figure 3). Node-7 has four
neighbors Node-0, 3, 6, and 8. Based on the computation,
Node-8 has the minimum M D from Node-7. The packet
is then forwarded to Node-8. Node-8 will then determine
the next stop for the packet by computing a new set of
M Ds based on its local routing table. The router in each
memory node only maintains a small routing table that
stores coordinates of its one- and two-hop neighbors in all
virtual spaces (Figure 6(b)). To further reduce the routing
path lengths, we compute M D with both one- and two-hop
neighbor information (based on our sensitivity studies in the
results section) stored in the routing table in each router.
Routing table implementation is discussed in Section IV.
The forwarding decision can be made by a fixed, small
number of numerical distance computation and comparisons;
the decisions are made locally without link-state broadcast
in the network wide.

Adaptive routing. By only storing two-hop neighbors in
routing tables, our greediest routing does not guarantee
shortest routing path. As such, our design offers path diver-
sity across different virtual spaces, i.e., can have multiple
paths satisfying our M D requirement. By leveraging path
diversity, we employ adaptive routing to reduce network
congestion. We only divert the routing paths by tuning the
first hop forwarding decision. With a packet to be sent from
node s to destination ¢, Node-s can determine_a) s;)ct w
of neighbgs, such that for any w € W, MD(Xy,Xs) <
M D(Xs, Xt), where ¢ is the destination. Node-s then selects
one neighbor in W based on traffic load across s’s router
ports. We use a counter to track the number of packets
waiting at each port to estimate the network traffic load
on each outgoing link. At the first hop, the source router
can select the links with lightly loaded port satisfying the
greediest routing requirement, rather than a heavily loaded
port with the queue filled by a user-defined threshold (e.g.,
50%). We enforce that our routing reduces the M D to the
destination at every hop, eventually finding a loop-free path
to the destination (Section IV).

Reconfigurable Memory Network

To achieve our goal in elastic network scale, we propose
a set of reconfigurable memory network mechanisms. String
Figure naturally supports memory network scaling up and
down at low performance and implementation cost, because
our design (i) allows arbitrary number of memory nodes,
(ii) always fully utilizes the ports in each router, and (iii)
only requires local routing table information to make routing
decisions. We also design a topology switch (Figure 7) in

652

A ¥ ’
Output Input
T =
. 2 P . 2
¥ 0l (2 D<
8
. |
ke K
K4
6 Random Connections
= Short Cuts
Figure 7. An example topology switch design.

the routers to reconfigure the links (details described in
Section 1V).

Dynamic reconfiguration for power management. We
allow the memory network to dynamically scale up and
down (e.g., by power gating routers and links) to enable
efficient power management. Memory network power man-
agement needs to be carefully designed with most traditional
topologies, such as meshes and trees. Otherwise, some nodes
can be isolated and require a long wake-up latency on
the order of several microseconds [14]. To address this
issue, we design a dynamic reconfiguration mechanism that
maintains high network throughput after turning off routers.
Our dynamic network scale reconfiguration involves four
steps. First, it blocks corresponding routing table entries
(Figure 6(b)) in associated routers. Second, it enables and
disables certain connections between memory nodes. We
use the shortcuts to maintain high network throughput after
disabling certain links. Third, it validates and invalidates
corresponding routing table entries in associated routers.
Finally, it unblocks the corresponding routing table entries.
The first and last steps ensure atomic network reconfigura-
tion. For example, to turn off Node-1 in Figure 3(a), we
will disconnect Node-1 from its one-hop neighbors Node-
0, Node-2, Node-5, and Node-6. In each of these nodes,
we invalidate the routing table entries that store Node-1’s
coordinates. We then enable the shortcuts between Node-0
and Node-2, because both nodes now have one free port.
We modify the corresponding routing table entries in these
two nodes, indicating that the original two-hop neighbors
are now one-hop neighbors. Bringing Node-1 back into the
network uses the same steps but in reverse. Because our
routing protocol maintains two-hop neighbors in each router,
each update of routing table entries is simply flipping the
blocking, valid, and hop# bits without needing to add or
delete entries. Updates in different routers can be performed
in parallel.

Static network expansion and reduction for design reuse.
Design reuse can reduce the cost and effort of redesigning,
re-fabricating, and upgrading systems. Specifically, design
reuse allows system developers to reuse a a memory network
design or fabrication across server memory systems with dif-
ferent capacity requirement. We use the previously outlined
steps of our dynamic network reconfiguration while offline

to enable network expansion and reduction. To support net-
work expansion, system developers can implement a larger
network size than currently needed and deploy the memory
network with only a subset of memory nodes mounted. The
excess nodes are “reserved” for future use. We enable and
validate corresponding links and routing table entries based
on the mounted memory nodes. As such, network expansion
does not require redesign or re-fabrication of the entire mem-
ory network. If memory nodes are interfaced through PCBs
(e.g., HMC-style), we can expand the memory network by
mounting additional memory nodes on the PCB, followed by
a link and routing table reconfiguration in the same way as
dynamic reconfiguration. As a result, we can reduce the cost
and effort of re-fabricating PCBs. Network scale reduction
is performed in reverse, by unmounting memory nodes.
If the memory nodes are mounted on a silicon interposer
(e.g., HBM-styled), we need to fabricate chips with added
memory nodes by reusing the original memory network
design. However, the design stays the same, substantially
reducing non-recurring engineering (NRE) cost.

IMPLEMENTATION

This section describes implementation details of String
Figure, including deadlock avoidance, reconfigurable router
design, and physical implementation.

Deadlock Avoidance

We must meet two conditions to avoid deadlocks in
our network topology. First, route paths must be loop-free
from source to destination. Second, the network cannot
have cyclical resource dependencies whereby routers wait
on each other to free up resources (like buffers). String
Figure’s greedy routing naturally ensures that route paths
are loop-free. We use virtual channels to avoid deadlocks
from resource dependencies.

Loop-free routing paths. String Figure ensures our routes
between any source-destination pair are loop-free because
we always route greedily within our network topology.
This is guaranteed by the progressive and distance-reducing
property (Appendix A) of our greedy routing protocol.
Appendix A formally proves that packet routes are loop-
free.

Avoiding deadlocks with virtual channels. We adopt two
virtual channels [36], [37], [38] to avoid deadlocks. Packets
use one virtual channel when routing from a source of a
lower space coordinate to a destination of a higher space
coordinate; packets use the other virtual channel when rout-
ing from a source of higher space coordinate to a destination
of a lower space coordinate. This avoids deadlocks because
in our topology (which is not truly random), packets are
only routed through to networks with a strictly increasing
coordinate or a strictly decreasing coordinate; the only de-
pendency is between the virtual channels in the router, which
is insufficient to form cycles [38]. Whereas virtual channels
can increase the required buffering, our network topology

653

allows the number of router ports to remain constant as the
network scales up. Therefore, the buffer size overhead is less
of an issue compared with prior works [38], [39] (evaluated
in Section VI).

Router Implementation and Reconfiguration

We design the router on each memory node to facilitate
our routing table design, reconfigurable links, and counters
for adaptive routing.

Routing table implementation. Figure 6(b) illustrates our
routing table implementation. Each routing table stores
information of its one- and two-hop neighbors, including
loga N memory node number, 1-bit blocking bit, 1-bit valid
bit, 1-bit hop number ("0’ for one-hop and ’1’ for two-hop),
{loggﬂ virtual space number, and 7-bit virtual coordinate.
We initialize routing table entries accordingly, while we
generate the network topology. Once the network topology
is generated, we only update the blocking, valid, and hop
bit values during network reconfiguration. A memory node
has maximum two one-hop neighbors in each virtual space;
each of the one-hop neighbors has two one-hop neighbors of
their own in each virtual space. As the maximum number
of virtual spaces is half of the number of ports (p), each
routing table has a maximum of p(p + 1) entries.

Enabling link and topology reconfiguration with
switches. Our memory network reconfiguration requires
connecting and disconnecting certain links between neigh-
bor memory nodes. Our basic balanced random network
topology already fully utilizes all router ports. However,
each node also has at most two shortcut connections (Sec-
tion III-A). To accommodate the shortcuts, we implement
a switch to attach the two shortcut connections to two of
the router ports at each node. Figure 7 shows our topology
switch design. It is comprised of a set of multiplexers similar
to prior reconfigurable NoC designs [40], [41]. As a result,
the topology switches allow us to select p (the number of
router ports) connections out of all the random connections
and shortcuts provided by our topology.

Tracking port utilization with packet counters. With
adaptive routing, we use counters at each port to track the
queue length at the port. The number of counter bits is
logaq, where ¢ is the number of queue entries of the port.
The counter provides an additional variable for determining
routing paths. It specifically tracks the congestion of each
path by counting how often we route packets to specific
outputs ports. We then use this counter value to tweak
our routing algorithm to make smarter decisions. If an
output port has too many packets routed to it, the algorithm
detects this through counters and chooses alternate, yet still
greedy, output ports to send the packet. This helps us avoid
congestion in the network and still achieve low latency, high
throughput performance overall. These counters are reset
after the network is reconfigured.

Physical Implementation

The goal of our physical implementation is to reduce both
the area overhead and long wires in our memory network.
Bounded number of connections in the network. With our
network topology, the number of connections coming out of
each node is bounded by the number of router ports (p) and
remains constant, independent of network scale (/NV). Each
node has £ one-hop neighbors in our basic random topology
and a maximum of two shortcuts (some generated shortcuts
will overlap with connections in the basic random topology).
Therefore, the total number of connections coming out of
each node C,pqe < % + 2. For example, a memory node
with an 8-port router only requires six connections per node.
Given N memory nodes in total, the total number of required
connections in the network Cherwork < N X (§ +2), which
grows linearly with the number of memory nodes.
Uni-directional versus bi-directional connections. Bi-
directional connections allow packets to traverse the network
both forward and backwards. Uni-directional connections
typically have worse packet latency than their bi-directional
counterparts, due to reduced path diversity. However, uni-
directional networks have lower hardware and energy cost
than bi-directional connections. Our sensitivity studies (Sec-
tion VI) demonstrate that uni-directional networks perform
almost the same as bi-directional networks; their discrepancy
diminishes with increasing number of nodes in the network.
Therefore, String Figure uses uni-directional connections.

Memory node placement and wire routing. When building
String Figure, we place memory nodes in the memory
network (on PCB or silicon interposer) as a 2D grid.
Our goal of memory node placement is to reduce long
wires. Memory network implementations are constrained by
wire lengths [29], [42]. For example, HBMs [42] (with a
7 mm dimension in HBM1 and 12 mm in HBM2) are
implemented with interposers to support large-scale memory
networks; previous works demonstrate that memory nodes
can be clustered with MetaCubes [16] (i.e., clustered mem-
ory nodes integrated with an interposer), which is further
interconnected with other interposer-integrated clusters. To
achieve our goal, we set two priority levels that prioritize the
clustering of one-hop and two-hop neighbors. For example,
we ensure that all one-hop neighbors are placed within ten
grid distance with place and routing. Our network topology
also naturally supports MetaCube [16] architecture. Our
network topology provides connections with various circular
distances. As such, we place memory nodes with short
circular distances in the same MetaCubes. Inter-MetaCube
links are implemented by connections with long circular
distances.

Processor placement. The flexibility of String Figure topol-
ogy and routing protocol allows us to attach a processor
to any one or multiple memory nodes. The router at each
memory node has a local port connecting to the processor.

654

Table 1
SYSTEM CONFIGURATION.

CPU 4 sockets; 2GHz; 64B cache-line size
Memory up to 1296 memory nodes; 8GB per memory node (stack)
DRAM timing tRCD=12ns, tCL=6ns, tRP=14ns, tRAS=33ns

CPU-memory

256 lanes in total (128 input lanes and 128 output lanes);

30Gbps per lane

SerDes delay

3.2ns SerDes latency (1.6ns each) per hop

Energy

Network: 5pJ/bit/hop; DRAM read/write: 12pJ/bit

Table II
SUMMARY OF NETWORK TOPOLOGY FEATURES AND REQUIREMENTS.

Topology Requires High- Router Port Reconfigurable
Radix Routers? scaling? Network Scaling

ODM No No No

AFB Yes Yes No

S2-ideal No No No

SF No No Yes

As such, attaching a processor to multiple memory nodes
can increase processor-memory bandwidth. By tuning traffic
patterns of our synthetic workloads, our evaluation examines
ways of injecting memory traffic from various locations,
such as corner memory nodes, subset of memory nodes,
random memory nodes, and all memory nodes.

EXPERIMENTAL SETUP

RTL Simulation Framework

We evaluate String Figure via RTL design in SystemVer-
ilog [46] and PyMTL [47]. We develop synthesizeable RTL
models of each network topology, routing protocol, memory
node, router configuration, and wire lengths. Table I de-
scribes the modeled system configurations. We use the same
configuration, timing, and energy parameters evaluated in
previous works. We estimate the dynamic energy used in the
network using average picojoule-per-bit numbers to provide
a fair comparison of memory access energy [25], [14], [16].
Network clock rate is the same as memory nodes clock
speed, e.g., 312.5MHz with HMC-based memory nodes.
We do not evaluate static energy, as static power saving
is highly dependent on the underlying process management
assumptions (e.g., race-to-idle). We also model the network
link latency based on wire length obtained from 2D grid
placement of memory nodes. We add an extra one-hop
latency with a wire length equal to ten memory nodes on
the 2D grid (based on the wire length supported by HMC).
Our RTL simulator can run workload traces collected using
our in-house trace generation tool, which is developed on
top of Pin [48]. We collect traces with 100,000 operations
(e.g., grep for Spark-grep, queries for Redis) after workload
initialization. Our trace generator models a cache hierarchy
with 32KB L1, 2MB L2, and 32MB L3 with associativities
of 4, 8, and 16, respectively. Our trace generator does not
contain a detailed core model and thus we can only obtain
the absolute instruction ID of each memory access. However,
we can multiply the instruction IDs by an average CPI
number and generate a timestamp for each memory access.

Considered topologies. We compare String Figure to a vari-
ety of network topologies and routing protocols summarized

Number of Nodes (/V), Number of Ports per Router (p) .

Topology N116]17[32]61]64 | 113 [128 | 256 | 512 | 1024 | 1296 Routing Scheme
Distributed-Mesh (DM)/ .

Optimized DM (ODM) p|4 [N 4 |N|4|N 4 4 4 4 4 Greedy + adaptive
Flattened Butterfly (FB) 4 20 | 24 | 31 33 Minimal + adaptive
Adapted FB (AFB)) 13 | 17 23 25 Minimal + adaptive

Space Shuffle Ideal (S2-ideal) |p | 4 | 4 | 4 | 4 | 4| 4 4 8 8 8 8 Look-up table

String Figure (SF) pl4| 44|44\ 4 4 8 8 8 8 Look-up table + greediest + adaptive

Figure 8. Evaluated network topologies and configurations (“N” indicates unsupported network scale).
Table III
DESCRIPTION OF NETWORK TRAFFIC PATTERNS.
[Traffic Pattern [Formula [Description
Uniform Random dest = randint (0, nports-1) Each node produces requests to a random destination node in the network.
Tornado dest = (src+nports/2) % nports Nodes send packets to a destination node halfway around the network.
Hotspot dest = const Each node produces requests to the same single destination node.
Opposite dest = nports - 1 - src Sends traffic to opposite side of network like a mirror.
Nearest Neighbor dest = src + 1 Each node sends requests to its nearest “neighbor” node, one away.
Compl t dest = src @ (nports-1) Nodes send requests to their bitwise complement destination node.
Partition 2 dest = randint (0,nports-1) & Partitions the network into two groups of nodes. Nodes randomly send within their
(nports/2-1) | (src & (nports/2)) group.
Table IV
DESCRIPTION OF EVALUATED REAL WORKLOADS.
Workload Description
Spark-wordcount A “wordcount” job running on Spark, which counts the number of occurrences of each word in the Wikipedia data set provided in
BigDataBench [43].
Spark-grep A grep” job running on Spark, which extracts matching strings from text files and counts how many times they occurred with the Wikipedia
data set provided in BigDataBench [43].
Spark-sort A 7sort” job running on Spark, which sorts values by keys with the Wikipedia data set provided in BigDataBench [43].
Pagerank A measure of Twitter influence. From the graph analysis benchmark in CloudSuite [44]. Twitter data set with 11M vertices.
Redis An in-memory database system which simulates running 50 clients at the same time sending 100,000 total queries [45].
Memcached From CloudSuite [44], which simulates the behavior of a Twitter caching server using the Twitter data set with 8 client threads, 200 TCP/IP
connections, and a get/set ratio of 0.8.
Matrix Mul Multiplying two large matrices stores in memory and storing their result in memory.
Kmeans Clustering Algorithm partitions n observations into k clusters where each observation belongs to cluster with the nearest mean.

in Figure 8. We also describe their features and requirements
in Table II. The number of router ports does not include
the terminal port connecting to the local memory node.
String Figure allows arbitrary network scale. However, to
provide concrete examples in our evaluation and demonstrate
our support for elastic network scale, we implement two
basic topologies with 128 nodes (4 router ports) and 1296
nodes (8 router ports), respectively. We reconfigure the basic
topologies to evaluate networks with fewer of nodes. Mesh
is widely explored in previous memory network designs
as one of offering the best performance among various
topologies [15], [14]. We implement a baseline Optimized
Distributed Mesh (ODM) topology [15] for memory net-
work. In addition, we compare with several network designs
optimized for scalability of distributed systems, including a
2D Adaptive Flattened Butterfly (AFB) [19] and S2 [34].
S2 does not support down-scaling with the same origi-
nal topology (it requires regenerating new topologies and
routing tables with a smaller number of nodes). Therefore,
our evaluation of S2 provides an impractical ideal baseline.
We name it S2-ideal. Additionally, our experiment results
focuses on evaluating performance, energy, and scalability of
the network designs. However, most of the baseline topolo-
gies require high-radix routers [19], [49] and the number of

655

ports and links continues to grow with network scale, leading
to non-linear growth of router and link overhead in memory
networks. Furthermore, none of the baseline topologies offer
the flexibility and reconfigurability in memory networks as
provided by our design.

Bisection bandwidth. To provide a fair point of comparison,
we evaluate network designs based on the same (or similar)
bisection bandwidth. Because String Figure and S2 [34] have
random network topologies, we calculate their empirical
minimum bisection bandwidth by randomly splitting the
memory nodes in the network into two partitions and cal-
culating the maximum flow between the two partitions. The
minimum bisection bandwidth of a topology is calculated
from 50 random partitions. We adopt the average bisection
bandwidth across 20 different generated topologies. With a
fixed network size, the bisection bandwidth of FB with high-
radix routers can be much higher than the other topologies.
However, mesh is lower. To match the bisection bandwidth,
we also evaluate an Adaptive FB (AFB) implemented by
partitioned FB [38] with fewer links and an optimized DM
(ODM) with increase the links per router to match the
bisection bandwidth of String Figure and S2 at each memory
network scale.

Workloads

We evaluate both network traffic patterns and real work-
loads on our simulation framework. Traffic patterns: We
evaluate different traffic patterns running on String Figure
and baseline designs. Table III lists details about these
traffic patterns. We use these traffic patterns to evaluate
the memory network designs and expose the performance
and scalability trends. We sweep through various memory
network sizes, router configurations, and routing protocols
listed in Figure 8. To exercise our memory network design,
each memory node sends requests (similar to attaching a
processor to each memory node) at various injection rates.
For example, given an injection rate of 0.6, nodes randomly
inject packets 60% of the time. Real workloads: We also
evaluate various real workloads with trace-driven simulation.
We run various in-memory computing workloads in Cloud-
Suite [44], BigDataBench [43], and Redis benchmark [45]
on a Dell PowerEdge T630 server. Spark 1.4.1 [50] is used
for all of the Spark jobs. Table IV summarizes the workload
and data set characteristics. We scale the input data size of
each real workload benchmark to fill the memory capacity.
Data is distributed among the memory nodes based on their
physical address.

RESULTS

We evaluate our design with various metrics including
average path lengths, network saturation, average packet
latency, workload instruction throughput (IPC), memory
dynamic energy, and energy efficiency. Our evaluation shows
that String Figure achieves close to or better than the per-
formance and scalability of the best of prior designs (ODM,
AFB, and S2-ideal), yet leads to lower energy consumption
and higher energy efficiency with our (i) fewer router ports
and wires needed and (ii) elastic network scale.

1.0

-m-wordcount —#-grep

o
= 35 0O 08 asort -<-pagerank l
3 gg ©obm H(S)DM FB u o | el memcached 1
2- 6 o =

O 20 | ®AFB g SF I kmeans | "‘M
£ 15 E 04 9 ==

S = | 52 _gm=

——F——u 9| 2 =
Ul o

16 32 64 128 256 512 10241296

0 20 40 60 80 100,
Number ?f)Memory Nodes Percentage ofA((:éi;/e Memory Nodes (%)
al

Figure 9. (a) Average hop counts of various network designs as the number
of memory nodes increases. (b) Normalized energy-delay product (EDP)
(the lower the better) with various workloads, when we power gate off
certain amount of memory nodes.

Path lengths. Figure 9(a) shows the average shortest path
lengths of various network designs across our synthetic
traffic patterns and real workloads. When the memory net-
work has over 128 memory nodes, the average hop count
of DM and ODM network increases superlinearly with
increasing network size. Specifically, the average hop count
of these two topologies is %t where ¢ is the average of their
two dimensions. Rather, the other network topologies, S2-
ideal, FB, AFB, and our String Figure design, do not incur
significant increase in the average shortest path lengths in

656

large-scale memory networks. FB achieves the best average
shortest path lengths among all the network topologies,
because it employs many more ports in routers than other
topologies as the network scales up. With a maximum of
eight ports per router, String Figure still achieves 4.75 and
4.96 average hop counts when the network scales up to 1024
and 1296 memory nodes, respectively. We also evaluate 10%
and 90% percentile shortest path lengths. String Figure can
achieve 4 hops and 5 hops with over one thousand nodes,
at 10% and 90% percentile, respectively. Therefore, String
Figure path length is scalable to memory network size over
one thousand nodes.

=DM =0DM

Ral < SF ®AFB *FB
100

~100

g

c\;; 80 —i—Js| 80 R % Hotspot 28 Tornado
-~ ‘|

&£ 60 . g|Uniform Random 60 JE(L ﬁk 40

§ 40 S5 20 g - 1238

3 20 eS8 20 —Sgy

In

0 0 47 61 193 1296
16 128 1054

Number of Memory Nodes

256 1024
Number of Memory Nodes

17__61 113 1296
16 32 64 128 256512 1024 16 64
Number of Memory Nodes

Figure 10. Network saturation points across various numbers of nodes.

Network saturation. We evaluate network saturation with
several traffic patterns shown in Figure 10. String Figure can
achieve close to the best of all other network architectures.
In order to clearly visualize all the curves, we only show the
the results of the rest of the network architectures. Traffic
patterns uniform random, hotspot, and tornado
are particularly noteworthy and show different results. The
remaining traffic patterns partition2, complement,
opposite, and neighbor, have similar behavior as
shown. In almost all traffic patterns, the mesh network
topologies, DM and ODM, saturates first at the lowest
injection rate. Nearest-neighbor routing is the exception to
this. SF perform worse with nearest-neighbor than ODM.
This is because in mesh topologies, nodes are always one-
hop away from their nearest neighboring node. Note, that we
generated nearest-neighbor network traffic using the router
IDs rather than number of hops. Therefore, “neighboring”
nodes in SF are not necessarily one hop away from each
other which means this network has higher latency. However,
an exception to mesh saturating first is in networks with
very few nodes. At the fewest node configuration (i.e., 16
nodes), ODM slightly edges out SF. However, as the number
of memory nodes increases, SF scales significantly better.
ODM also saturates at a higher injection rate than other
network designs with hotspot traffic pattern. We do not
observe network saturation in fornado traffic pattern with
all topologies, except for mesh. Network latency remains
steady even in high injection rates and large number of
memory nodes. The reason is the geometric structure of
the network designs. With either one of AFB, FB, S2-ideal,
and SF, it is typically easy for packets in a network to
traverse half or the entire network in just a hop or two
to reach their destination. Traffic patterns, such as fornado,

generate traffic in a mathematically geometric manner which
is advantageous in such topologies.

§2- S2-
-#-DM-32 -8-ODM-32 —+-ideal- 4 SF.32 -5 DM-1024.6-0DM-1024-ide: ~A-SF-1024-5 AFB-1024--FB-1024
50 2 500 i

I
Uniform Random

al-
24 50

Hotspot Tornado “‘

400

300
200

100
0 0
0 102030405060708090 10 20 30 40 50 60 70 80 O 10 20 30 40 50 60 70
Injection Rate (%) Injection Rate (%) Injection Rate (%)

Figure 11. Performance of traffic patterns at less than one thousand nodes.

Average packet latency. We evaluate the average travel
time (latency) between any two nodes in a network shown in
Figure 11. Each traffic pattern graph shows the latency in the
leftmost data point for each network. S2-ideal and SF appear
to scale well with the number of memory nodes. As the num-
ber of nodes in the network increases, these topologies show
almost no degradation in their network saturation points.
SF has slightly longer latency than S2-ideal with networks
down-scaled from the original size, because shortcuts and
adaptive routing can degrade the randomness among network
connections. However, SF still demonstrates lower latency
than AFB at large network scales. We also evaluate the
memory access latency of various traffic patterns.

- 2
ODM WAFB Bizal D SF ODM BiZu OSF

21.8 5 1
1.6 go9
_21.4 80.8 ;
=12 807 E g
B 506 [E
ﬁo; E E E E Eos Il 8 o o 3 AT
£ £gs:epeEss LTBEELL2ZE
S 3528 8B5§E¢ g2 29 g8s
z S > S E g g © =) g EE g
S @ g < @ S g E = g
B e I} ° 3 £
(@ E (b)
Figure 12. Normalized (a) system throughput (higher is better) and (b)

dynamic memory energy (lower is better) with various real workloads.

Performance and energy of real workloads. We evaluate
system performance and memory dynamic energy consump-
tion with several real workloads running in a memory
system, where the total memory capacity is 8TB distributed
across the 1024 (down-scaled from 1296) memory nodes
in the network. We take into account dynamic reconfig-
uration overhead to perform power gating in our RTL
simulation by implementing SF reconfiguration mechanisms.
The sleep and wake-up latency of a link is conservatively
set to 680ns and Sus similar to prior works [14], [15].
To minimize the performance impact of reconfiguration,
we set the reconfiguration granularity (i.e., the minimum
allowed time interval between reconfigurations) to be 100us.
Figure 12(a) shows the throughput of real workloads with
varying memory network architectures, normalized to DM.
Our results demonstrate that String Figure can achieve
close to the best performance across various workloads.
Our design achieves 1.3x throughput compared with ODM.
Figure 12(b) illustrates normalized memory dynamic energy

657

consumption with our workloads, normalized to AFB. String
Figure design can achieve the lowest energy consumption
across these network topologies. S2-ideal also achieves sim-
ilarly low energy consumption, due to its energy reduction
in routing. On average, SF reduces energy consumption by
36% compared with AFB.

Memory network power management. We also evaluate
memory network power management by powering gating
off various portions of the memory system with total 1296
nodes. Figure 9(b) shows the energy efficiency of our power
management by considering both energy saving and system
performance overhead. As we demonstrate in our results, our
design can achieve significantly improved energy efficiency,
as we power gate more parts of the memory network.

RELATED WORK

To our knowledge, String Figure is the first memory
network architecture that offers both scalability and elastic
network scale in a single design. Most previous memory
network designs do not take into account scalability as a
primary design goal. Kim er al. [15], [25] explored memory
network with mesh, butterfly, and dragonfly topologies with
64 HMC-based memory nodes. The study showed that dis-
tributed mesh outperforms other network topologies at this
scale. Zhan et al. [14] investigated performance and energy
optimization on a mesh-based memory network design up to
16 memory nodes. Poremba et al. [16] extended the memory
network capacity to 2TB implemented by 128 HMC-like
memory nodes used in CPU+GPU systems. However, the
memory nodes are mapped separate processor channels,
rather than shared by all the processors. Fujiki et al. [51]
proposes a random network topology to support scalability
of memory networks, yet does not support the flexibility and
reconfigurability as our design.

Scalability and flexibility are central themes in data
center network [19], [20], [33], [34], [52], [53]. Recent
planar topologies, such as a Flattened Butterfly [19] and
Dragonfly [20], offer promising scalability and high net-
work throughput. However, these designs require high-
radix routers and substantial increase of number of ports,
which can impose non-linearly increasing router area and
power [49]. This leads to prohibitively high cost in routers
and the amount wiring at large-scale memory network.
Furthermore, butterfly-like topologies typically have sym-
metric layout. This can lead to isolated nodes or subop-
timal routing, when subsets of nodes are turned down.
Jellyfish [33] employs random topology to achieve close-
to-optimal network throughput and incremental growth of
network scale. Yet, Jellyfish provides high throughput by
requiring k-shortest path routing; the size of forwarding
tables per router can increase superlinearly with the number
of routers in the network. This is impractical in a memory
network, where routers have limited storage space. String
Figure uses greedy routing due to our topology with ran-

domly assigned coordinates in multiple spaces. As such,
our design can achieve both high-throughput routing and
constant forwarding state per router. S2 [34] adopts random
topologies and computation-based routing mechanisms with
scalable routing tables. Yet, S2 [34] requires cable plug
in/out to increase the network size, which is impractical in
memory networks that have pre-fabricated link wires. S2
does not support network downscaling, unlike String Figure.

Recent NoC designs tackle scalability and fault tolerance
issues, when interconnecting processor cores. Slim NoC [38]
enables low-diameter network in NoC. However, the design
requires increasing router ports and wires as the network
scales up. Furthermore, these topologies does not support
the level of flexibility and reconfigurability as String Figure.
Small world network [53] also employs greedy routing, but
it does not produce the shortest paths and can be difficult
to be extended to perform multi-path routing that can fully
utilize network bandwidth. Previous network fault tolerance
schemes [54], [55], [56], [57], [58], [59], [60], [61], [62]
allow NoC to continue efficient functioning when routers are
taken out of the network. However, most previous designs
are developed for limited network scales and certain network
topologies [54] and impose high router area overhead by
employing one or several routing tables [55], [56], [57], [58],
[59], [60], [61], [62].

CONCLUSIONS

In this paper, we examined the critical scalability and
flexibility challenges facing memory network architecture
design in meeting the increasing memory capacity demand
of future cloud server systems. We proposed a new memory
network architecture, which consists of topology, routing
scheme, and reconfiguration mechanisms. Our design offers
numerous benefits towards practical use of memory network
architecture in server systems, such as scaling up to over
a thousand memory nodes with high network throughput
and low path lengths, arbitrary number of memory nodes in
the network, flexible network scale expansion and reduction,
high energy efficiency, and low cost in routers.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable
feedback. This paper is supported in part by NSF grants
1829524, 1829525, 1817077, 1701681, and SRC/DARPA
Center for Research on Intelligent Storage and Processing-
in-memory.

REFERENCES

[1] G.E. Moore, “Readings in computer architecture,” M. D. Hill,
N. P. Jouppi, and G. S. Sohi, Eds., 2000, ch. Cramming More
Components Onto Integrated Circuits, pp. 56-59.

[2] J. Barr, “EC2 in-memory processing update: Instances with
4 to 16 TB of memory and scale-out SAP HANA to 34 TB,”
2017.

658

[3] SAP, “SAP HANA: an in-memory, column-oriented,
relational database management system,” 2014. [Online].
Available: http://www.saphana.com/

T. A. S. Foundation, “Spark,” 2014. [Online]. Available:
http://spark.incubator.apache.org/

VoltDB, “Voltdb: Smart data fast,” 2014. [Online]. Available:
http://voltdb.com/

K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

C. Szegedy, W. Liu, and Y. J. et al., “Going deeper with
convolutions,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2015, pp. 1-9.
The Next Platform, “Baidu eyes deep learning strategy in
wake of new GPU options,” in www.nextplatform.com, 2016.
J. Barr, “Now available — EC2 instances with 4 TB of
memory,” 2017.

C. Sanders, “Announcing 4 TB for SAP HANA, single-
instance SLA and hybrid use benefit images,” 2016.
“Microsoft azure documentation,”
https://https://docs.microsoft.com/en-us/azure/virtual-
machines/windows/sizes-memory#m-series.

O. Mutlu and L. Subramanian, “Research problems and op-
portunities in memory systems,” Supercomput. Front. Innov.:
Int. J., vol. 1, no. 3, pp. 19-55, Oct. 2014.

J. Zhao, S. Li, J. Chang, J. L. Byrne, L. L. Ramirez, K. Lim,
Y. Xie, and P. Faraboschi, “Buri: Scaling big memory comput-
ing with transparent memory expansion,” ACM Transactions
on Architecture and Code Optimization (TACO), 2015.

J. Zhan, 1. Akgun, J. Zhao, A. Davis, P. Faraboschi, Y. Wang,
and Y. Xie, “A unified memory network architecture for in-
memory computing in commodity servers,” in Proceedings
of the 49th International Symposium on Microarchitecture
(MICRO), 2016, pp. 1-12.

G. Kim, J. Kim, J. H. Ahn, and J. Kim, “Memory-centric
system interconnect design with hybrid memory cubes,” in
Proceedings of the 22Nd International Conference on Parallel
Architectures and Compilation Techniques, 2013, pp. 145—
156.

M. Poremba, I. Akgun, J. Yin, O. Kayiran, Y. Xie, and G. H.
Loh, “There and back again: Optimizing the interconnect
in networks of memory cubes,” in Proceedings of the 44th
Annual International Symposium on Computer Architecture,
2017, pp. 678-690.

“The Machine: A new kind of computer,” https://www.labs.
hpe.com/the-machine.

Z. Sura, A. Jacob, T. Chen, B. Rosenburg, O. Sallenave,
C. Bertolli, S. Antao, J. Brunheroto, Y. Park, K. O’Brien, and
R. Nair, “Data access optimization in a processing-in-memory
system,” in Proceedings of the 12th ACM International Con-
ference on Computing Frontiers, 2015, pp. 6:1-6:8.

J. Kim, W. J. Dally, and D. Abts, “Flattened Butterfly: A cost-
efficient topology for high-radix networks,” in Proceedings
of the 34th Annual International Symposium on Computer
Architecture, 2007, pp. 126-137.

J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-
driven, highly-scalable Dragonfly topology,” in Proceedings
of the 35th Annual International Symposium on Computer
Architecture, 2008, pp. 77-88.

J. Dean and S. Ghemawat, ‘“Mapreduce: Simplified data
processing on large clusters,” in Proceedings of the 6th
Conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, 2004, pp. 10-10.

[22] K. Lim,J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt,

(4]
(5]
(6]

[7]

(8]
(9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

(7]

(18]

[19]

[20]

[21]

(23]

[24]
[25]

[26]
[27]

(28]

[29
[30]

[

(31]

(32]

(33]

[34]

[35]

[36]

(37]

[38]

(39]

and T. F. Wenisch, “Disaggregated memory for expansion and
sharing in blade servers,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture, 2009, pp.
267-278.

D. Magenheimer, C. Mason, D. McCracken, and K. Hackel,
“Transcendent memory and linux,” in Proceedings of the
Linux Symposium, 2009, pp. 191-200.

“Gen-Z Consortium,” https://genzconsortium.org.

G. Kim, M. Lee, J. Jeong, and J. Kim, “Multi-gpu system
design with memory networks,” in Proceedings of the 47th
Annual IEEE/ACM International Symposium on Microarchi-
tecture, ser. MICRO-47, 2014, pp. 484-495.

AMD, “AMD Radeon R9 series graphics cards,”
http://www.amd.com/en-us/products/graphics/desktop/r9.
“NVIDIA Tesla P100: Infinite compute power for the modern
data center,” http://www.nvidia.com/object/tesla-p100.html.
“Intel Xeon Phi processor 7200 family memory management
optimizations,” https://software.intel.com/en-us/articles/intel-
xeon-phi-processor-7200-family-memory-management-
optimizations.

Micron, “Hybrid memory cube specification 2.1.”

L. Nai and H. Kim, “Instruction offloading with HMC 2.0
standard: A case study for graph traversals,” in Proceedings
of the 2015 International Symposium on Memory Systems,
2015, pp. 258-261.

D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopad-
hyay, “Neurocube: A programmable digital neuromorphic
architecture with high-density 3D memory,” in Proceedings of
the 43rd International Symposium on Computer Architecture,
2016, pp. 380-392.

M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable,
commodity data center network architecture,” in Proceedings
of the ACM SIGCOMM 2008 Conference on Data Commu-
nication, ser. SIGCOMM 08, 2008, pp. 63-74.

A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish:
Networking data centers randomly,” in Proceedings of the
9th USENIX Conference on Networked Systems Design and
Implementation, ser. NSDI’12, 2012, pp. 17-17.

Y. Yu and C. Qian, “Space shuffle: A scalable, flexible,
and high-bandwidth data center network,” in Proceedings of
the 2014 IEEE 22Nd International Conference on Network
Protocols, ser. ICNP 14, 2014, pp. 13-24.

1. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan, “Chord: A scalable peer-to-peer lookup service for
internet applications,” in Proceedings of the 2001 Conference
on Applications, Technologies, Architectures, and Protocols
for Computer Communications, ser. SIGCOMM ’01, 2001,
pp. 149-160.

A. Mello, L. Tedesco, N. Calazans, and F. Moraes, “Virtual
channels in networks on chip: Implementation and evaluation
on hermes NoC,” in Proceedings of the 18th Annual Sym-
posium on Integrated Circuits and System Design, 2005, pp.
178-183.

J. Lee, S. Li, H. Kim, and S. Yalamanchili, “Adaptive virtual
channel partitioning for network-on-chip in heterogeneous ar-
chitectures,” ACM Trans. Des. Autom. Electron. Syst., vol. 18,
no. 4, pp. 48:1-48:28, Oct. 2013.

M. Besta, S. M. Hassan, S. Yalamanchili, R. Ausavarung-
nirun, O. Mutlu, and T. Hoefler, “Slim NoC: A low-diameter
on-chip network topology for high energy efficiency and
scalability,” in Proceedings of the Twenty-Third International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2018, pp. 43-55.

S. Hassan and S. Yalamanchili, “Bubble Sharing: Area and

659

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

(48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

energy efficient adaptive routers using centralized buffers,” in
Proceedings of the NOCS, 2014.

A. Jain, R. Parikh, and V. Bertacco, “High-radix on-chip
networks with low-radix routers,” in Proceedings of the 2014
IEEE/ACM International Conference on Computer-Aided De-
sign, 2014, pp. 289-294.

M. B. Stuart, M. B. Stensgaard, and J. Sparsg, “The renoc
reconfigurable network-on-chip: Architecture, configuration
algorithms, and evaluation,” ACM Trans. Embed. Comput.
Syst., vol. 10, no. 4, pp. 45:1-45:26, Nov. 2011.

“JEDEC publishes HBM2 specification as Samsung begins
mass production of chips,” https://www.anandtech.com/show/
9969/jedec-publishes-hbm?2-specification.

L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao,
Z. Jia, Y. Shi, S. Zhang, C. Zheng, G. Lu, K. Zhan, X. Li,
and B. Qiu, “Bigdatabench: a big data benchmark suite from
internet services,” in HPCA. 1EEE, 2014, pp. 488—499.

M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee,
D. Jevdjic, C. Kaynak, A. D. Popescu, A. Ailamaki, and
B. Falsafi, “Clearing the clouds: a study of emerging scale-out
workloads on modern hardware,” ACM SIGARCH Computer
Architecture News, vol. 40, no. 1, pp. 37-48, 2012.

“Redis Benchmark,” http://redis.io/topics/benchmarks.

D. L. Rich, “The evolution of systemverilog,” IEEE Des. Test,
vol. 20, no. 04, pp. 82-84, Jul. 2003.

D. Lockhart, G. Zibrat, and C. Batten, “PyMTL: A unified
framework for vertically integrated computer architecture re-
search,” in 47th IEEE/ACM Int’l Symp. on Microarchitecture
(MICRO), 2014, pp. 280-292.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin:
Building customized program analysis tools with dynamic
instrumentation,” in Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, New York, NY, USA, 2005, pp. 190-200.

S. Li, P-C. Huang, D. Banks, M. DePalma, A. Elshaarany,
S. Hemmert, A. Rodrigues, E. Ruppel, Y. Wang, J. Ang, and
B. Jacob, “Low latency, high bisection-bandwidth networks
for exascale memory systems,” in Proceedings of the Second
International Symposium on Memory Systems, 2016, pp. 62—
73.

“Spark 1.4.1,” http://spark.apache.org/downloads.html.

D. Fujiki, H. Matsutani, M. Koibuchi, and H. Amano, “Ran-
domizing packet memory networks for low-latency processor-
memory communication,” in Proceedings of Parallel, Dis-
tributed, and Network-Based Processing (PDP), Euromicro
International Conference on, 2016.

M. Koibuchi, H. Matsutani, H. Amano, D. F. Hsu, and
H. Casanova, “A case for random shortcut topologies for
HPC interconnects,” in Proceedings of the 39th Annual In-
ternational Symposium on Computer Architecture, 2012, pp.
177-188.

U. Y. Ogras and R. Marculescu, “”it’s a small world after all”:
NoC performance optimization via long-range link insertion,”
IEEE Trans. Very Large Scale Integr. Syst., vol. 14, no. 7, pp.
693-706, Jul. 2006.

M. Fattah, A. Airola, R. Ausavarungnirun, N. Mirzaei, P. Lil-
jeberg, J. Plosila, S. Mohammadi, T. Pahikkala, O. Mutlu, and
H. Tenhunen, “A low-overhead, fully-distributed, guaranteed-
delivery routing algorithm for faulty network-on-chips,” in
Proceedings of the 9th International Symposium on Networks-
on-Chip, 2015, pp. 18:1-18:8.

K. Aisopos, A. DeOrio, L.-S. Peh, and V. Bertacco, “ARI-
ADNE: Agnostic reconfiguration in a disconnected network

environment,” in Proceedings of the 2011 International Con-
ference on Parallel Architectures and Compilation Tech-
niques, 2011, pp. 298-309.

M. Balboni, J. Flich, and D. Bertozzi, “Synergistic use of
multiple on-chip networks for ultra-low latency and scalable
distributed routing reconfiguration,” in Proceedings of the
2015 Design, Automation and Test in Europe Conference,
2015, pp. 806-811.

C. Feng, Z. Lu, A. Jantsch, M. Zhang, and Z. Xing, “Ad-
dressing transient and permanent faults in NoC with efficient
fault-tolerant deflection router,” in JEEE TVLSI, 2013.

D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester, and
D. Blaauw, “A highly resilient routing algorithm for fault-
tolerant NoCs,” in Proceedings of the Conference on Design,
Automation and Test in Europe, 2009, pp. 21-26.

D. Lee, R. Parikh, and V. Bertacco, “Brisk and limited-
impact NoC routing reconfiguration,” in Proceedings of the
Conference on Design, Automation & Test in Europe, 2014,
pp- 306:1-306:6.

R. Parikh and V. Bertacco, “uDIREC: Unified diagnosis and
reconfiguration for frugal bypass of NoC faults,” in Proceed-
ings of the 46th Annual IEEE/ACM International Symposium
on Microarchitecture, 2013, pp. 148-159.

V. Puente, J. A. Gregorio, F. Vallejo, and R. Beivide, “Im-
munet: A cheap and robust fault-tolerant packet routing
mechanism,” in Proceedings of the 31st Annual International
Symposium on Computer Architecture, 2004, pp. 198-209.
E. Wachter, A. Erichsen, A. Amory, and F. Moraes,
“Topology-agnostic fault-tolerant NoC routing method,” in
Proceedings of the Conference on Design, Automation and
Test in Europe, 2013, pp. 1595-1600.

[56]

[57]

[58]

[59]

[60]

[61]

[62]

APPENDIX

We formally prove our proposition on loop freedom
by two lemmas similar to those derived in data center
networks [34].

Lemma 1. In a virtual space with a given a coordinate ,
if a memory node s is not the node that has the shortest
circular distance to x in this space, then s must have an
adjacent router s', such that D(z,zs) < D(x,xg).

Proof:

1) Let w be the node closest to x among all memory
nodes in the virtual space.

The ring of this space is divided by s and z into two
arcs. At least one of the arcs has a length no greater
than 1. Suppose we have 7,2 with length I(z;, z).
We have D(z,,z) = 1(Z,,2) < 1.

If w is on Z, 2, let the arc between s and w be T, 4.

2)

3)

a) If s has an adjacent node ¢ with coordinate

on Ty, T, then I(T4,z) < [l(z,,z). Hence,
D(q,x) = U(Zq,2) < U(Ts,7) < D(zs,2).

b) If s has no adjacent node on 4, ., w is z’s
adjacent node. Hence, s has an adjacent node w,
such that D(z, z,,) < D(z,xs).

If w is not on Z,, &, we have an arc Ty, =, Z,. For the
— L ——— ——— —

arc T, Xy, ON Ty, X, Ty, we have I(T,xy,) < U(Ts, T).

(Assuming to the contrary, if (7, z,) > (Zs, 1),

4)

660

then we cannot have D(z,z,,) < D(z,z,). There is
contradiction.)

a) If s has an adjacent memory node g with coor-
dinate on g, z, T,,, then I(z,,2) < (75, 2) <
1. Hence, D(q,z) = l(Zq,2) < UZs,2
D(zs, x).

b) If s has no adjacent memory node on Z, z, Ty,
w is 2’s adjacent node. Hence, s has an adjacent
node w, such that D(z,x,,) < D(z, ;).

5) Combining (3) and (4), s always has an adjacent node
', such that D(z,z4) < D(z,xs).

Lemma 2. Suppose the source and destination of a packet
are routers s and t, respectively. Coordinates of the destina-
tion router in all virtual spaces are X. Let w be the router
that has thﬂ)mmmum MD to t_n)tmong all neighbors of s,
then MD(XW,Xt) < MD(X%Xt)

Proof:
1) Suppose the minimum circular distance between s and
t is defined by their circular dls_tiince in the jth space,
ie., D(xyj,xs5) = MDL(XS,Xt)
In the jth space, t is the memory node with the shortest
circular distance to x;;, which is D(zj, x¢;) = 0.
Because s # t, s is not the node with the shortest
circular distance to x;.
Based on Lemma 1, s has an adjacent memory node

, such that D(@’ﬁ’) < D(z45,Ts5)-

Then, MDp(Xs ,th) < D(x4j,q5)
D(Jitj7l‘gj) MDL(XQ,Xt)
Because w is the node that has the shortest M D to
among all nelghbors of s, we | have M Dy (X, X
MDL(Xq ,Xt < MDL(XS,Xt)

2)

3)
4)

5)

s
N A

)

|]

Lemma 2 states on a packet’s route, if a router s is not the

destination, it must find a neighbor whose M D is smaller
than s’s M D to the destination.

Proposition 3. Greediest routing finds a loop-free path of a
finite number of hops to a given destination on our network
topology.

Proof:
1) Suppose memory node s receives a packet with desti-
nation node t. If s = ¢, then s is the destination. The
packet arrives at the destination.
If s # t, according to Lemma 2, s will find a neighbor

= = =

w, such that M Dy (Xy,Xs) < MDr (X, Xt), and
forward the packet to w.
The MD from the current memory node to the
destination coordinates strictly reduces at each hop.
Routing keeps making progress. Therefore, there is
no routing loop.

2)

3)

