
The Annals of Statistics
2020, Vol. 48, No. 1, 374–396
https://doi.org/10.1214/19-AOS1810
© Institute of Mathematical Statistics, 2020

CONCENTRATION AND CONSISTENCY RESULTS FOR CANONICAL AND
CURVED EXPONENTIAL-FAMILY MODELS OF RANDOM GRAPHS

BY MICHAEL SCHWEINBERGER* AND JONATHAN STEWART**

Department of Statistics, Rice University, *m.s@rice.edu; **jonathan.stewart@rice.edu

Statistical inference for exponential-family models of random graphs
with dependent edges is challenging. We stress the importance of addi-
tional structure and show that additional structure facilitates statistical in-
ference. A simple example of a random graph with additional structure is
a random graph with neighborhoods and local dependence within neighbor-
hoods. We develop the first concentration and consistency results for maxi-
mum likelihood and M-estimators of a wide range of canonical and curved
exponential-family models of random graphs with local dependence. All re-
sults are nonasymptotic and applicable to random graphs with finite popu-
lations of nodes, although asymptotic consistency results can be obtained as
well. In addition, we show that additional structure can facilitate subgraph-
to-graph estimation, and present concentration results for subgraph-to-graph
estimators. As an application, we consider popular curved exponential-family
models of random graphs, with local dependence induced by transitivity and
parameter vectors whose dimensions depend on the number of nodes.

1. Introduction. Models of network data have witnessed a surge of interest in statistics
and related areas (e.g., [31]). Such data arise in the study of, for example, social networks,
epidemics, insurgencies and terrorist networks.

Since the work of Holland and Leinhardt in the 1970s (e.g., [21]), it is known that network
data exhibit a wide range of dependencies induced by transitivity and other interesting net-
work phenomena (e.g., [39]). Transitivity is a form of triadic closure in the sense that, when
a node k is connected to two distinct nodes i and j , then i and j are likely to be connected
as well, which suggests that edges are dependent (e.g., [39]). A large statistical framework
for modeling dependencies among edges is given by discrete exponential-family models of
random graphs, called exponential-family random graphs (e.g., [15, 18, 20, 24, 36, 39, 53,
57]). Such models are popular among network scientists for the same reason Ising models are
popular among physicists: Both classes of models enable scientists to model a wide range of
dependencies of scientific interest (e.g., [39]).

Despite the appeal of the discrete exponential-family framework and its relationship to
other discrete exponential-family models for dependent random variables (e.g., Ising mod-
els and discrete Markov random fields, [3, 9, 42]), statistical inference for exponential-family
random graphs is challenging. One reason is that some exponential-family random graphs are
ill-behaved (e.g., the so-called triangle model, [2, 6, 10, 18, 28, 47]), though well-behaved al-
ternatives have been developed, among them curved exponential-family random graphs [24,
53]. A second reason is that in most applications of exponential-family random graphs sta-
tistical inference is based on a single observation of a random graph with dependent edges.
Establishing desirable properties of estimators, such as consistency, is nontrivial when no
more than one observation of a random graph with dependent edges is available. While some
consistency results have been obtained under independence assumptions [11, 35, 40, 44, 51,
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58–60] and restrictive dependence assumptions [40, 51, 58]—as discussed in Section 5—the
existing consistency results do not cover the models most widely used in practice (e.g., [39]):
canonical and curved exponential-family random graphs with dependence among edges in-
duced by transitivity and other interesting network phenomena [39].

We stress the importance of additional structure and show that additional structure facili-
tates statistical inference. We consider here a simple and common form of additional struc-
ture, called multilevel structure. Network data with multilevel structure are popular in net-
work science, as the recent monograph of Lazega and Snijders [37] and a growing number of
applications demonstrate (e.g., [22, 38, 52, 54, 56, 62]). A simple form of multilevel structure
is given by a partition of a population of nodes into subsets of nodes, called neighborhoods.
In applications, neighborhoods may correspond to school classes within schools, departments
within companies and units of armed forces. It is worth noting that in multilevel networks the
partition of the population of nodes is observed and models of multilevel networks attempt
to capture dependencies within and between neighborhoods (e.g., [22, 38, 52, 54, 56, 62]),
whereas the well-known class of stochastic block models [41] assumes that the partition is
unobserved and that edges are independent conditional on the partition.

Additional structure in the form of multilevel structure offers opportunities in terms of sta-
tistical inference. We take advantage of these opportunities to develop the first statistical the-
ory which shows that statistical inference for many canonical and curved exponential-family
random graphs with dependent edges is possible. The main idea is based on a simple and
general exponential-family argument that may be of independent interest. It helps establish
nonasymptotic probability statements about estimators of canonical and curved exponential
families for dependent random variables under weak conditions, as long as additional struc-
ture helps control the amount of dependence induced by the model and the sufficient statistics
are sufficiently smooth functions of the random variables. We exploit the main idea to develop
the first concentration and consistency results for maximum likelihood and M-estimators of
canonical and curved exponential-family random graphs with dependent edges, under correct
and incorrect model specifications. All results are nonasymptotic and applicable to random
graphs with finite populations of nodes, although asymptotic consistency results can be ob-
tained as well. In addition, we show that multilevel structure facilitates subgraph-to-graph
estimation, and present concentration results for subgraph-to-graph estimators. As an appli-
cation, we consider popular curved exponential-family random graphs [24, 53], with local
dependence induced by transitivity and parameter vectors whose dimensions depend on the
number of nodes.

These concentration and consistency results have important implications, both in statistical
theory and practice:

• The most important implication is that statistical inference for transitivity and other net-
work phenomena of great interest to network scientists is possible. To date, it has been
widely believed that statistical inference for transitivity based on exponential-family ran-
dom graphs is challenging (e.g., [10, 51]), but additional structure in the form of multilevel
structure facilitates it.

• Network scientists can benefit from collecting network data with multilevel structure, be-
cause multilevel structure can facilitate statistical inference for exponential-family random
graphs with dependent edges.

Last, but not least, it is worth noting that these concentration and consistency results cover
two broad inference scenarios:

• Inference scenarios with finite populations of nodes. In many applications of exponential-
family random graphs, there is a finite population of nodes and a population graph is as-
sumed to have been generated by an exponential-family random graph model. A com-
mon goal of statistical inference, then, is to estimate the parameters of the data-generating
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exponential-family random graph model based on a complete or incomplete observation of
the population graph. Our concentration results cover inference scenarios with finite popu-
lations of nodes, when the whole population graph is observed or when neighborhoods are
sampled and the subgraphs induced by the sampled neighborhoods are observed.

• Inference scenarios with populations of nodes growing without bound. In addition, our
concentration results can be used to obtain asymptotic consistency results by allowing the
number of neighborhoods to grow without bound. The resulting asymptotic consistency
results resemble asymptotic consistency results in other areas of statistics, albeit with two
notable differences: first, the units of statistical analysis are subsets of nodes (neighbor-
hoods) rather than nodes or edges; and, second, the sizes of the units need not be identical,
but are similar in a well-defined sense.

Since the first application is more interesting than the second one, we state all results with the
first application in mind, that is, all results focus on random graphs with finite populations of
nodes, although we do mention some asymptotic consistency results along the way.

The remainder of our paper is structured as follows. Section 2 introduces models. Section 3
describes concentration and consistency results for maximum likelihood and M-estimators,
under correct and incorrect model specifications. Section 4 shows that multilevel structure
facilitates subgraph-to-graph estimation. A comparison with existing consistency results can
be found in Section 5. Section 6 presents simulation results.

2. Exponential-family random graphs with multilevel structure. We introduce
exponential-family random graphs with multilevel structure.

A simple and common form of multilevel structure is a partition of a population of nodes
into K ≥ 2 nonempty subsets of nodes A1, . . . ,AK , called neighborhoods. We note that in
multilevel networks the partition of the population of nodes is observed (e.g., [22, 38, 52,
54, 56, 62]) and that some neighborhoods may be larger than others. We consider random
graphs with undirected edges that may be either absent or present or may have weights,
where the weights are elements of a countable set. Extensions to random graphs with di-
rected edges are straightforward. Let X = (Xk)

K
k=1 and Y = (Y k,l)

K
k<l be sequences of

within- and between-neighborhood edge variables based on a sequence of neighborhoods
A1, . . . ,AK , where Xk = (Xi,j )i∈Ak<j∈Ak

and Y k,l = (Yi,j )i∈Ak,j∈Al
(k < l) correspond

to within- and between-neighborhood edge variables Xi,j ∈ Xi,j and Yi,j ∈ Yi,j , taking on
values in countable sets Xi,j and Yi,j , respectively. We exclude self-edges, assuming that
Xi,i = 0 holds with probability 1 (i ∈ Ak , k = 1, . . . ,K), and write Xk = ∏

i∈Ak<j∈Ak
Xi,j ,

X = ∏K
k=1

∏
i∈Ak<j∈Ak

Xi,j and Y= ∏K
k<l

∏
i∈Ak,j∈Al

Yi,j .
We assume that within-neighborhood edges X are independent of between-neighborhood

edges Y , that is,

P(X ∈ X,Y ∈ Y) = P(X ∈ X)P(Y ∈ Y) for all X× Y ⊆X×Y,

where P denotes a probability distribution with support X×Y. We do not assume that edges
are independent, neither within nor between neighborhoods.

While in principle both within-neighborhood edge variables X and between-neighborhood
edge variables Y may be of interest, we focus on within-neighborhood edge variables, which
are of primary interest in applications (e.g., [22, 37, 38, 52, 54, 56, 62]). We therefore re-
strict attention to the probability law of X and do not make assumptions about the probability
law of Y . We assume that the parameter vectors of the probability laws of X and Y are
variation-independent, that is, the parameter space is a product space, so that statistical infer-
ence concerning the parameter vector of the probability law of X can be based on X without
requiring knowledge of Y .

The distribution of within-neighborhood edge variables X is presumed to belong to an
exponential family with local dependence, defined as follows.
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DEFINITION (Exponential family with local dependence). An exponential family with
local dependence is an exponential family of distributions with countable support X, having
densities with respect to counting measure of the form

pη(x) = exp
(〈
η, s(x)

〉 − ψ(η)
)
ν(x)

= exp

(
K∑

k=1

〈
ηk, sk(xk)

〉 − ψ(η)

)
ν(x),

(2.1)

where

ψ(η) = log
∑

x1∈X1

· · · ∑
xK∈XK

exp

(
K∑

k=1

〈
ηk, sk(xk)

〉)
ν(x)

and ν(x) = ∏K
k=1 νk(xk).

In other words, edges may depend on other edges in the same neighborhood, but do not
depend on edges in other neighborhoods [48]. Here, 〈η, s(x)〉 = ∑K

k=1〈ηk, sk(xk)〉 is the inner
product of a natural parameter vector η ∈ Rm and a sufficient statistic vector s : X �→ Rm

while ηk ∈ Rmk and sk :Xk �→Rmk denote the natural parameter vector and sufficient statistic
vector of neighborhood Ak , respectively (k = 1, . . . ,K). The functions ν : X �→R+ ∪{0} and
νk : Xk �→ R+ ∪ {0} (k = 1, . . . ,K) along with the sample space X determine the reference
measure of the exponential family. A careful discussion of the choice of reference measure
can be found in Krivitsky [33].

We consider here a wide range of exponential families with local dependence. A specific
example of an exponential family with local dependence can be found in Section 3.3. In the
following, we introduce selected exponential-family terms in order to distinguish exponential
families from subfamilies of exponential families. Subfamilies of exponential families give
rise to distinct theoretical challenges, and thus require a separate treatment. We therefore in-
troduce the classic exponential-family notions of full and nonfull exponential families, canon-
ical and curved exponential families, and minimal exponential families. These exponential-
family terms are taken from the monographs on exponential families by Barndorff-Nielsen
[1] and Brown [5] and have been used in other recent works as well: see, for example, Lau-
ritzen, Rinaldo and Sadeghi [36], Rinaldo, Fienberg and Zhou [43] and Geyer [16]. To help
ensure that parameters are identifiable, we assume that exponential families of the form (2.1)
are minimal in the sense of Barndorff-Nielsen [1] and Brown [5], that is, the closure of the
convex hull of the set {s(x) : ν(x) > 0} is not contained in a proper affine subspace of Rm

(e.g., [5], page 2). It is well known that all nonminimal exponential families can be reduced
to minimal exponential families (e.g., [5], Theorem 1.9, page 13). We consider both full and
nonfull exponential families of the form (2.1). An exponential family {Pη,η ∈ �} is full if
� = N and nonfull if � ⊂ N, where N = {η ∈ Rm : ψ(η) < ∞} is the natural parameter
space, that is, the largest set of possible values the natural parameter vector η can take on.
While full exponential families may be more convenient on mathematical grounds, nonfull
exponential families—the most important example being curved exponential families (e.g.,
[14, 29])—offer parsimonious parameterizations of exponential families where the dimen-
sion mk of neighborhood-dependent natural parameter vectors ηk is an increasing function
of the number of nodes in neighborhoods Ak (k = 1, . . . ,K), and have turned out to be use-
ful in practice [24, 53]. A simple approach to generating nonfull exponential families is to
assume that η : int(�) �→ int(N) is a known function of a parameter vector θ ∈ �, where
� ⊆ {θ ∈ Rq : ψ(η(θ)) < ∞}, int(�) and int(N) denote the interiors of � and N, respec-
tively, and q ≤ m. It is convenient to distinguish exponential families that can be reduced
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to canonical exponential families with natural parameter vectors of the form η(θ) = θ from
those that cannot. An exponential family can be reduced to a canonical exponential family
with η(θ) = θ when the map η : int(�) �→ int(N) is affine. In other words, if η(θ) = Aθ + b
with A ∈ Rm×q and b ∈ Rm, then the exponential family can be reduced to a canonical
exponential family with η(θ) = θ by absorbing A into the sufficient statistic vector and
b into the reference measure. We therefore call all exponential families with affine maps
η : int(�) �→ int(N) canonical exponential families, and call all exponential families with
nonaffine maps η : int(�) �→ int(N) curved exponential families. We note that our definition
of a curved exponential family is broader than the one used in Efron [13, 14], Brown ([5],
pages 81–84), and Kass and Vos [29]. The main reason is that we do not restrict the map
η : int(�) �→ int(N) to be differentiable, because our concentration and consistency results
in Sections 3 and 4 do not require differentiability.

Throughout, we assume that the neighborhoods are of the same order of magnitude and
that the neighborhood-dependent natural parameters ηk,i(θ) are of the form ηk,i(θ) = ηi(θ)

(i = 1, . . . ,mk , k = 1, . . . ,K). We define neighborhoods of the same order of magnitude as
follows.

DEFINITION (Neighborhoods of the same order of magnitude). A sequence of neigh-
borhoods A1, . . . ,AK is of the same order of magnitude if there exists a universal constant
A > 1 such that max1≤k≤K |Ak| ≤ Amin1≤k≤K |Ak| (K = 1,2, . . . ).

In other words, the largest neighborhood size is a constant multiple of the smallest neigh-
borhood size, so that the sizes of neighborhoods may not be identical, but are similar in a
well-defined sense. The definition is satisfied when the sizes of neighborhoods are bounded
above. When the number of neighborhoods K grows and the sizes of neighborhoods grow
with K , then the definition implies that the sizes of neighborhoods grow at the same rate.

We note that when the neighborhoods are not of the same order of magnitude, the natu-
ral parameters of neighborhoods may have to depend on the order of magnitude of neigh-
borhoods (e.g., [7, 34, 35]), because there are good reasons to believe that small and large
within-neighborhood subgraphs are not governed by the same natural parameters [12, 36,
51]. Size-dependent parameterizations have an important place in the exponential-family
random graph framework, and some promising size-dependent parameterizations have been
proposed. Most of them assume that natural parameters consist of size-invariant parame-
ters and size-dependent deviations. The size-dependent deviations may be size-dependent
offsets (e.g., [7, 34, 35]) or functions of size-dependent covariates [52]. Some of those size-
dependent deviations can be absorbed into the sufficient statistic vector and reference mea-
sure, and are hence covered by our main concentration and consistency results in Sections 3
and 4. However, the topic of size-dependent parameterizations is an important topic in its
own right, and deserves a separate treatment that is beyond the scope of our paper.

The assumption ηk,i(θ) = ηi(θ) (i = 1, . . . ,mk , k = 1, . . . ,K) implies that the exponen-
tial families considered here can be reduced to exponential families with natural parameter
vectors of the form

η(θ) = (
η1(θ), . . . , ηm(θ)

)
and sufficient statistic vectors of the form

s(x) = (
s1(x), . . . , sm(x)

)
,

where si(x) = ∑K
k=1 sk,i(xk) (i = 1, . . . ,m) and m = max1≤k≤K mk . We assume that the

dimensions mk of the neighborhood-dependent natural parameter vectors ηk(θ) are nonde-
creasing functions of the sizes |Ak| of neighborhoods Ak (k = 1, . . . ,K), which implies that
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m = max1≤k≤K mk is a nondecreasing function of ‖A‖∞ = max1≤k≤K |Ak|. The dimensions
mk (k = 1, . . . ,K) and m do not depend on other quantities. The dimension q of parameter
vector θ satisfies q ≤ m, as mentioned above.

Notation. To prepare the ground for the concentration and consistency results in Sections 3
and 4, we introduce mean-value parameterizations of exponential families along with addi-
tional notation. Mean-value parameterizations facilitate concentration and consistency re-
sults, because concentration inequalities [4] bound probabilities of deviations from means
and the mean-value parameters of an exponential family are the means of the sufficient statis-
tics, defined by μ(η(θ)) = Eη(θ)s(X) ∈ rint(M) ([5], page 2 and page 75). Here, Eη(θ)s(X)

is the expectation of s(X) with respect to exponential-family distributions Pη(θ) having den-
sities of the form (2.1), M is the convex hull of the set {s(x) : ν(x) > 0}, and rint(M) is the
relative interior of M. We denote the data-generating parameter vector by θ� ∈ int(�) and
write P ≡ Pη(θ�) and E ≡ Eη(θ�). An open ball in Rv (v ≥ 1) with center c ∈ Rv and radius
ρ > 0 is denoted by B(c, ρ). We write ‖·‖1, ‖·‖2 and ‖·‖∞ to refer to the �1-, �2- and �∞-
norm of vectors, respectively. Throughout, uppercase letters A,B,C,C1,C2, . . . > 0 denote
universal constants, which are independent of all other quantities of interest and may be re-
cycled from line to line. The function d : X×X �→ {0,1, . . . } denotes the Hamming metric,
defined by

d(x1,x2) =
K∑

k=1

∑
i∈Ak<j∈Ak

1(x1,i,j �= x2,i,j ), (x1,x2) ∈ X×X,

where 1(x1,i,j �= x2,i,j ) is an indicator function, which is 1 if x1,i,j �= x2,i,j and is 0 otherwise.

3. Concentration and consistency results: Maximum likelihood and M-estimators.
In many applications of exponential-family random graphs, the parameter vector of primary
interest is θ . To estimate the parameter vector θ of a wide range of full and nonfull, curved
exponential families under weak assumptions on the map η : int(�) �→ int(N), we consider
an estimating function [17]—a function g : � ×X �→R of both θ and X—of the form

g
(
θ; ̂μ

(
η
(
θ�

))) = ∥∥ ̂μ
(
η
(
θ�

)) − μ
(
η(θ)

)∥∥
2, θ ∈ �,(3.1)

which is an approximation of

g
(
θ;μ(

η
(
θ�))) = ∥∥μ(

η
(
θ�)) − μ

(
η(θ)

)∥∥
2, θ ∈ �,

where ̂μ(η(θ�)) = s(X) is an estimator of the data-generating mean-value parameter vec-

tor μ(η(θ�)) = Eη(θ�)s(X) ∈ rint(M). The fact that g(θ; ̂μ(η(θ�))) is an approximation of
g(θ;μ(η(θ�))) follows from the triangle inequality, which shows that∣∣g(

θ; ̂μ
(
η
(
θ�

))) − g
(
θ;μ(

η
(
θ�)))∣∣

≤ ∥∥ ̂μ
(
η
(
θ�

)) − μ
(
η
(
θ�))∥∥

2, θ ∈ �,

along with the fact that, under suitable conditions, ‖ ̂μ(η(θ�))−μ(η(θ�))‖2 is small with high
probability, as we will show in Proposition 2 in Section 3.2.

Estimating function (3.1) has at least three advantages. First, estimating function (3.1) ad-
mits concentration and consistency results under weak assumptions on the map η : int(�) �→
int(N). Indeed, the map η : int(�) �→ int(N) satisfies the main assumptions of Section 3 as
long as the map is one-to-one and continuous, but it need not be differentiable. The weak-
ness of these assumptions implies that the main results of Section 3 cover a vast range of full
and nonfull exponential families—including, but not limited to curved exponential families—
and it is possible to verify these assumptions in some of the most challenging applications,
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as demonstrated in Section 3.3. Second, estimating function (3.1) is natural, because maxi-
mum likelihood estimation of the data-generating natural parameter vector η� of an expo-
nential family with natural parameter vector η and sufficient statistic vector s(x) can be
based on the gradient of the loglikelihood function ∇η logpη(x) = μ̂(η�) − μ(η) provided

η ∈ int(N), where μ̂(η�) = s(x) ([5], Lemma 5.3, page 146). Therefore, maximum likeli-
hood estimation of η� can be based on estimating functions of the form ‖μ̂(η�)−μ(η)‖2. By
the parameterization-invariance of maximum likelihood estimators, maximum likelihood es-

timation of functions of η�, such as θ�, can be based on ‖ ̂μ(η(θ�))−μ(η(θ))‖2 provided the
map η : int(�) �→ int(N) is one-to-one. We note that estimating function (3.1) is chosen for
mathematical convenience, facilitating concentration and consistency results for maximum
likelihood estimators of many full and nonfull, curved exponential families under weak as-
sumptions on the map η : int(�) �→ int(N), and is not chosen for computational convenience.
Last, but not least, the simple form of estimating function (3.1) helps determine when mini-
mizers of (3.1) exist and are unique, and how the minimizers are related to each other when
there is more than one minimizer. These advantages are most useful in nonfull exponential
families, in particular curved exponential families.

In the following, we assume that the map η : int(�) �→ int(N) is one-to-one. A natural
class of estimators is hence given by

θ̂ =
{
θ ∈ � : g(

θ; ̂μ
(
η
(
θ�

))) = inf
θ̇∈�

g
(
θ̇; ̂μ

(
η
(
θ�

)))}
.

If the set θ̂ is nonempty, it may contain one element (e.g., in full exponential families) or
more than one element (e.g., in nonfull exponential families). If the set θ̂ contains more than
one element, then all elements of the set θ̂ map to mean-value parameter vectors μ(η(̂θ))

that have the same �2-distance from ̂μ(η(θ�)) by construction of estimating function (3.1). In

addition, if the set θ̂ is nonempty, then all minimizers θ̂ of g(θ; ̂μ(η(θ�))) are approximations
of the minimizer of g(θ;μ(η(θ�))). The minimizer of g(θ;μ(η(θ�))) is unique and is given
by the data-generating parameter vector θ� provided μ(η(θ�))) ∈ rint(M):

θ� =
{
θ ∈ � : g(

θ;μ(
η
(
θ�))) = inf

θ̇∈�
g
(
θ̇;μ(

η
(
θ�)))}.

The data-generating parameter vector θ� is the unique minimizer of g(θ;μ(η(θ�))) =
‖μ(η(θ�)) − μ(η(θ))‖2, because θ� ∈ int(�) and the map η : int(�) �→ int(N) is one-to-one
by assumption, while the map μ : int(N) �→ rint(M) is one-to-one by classic exponential-
family theory ([5], Theorem 3.6, page 74). Therefore, ‖μ(η(θ�)) − μ(η(θ))‖2 = 0 holds if
and only if θ = θ�.

In the remainder of the section, we show that the estimator θ̂ is close to the data-generating
parameter vector θ� with high probability under weak conditions. We first sketch the main
idea in Section 3.1 and then discuss concentration and consistency results for maximum like-
lihood and M-estimators in Sections 3.3 and 3.4, respectively. An application to popular
curved exponential-family random graphs is presented in Section 3.3.

3.1. Main idea: A nonasymptotic approach to full and nonfull, curved exponential families
for dependent random variables. Establishing concentration and consistency results for es-
timators of full and nonfull, curved exponential-family random graphs with dependent edges
is nontrivial, for at least three reasons. First, the map η : int(�) �→ int(N) may not be affine
and may not be differentiable. Second, in many nonfull exponential families, the mean-value
parameter vector μ(η(θ)) is not available in closed form and there is no simple and known
relationship between the mean-value parameter vector μ(η(̂θ)) evaluated at θ̂ and the suffi-
cient statistic vector s(X). Third, concentration results for functions of edges, such as s(X),
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FIG. 1. The figure demonstrates the main assumption: for all ε > 0 small enough so that B(θ�, ε) ⊆ int(�),
there exist γ > 0 and δ > 0 such that θ /∈B(θ�, ε) implies η(θ) /∈ B(η(θ�), γ ) and μ(η(θ)) /∈B(μ(η(θ�)), δ).

are more challenging when edges are dependent rather than independent. As a result, study-
ing the behavior of the estimating function ‖s(X) − μ(η(̂θ))‖2 and its minimizer θ̂ is not
straightforward.

Our main idea is based on a simple and general exponential-family argument that may be of
independent interest. It helps establish nonasymptotic probability statements about estimators
of full and nonfull, curved exponential families for dependent random variables under weak
conditions.

We make a single weak assumption: for all ε > 0 small enough so that B(θ�, ε) ⊆ int(�),
there exist γ > 0 and δ > 0 such that

θ /∈ B
(
θ�, ε

) =⇒ η(θ) /∈ B
(
η
(
θ�), γ ) =⇒ μ

(
η(θ)

)
/∈B

(
μ

(
η
(
θ�)), δ)

.

A graphical representation of the main assumption can be seen in Figure 1. A formal state-
ment of the assumption can be found in Theorem 1 in Section 3.3, where γ and δ depend on
ε and δ depends on the sizes of neighborhoods A1, . . . ,AK . The main assumption is satisfied
when the map η : int(�) �→ int(N) is one-to-one and continuous, but it need not be differ-
entiable. Note that the map μ : int(N) �→ rint(M) is one-to-one and continuous by classic
exponential-family theory ([5], Theorem 3.6, page 74).

The main assumption has a simple, but important implication. As no element of N outside
of the ball B(η(θ�), γ ) maps to an element of the ball B(μ(η(θ�)), δ), any element μ(η(θ))

of B(μ(η(θ�)), δ) must correspond to an element η(θ) of B(η(θ�), γ ), which in turn must
correspond to an element θ of B(θ�, ε), so that

μ
(
η(θ)

) ∈ B
(
μ

(
η
(
θ�)), δ) =⇒ η(θ) ∈ B

(
η
(
θ�), γ ) =⇒ θ ∈ B

(
θ�, ε

)
.

As a result, the probability of event θ̂ ∈ B(θ�, ε) can be bounded by bounding the probability
of event μ(η(̂θ)) ∈ B(μ(η(θ�)), δ).

A challenge, which complicates probability statements about the event μ(η(̂θ)) ∈
B(μ(η(θ�)), δ), is that in many nonfull exponential families μ(η(̂θ)) is not available in closed
form and there is no simple and known relationship between μ(η(̂θ)) and the sufficient statis-
tic vector s(X). To appreciate the difficulty of the problem, suppose that s(x) ∈ rint(M) is

observed, so that ̂μ(η(θ�)) = s(x) ∈ rint(M). The subset M(�) of rint(M) induced by � is
defined by

M(�) = {
μ′ ∈ rint(M) : there exists θ ∈ � such that μ

(
η(θ)

) = μ′}.
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In full exponential families, M(�) = rint(M). Thus, there exists a minimizer θ̂ ∈ int(�) of
the estimating function ‖s(x) − μ(η(θ))‖2 satisfying μ(η(̂θ)) = s(x). In fact, the minimizer
is unique, because the maps η : int(�) �→ int(N) and μ : int(N) �→ rint(M) are one-to-one
([5], Theorem 3.6, page 74). As a result, there is a simple and known relationship between
μ(η(̂θ)) and s(x). By contrast, in nonfull exponential families, M(�) is a proper subset of
rint(M), because nonfull exponential families are subfamilies of exponential families that
exclude some natural parameter vectors along with the corresponding mean-value parameter
vectors. The problem, more often than not, is that it is unknown which mean-value parameter
vectors are excluded, because the mean-value parameter vectors are not available in closed
form. As a consequence, there is no simple and known relationship between μ(η(̂θ)) and
s(x), and it is not straightforward to determine where μ(η(̂θ)) is located in rint(M), pro-
vided μ(η(̂θ)) is nonempty. So bounding the probability of event μ(η(̂θ)) ∈ B(μ(η(θ�)), δ)

in nonfull exponential families, in particular curved exponential families, is nontrivial.
But not all is lost. Despite the challenge of characterizing M(�) ⊂ rint(M) and hence

μ(η(̂θ)) ⊂ M(�), it can be shown that, under suitable conditions, the set μ(η(̂θ)) ⊂ M(�)

is nonempty and all elements of μ(η(̂θ)) are close to μ(η(θ�)) with high probability. Indeed,
when the set θ̂ is nonempty, each element of the set θ̂ satisfies∥∥μ(

η(̂θ)
) − μ

(
η
(
θ�))∥∥

2 ≤ ∥∥s(x) − μ
(
η(̂θ)

)∥∥
2 + ∥∥s(x) − μ

(
η
(
θ�))∥∥

2.

While characterizing M(�) is difficult, we do know one fact about M(�): M(�) contains the
data-generating mean-value parameter vector μ(η(θ�)), which implies that the �2-distance of
μ(η(̂θ)) from s(x) cannot exceed the �2-distance of s(x) from μ(η(θ�)) ∈ M(�). Thus, we
obtain the upper bound∥∥μ(

η(̂θ)
) − μ

(
η
(
θ�))∥∥

2 ≤ 2
∥∥s(x) − μ

(
η
(
θ�))∥∥

2.(3.2)

If the right-hand side of (3.2) can be shown to be small with high probability, then the prob-
lem of bounding the probability of event θ̂ ∈ B(θ�, ε) can be converted into the problem of
bounding the probability of the event that s(X) is close to μ(η(θ�)) = Eη(θ�)s(X) ∈ rint(M)

in a well-defined sense. All we need to bound the probabilities of those events are concen-
tration results for the sufficient statistic vector s(X), which can be established as long as (a)
the dependence among edges is sufficiently weak; and (b) the sufficient statistics are suffi-
ciently smooth functions of edges. Concentration results are facilitated by additional struc-
ture that helps control the amount of dependence induced by the model and the smoothness
of sufficient statistics. We focus here on a simple form of additional structure in the form of
multilevel structure, which controls the dependence among edges by constraining it to neigh-
borhoods. But there are many other forms of additional structure that could help address (a)
and (b), e.g., other forms of multilevel structure or spatial structure.

The most important implication, then, is that statistical inference for many exponential-
family random graphs is possible and can be justified by statistical theory, provided a suitable
form of additional structure is available. Indeed, our main idea helps establish concentration
and consistency results for estimators of:

• many full and nonfull, curved exponential families;
• many models with dependent edges;
• finite populations of nodes;

as long as there is additional structure that helps address (a) and (b).
It is worth noting that verifying the main assumption is by no means trivial. Its verification

is easiest when the sufficient statistics are monotone functions of edges, that is, functions of
a graph that do not decrease (increase) when edges are added to the graph. It is less straight-
forward when the sufficient statistics are not monotone functions of edges, as is the case with
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many popular curved exponential-family random graphs with geometrically weighted model
terms [24, 53]. But we demonstrate in Section 3.3 that the main assumption can be veri-
fied even when the sufficient statistics are not monotone functions of a graph, using curved
exponential-family random graphs with geometrically weighted model terms as an example.

We make these ideas rigorous in Theorem 1 in Section 3.3. An application to curved
exponential-family random graphs is presented in Corollary 1 in Section 3.3. More general
results for M-estimators, under correct and incorrect model specifications, are mentioned in
Section 3.4. To prepare the ground for these results, we first introduce concentration results
for sufficient statistics in Section 3.2.

3.2. Concentration results for sufficient statistics. To obtain concentration results for suf-
ficient statistics, we need concentration results for functions of random graphs with dependent
edges.

Such concentration results are nontrivial for at least two reasons. First, exponential fam-
ilies of the form (2.1) may induce strong dependence within neighborhoods and the sizes
of neighborhoods need not be identical. Second, exponential families of the form (2.1) can
induce a wide range of dependencies within neighborhoods. Therefore, we need general-
purpose concentration inequalities that cover a wide range of dependencies.

The following general-purpose concentration inequality addresses the challenges dis-
cussed above. It shows that the dependence induced by exponential families of the form (2.1)
may be strong within neighborhoods but is sufficiently weak overall to obtain concentration
results as long as the neighborhoods are not too large.

PROPOSITION 1. Consider an exponential family with countable support X and local
dependence. Let f : X �→ R be Lipschitz with respect to the Hamming metric d : X × X �→
{0,1,2, . . . } with Lipschitz coefficient ‖f ‖Lip > 0 and assume that Ef (X) exists. Then there
exists C > 0 such that, for all t > 0,

P
(∣∣f (X) −Ef (X)

∣∣ ≥ t
) ≤ 2 exp

(
− t2

C
∑K

k=1
(|Ak |

2

)‖A‖4∞‖f ‖2
Lip

)
.

Proposition 1 covers a wide range of exponential-family random graphs with local depen-
dence. The assumption that the function of interest is smooth, in the sense that it is Lipschitz
with respect to the Hamming metric, is common in the concentration-of-measure literature:
see, for example, the concentration results for dependent random variables by Samson [46],
Chatterjee ([8], Theorem 4.3, page 75), and Kontorovich and Ramanan [32]. The smoothness
assumption can be weakened by using divide-and-conquer strategies: for example, one may
divide the domain of a function of interest into high- and low-probability regions and require
the function to be smooth on high-probability regions, but not on low-probability regions.
Such divide-and-conquer strategies were used by, for example, Vu [55], Kim and Vu [30] and
Yang et al. ([61], Lemma 9). While exploring divide-and-conquer strategies for exponential-
family random graphs with local dependence would be interesting, Proposition 1 suffices for
the purpose of demonstrating that statistical inference for many exponential-family random
graphs with local dependence is possible.

Proposition 1 paves the way for concentration results for sufficient statistics. Proposition 2

shows that the sufficient statistic vector ̂μ(η(θ�)) = s(X) is close to the data-generating
mean-value parameter vector μ(η(θ�)) ∈ rint(M) with high probability provided the num-
ber of neighborhoods K is large relative to the size of the largest neighborhood ‖A‖∞ and
the dimension m of μ(η(θ�)).
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PROPOSITION 2. Consider a full or nonfull, curved exponential family with countable
support X and local dependence. Assume that there exists A > 0 such that∥∥s(x1) − s(x2)

∥∥∞ ≤ Ad(x1,x2)‖A‖∞ for all (x1,x2) ∈X×X.(3.3)

Then there exists C > 0 such that, for all deviations of the form t = δ
∑K

k=1
(|Ak |

2

)α
with δ > 0

and 0 ≤ α ≤ 1,

P
(∥∥ ̂μ

(
η
(
θ�

)) − μ
(
η
(
θ�))∥∥

2 ≥ t
) ≤ 2 exp

(
− δ2CK

m‖A‖4(2−α)∞
+ logm

)
.

The smoothness condition (3.3) of Proposition 2 is satisfied as long as changing an edge
cannot change the within-neighborhood sufficient statistics by more than a constant multiple
of ‖A‖∞. It is verified in Corollary 1 in Section 3.3.

REMARK 1 (The relationship between α and sparsity). Proposition 2 shows how the
concentration of sufficient statistics depends on the power α ∈ [0,1] of deviations of size
t = δ

∑K
k=1

(|Ak |
2

)α
. The power α can be interpreted as the level of sparsity of a random graph,

with lower values of α corresponding to higher levels of sparsity. The conventional defini-
tion of a sparse random graph is based on the scaling of the expected number of edges, that
is, the sufficient statistic of Bernoulli random graphs with independent edges. We use the
term sparse random graph to refer to the scaling of the expectations of all sufficient statis-
tics of exponential-family random graphs. If α = 1, the within-neighborhood subgraphs may
be called dense in the sense that the expectations of within-neighborhood sufficient statis-
tics are nonnegligible fractions of the number of edge variables

(|Ak |
2

)
in neighborhood Ak

(k = 1, . . . ,K). Otherwise, the within-neighborhood subgraphs may be called sparse. Note
that the interpretation of α in terms of sparsity makes more sense when the neighborhoods
grow than when the neighborhoods are bounded above. But, regardless of whether the neigh-
borhoods grow, Proposition 2 shows how the concentration of sufficient statistics depends on
the power α.

REMARK 2 (Sharpness). The concentration results discussed above are not, and cannot
be sharp, because these results cover many models and many dependencies. It goes without
saying that in special cases sharper results can be obtained. We are here not interested in
sharp bounds in special cases, because the main appeal of the exponential-family framework
is that it can capture many dependencies.

3.3. Maximum likelihood estimators. The main idea of Section 3.1 is made rigorous in
Theorem 1, which establishes concentration results for maximum likelihood estimators of
full and nonfull, curved exponential-family random graphs with local dependence.

THEOREM 1. Consider a full or nonfull, curved exponential-family random graph with
countable support X and local dependence. Let

� ⊆ {
θ ∈ Rq : ψ(

η(θ)
)
< ∞}

.

Assume that θ� ∈ int(�). Let η : int(�) �→ int(N) be one-to-one and assume that, for all
ε > 0 small enough so that B(θ�, ε) ⊆ int(�), there exists γ (ε) > 0 such that, for all θ ∈ �\
B(θ�, ε), we have η(θ) ∈ N \ B(η(θ�), γ (ε)). In addition, assume that there exist δ(ε) > 0
and A > 0 such that, for all η(θ) ∈ N \B(η(θ�), γ (ε)),

∥∥μ(
η
(
θ�)) − μ

(
η(θ)

)∥∥
2 ≥ δ(ε)

K∑
k=1

(|Ak|
2

)α

for some 0 ≤ α ≤ 1(3.4)
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and, for all (x1,x2) ∈ X×X,∥∥s(x1) − s(x2)
∥∥∞ ≤ Ad(x1,x2)‖A‖∞.(3.5)

Then, for all ε > 0 small enough so that B(θ�, ε) ⊆ int(�), there exist κ(ε) > 0 and C > 0
such that

P
(̂
θ ∈ B

(
θ�, ε

)) ≥ 1 − 2 exp
(
− κ(ε)2CK

m‖A‖4(2−α)∞
+ logm

)
.

If the exponential family is full, then θ̂ is unique in the event θ̂ ∈ B(θ�, ε).

Theorem 1 shows that the estimator θ̂ is close to the data-generating parameter vector θ�

with high probability provided the number of neighborhoods K is large relative to ‖A‖∞ and
m. An application of Theorem 1 to popular curved exponential-family random graphs can
be found in Corollary 1. These concentration results cover inference scenarios with a finite
population of nodes and a population graph generated by an exponential-family random graph
model, and assume that the population graph can be observed. Inference scenarios where the
population graph cannot be observed but subgraphs of the population graph can be observed
are considered in Section 4. Asymptotic consistency results can be obtained by allowing the
number of neighborhoods K to increase without bound. We discuss asymptotic consistency
results in Remark 3 following Corollary 1.

Conditions (3.4) and (3.5) of Theorem 1 are verified in Corollary 1. As pointed out in
Section 3.1, the assumptions are satisfied when the map η : int(�) �→ int(N) is one-to-
one and continuous, but it need not be differentiable. Condition (3.4) is an identifiability
assumption and covers both sparse (0 ≤ α < 1) and dense (α = 1) within-neighborhood
subgraphs. The power α can be interpreted as the level of sparsity of a random graph, as
explained in Section 3.2. Theorem 1 shows that sparsity comes at a cost, because the prob-
ability of event θ̂ /∈ B(θ�, ε) decays slower when the within-neighborhood subgraphs are
sparse rather than dense. The fact that sparsity weakens concentration results is well known
in the concentration-of-measure literature on random graphs with independent edges (e.g.,
[27, 30]). Condition (3.5) is a smoothness condition, which is satisfied as long as changing
an edge cannot change the within-neighborhood sufficient statistics by more than a constant
multiple of ‖A‖∞.

It is worth noting that in full exponential families the set θ̂ contains a single element when
it is nonempty, whereas in nonfull exponential families it may contain more than one element.
A pleasant feature of estimating function (3.1) is that, with high probability, the minimizers
θ̂ of (3.1) do not give rise to global minima that are separated by large distances, under the
assumptions made. The reason is that, if the set θ̂ contains more than one element, then all
elements of the set θ̂ map to mean-value parameter vectors μ(η(̂θ)) whose �2-distance from
̂μ(η(θ�)) is identical and whose �2-distance from μ(η(θ�)) is bounded above by∥∥μ(

η(̂θ)
) − μ

(
η
(
θ�))∥∥

2 ≤ 2
∥∥ ̂μ

(
η
(
θ�

)) − μ
(
η
(
θ�))∥∥

2,

as explained in Section 3.1. By Proposition 2, ̂μ(η(θ�)) is close to μ(η(θ�)) with high prob-
ability provided the number of neighborhoods K is sufficiently large. Therefore, all elements
of the set μ(η(̂θ)) are close to μ(η(θ�)) with high probability and hence, by the identifiability
conditions of Theorem 1, all elements of the set θ̂ are close to θ� with high probability.

Applications. We present two applications of Theorem 1. An application to canonical
exponential-family random graphs can be found in Appendix A (see the Supplementary Ma-
terial, [50]). Here, we focus on curved exponential-family random graphs with geometrically
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weighted model terms, which are popular in practice (e.g., [39]) but are challenging on theo-
retical grounds.

As a specific example, consider curved exponential-family random graphs with support

X = {0,1}
∑K

k=1 (
|Ak |

2 ) and within-neighborhood edge and geometrically weighted edgewise
shared partner terms [24, 53]. Such models are based on sufficient statistics of the form

sk,1(xk) = ∑
a∈Ak<b∈Ak

xa,b,

sk,i+1(xk) = ∑
a∈Ak<b∈Ak

xa,bfa,b,i(xk), i = 1, . . . , |Ak| − 2,

where fa,b,i(xk) = 1(
∑

c∈Ak,c �=a,b xa,cxb,c = i) is an indicator function, which is 1 if nodes
a and b are both connected to i other nodes in neighborhood Ak and is 0 otherwise (k =
1, . . . ,K). The natural parameters are of the form

ηk,1(θ) = θ1,

ηk,i+1(θ) = exp(ϑ)
[
1 − (

1 − exp(−ϑ)
)i]

, i = 1, . . . , |Ak| − 2,

where ϑ > 0 controls the rate of decay of the geometric sequence (1 − exp(−ϑ))i , i =
1,2, . . . (k = 1, . . . ,K). For convenience, we consider here the parameterization θ2 =
exp(−ϑ) ∈ (0,1), so that θ = (θ1, θ2) ∈ R × (0,1). Such model terms are called geomet-
rically weighted terms, because the natural parameters ηk,i+1(θ) are based on the geometric
sequence (1 − exp(−ϑ))i , i = 1,2, . . . .

While complicated, such models are able to capture transitivity in neighborhoods. As ex-
plained in the Introduction, transitivity is one of the more interesting network phenomena,
and induces dependence among edges. There are many models of transitivity, some of which
are well-posed while others are ill-posed. An example of a model that is ill-posed in the large-
graph limit is the so-called triangle model (e.g., [2, 10, 18, 28, 47]). The triangle model is a
canonical exponential-family random graph model with the number of edges and triangles as
sufficient statistics; note that a triangle in a random graph corresponds to three distinct nodes
such that all three pairs of nodes are connected by edges. Compared with the triangle model,
the curved exponential-family random graph model described above makes more reasonable
assumptions:

• The curved exponential-family random graph model exploits multilevel structure to con-
strain the dependence among edges induced by transitivity to neighborhoods, that is, sub-
sets of nodes. By contrast, the triangle model does not restrict transitivity to subsets of
nodes, and allows each edge to depend on many other edges in the random graph.

• The curved exponential-family random graph model implies that within neighborhoods, for
each pair of nodes, the value added by additional triangles to the log odds of the conditional
probability of an edge decays at a geometric rate (e.g., [23, 54]). As a result, the model
encourages triangles within neighborhoods, but discourages too many of them. By contrast,
the added value of additional triangles under the triangle model is constant, so that the
triangle model with a positive triangle parameter places more probability mass on graphs
with more triangles (among graphs with the same number of edges).

While the problematic assumptions underlying the triangle model lead to undesirable be-
havior in large random graphs (e.g., [2, 10, 18, 28, 47]), curved exponential-family random
graphs with geometrically weighted edgewise shared partner terms have turned out to be well
behaved (e.g., [24, 47]) and have been widely used (see, e.g., [23–25, 39, 53, 54]). A full-
fledged discussion of these complex models is beyond the scope of our paper. We therefore
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refer the interested reader to the above-cited literature and focus here on concentration and
consistency results.

Curved exponential-family random graphs with within-neighborhood edge and geometri-
cally weighted edgewise shared partner terms are popular in practice but are challenging on
theoretical grounds, for several reasons. First, the dimension of the natural parameter vec-
tor η(θ) ∈ R‖A‖∞−1 is an increasing function of the number of nodes in the largest neigh-
borhood(s), ‖A‖∞. Second, the natural parameter vector η(θ) ∈ R‖A‖∞−1 is a nonaffine
function of a lower-dimensional parameter vector θ ∈ R × (0,1). Third, the mean-value
parameter vector μ(η(θ)) is not available in closed form. Finally, the sufficient statistics
s2(x), . . . , s‖A‖∞−1(x) are not monotone functions of graphs, which complicates the veri-
fication of the main assumption of Theorem 1, as mentioned in Section 3.1. Despite these
challenges, it is possible to verify all conditions of Theorem 1 and obtain the following con-
centration result. It shows that the estimator θ̂ is close to the data-generating parameter vector
θ� with high probability provided K is large relative to ‖A‖6∞ log‖A‖∞.

COROLLARY 1. Consider a curved exponential-family random graph with within-
neighborhood edge and geometrically weighted edgewise shared partner terms. Let � =
R × (0,1) and assume that θ� ∈ int(�). Then all conditions of Theorem 1 are satisfied and
hence, for all ε > 0 small enough so that B(θ�, ε) ⊆ int(�), there exist κ(ε) > 0 and C > 0
such that

P
(̂
θ ∈ B

(
θ�, ε

)) ≥ 1 − 2 exp
(
−κ(ε)2CK

‖A‖6∞
+ log‖A‖∞

)
,

provided |Ak| ≥ 4 (k = 1, . . . ,K) and K ≥ 2.

Corollary 1 is the first concentration result for estimators of exponential-family random
graphs with dependence among edges induced by transitivity, one of the more interesting net-
work phenomena. In addition, it is the first concentration result for curved exponential-family
random graphs with geometrically weighted model terms, which are popular in practice (e.g.,
[24, 53]). The concentration result assumes that each neighborhood Ak consists of |Ak| ≥ 4
nodes, because θ� is not identifiable when |Ak| ≤ 3 (k = 1, . . . ,K). As mentioned above, the
set θ̂ may contain more than one element, but all elements of the set θ̂ are close to θ� with
high probability provided K is large relative to ‖A‖6∞ log‖A‖∞. Concentration results for
other curved exponential-family random graphs with geometrically weighted model terms
(e.g., [24, 53]) can be established along the same lines.

REMARK 3 (Asymptotic consistency results). As pointed out in the Introduction, we
state all theoretical results for finite populations of nodes, because in practice all popula-
tions are finite. Asymptotic consistency results can be obtained by allowing the number of
neighborhoods K to grow without bound. If there exists a universal constant C > 0 such that
|Ak| < C (k = 1,2, . . . ), then the main idea described in Section 3.1 along with the concentra-
tion results in Section 3.2 imply that θ̂ is a consistent estimator of θ� with rate of convergence
K1/2. As the units of statistical analysis are neighborhoods, the rate K1/2 resembles the rate
in classical statistical problems where the rate is the square root of the sample size, albeit
with two notable differences: first, the units are subsets of nodes (neighborhoods) rather than
nodes or edges; and, second, the sizes of units are not identical, but the size of the largest unit
is a constant multiple of the size of the smallest. Last, but not least, it is possible to obtain
asymptotic consistency results when K grows and the neighborhoods grow with K , which
implies that ‖A‖∞ grows with K . Then, as long as K grows faster than ‖A‖6∞ log‖A‖∞ in
the sense that K/(‖A‖6∞ log‖A‖∞) → ∞, the probability of event θ̂ ∈ B(θ�, ε) tends to 1.
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3.4. M-estimators, correct and incorrect model specifications. The concentration and
consistency results for maximum likelihood estimators in Section 3.3 are special cases of
more general results for M-estimators. To demonstrate, we introduce a natural class of M-
estimators in Appendix B.1, which includes both likelihood- and moment-based estimators,
and present concentration results in Appendix B.2 along with an application to misspecified
models with omitted covariate terms. These results cover both correct and incorrect model
specifications, as the example with omitted covariate terms demonstrates. Due to space re-
strictions, we provide details in Appendix B (see the Supplementary Material, [50]).

4. Extendability and subgraph-to-graph estimators. A question that has been asked
about exponential-family random graphs is whether it is possible to extend, in a well-defined
sense, an exponential-family random graph with a given set of nodes to an exponential-family
random graph with more nodes [12, 36, 51]. We show that multilevel structure helps extend an
exponential-family random graph with a given set of neighborhoods to an exponential-family
random graph with more neighborhoods (Section 4.1) and hence facilitates subgraph-to-
graph estimation (Section 4.2). The importance of these results lies in the fact that subgraph-
to-graph estimation for exponential-family random graphs is believed to be difficult (e.g.,
[51]), but our results demonstrate that additional structure facilitates it.

4.1. Extendability. While many exponential-family random graphs with a given set of
nodes cannot be extended to exponential-family random graphs with more nodes [12, 36,
51], an exponential-family random graph with a given set of neighborhoods can be extended
to an exponential-family random graph with more neighborhoods.

To demonstrate, consider a population graph (XL,YL) with a set of neighborhoods L =
{A1, . . . ,AL}, where XL ∈ XL and YL ∈ YL denote the sequences of within- and between-
neighborhood edge variables based on the set of neighborhoods L, respectively. As before,
assume that XL is governed by an exponential family with countable support XL and local
dependence, with neighborhood-dependent natural parameters ηA,i(θ) = ηi(θ) and sufficient
statistics sA,i(xA) (i = 1, . . . ,mA, A ∈L). Therefore, the exponential family can be reduced
to an exponential family with natural parameter vector

η(θ) = (
η1(θ), . . . , ηm(θ)

)
(4.1)

and sufficient statistic vector

s(xL) = (
s1(xL), . . . , sm(xL)

)
,

where si(xL) = ∑
A∈L sA,i(xA) (i = 1, . . . ,m) and m = maxA∈L mA.

Consider a subgraph (XK,YK) induced by a subset of neighborhoods K ⊂ L. Then the
subgraph (XK,YK) with subset of neighborhoods K is extendable to the population graph
(XL,YL) with set of neighborhoods L⊃ K as follows.

PROPOSITION 3. Consider a full or nonfull, curved exponential-family random graph
with set of neighborhoods L, countable support XL, and local dependence. Assume that, for
all yL ∈ YL,

P(YL = yL) = ∏
C∈L,D∈L,C �=D

P(Y C,D = yC,D),

where Y C,D = (Yi,j )i∈C,j∈D. Then, for all θ ∈ � ⊆ {θ ∈ Rq : ψL(η(θ)) < ∞}, all K ⊂ L,
and all xK ∈ XK and yK ∈ YK,

Pη(θ)(XK = xK,YK = yK,XL\K ∈ XL\K,YL\K ∈ YL\K)

= Pη(θ)(XK = xK,YK = yK),
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where

ψL

(
η(θ)

) = ∑
A∈L

ψA

(
η(θ)

)
= ∑

A∈L
log

∑
xA∈XA

exp
(〈
η(θ), sA(xA)

〉)
νA(xA).

The marginal density of a subgraph xK ∈ XK of xL ∈ XL induced by K ⊂ L is an
exponential-family density with support XK and local dependence:∑

xL\K∈XL\K
pη(θ)(xL) = pη(θ)(xK) = exp

(〈
η(θ), s(xK)

〉 − ψK

(
η(θ)

))
νK(xK),

where ψK(η(θ)) = ∑
A∈K ψA(η(θ)), η(θ) = (η1(θ), . . . , ηm(θ)), s(xK) = (

∑
A∈K sA,1(xA),

. . . ,
∑

A∈K sA,m(xA)), and νK(xK) = ∏
A∈K νA(xA).

Thus, in the above-mentioned sense, the exponential-family random graph induced by a
subset of neighborhoods K can be extended to the exponential-family random graph with
set of neighborhoods L ⊃ K. A more restrictive result was proved by Schweinberger and
Handcock ([48], Theorem 1).

4.2. Subgraph-to-graph estimators. The extendability of exponential-family random
graphs with multilevel structure discussed in Section 4.1 facilitates subgraph-to-graph es-
timation.

To demonstrate, let L be the set of neighborhoods of the population graph and assume that
xL ∈ XL was generated by an exponential family with countable support XL and local depen-
dence. Suppose that it is infeasible to observe xL ∈ XL, but it is feasible to sample a subset
of neighborhoods K ⊂ L and collect data on the subgraphs induced by K ⊂ L. We assume
henceforth that the sampling design is ignorable in the sense of Rubin [45] and Handcock and
Gile [19], that is, the probability of observing subgraphs does not depend on the unobserved
subgraphs. A simple example is a sampling design that samples neighborhoods at random
and collects data on the subgraphs induced by the sampled neighborhoods.

By Proposition 3 and the ignorability of the sampling design [19, 45], the observed-data
likelihood function based on the observed subgraph xK ∈ XK of xL ∈ XL is proportional to∑

xL\K∈XL\K
pη(θ)(xL) = pη(θ)(xK), xL ∈ XL,

where η(θ) is of the form (4.1). In other words, maximum likelihood estimation can be based
on pη(θ)(xK). Motivated by the same considerations we outlined in Section 3, we therefore
consider an estimating function of the form

gK
(
θ; ̂μK

(
η
(
θ�

))) = ∥∥ ̂μK

(
η
(
θ�

)) − μK

(
η(θ)

)∥∥
2,

where ̂μK(η(θ�)) = s(xK), μK(η(θ)) = Eη(θ)s(XK), and s(xK) is defined in Proposition 3.
The data-generating parameter vector θ� of the population graph can hence be estimated by
the estimator θ̂K based on the observed subgraph xK ∈ XK of xL ∈ XL:

θ̂K =
{
θ ∈ � : gK(

θ; ̂μK

(
η
(
θ�

))) = inf
θ̇∈�

gK
(
θ̇; ̂μK

(
η
(
θ�

)))}
.

The following concentration result shows that, with high probability, the estimator θ̂K based
on the observed subgraph induced by K⊂ L is close to the data-generating parameter vector
θ� of the population graph as long as the number of sampled neighborhoods |K| is large
relative to ‖L‖∞ = maxA∈L |A| and m = maxA∈L mA.
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THEOREM 2. Consider a full or nonfull, curved exponential-family random graph with
set of neighborhoods L, countable support XL, and local dependence. Let

� ⊆ {
θ ∈ Rq : ψL

(
η(θ)

)
< ∞}

.

Assume that θ� ∈ int(�) and that, for all ε > 0 small enough so that B(θ�, ε) ⊆ int(�),
there exists γ (ε) > 0 such that, for all θ ∈ � \B(θ�, ε), we have η(θ) ∈ N \B(η(θ�), γ (ε)).
In addition, assume that there exist δ(ε) > 0 and A > 0 such that, for all K ⊆ L and all
η(θ) ∈ N \B(η(θ�), γ (ε)),

∥∥μK

(
η
(
θ�)) − μK

(
η(θ)

)∥∥
2 ≥ δ(ε)

∑
A∈K

(|A|
2

)α

for some 0 ≤ α ≤ 1(4.2)

and, for all K⊆ L and all (x1,x2) ∈ XK ×XK,∥∥s(x1) − s(x2)
∥∥∞ ≤ Ad(x1,x2)‖K‖∞,(4.3)

where ‖K‖∞ = maxA∈K |A|. Then, for all ε > 0 small enough so that B(θ�, ε) ⊆ int(�),
there exist κ(ε) > 0 and C > 0 such that

P
(̂
θK ∈ B

(
θ�, ε

)) ≥ 1 − 2 exp
(
− κ(ε)2C|K|

m‖L‖4(2−α)∞
+ logm

)
.

If the exponential family is full, then θ̂K is unique in the event θ̂K ∈ B(θ�, ε).

Theorem 2 shows that there are costs associated with observing a subset of neighborhoods
K⊂ L rather than the whole set of neighborhoods L of the population graph: The probability
of event θ̂K /∈ B(θ�, ε) decays with the number of sampled neighborhoods |K| and is hence
lowest when the whole set of neighborhoods L of the population graph is sampled.

As a specific example, consider the main example of Section 3.3: curved exponential-
family random graphs with within-neighborhood edge and geometrically weighted edgewise
shared partner terms.

COROLLARY 2. Consider a curved exponential-family random graph with set of neigh-
borhoods L, countable support XL, and local dependence induced by within-neighborhood
edge and geometrically weighted edgewise shared partner terms. Let � = R × (0,1) and
assume that θ� ∈ int(�). Then all conditions of Theorem 2 are satisfied and hence, for all
ε > 0 small enough so that B(θ�, ε) ⊆ int(�), there exist κ(ε) > 0 and C > 0 such that

P
(̂
θK ∈ B

(
θ�, ε

)) ≥ 1 − 2 exp
(
−κ(ε)2C|K|

‖L‖6∞
+ log‖L‖∞

)
,

provided |A| ≥ 4 (A ∈ L) and |K| ≥ 2.

REMARK 4 (“Bad” subsets of neighborhoods K ⊆ L). Since the neighborhoods need
not have the same size, it is natural to ask whether it is possible to sample a “bad” subset
of neighborhoods K with too small or too large neighborhoods, which could make it chal-
lenging to estimate some of the parameters. However, the assumptions of Theorem 2 rule out
“bad” subsets of neighborhoods K, for two reasons. First, while some neighborhoods may be
larger than others, Theorem 2 assumes that the neighborhoods are of the same order of mag-
nitude, as defined in Section 2. In other words, the neighborhoods have similar sizes. Second,
the conditions of Theorem 2 assume that the model satisfies identifiability and smoothness
conditions for all possible subsets of neighborhoods K ⊆ L. Corollary 2 shows that, in the
special case of curved exponential-family random graphs with within-neighborhood edge
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and geometrically weighted edgewise shared partner terms, the identifiability conditions re-
quire |A| ≥ 4 for all neighborhoods A ∈ L of the population graph. Thus, no neighborhood
can be too small, and no neighborhood can be too large, because all neighborhoods are of
the same order of magnitude. As a consequence, under the stated assumptions, it is impos-
sible to sample a “bad” subset of neighborhoods K with too small or too large neighbor-
hoods.

5. Comparison with existing consistency results. To compare our concentration and
consistency results to existing consistency results, we focus on exponential-family ran-
dom graphs with dependent edges. It is worth noting that there are consistency results for
exponential-family random graphs with independence assumptions—see, for example, Dia-
conis, Chatterjee and Sly [11], Rinaldo, Petrovic and Fienberg [44], Krivitsky and Kolaczyk
[35] and Yan, Leng and Zhu [60], Yan et al. [59]—but such independence assumptions may
not be satisfied in applications, as discussed in the Introduction.

Concerning exponential-family random graphs with dependent edges, Shalizi and Rinaldo
[51] showed that maximum likelihood estimators of natural parameters of fixed dimension
are consistent provided exponential-family random graphs satisfy strong extendability or pro-
jectability assumptions. However, those projectability assumptions rule out dependencies in-
duced by transitivity and many other interesting network phenomena. Xiang and Neville
[58] reported consistency results under weak dependence assumptions, but did not give any
example of an exponential-family random graph with dependent edges that satisfies those as-
sumptions. Mukherjee [40] showed that consistent estimation of the so-called two-star model
is possible, but those results have not been extended to other exponential-family random
graphs. In addition, Shalizi and Rinaldo [51], Xiang and Neville [58] and Mukherjee [40]
focus on consistency results for estimators of natural parameter vectors whose dimensions
do not depend on the number of nodes. By contrast, we advance the statistical theory of
exponential-family random graphs by providing the first concentration and consistency re-
sults that cover:

• a wide range of exponential-family random graphs with dependence among edges induced
by transitivity and other interesting network phenomena;

• curved exponential-family random graphs with dependent edges and parameter vectors
whose dimension depends on the number of nodes (Section 3);

• maximum likelihood and M-estimators (Section 3 and Appendix B);
• correct and incorrect model specifications (Section 3 and Appendix B);
• subgraph-to-graph estimators (Section 4).

These results underscore the importance of additional structure: It is the additional structure
in the form of multilevel structure that facilitates these results.

6. Simulation results. To shed light on the finite-graph properties of maximum likeli-
hood estimators, we generated data from the canonical and curved exponential-family ran-
dom graphs mentioned in Section 3.3. We used R package hergm [49] to generate 1000
graphs from each model and estimated the data-generating parameter vector by Monte Carlo
maximum likelihood estimators [24].

We first consider canonical exponential-family random graphs with support X =
{0,1}

∑K
k=1 (

|Ak |
2 ) and local dependence induced by within-neighborhood edge and transi-

tive edge terms [26]. Within-neighborhood edge and transitive edge terms correspond to
neighborhood-dependent natural parameters ηk,1(θ) = θ1 and ηk,2(θ) = θ2 and sufficient
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FIG. 2. 1000 estimates of the exponential-family random graph with within-neighborhood edge and transitive
edge terms, where each graph consists of K = 100, 200 and 300 neighborhoods of size 50 with natural param-
eter vectors ηk(θ) = (θ1, θ2). The horizontal and vertical lines indicate the coordinates of the data-generating
parameter vector θ� = (θ�

1 , θ�
2 ).

statistics sk,1(xk) and sk,2(xk) given by

sk,1(xk) = ∑
i∈Ak<j∈Ak

xi,j ,

sk,2(xk) = ∑
i∈Ak<j∈Ak

xi,j max
h∈Ak,h�=i,j

xi,hxj,h,

where k = 1, . . . ,K . It is worth noting that the number of transitive edges is not the same as
the number of triangles. A discussion of the model along with concentration results for max-
imum likelihood estimators can be found in Appendix A (see the Supplementary Material,
[50]). Figure 2 shows 1000 estimates of the exponential-family random graph with within-
neighborhood edge and transitive edge terms, where each graph consists of K = 100, 200 and
300 neighborhoods of size 50 with natural parameter vectors ηk(θ) = (θ1, θ2) (k = 1, . . . ,K).
The figure suggests that the probability mass of estimators becomes more and more concen-
trated in a neighborhood of the data-generating parameters as the number of neighborhoods
K increases from 100 to 300, demonstrating that the concentration results in Section 3 are
manifest when K is in the low hundreds and ‖A‖∞ = 50.

Figure 3 sheds light on the performance of a simple form of a size-dependent parameter-
ization that allows small and large neighborhoods to have different parameters. We consider
exponential-family random graphs with within-neighborhood edge and transitive edge terms,
where each graph consists of 33 neighborhoods of size 25 with natural parameter vectors
ηk(θ) = (θ1, θ2) (k = 1, . . . ,33), 34 neighborhoods of size 50 with natural parameter vectors
ηk(θ) = (θ1 + θ3, θ2 + θ4) (k = 34, . . . ,67), and 33 neighborhoods of size 75 with natural

FIG. 3. 1000 estimates of the exponential-family random graph with within-neighborhood edge and transi-
tive edge terms, where each graph consists of 33 neighborhoods of size 25 with natural parameter vectors
ηk(θ) = (θ1, θ2), 34 neighborhoods of size 50 with natural parameter vectors ηk(θ) = (θ1 + θ3, θ2 + θ4), and 33
neighborhoods of size 75 with natural parameter vectors ηk(θ) = (θ1 + θ5, θ2 + θ6). The horizontal and vertical
lines indicate the coordinates of the data-generating parameter vector θ� = (θ�

1 , θ�
2 , θ�

3 , θ�
4 , θ�

5 , θ�
6 ).
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FIG. 4. 1000 estimates of the curved exponential-family random graph with within-neighborhood edge and
geometrically weighted edgewise shared partner terms, where each graph consists of K = 100 neighborhoods
of size 50 with natural parameter vectors ηk(θ) = (θ1, ηk,1(θ2), . . . , ηk,48(θ2)). The vertical lines indicate the
coordinates of the data-generating parameter vector θ� = (θ�

1 , θ�
2 ).

parameter vectors ηk(θ) = (θ1 + θ5, θ2 + θ6) (k = 68, . . . ,100). Figure 3 demonstrates that
the estimates of the baseline edge and transitive edge parameters θ1 and θ2 tend to be closer
to the data-generating parameters than the deviation parameters θ3, θ4, θ5 and θ6, because θ1
and θ2 are estimated from all neighborhoods whereas θ3, θ4, θ5 and θ6 are estimated from a
subset of neighborhoods.

Figure 4 shows 1000 estimates of the curved exponential-family random graph with
within-neighborhood edge and geometrically weighted edgewise shared partner terms de-
scribed in Section 3.3. Each graph consists of K = 100 neighborhoods of size 50 with natu-
ral parameter vectors ηk(θ) = (θ1, ηk,1(θ2), . . . , ηk,48(θ2)), where θ1 is the natural parameter
of the edge term and ηk,1(θ2), . . . , ηk,48(θ2) are the natural parameters of the geometrically
weighted edgewise shared partner term (k = 1, . . . ,100). The figure shows that the proba-
bility mass of the estimators is concentrated in a small neighborhood of the data-generating
parameters.

7. Discussion. We have taken constructive steps to demonstrate that statistical inference
for exponential-family random graphs with dependence among edges induced by transitivity
and other interesting network phenomena is possible, provided additional structure in the
form of multilevel structure is available. The theoretical results reported here underscore the
importance of additional structure. In practice, many other forms of additional structure exist
and could be used for the purpose of facilitating statistical inference for exponential-family
random graphs (e.g., other forms of multilevel structure or spatial structure).

Last, but not least, while we have focused here on theoretical results showing that multi-
level structure facilitates statistical inference, it is worth noting that multilevel structure has
computational benefits as well: The contributions of neighborhoods to estimating functions—
for example, the expectations of within-neighborhood sufficient statistics—may be computed
or approximated by exploiting parallel computing on computing clusters.
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SUPPLEMENTARY MATERIAL

Supplement to “Concentration and consistency results for canonical and curved
exponential-family models of random graphs” (DOI: 10.1214/19-AOS1810SUPP; .pdf).
All results are proved in the supplement [50]. In addition, the supplement contains concentra-
tion results for M-estimators. These results cover correct and incorrect model specifications.

https://doi.org/10.1214/19-AOS1810SUPP


394 M. SCHWEINBERGER AND J. STEWART

REFERENCES

[1] BARNDORFF-NIELSEN, O. (1978). Information and Exponential Families in Statistical Theory. Wiley,
Chichester. MR0489333

[2] BHAMIDI, S., BRESLER, G. and SLY, A. (2011). Mixing time of exponential random graphs. Ann. Appl.
Probab. 21 2146–2170. MR2895412 https://doi.org/10.1214/10-AAP740

[3] BHATTACHARYA, B. B. and MUKHERJEE, S. (2018). Inference in Ising models. Bernoulli 24 493–525.
MR3706767 https://doi.org/10.3150/16-BEJ886

[4] BOUCHERON, S., LUGOSI, G. and MASSART, P. (2013). Concentration Inequalities: A Nonasymptotic
Theory of Independence. Oxford Univ. Press, Oxford. MR3185193 https://doi.org/10.1093/acprof:oso/
9780199535255.001.0001

[5] BROWN, L. D. (1986). Fundamentals of Statistical Exponential Families with Applications in Statistical
Decision Theory. Institute of Mathematical Statistics Lecture Notes—Monograph Series 9. IMS, Hay-
ward, CA. MR0882001

[6] BUTTS, C. T. (2011). Bernoulli graph bounds for general random graph models. Sociol. Method. 41 299–
345.

[7] BUTTS, C. T. and ALMQUIST, Z. W. (2015). A flexible parameterization for baseline mean degree
in multiple-network ERGMs. J. Math. Sociol. 39 163–167. MR3367715 https://doi.org/10.1080/
0022250X.2014.967851

[8] CHATTERJEE, S. (2005). Concentration inequalities with exchangeable pairs. Ph.D. thesis, Dept. Statistics,
Stanford Univ., Satnford, CA.

[9] CHATTERJEE, S. (2007). Estimation in spin glasses: A first step. Ann. Statist. 35 1931–1946. MR2363958
https://doi.org/10.1214/009053607000000109

[10] CHATTERJEE, S. and DIACONIS, P. (2013). Estimating and understanding exponential random graph mod-
els. Ann. Statist. 41 2428–2461. MR3127871 https://doi.org/10.1214/13-AOS1155

[11] CHATTERJEE, S., DIACONIS, P. and SLY, A. (2011). Random graphs with a given degree sequence. Ann.
Appl. Probab. 21 1400–1435. MR2857452 https://doi.org/10.1214/10-AAP728

[12] CRANE, H. and DEMPSEY, W. (2015). A framework for statistical network modeling. Available at https:
//arxiv.org/abs/1509.08185.

[13] EFRON, B. (1975). Defining the curvature of a statistical problem (with applications to second order effi-
ciency). Ann. Statist. 3 1189–1242. MR0428531

[14] EFRON, B. (1978). The geometry of exponential families. Ann. Statist. 6 362–376. MR0471152
[15] FRANK, O. and STRAUSS, D. (1986). Markov graphs. J. Amer. Statist. Assoc. 81 832–842. MR0860518
[16] GEYER, C. J. (2009). Likelihood inference in exponential families and directions of recession. Electron. J.

Stat. 3 259–289. MR2495839 https://doi.org/10.1214/08-EJS349
[17] GODAMBE, V. P. and KALE, B. K. (1991). Estimating Functions. Oxford Univ. Press, Oxford.
[18] HANDCOCK, M. S. (2003). Statistical models for social networks: Inference and degeneracy. In Dynamic

Social Network Modeling and Analysis: Workshop Summary and Papers (R. Breiger, K. Carley and
P. Pattison, eds.) 1–12. National Academies Press, Washington, DC.

[19] HANDCOCK, M. S. and GILE, K. J. (2010). Modeling social networks from sampled data. Ann. Appl. Stat.
4 5–25. MR2758082 https://doi.org/10.1214/08-AOAS221

[20] HARRIS, J. K. (2013). An Introduction to Exponential Random Graph Modeling. Sage, Thousand Oaks,
CA.

[21] HOLLAND, P. W. and LEINHARDT, S. (1976). Local structure in social networks. Sociol. Method. 1–45.
[22] HOLLWAY, J., LOMI, A., PALLOTTI, F. and STADTFELD, C. (2017). Multilevel social spaces: The network

dynamics of organizational fields. Network Science 5 187–212.
[23] HUNTER, D. R. (2007). Curved exponential family models for social networks. Soc. Netw. 29 216–230.
[24] HUNTER, D. R., GOODREAU, S. M. and HANDCOCK, M. S. (2008). Goodness of fit of so-

cial network models. J. Amer. Statist. Assoc. 103 248–258. MR2394635 https://doi.org/10.1198/
016214507000000446

[25] HUNTER, D. R. and HANDCOCK, M. S. (2006). Inference in curved exponential family mod-
els for networks. J. Comput. Graph. Statist. 15 565–583. MR2291264 https://doi.org/10.1198/
106186006X133069

[26] HUNTER, D. R., KRIVITSKY, P. N. and SCHWEINBERGER, M. (2012). Computational statistical methods
for social network models. J. Comput. Graph. Statist. 21 856–882. MR3005801 https://doi.org/10.
1080/10618600.2012.732921
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