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Multilevel network data provide two important benefits for ERG modeling. First, they facilitate estimation of the
decay parameters in geometrically weighted terms for degree and triad distributions. Estimating decay para-
meters from a single network is challenging, so in practice they are typically fixed rather than estimated.
Multilevel network data overcome that challenge by leveraging replication. Second, such data make it possible to
assess out-of-sample performance using traditional cross-validation techniques. We demonstrate these benefits
by using a multilevel network sample of classroom networks from Poland. We show that estimating the decay

parameters improves in-sample performance of the model and that the out-of-sample performance of our best
model is strong, suggesting that our findings can be generalized to the population of interest.

1. Introduction

Exponential-family random graph models (ERGMs) or p*-models
(Wasserman and Pattison, 1996) have become one of the dominant
statistical methods for analyzing social networks (Wasserman and
Faust, 1994; Kolaczyk, 2009), as evidenced by a growing body of re-
search articles, books (Lusher et al., 2013; Harris, 2013), and software.>
When properly specified, ERGMs can be used to investigate a wide
range of network processes, both dyadic independent (e.g., degree
heterogeneity and homophily by nodal attributes) and dyadic depen-
dent (e.g., cyclical and transitive triadic closure).

Triadic processes, in particular, have long been of interest in social
network analysis (Heider, 1946; Cartwright and Harary, 1956;
Wasserman and Faust, 1994). Early studies used methods from math-
ematical graph theory to examine the relative frequencies of triadic
configurations (see, e.g., the so-called triad census of Holland and
Leinhardt, 1970). That work led to some of the foundational theories of
social network analysis: that regularities in triadic configurations at the
micro-level cumulate up to signature patterns at the macro-level, such
as clustering and polarization (Rapoport, 1963). So when the first
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statistical models with dyadic dependence induced by counts of triadic
configurations were proposed — the Markov random graphs of Frank
and Strauss (1986) — it was natural that applied research focused on
model specifications that used counts of triadic configurations to ex-
plain the clustering observed in empirical networks. But those specifi-
cations turned out to be problematic. It took some time to understand
why, and to appreciate how (and how not) to represent dyadic de-
pendence induced by triadic processes in statistical models. Strauss
(1986) first observed that dyadic dependence induced by 2-star and
triangle counts in combination with strong homogeneity assumptions
(Frank and Strauss, 1986) leads to near-degenerate models, placing
most probability mass on networks with almost no edges or almost all
possible edges (Jonasson, 1999; Handcock, 2003; Schweinberger, 2011;
Butts, 2011; Chatterjee and Diaconis, 2013).

That work led eventually to a better understanding of why the
simple homogenous Markov specifications do not behave as expected,
and to the development of more appropriate, parsimonious specifica-
tions of dyadic dependence in ERGMs. The most widely used of the new
specifications are curved terms such as alternating k-stars and k-trian-
gles (Snijders et al., 2006) or, equivalently, geometrically weighted
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degrees and triads (Hunter and Handcock, 2006; Hunter, 2007; Hunter
et al., 2008).

1.1. Curved ERGMs with geometrically weighted terms

The promise of curved ERGMs with geometrically weighted terms
was first demonstrated in the papers of Snijders et al. (2006), Hunter
and Handcock (2006), Hunter (2007), and Hunter et al. (2008). Ex-
pressed in terms of sequences of degree and shared partner counts,
curved terms are weighted sums of those sequences, where the weights
decrease geometrically, as governed by a decay parameter. The
homogenous Markov random graph terms based on the k-star and tri-
angle counts in Frank and Strauss (1986) imply that each additional k-
star and triangle configuration has the same influence on the log odds of
the conditional probability of an edge. By contrast, the geometrically
weighted terms imply declining marginal influence, where the rate of
decline is controlled by the decay parameter. This term is then multi-
plied by the usual coefficient, which in this context is often called the
“base parameter.” Geometrically weighted terms give rise to curved
exponential families of distributions in the sense of Efron (1975),
therefore such ERGMs are known as curved ERGMs (Hunter and
Handcock, 2006; Hunter, 2007). A growing body of applied research
has demonstrated the usefulness of these curved ERGMs (see, e.g.,
Lusher et al., 2013; Harris, 2013, and references therein). That said,
some statistical challenges have emerged.

1.2. Statistical inference for curved ERGMs

While geometrically weighted terms are attractive on scientific
grounds and better behaved in practice, estimating the decay para-
meters of these terms from a single network by maximum likelihood
methods (Hunter and Handcock, 2006) or Bayesian methods (Koskinen,
2004; Caimo and Friel, 2011; Everitt, 2012; Bomiriya et al., 2016) has
proven to be difficult.

The seminal paper of Snijders et al. (2006), which introduced al-
ternating k-star and k-triangle terms and a version of the geometrically
weighted degree term, applied a curved ERGM to the Lazega law firm
advice network (Lazega, 2001). Snijders et al. did not estimate the
decay parameters, but fixed them at values found by trial and error.
Hunter and Handcock (2006) introduced Monte Carlo maximum like-
lihood methods to estimate decay parameters and were able to estimate
the decay parameters of some geometrically weighted model terms
using the same law firm advice network, but conditioned on the ob-
served number of edges (as did Obando and De Vico Fallani, 2017). We
were only able to find four published papers that estimated decay
parameters of geometrically weighted model terms without con-
ditioning on the observed number of edges (Hunter, 2007; Koskinen
et al., 2010; Suesse, 2012; Almquist and Bagozzi, 2015). Three of them
used the same network, the Lazega law firm advice network (Hunter,
2007; Koskinen et al., 2010; Suesse, 2012).

Both of the heuristic approaches to using curved ERGMs in practice
- fixing the decay parameters at values found by trial and error or
conditioning on the observed number of edges — are undesirable. Fixing
decay parameters at values other than the maximum likelihood esti-
mates (MLEs) will change the estimates for all of the other model
parameters, and can negatively affect both the in-sample and the out-of-
sample performance of the model. Conditioning on the number of edges
in the observed network also imposes a steep cost, as it limits statistical
inference to networks with the same number of edges.

One reason that the estimation of the decay parameter is so chal-
lenging is that geometrically weighted terms are nonlinear functions of
the product of the base and decay parameters (Hunter, 2007). As such,
these two parameters are “mixed up,” and difficult to estimate. In
theory, estimation of both parameters is possible: well-specified models
are identifiable and sensitive to changes in all parameters as long as the
base parameters are not zero and the network contains at least four
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nodes. However, even well-specified models are less sensitive to
changes in decay parameters when the base parameters are small or the
decay parameters are large. As a consequence, a network may not
contain much information about decay parameters (in the statistical
sense of Fisher information), making it challenging to estimate them.

1.3. Multilevel network data facilitate statistical inference for curved
ERGMs

The increasing availability of multilevel network data (e.g., Wang
et al., 2013; Zappa and Lomi, 2015; Lomi et al., 2016; Slaughter and
Koehly, 2016; Hollway and Koskinen, 2016; Lazega and Snijders, 2016;
Hollway et al., 2017) provides new opportunities to strengthen statis-
tical inference for curved ERGMs. Multilevel network data come in
many forms. Snijders (2016) presents a representative sample of the
diverse forms that multilevel network structure can assume. Among the
multitude of multilevel network structures, two basic forms of multi-
level networks can be distinguished: multiple networks (e.g., multiple
school networks) and multilevel networks with ties within and between
two sets of nodes (e.g., a set of students and a set of school classes in a
school). We consider here a simple example that combines both flavors
of multilevel networks: we have multiple school networks and, within
each school, we have students (level-1 units) nested in school classes
(level-2 units), with ties among students within and between school
classes — although in the multilevel network we will use the between-
class ties are unobserved by the data collection design. Such data can be
used to strengthen statistical inference for curved ERGMs in at least
three ways.

First, multilevel networks help estimate decay parameters of geo-
metrically weighted terms by providing replication. In the running
example, if we assume that the network in each school class is gener-
ated by a curved ERGM with a size-adjusted parameterization
(Krivitsky et al., 2011; Krivitsky and Kolaczyk, 2015), then the sample
of school networks comprises replications from the same data-gen-
erating process. The replication provides additional information (in the
statistical sense of Fisher information) that improves estimation of all of
the parameters in a model. Recent advances in the statistical theory of
ERGMs have shown that the MLEs of parameters, including the decay
parameters of geometrically weighted terms, exist and are close to the
data-generating values of the parameters with high probability, pro-
vided a large multilevel network consists of many networks of similar
sizes (Schweinberger and Stewart, 2019). In practice, estimation from
multilevel networks can reduce standard errors of maximum likelihood
estimators and the posterior uncertainty in Bayesian approaches to
ERGMs (Koskinen, 2004; Caimo and Friel, 2011; Everitt, 2012;
Bomiriya et al., 2016).

Second, multilevel networks can have computational advantages.
This is especially true in our running example, where the edges within
school classes do not depend on edges outside of school classes. In this
case, the probability mass function of a multilevel network factorizes
into class-dependent probability mass functions. The factorization im-
plies that the within- and between-class contributions to the likelihood
function can be computed separately, which allows them to be per-
formed in parallel on multi-core computers or computing clusters.

Third, multilevel networks make it possible to assess the out-of-
sample performance of ERGMs via cross-validation: the replicates can
be split into two subsets, a training subset used to estimate the model,
and a held-out subset used to assess the out-of-sample performance of
the estimated model. It is worth noting that the assessment of out-of-
sample performance serves a different purpose than the traditional as-
sessment of goodness-of-fit (Hunter et al., 2008). Goodness-of-fit checks
assess in-sample performance: how well an estimated model reproduces
other features of the same observed network that was used to estimate
the model. By contrast, cross-validation assesses out-of-sample perfor-
mance: how well the estimated model predicts features of networks that
were not used to estimate the model. As a consequence, cross-validation
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helps strengthen the basis for sample-to-population inference.

1.4. Purpose of our paper

We demonstrate the advantages outlined in Section 1.3 by esti-
mating a set of curved ERGMs from a multilevel network consisting of
304 third-grade school classes with 6,594 students, sampled from a
population with 309,285 third-grade students in Poland (Dolata, 2014).
Our primary focus is on geometrically weighted triadic closure terms
for directed networks (Butts, 2008; Robins et al., 2009). We compare
the results from a model that fixes the decay parameter at two values (0
and .25) commonly used in practice (e.g., Hunter et al., 2008, 2012;
Goodreau et al., 2009), to the results from the same model when the
decay parameter is estimated. In addition, we explore four other al-
ternative specifications of directed geometrically weighted triadic clo-
sure terms, capturing different forms of cyclical and transitive closure
(Wasserman and Faust, 1994). All of the models use size-adjusted
parameterizations for the density and reciprocity terms (Krivitsky et al.,
2011; Krivitsky and Kolaczyk, 2015; Butts and Almquist, 2015). We
assess the performance of the models in three ways: convergence
properties, in-sample performance (goodness-of-fit), and out-of-sample
performance (cross-validation).

Our findings show that the convergence properties of all curved
ERGMs are excellent, and that the in-sample performance of curved
ERGMs is superior when decay parameters are estimated rather than
fixed. In addition, the best-fitting curved ERGM shows strong out-of-
sample performance, which suggests that our findings can be general-
ized to the population interest.

A software implementation of the proposed models and methods is
available in the R packages mlergm and hergm (Schweinberger and
Luna, 2018), both of which depend on R package ergm (Hunter et al.,
2008). These packages support parallel computing on multi-processor
computers and computing clusters.

1.5. Comparison with existing approaches

There is a growing body of research articles and books concerned
with multilevel network data, models, and methods (e.g., Wang et al.,
2013; Zappa and Lomi, 2015; Lomi et al., 2016; Slaughter and Koehly,
2016; Hollway and Koskinen, 2016; Lazega and Snijders, 2016;
Hollway et al., 2017). For the type of multilevel network considered
here, existing approaches include

® Pooling the network data and estimating a common model, without
adjusting for network size (e.g., Kalish and Luria, 2013). That as-
sumes that the coefficients are the same for all networks and ignores
the potential impact of network size.

Estimating a model from each network separately (e.g., Hunter
et al., 2008; Goodreau et al., 2009). That allows coefficients to vary
from network to network, but does not pool information across
networks to facilitate the estimation of the decay parameters of
curved ERGMs. While the separate estimates can be combined into a
single estimate by using meta-analysis (Lubbers, 2003; Lubbers and
Snijders, 2007), estimating decay parameters from each network
separately does not pool information across networks and is chal-
lenging for the reasons discussed above (Section 1.2).

Bayesian approaches (e.g., Schweinberger and Handcock, 2015;
Slaughter and Koehly, 2016) that assume the coefficients are
random variables with common mean and variance. While flexible,
existing Bayesian methods are associated with high computational
costs.

None of these existing approaches have dealt with the problem of
missing data.
By contrast, we
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® Pool the network data and estimate a common model, adjusting for
network size by using methods proposed by Krivitsky et al. (2011)
and Krivitsky and Kolaczyk (2015): that is, we assume that coeffi-
cients are functions of size-invariant parameters and size-dependent
offsets.

Exploit the strength of the pooled network data to estimate the
decay parameters of curved ERGMs, and increase the precision of
other estimators, while keeping the model parsimonious and com-
putations feasible for networks with thousands of nodes.
Distinguish between the process that generates the population net-
work and the process that determines which network data are ob-
served (Schweinberger et al., 2017).

Incorporate modern missing-data methods for statistical network
analysis, assuming that missing responses are ignorable as defined
by Handcock and Gile (2010) and Koskinen et al. (2010).

Use out-of-sample prediction assessment to assess sample-to-popu-
lation inference.

Provide a careful substantive interpretation of the key coefficients in
these curved ERGMs.

To compare our work to the only four papers that estimated decay
parameters without conditioning on the observed number of edges
(Hunter, 2007; Koskinen et al., 2010; Suesse, 2012; Almquist and
Bagozzi, 2015), we note that all of them focus on a single triadic closure
term (GW-ESP) for undirected networks and are based on a single
network without sampled or missing data, one network with 36 nodes
(Hunter, 2007; Koskinen et al., 2010; Suesse, 2012) and the other
network with 143 nodes (Almquist and Bagozzi, 2015). By contrast, we
estimate the decay parameters of five triadic closure terms for directed
networks on a sample of networks with missing data, and use out-of-
sample performance assessment to justify inference to the population of
third-grade class networks in Poland.

The remainder of our paper is structured as follows. We describe the
population network of interest and the sampled network data in Section
2. A population network model is introduced in Section 3 and like-
lihood-based inference for the population network model is discussed in
Section 4. We present the results in Section 5.

2. Population network and sampled network data

The data we use are sampled multilevel network data collected by
the Polish Institute for Educational Research® as a part of the study
“Quality and Efficiency of Education and Institutionalization of Re-
search Facilities” (Dolata and Rycielski, 2014).

The population consists of all third-grade classes in 8,924 Polish
primary schools during academic year 2010/2011. A total of 309,285
students attended third grade that year. A two-stage sampling design
was used to generate a sample of school classes from the population. In
the first stage, a stratified sample of 176 schools was generated, with
strata defined by city size and the number of third-grade school classes.
More details on the stratified cluster sampling design can be found in
Maluchnik and Modzelewski (2014). In the second stage, 306 third-
grade school classes were sampled from the 176 schools. If the school
had one or two third-grade school classes, all were included. If the
school had three or more third-grade school classes, two were selected
by simple random sampling without replacement.

The study sought to interview all 6,607 students in the sampled
school classes by in-class surveys, however parental consent was re-
quired for students to participate (Maluchnik and Modzelewski, 2014).
Interview data were collected from 5,625 students (85%). The data
from the remaining students are missing due to a combination of
missing parental consent, absence on the day of the survey, and inad-
missible or garbled responses. Participating students could still

3 Instytut Badari Edukacyjnych, www.ibe.edu.pl.
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Fig. 1. Left: Size distribution of sizes of the 304 school classes. Right: Distribution of the percentage of students with missing data in each school. The vertical bar at 0

shows the 44 school classes without missing data.

nominate students who did not participate, so the data set contains
information on more students than participants. We removed the two
smallest classes with 6 and 7 students because of the small sizes. The
resulting data set used in this analysis is based on 5,612 interviews from
304 sampled school classes and provides information on 6,594 students.

Fig. 1 shows the distribution of the sizes of the 304 sampled school
classes and the percentages of students with missing data in each class.
Class sizes range from 11 to 33, with a median of 22. Missingness ranges
from 0 to 45%, with a median of 13%. There are 44 school classes
(14%) without missing data.

The network data consist of directed edges from student i to student
j, where a directed edge indicates that student i expressed interest in
playing with student j. The name generator was: “Name people from
your class that you would most like to play with” (translated from
Polish). Nominations were restricted to other students in the same
school class, so the data do not contain observations of between-class
edges. In addition to the network data, two nodal attributes were col-
lected from school records: the sex of students and the International
Socio-Economic Index (ISEI) of parents. Due to high levels of missing-
ness, we do not use the ISEI of parents in our analyses.

The observed outdegree distribution is shown in Fig. 2 and reveals a
notable spike at 5. While there was no upper bound on the number of
nominations allowed, the questionnaire provided 5 lines for nominating
playmates. It seems likely that some students interpreted the 5 lines as a
limit on the number of nominations, while others did not. This has
implications for modeling outdegrees, which we discuss in Section 3.2.

The mean outdegree and indegree of male students, computed from
the 44 classes without missing data, are 4.61 and 4.83, respectively; for
female students, the mean outdegree and indegree are 5.28 and 5.04,
respectively. Table 1 shows the distribution of nominations by female
and male students, based on the 44 classes without missing data.

1600

1200

800

400

Number of students

0 5 10 15
Outdegree

Fig. 2. Observed outdegrees of students in the 304 school classes.

Table 1

Distribution of nominations by female and male students. The counts are the
total number of edges in each category across the 44 school classes without
missing data.

Receiver Total
Male Female Ties Students
Sender Male 1782 333 2115 459
Female 437 1921 2358 447
Total Ties 2219 2254 4473
Students 459 447 906

3. Population network model

The true population of interest consists of all students in third-grade
school classes in Poland. In this population, there may be edges both
within and between school classes, and both may be of scientific in-
terest. The modeling framework we present here is capable of modeling
both within- and between-class edges, provided data on both are
available. To clarify which assumptions our model makes and under
which conditions our model-based conclusions hold, we specify the
general form here. When we turn to our application, the lack of data on
between-class edges will constrain the model specification to a more
limited form.

Let X;; = 1 if student i expressed interest in playing with student j
and let X;; = 0 otherwise, and denote by .+ the set of all students in
school class k =1, ..., K. We denote the within-class networks by
Xy = (Xij)ic.o, je.vy> the between-class networks by X ; = (Xij)ic.o4, je.v
(k = 1), and the population network by X = (Xk,l)kK, B

We assume that the population network X was generated by a
random graph model with a probability mass function of the form

K
P(X = X) = [H P(Xk = Xk):| P(Xk,I = Xk,I» k ;é = 1, ,K)
k=1

The population network model therefore makes two fundamental
model assumptions:

o The within-class edges of students can depend on other edges among
students in the same school class, but do not depend on edges to
students outside of the school class.

e The between-class edges of students can depend on other between-
class edges, but do not depend on within-class edges.

While the lack of data on between-class edges means that we cannot
learn the probability law governing between-class edges (unless we
make the unrealistic assumption that within- and between-class edges
are governed by the same probability law), we can use our model to
learn the probability law governing the within-class networks of the
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population network. In particular, we can use our model to examine
whether playing preferences in the population of third-grade students
in Poland show evidence of reciprocity, heterogeneity and homophily
by sex, and triadic closure of different types (Wasserman and Faust,
1994).

3.1. Model specification

We focus here on the specification of within-class models, since we
do not have data on between-class edges.

We assume that the within-class models are ERGMs with probability
mass functions of the form

P
Po (X = x0) = exp( Q) 0 (O)sii (%) — $,(6)), k&

i=1

1, .,K,

where s¢; : Xy — R are network features of within-class network
Xk € Xy and 7,; : ® = R are the weights of the network features,
called the natural parameters of the exponential family. The natural
parameters 7, ;: ® — R may depend on the sizes of school classes and
may be non-linear functions of a parameter vector 6 € ® C RY, which is
the case in curved ERGMs with geometrically weighted terms. The
function yi(0) ensures that the probability mass function Py (Xy = x)
sums to 1.

We start with a description of size-adjusted parameterizations for
edges and mutual edges in Section 3.2 and discuss modeling outdegrees
in Section 3.3. We then turn to the model terms of primary interest:
heterogeneity and homophily by sex terms in Section 3.4 and triadic
closure terms in Section 3.5, based on curved ERGMs with geome-
trically weighted terms. A graphical summary of all model terms is
shown in Figs. 4 and 5 below.

3.2. Size-adjusted parameterizations

The sizes of the sampled school classes described in Section 2 range
from 11 to 33. If network density changes with network size, this has
implications for model specification. The issue is related to density-
dependence versus frequency-dependence in the ecology literature
(e.g., DeBenedictis, 1977), and sparse versus dense graphs in mathe-
matical graph limit theory (e.g., Chatterjee and Diaconis, 2013). Con-
sider an undirected Bernoulli random graph, which is equivalent to an
ERGM with the number of edges as sufficient statistic and natural
parameter 7(6) = 0. Here, 0 is the log odds of the probability of an
edge. Holding 6 constant as the network size increases preserves the
probability of an edge - i.e., the expected network density — but in-
creases the expected degrees of nodes by a factor proportional to the
change in network size. Thus, increasing network size by a factor of 10
would result in nodes having, on average, 10 times more edges. That is
equivalent to the density-dependence assumption in the ecology lit-
erature, and the dense-graph regime in graph limit theory (Lovész,
2012).

Constant expected network density may be a reasonable assumption
for the growth process in some non-social networks, and some of the
mathematical-statistical work on ERGMs makes this assumption (e.g.,
Chatterjee and Diaconis, 2013). In the social science literature, how-
ever, it has long been recognized that constant network density is an
unrealistic assumption for most social networks (Mayhew and Levinger,
1976). People do not have infinite resources for engaging with others
and it is therefore more credible that, as the network size increases, the
expected degrees of nodes are either constant or bounded above
(Krivitsky et al., 2011; Krivitsky and Kolaczyk, 2015; Butts and
Almquist, 2015). That is equivalent to the frequency-dependence as-
sumption in the ecology literature and the sparse-graph regime in graph
limit theory (Lovasz, 2012).

As shown in Fig. 3, our data are consistent with the assumption that
the expected degrees are either constant or bounded above: the median
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observed outdegree lies between 4 and 5 for sampled school classes of
all sizes. That may partly reflect the fact that the questionnaire, while
not limiting nominations, provided 5 lines, as discussed in Section 2.
However, the outdegrees of the students who made more than 5 no-
minations do not appear to increase with network size either, sug-
gesting that the expected degrees of all students are network size-in-
variant.

There is a small but growing body of work focused on developing
size-invariant parameterizations for ERGMs (Krivitsky et al., 2011;
Krivitsky and Kolaczyk, 2015; Butts and Almquist, 2015). The as-
sumption that the expected mean degree, rather than the expected
network density, should be size-invariant leads to a per capita scaling
adjustment, where the expected number of edges scales linearly, rather
than quadratically, with the number of nodes.

As proposed in Krivitsky et al. (2011), ERGMs can achieve size-in-
variance of expected mean degree by including a size-dependent offset.
In the undirected Bernoulli random graph model, for example, the size-
adjusted specification includes a size-dependent offset of — logl.«7I,
where |.7| denotes the number of nodes in .7:

7,(6) = 6; — logl.«/l. 0

Here, 6; € R is a size-invariant parameter that does not depend on the
size of .o7. Krivitsky et al. (2011) showed that for Bernoulli random
graphs with parameterizations of the form (1), the expected mean de-
gree is constant in the limit as the number of nodes increases without
bound, and that the size-invariant parameter exp(6;) can be interpreted
as the limiting expected mean degree. This simple interpretation of exp
(67) in terms of expected mean degree will change once other terms are
added to the model, but the size-invariance of the expected mean de-
gree will still be preserved. Krivitsky et al. (2011) showed that the size-
dependent offset — logl.e| provides per capita scaling for all dyadic
independence terms, including degree heterogeneity and homophily by
nodal attributes.

In directed networks, a natural hypothesis is that a constant fraction
of edges will be reciprocated. This implies the number of mutual edges
will scale with the number of edges rather than the number of possible
edges, and the expected number of reciprocated edges per student
should not increase with network size. Again, our data are consistent
with this invariance assumption. Fig. 3 shows the observed number of
mutual edges in the 44 school classes without missing data does not
increase with class size.

If a mutual edge term with a size-invariant natural parameter is
added to a model to capture the reciprocity effect, along with an edge
term with a size-dependent natural parameter of the form (1), then the
penalty imposed by the size-dependent offset — logl.27| implies that the
reciprocity effect vanishes in the limit as the number of nodes increases
without bound (Krivitsky and Kolaczyk, 2015). To prevent this, Kri-
vitsky and Kolaczyk proposed to adjust the natural parameter of the
mutual edge term by adding the size-dependent offset logl.27| in order to
cancel the penalty:

7,(6) = 6, + log .71,

where 6, € R is the size-invariant reciprocity parameter. A model with
size-adjusted edge and mutual edge terms implies that the log odds of
the conditional probability of X;; =1 given the rest of the network
Xf(i)j) = X_(@ has the form:

if.Xj,i =0
if.Xj,i = 1,

g P(){u = 1|X7(i,j) = X,(i’j)) _ 61 - 10g|d|
P(){u = lef(i,j) = Xf(i,j)) 61 + 62

where X _(;, refers to the network X excluding X;;.

We use such size-adjusted edge and mutual edge terms in our net-
work population model, with logl.o4 | for each of the school classes .o.
Note that we are here not interested in the asymptotic properties of
size-adjusted parameterizations — such as the asymptotic mean degree —
and that the asymptotic properties can change when dyadic dependence
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Fig. 3. Left: Boxplots of the observed outdegrees of students in the 304 school classes. Right: Boxplots of the observed number of reciprocated edges in the 44 school

classes without missing data.

terms are added to the model. We are concerned with small school
classes with 11 to 33 students, so asymptotic properties based on school
classes with infinite numbers of students are neither interesting nor
relevant. We use size-adjusted parameterizations to allow school classes
of different sizes to have different edge and mutual edge coefficients.

3.3. Outdegree terms

We noted in Section 2 that the observed outdegree distribution
shows a sharp spike at 5, which is likely to be an artifact of the ques-
tionnaire design. The spike is not captured by conventional approaches
to modeling outdegrees: the traditional edge count term produces a
Poisson-like distribution without a spike, and a geometrically weighted
outdegree term does not reproduce the observed distribution either. We
explored both approaches and found that neither of them captures the
outdegree distribution. We therefore model the outdegrees by using
outdegree terms of the form 6,4, Z‘:’l“ W(Ye i Xiy = 1) for out-
degrees [ = 1, ..., 6. These terms ensure that the model reproduces, on
average, the observed outdegrees 1 through 6, as confirmed by the
goodness-of-fit assessment in Appendix D. Note that a model with
outdegree 5 term but without the other outdegree terms would be more
parsimonious and would capture the spike at outdegree 5, but we found
that the resulting model fails to capture the rest of the outdegree dis-
tribution. We therefore include outdegree 1, ..., 6 terms. The tail of the
outdegree distribution is determined by the other model terms, and
looks Poisson in our application.

Last, but not least, it is worth noting that the number of nodes with
outdegree k should not be confused with the number of k-out-stars,
k=1, ..., 6: e.g., the number of nodes with outdegree 2 is a number

between 0 and n, whereas the number of 2-out-stars is a number be-

1

tween 0 and n (n ; ) ~ n?/2. The number of 2-out-stars can be much

larger than the number of edges, which is at most n(n — 1) = n? As a
consequence, 2-out-star terms can overwhelm edge terms, leading to
near-degenerate models that concentrate probability mass on networks
with almost no 2-out-stars or almost all possible 2-out-stars (Handcock,
2003; Schweinberger, 2011; Butts, 2011; Chatterjee and Diaconis,
2013). By contrast, the outdegree terms we use cannot overwhelm edge
terms, making them well-behaved alternatives.

o——O0
Edge

O+—0
Mutual edge

—O

Female outdegree

o—O

Female indegree

o——0O
o—0

3.4. Nodal attribute terms

We assess the influence of students’ sex on degree heterogeneity and
homophily with the following terms:

e A female outdegree term of the form 6 ),
o A female indegree term of the form 6,y ),

ieh, jesy Xij Cie
ie.o, jesi X G
® A sex homophily term of the form 6;; Eiedk‘ e Xid 1(c; = ¢)).

Here, c; is an indicator that is 1 if student i is female and is O
otherwise, and 1(c; = ¢;) is an indicator that is 1 if the sex of students i
and j matches and is 0 otherwise.

Note that we do not include indegree terms (other than the female
indegree term), because the model without indegree term is more
parsimonious and the in-sample and out-of-sample performance of
models without indegree terms turns out to be excellent, as shown in
Sections 5.4 and 5.5.

3.5. Triadic closure terms

To capture triadic closure in social networks, we use geometrically
weighted (GW) terms based on counts of the following configurations
(Butts, 2008; Robins et al., 2009): outgoing two-path (OTP), outgoing
shared partner (OSP), incoming shared partner (ISP), reciprocated two-
path (RTP), and incoming two-path (ITP). We follow here the naming
convention of Butts (2008); the same configurations with different
names are used in Robins et al. (2009) using alternating k-triangle
parameterizations. Graphical representations of these configurations
are provided in Fig. 5.

These five configurations capture different forms of cyclical and
transitive closure in social networks. Their relative frequencies play an
important role in the global structure of social networks, because
transitive triads are the basic building blocks of hierarchical structure,
while cyclical triads produce more egalitarian systems (Chase, 1980).

The first three, OTP, OSP, and ISP, capture purely transitive closure.
All are based on the 030T configuration in the triad census of Holland
and Leinhardt (1970); each closes one of the three legs of that triad, but
represents a distinct social process. Closing the OTP leg is the classic “a
friend of my friend is my friend” effect; the OSP leg means that if we

Fig. 4. Graphical representations of the network features that
are used as sufficient statistics in all models. Circles represent
students, directed lines with one direction represent directed
edges, and directed lines with two directions represent mutual
edges. Black-colored circles represent female students, white-
colored circles represent male students, and gray circles re-
present either female or male students.

Sex-match
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Outgoing Two-Path
(OTP)

Reciprocated Two-Path
(RTP)

Outgoing Shared Partner
(OSP)
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Incoming Shared Partner
(ISP)

Incoming Two-Path
(ITP)

Fig. 5. Graphical representations of the triadic closure configurations used to construct GW statistics of the form Zie S ey Xii I(Tiype(@, j) = m)

(m =1, ..,l.o4| — 2). The plots show black-colored pairs of nodes with m = 3 configurations of the specified type, where directed lines with one direction represent

directed edges and directed lines with two directions represent mutual edges.

both nominate the same person as a friend, then one of us will nominate
the other as a friend; and the ISP leg means that if the same person
nominates both of us as a friend, then one of us will nominate the other
as a friend. By contrast, ITP captures purely cyclical closure and RTP
captures both forms of closure. In addition, the RTP term captures re-
ciprocity, and may hence be useful for studying the interaction of re-
ciprocity with cyclical and transitive closure in the ERGM framework,
as Block (2015) did in the stochastic actor-oriented modeling frame-
work (Snijders, 2001).

The GW terms for these triadic closure configurations are based on
sufficient statistics that count the number of pairs of nodes with m
configurations of the specified type, within each school class .o, (k = 1,

..., K):

2

i€ # jek

Ska14m(XK) = Xij W(Type@@, j) = m), m=1, .,l.oAl =2,

where Tyyp(i, j) counts the number of configurations of the specified
type and 1(Type(i, j) = m) is an indicator function, which is 1 if students
i and j have m configurations of the specified type in school class .24, and
is 0 otherwise.

For each type of GW term, the natural parameters are given by

Ne11am(©) = B2 exp(@)[1 = (1 — exp(=a))"], m=1, ..,l.o4l =2,

where 0;, is called the base parameter and a > O is called the decay
parameter. The motivation for these parameterizations is explained in
the seminal papers of Snijders et al. (2006), Hunter and Handcock
(2006), and Hunter (2007). As explained in Section 1.2, GW terms with
612 > 0 and @ > 0 ensure the value of each additional configuration
of this type is positive but declining. We demonstrate that in Section
5.3.3 below.

An interesting special case of the GW-OTP arises when a = 0. The
term then reduces to a simpler form, called a transitive edge term, with
sufficient statistic

2

i€y # jEd

Sk,12(X) = Xij MAXpe o, b # i,j Xi,h Xn,j

and natural parameter
771{,12 (9) = 612-

Transitive edge terms differ from the triangle terms of Frank and
Strauss (1986) by counting only the first triangle in which two nodes
are involved. They are less prone to degeneracy and have turned out to
be useful for capturing transitive closure in practice (e.g., Snijders et al.,
2010; Krivitsky, 2012; Hunter et al., 2012). The assumption that a = 0
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is quite strong, however, and provides a useful comparison for the
model where the decay parameter a is unrestricted, so we include it in
Section 5.

4. Likelihood-based inference for population network models

To infer the probability law governing the within-class networks of
the population network, we use likelihood-based inference.

To state the likelihood, let .7 C {1, ...,K} be the set of indices of the
sampled school classes and let y;; = 1 if x;; is unobserved and u;; = 0 if
x;j is observed. Note that u;; = 1 can occur in any of the following si-
tuations:

1. Students i and j were members of different school classes, and
therefore Xx;; is unobserved by the sampling design.

. Students i and j were in the same school class, but the school class
was not sampled.

. Students i and j were in the same school class and the school class
was sampled, but the response of student i was not observed due to
missing parental consent or an inadmissible response by student i.

More details on the sampling design and the missing data can be
found in Section 2.
The likelihood is thus proportional to

K
L®) « p) [T Pocxi = x01 P Xy = %1
xi,j€{0,1} ko1
for all (i,j) with uj j=1
k#1=1,.,K)
= > Po(Xy = xp),
A g o(Xx = X)

for all (i,j) with ujj=1

where the summation is over all values of x;; € {0, 1} for all pairs of
students (i, j) for which x;; is unobserved. It is worth noting that the
between-class probability mass function is eliminated by summation
over all possible values of the unobserved between-class edges and that
the functional form of the between-class probability mass function is
immaterial as long as it is sums to 1.

To derive the likelihood, we have assumed that the missing re-
sponses are ignorable for the purpose of likelihood-based inference for
the population network model, as explained by Handcock and Gile
(2010) and Koskinen et al. (2010). In other words, we have assumed
that the missing responses due to missing parental consent and inad-
missible responses by students do not depend on the unobserved edges.
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Table 2

Monte Carlo maximum likelihood estimates and standard errors of all para-
meters, with the exception of outdegree parameters, which can be found in
Appendix C.

Model 1 Model 2 Model 3 Model 4
No GW GW-OTP(0) GW-OTP(.25) GW-OTP(free)
6,  Edges 152 (.015)""  —.720 —1.001 -.706
.020)"" (.019)"™" .016)"™"
where 7, 1(6) = 61 — logl.o%| is the edge coefficient of .4 (k =1, ..., K)
6, Mutual —-1.501 —-1.703 —1.900 —-1.992
021)"™" .022)"" (.023)"™" .023)"™"

where nkyz(e) = 0, + logl.o| is the mutual edge coefficient of .« (k = 1, ..., K)

Female

6, Outdegree 244 (.018)" .228 (.016)""" .211 (.016)""" .206 (.016)""

610 Indegree -.077 —.046 —.067 —.098
.018)"™" .016)”" (.015)™" .013)"™"

611 Sex-match 1.599 1.231 1.032 900 (.011)""
.016)"" o1)™ 012)™"

GW

61, Base 0 (fixed) 1.055 1.237 713 (.012)""

.018)™" (.016)"™"
a Decay 0 (fixed) 0 (fixed) .25 (fixed) 913 (.014)™"

A graphical representation of GW-OTP is shown in Fig. 5.
“Significance at level .1.

“Significance at level .05.

"Significance at level .001.

Monte Carlo maximization of likelihoods of the form L(6) given
sampled and missing network data are described by Handcock and Gile
(2010). We use an implementation of these Monte Carlo maximization
methods in R package mlergm.

5. Results

Using the Polish school multilevel network described in Section 2,
we demonstrate that multilevel networks help estimate the decay
parameters of curved ERGMs and provide new opportunities for as-
sessing the out-of-sample performance of ERGMs via cross-validation.
We first review all model specifications (Section 5.1) and then assess
whether the Monte Carlo maximum likelihood procedure for estimating
the parameters of all models converged (Section 5.2). We then interpret
the estimates of all parameters and all models (Section 5.3). And finally
we turn to model assessment, reviewing the in-sample performance of
each model (Section 5.4) and the out-of-sample performance of the
best-fitting model (Section 5.5).

5.1. Model specifications

We consider nine model specifications, all of which contain the
same edge, mutual edge, outdegree, heterogeneity and homophily by
sex terms as described in Section 3, but differ in the type of GW terms:

e Models 1-4 focus on GW-OTP (which is the default type for the
dgwesp term in R packages ergm, hergm, and mlergm):

— Model 1 is fit without the GW-OTP term, which is equivalent to
fixing both the base parameter and the decay parameter at 0.

— Model 2 leaves the base parameter unrestricted but fixes the decay
parameter at 0, which is equivalent to an ERGM with a transitive
edge term, as discussed in Section 3.5.

— Model 3 leaves the base parameter unrestricted but fixes the decay
parameter at .25, a value that was used in some of the early pa-
pers (Hunter et al., 2008; Goodreau et al., 2009), and has been
adopted by others.

— Model 4 leaves both the base parameter and the decay parameter
unrestricted.
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e Models 5-8 have GW terms of types OSP, ISP, RTP and ITP re-
spectively, and leave both the base parameter and the decay para-
meter unrestricted.

e Model 9 has GW terms of types OTP and ITP along with a geome-
trically weighted indegree term, called GW-Indegree, and leaves the
base and decay parameters of all three GW terms unrestricted.

Note that Models 1-9 have size-adjusted edge and mutual edge coef-
ficients, but the other coefficients do not have size-adjustments. These
simple size-adjustments suffice here, because the size of school classes are
similar: the median class size is 22, and 246 of the 314 classes have
22 + 5 students. Indeed, we show in Sections 5.4 and 5.5 that these
models have excellent in-sample performance and out-of-sample perfor-
mance, which suggests that these simple size-adjustments suffice. A less
parsimonious model does not seem worth it — for the data set we use.
However, it goes without saying that for other data sets more sophisticated
size-adjustments may be needed, based on either size-dependent offsets or
size-dependent covariates, as discussed in Section 6.

We estimated the unrestricted parameters of Models 1-9 using the
Monte Carlo maximum likelihood methods described in Section 4.

5.2. Convergence

To assess whether the Monte Carlo maximum likelihood procedure
for estimating the parameters of Models 1-9 converged, we used trace
plots of the sufficient statistics of the model, as is common practice
(Hunter and Handcock, 2006; Hunter et al., 2008a,b). All trace plots
show excellent convergence, so for brevity we present just the trace
plots for Model 4 in Appendix B. The trace plots for other models may
be obtained from the authors upon request.

The resulting estimates of parameters and the assessment of in-
sample and out-of-sample performance are discussed in Sections 5.3,
5.4, and 5.5, respectively.

5.3. Estimates

The estimates of the unrestricted parameters of Models 1-4, Models
5-8, and Model 9 reported by the Monte Carlo maximum likelihood
procedure are shown in Tables 2, 3, and 4 , respectively.

The standard errors of the estimates are based on the inverse Fisher
information matrix (Hunter and Handcock, 2006).

We provide below a careful interpretation of the parameter esti-
mates of all models. We believe that interpreting models is important:
models that cannot be interpreted are black boxes, and black boxes do
not advance scientific knowledge. Curved ERGMs with GW terms are
complex models, and many papers using them interpret them only
broadly, e.g., by stating that GW-OTP captures transitivity. There are
some good introductions to interpreting GW terms for undirected net-
works in the seminal paper of Snijders et al. (2006) and in Hunter
(2007), but those papers do not have (a) directed network data; (b)
sampled data; (c) missing data; and (d) size-adjustments for multiple
networks of different sizes. To advance proper use of curved ERGMs
with GW terms, it is imperative to help users understand how these
complex models can be interpreted, in particular in the presence of
sampled and missing data, and size-adjustments.

To interpret the individual and joint impact of the parameter esti-
mates, we use the log odds of the conditional probability that a student i
nominates another student j as a playmate along with log odds ratios or
differences in log odds (based on changes of sufficient statistics, i.e.,
change statistics). Log odds and log odds ratios are widely used in lo-
gistic regression and categorical data analysis (Agresti, 2002) and have
long been used in the ERGM literature for interpretive purposes (e.g.,
Snijders et al., 2006; Hunter and Handcock, 2006; Krivitsky, 2012).
Both of these metrics focus on how the effects in the model influence
the presence or absence of a single tie. Both condition on the rest of the
network and assume that all other tie variables are fixed. Differences in
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Table 3

Monte Carlo maximum likelihood estimates and standard errors of all para-
meters, with the exception of outdegree parameters, which can be found in
Appendix C.

Model 5 Model 6 Model 7 Model 8
GW-OSP GW-ISP GW-RTP GW-ITP
6,  Edges —.524 -.501 .290 (.013)""  —.070
(.015)"™" .015)"" 014"
where 7, 1(6) = 61 — logl.o%| is the edge coefficient of .4 (k =1, ..., K)
6, Mutual -1.834 —-1.829 —2.661 —1.449
.023)"™" .023)"" (.031)"™" .022)"™"

where nkyz(e) = 0, + logl.o| is the mutual edge coefficient of .« (k = 1, ..., K)

Female

6y Outdegree .253 (.017)""  .199 (.016)""" .207 (.017)""" .251 (.019)""

610 Indegree -.127 —.112 —.110 —.146
o14)™ .015)™" (.015)™" .018)"™"

617 Sex-match .961 (.011)™" .954 (.012)"" 1.214 1.255

(.016)™" .015)"™"

GW

61, Base 522 (.009)"" .471 (.008)"" .435(.010)""" .134 (.005)""

a Decay 1.097 1.226 .685 (.022)""  2.105
.016)"" .015)"" (.068)""

The size adjustments — logl.24| range from —3.5 to —2.4. Graphical re-
presentations of GW terms of types OSP, ISP, RTP, and ITP can be found in
Fig. 5.

“Significance at level .1.

"Significance at level .05.

"Significance at level .001.

Table 4

Monte Carlo maximum likelihood estimates and standard
errors of all parameters of Model 9, with the exception of
outdegree parameters.

Base terms

6, Edges —1.042 (.017)""

6, Mutual —1.483 (.028)"""
Female

6y Outdegree .094 (.011)""

619 Indegree —.013 (.010)
017 Sex-match .838 (.012)"""
GW-OTP

0, Base .891 (.010)"""

a; Decay 1.311 (.020)""
GW-ITP

013 Base —.273 (.017)""

@, Decay 1.896 (.106)"""
GW-Indegree

014 Base .837 (.015)"""

as Decay 1.077 (.048)™""

A graphical representation of GW-OTP and GW-ITP is
shown in Fig. 5.

“Significance at level .1.

“Significance at level .05.

“Significance at level .001.

the conditional log odds ratios emphasize how the odds of a single tie
change if the tie does versus does not create one or more of the con-
figurations of interest. A useful benchmark for conditional log odds
ratios is the value zero. This implies the two configurations compared
lead to the same conditional probability of a tie.

The log odds of the conditional probability that a student i nomi-
nates another student j as a playmate given the rest of the network
X_(j = X_(, and the sex indicators c; and c; of students i and j is
defined as follows:

PG = 1X_gy) = X—iy)» i ¢)

logit(P(X;; = 1[X_i.y = X_i.p, G, ¢)) =lo .
gitPy = X w @ @) s PXij = OX ) = X—jp» & €¢)
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Note that the conditional probability of the tie between students i and j
is conditional on the rest of the network, that is, everything else in the
network is considered fixed. For each of Models 1-8, the conditional log
odds is given by

(61— loglol) + (61 + loglol) xj; + -

effects of edge, mutual edge, outdegree

+ 09 ¢+ 610 ¢ + 011 1(ci = ¢j)

effects of sex
|| -2

+ Y enem® seiem oy Xij =1 = D 114m(©) Ska14mE ) Xij = 0)],
m=1

effects of triadic closure

where the dots refer to the effect of the outdegree of student i. The one
exception is Model 9, which has three GW terms instead of one, so the
log odds contains three differences in GW terms rather than one dif-
ference. Here, we have assumed that students i and j belong to the same
school class, denoted by .%4.

We interpret these effects one by one, with the exception of the
effect of outdegrees (which are fit to match the artifact produced by the
questionnaire design, see Section 3.3). As a running example, we use
Model 4, the model with the GW-OTP and unrestricted base and decay
parameter. Models 5-8, which only differ in the GW term that captures
the effect of triadic closure, are compared in Section 5.3.3. Model 9 is
discussed at the end of Section 5.3.

5.3.1. Edges and reciprocity effects

Interpreting the sign and magnitude of the edge and mutual edge
coefficients is different when using size adjustments, so those coeffi-
cients need to be interpreted with care. The size-adjusted effects for
edges and mutuals, as a function of class size, are shown in Fig. 6.

First, note that the interpretation of the size-invariant edge para-
meter 0 is more complicated than in the simple “edges-only” Bernoulli
model discussed in Krivitsky et al. (2011) and Section 3.2. In the simple
Bernoulli model, exp(6;) is the limiting expected mean degree. In
ERGMs with additional terms that interpretation no longer holds, be-
cause the limiting expected mean degree will reflect the impact of these
additional terms. However, one can still interpret the size-adjusted
coefficients, 6; — logl.#4|, in terms of their effect on the conditional log
odds of a tie. To do so, note that the sizes of the school classes range
from 11 to 33 and the estimates of the size-invariant edge parameter 6,
range from —1.001 to .290 in Models 1-8, so the size-adjusted edge
coefficients satisfy 7, ,(6) = 6; — logl.o%| < — 2.1 for all models and all
school classes .#. The strong and negative edge coefficients imply that
the conditional odds of a tie is negative, unless the tie creates one or
more network configurations with a strong and positive weight.

The mutual edge coefficients are likewise size-adjusted. While the
estimates of the size-invariant mutual edge parameter 0, are negative,
almost all size-adjusted mutual edge coefficients 7, ,(6) = 6, + logl.o%|
are positive (we address the one exception below). For example, the
estimate of 0, under Model 4 is —1.992, but the estimates of the size-
adjusted mutual edge coefficients i »(0) are positive and range from
.41 (class size 11) to 1.50 (class size 33). This suggests that reciprocity
is a powerful force in these classroom networks: the change in the log
odds of the conditional probability that a student i nominates another
student j as a playmate when the nomination is reciprocated is

logit(P (X;; = 1|1X;; = 1, X_ij)—G.) = X—Gij)—Gii)» Ci» Cj))
= logit(P (X;; = 1|1Xj; = 0, X_gj)—G.i) = X—Gij)—G.i)» Ci» Cj))
— 1.992 + logl.o4 1+,

where X_ ;) _(,» denotes the network X excluding X;; and X;; and the
dots refer to the effect of student j's outdegree. The size-adjusted coef-
ficients range from .41 (class size 11) to 1.50 (class size 33); so, the
conditional odds are multiplied by exp(.41) = 1.51 to exp(1.50) = 4.48
when nominations are reciprocated rather than unreciprocated.

There is one exception to the general rule of a positive size-adjusted
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Fig. 6. Size-adjusted edge and mutual edge coefficients based on the parameter estimates of Model 4.

mutual effect: Model 7. This model has two reciprocity effects: the
baseline reciprocity 7, ,(6) = 6, + logl.#4| and the reciprocity-triad ef-
fect in the form of GW-RTP. The baseline reciprocity estimate is
— 2.661 + logl.o4 |, which ranges from —.263 (class size 11) to .836
(class size 33). It is small but negative for classes with 11-14 students,
and positive for larger classes. The negative effect of the baseline re-
ciprocity term in small school classes will be offset by the positive re-
ciprocity-triad term if a tie creates one or more configurations of type
RTP. So a tie that creates one of the mutual legs of the RTP config-
uration gets both the baseline mutual effect (which may be slightly
negative) and the GW-RTP effect (which is larger and positive). Even in
small classes this net effect will be positive, and the model suggests
that, for small classes, reciprocity is more likely to occur in the context
of an RTP configuration than by itself.

5.3.2. Sex effects

There is evidence for both moderate degree heterogeneity and
strong homophily by sex.

Under all models, the estimate of the female outdegree parameter is
small and positive, the estimate of the female indegree parameter is
small and negative, and the estimate of the sex-match parameter is
large and positive.

These three sex-related terms, along with the edge term, saturate the
model for the sex-mixing matrix (see Table 1) in the sense that the
counts in the sex-mixing matrix are completely determined by the
number of edges and the sex-related sufficient statistics (female out-
degree, female indegree, and sex-match). As a result, when there are no
missing data, the MLE reproduces the observed sex-mixing matrix, be-
cause it matches the observed number of edges and sex-related suffi-
cient statistics. When there are missing data — as in the Polish multilevel
network — the MLE reproduces the sex-mixing matrix averaged over all
possible realizations of the missing data, because it matches the con-
ditional expectation of the number of edges and the sex-related suffi-
cient statistics given the observed network data, as discussed in
Appendix A. Note that the MLE does not reproduce the sex-mixing
matrix in Table 1 based on the subset of 44 school classes without
missing data. Instead, the MLE reproduces the sex-mixing matrix based
on the whole set of 304 school classes, averaged over all possible rea-
lizations of the missing data. The Monte Carlo MLE, which we use as an
approximation of the intractable MLE, does so approximately.

To interpret the coefficient values, consider Model 4 with estimates
.206 (female outdegree), —.098 (female indegree), and .900 (sex-
match). Note that the sex-match coefficient is the same for males and
females, by construction. But this does not mean that an equal fraction
of ties will be sex matched for both sexes; the level of homophily is
determined by the net impact of all three sex-specific parameters.

The change in the log odds of the conditional probability that a
female student i nominates another student j as a playmate when j is

female rather than male is

logit([P (}(LJ = 1|X—(i,j) = x_(iJ)’ ¢ = 1’ cj — 1))
= logit(P (X;; = LX) = Xy = 1, = 0))
= (206 — .098 + .900) — .206 = .802.

The fact that the conditional log odds increases by .802 indicates that
female students are more likely to choose another female than a male as
a playmate. This is due to both the (negative) in- and (positive) out-
degree differences for females, and the sex-match effect.

For males, we can calculate the analogous comparison. The change
in the log odds of the conditional probability that a male student i
nominates another student j as a playmate when j is male rather than
female is

logit(P (Xi; = 1X_¢j) = X_j), ¢ =0, ¢;=0))
— IOglt(lp (}(1‘1 = 1|X—(i,j) =X_(ij) CG= 0, ¢ = 1)) =.900 — (—098) = .998.

The conditional log odds increases by .998, so male students tend to
choose male playmates over female playmates. Here, the net effect is
determined by the marginal negative indegree effect for females and
the sex-match effect. Note that this relative homophily effect is some-
what stronger for males than for females: compared to females, males
are relatively more likely to choose a sex matched playmate.

Finally, the conditional log odds of a tie between two females versus
between two males is given by

IOgit([P (XiJ = 1|X,(i‘]') =X_(ij)» G = 1, ¢ = 1))
- lOglt([P (Xi,j = 1|X—(ij) =X_(ij» G = 0, ¢ = 0))
=(.206 — .098 + .900) — (.900) = .108.

The conditional log odds increases by .108, so female-female ties are
more common than male-male ties. All three sex-specific effects are
combining to generate this net effect.

What is interesting here is that males are relatively more likely to
choose sex matched playmates than females, but female-female ties are
still more common than male-male ties. This illustrates some of the
subtleties in interpreting parameters for even the simpler dyadic-in-
dependent terms in ERGMs. This is not an ERGM-specific issue; all
generalized linear models (GLMs) (McCullagh and Nelder, 1983) for
counts have this property. GLMs decompose the observed patterns in
cross-tabulated counts into marginal and interaction effects (here, de-
gree heterogeneity by sex and sex-match, respectively). The resulting
parameters can be combined in different ways to highlight specific ef-
fects (similar to contrasts in ANOVA). The direct homophily effect in
our models, represented by 611, is the same for both males and females,
by construction. But the effect of sex on mixing between males and
females is also influenced by the sex-linked degree heterogeneity: fe-
males are less likely to be nominated (by both sexes) and more likely to
nominate others (of both sexes). The net result is higher rates of female
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sex matched ties, but greater relative propensities for sex-match among
males than females.

5.3.3. Triadic closure effects

We turn finally to the effect of triadic closure, first comparing Model
1 without triadic closure to Models 2—-4 with triadic closure captured by
GW-OTP, and then comparing Models 4-8 with GW terms of types OTP,
OSP, ISP, RTP and ITP.

Models 1-4 impose a sequence of restrictions on the base and decay
parameter of the GW term. Model 1 excludes the GW term, which is
equivalent to assuming that both the base and decay parameter of this
term are 0, and there is no propensity for triadic closure. Models 2-4
include the GW-OTP term, with different restrictions on the decay
parameter, but all 3 models show a strong and significant base para-
meter, which suggests Model 1 is mis-specified. Comparing the esti-
mates in Model 1 to the corresponding estimates in Models 2—-4 shows a
moderate to large impact of this mis-specification on all of the other
estimates. For example, the estimate of the sex-match parameter de-
creases from 1.599 (Model 1) to .900 (Model 4), a reduction of more
than 40%. A similar decrease can be seen in the mutual edge parameter.
The decrease in the estimate of the sex-match parameter with the in-
clusion of GW-OTP indicates that triadic closure accounts for some of
the homophily by sex, as found in previous studies of school friendship
networks (e.g., Lubbers, 2003; Goodreau et al., 2009).

Models 2 and 3 fix the decay parameter at two values repeatedly
used in the literature (e.g., Hunter et al., 2008; Goodreau et al., 2009),
while Model 4 leaves it free to be estimated. A key finding is that the
estimate of the decay parameter, .913 (Model 4), is significantly greater
than 0, and more than 3 times greater than the other fixed value of .25
(Model 3). That value was chosen by trial and error in the original
papers, based on qualitatively optimizing the goodness-of-fit to the Add
Health school friendship networks (Hunter et al., 2008; Goodreau et al.,
2009). Our results suggest this decay value does not generalize to all
networks, or even to all school friendship networks. Fixing the decay
parameter at a value other than the MLE results again has a moderate to
large impact on the estimates of all other parameters in the model. As
shown in Section 5.4 below, the differences between these model spe-
cifications have a considerable impact on goodness-of-fit.

To interpret the estimates of the base and decay parameter of GW-
OTP in Model 4, recall that the effect of triadic closure on the log odds
of the conditional probability that student i nominates student j as a
playmate is

L/jl—=2
Z [ 114m ©) Sk14mX—ijyy Xij = 1) = D 114 0) Sk14m Xqip Xij = O)],

m=1

where

Model 2 - OTP(0)

Model 3 — OTP(.25)
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Den+m(€) = Bnexp(@)[l — (1 —exp(-a))"], m=1, .., LoAl — 2.

If the edge X;; = 1 increases the number of OTP shared playmates of
(i, j) from O to 1 relative to the network with X;; = 0, assuming the rest
of the network is the same, then the contribution of GW-OTP to the log
odds of the conditional probability of the edge is

Mi1141(0) — 0 = 612 exp(@)[1 — (1 — exp(—a))] = bra.

If the edge X;; = 1 increases the number of OTP shared playmates of
(i, j) from 1 to 2, then the contribution of GW-OTP to the log odds of the
conditional probability of the edge is

nk,11+2(6) - 77](,114.1(6) = 612 (1 - eXp(_O‘))-

If a > 0, then (1 — exp(—a)) < 1, so it acts as penalty on 0;,, redu-
cing the value of the second shared playmate. The smaller the value of
a, the larger this penalty becomes. When a = 0 - the transitive tie
specification in Model 2 — the penalty zeros out the value of the second
OTP shared playmate.

In general, if the edge X;; = 1 increases the number of shared
playmates of (i, j) from m — 1 to m relative to the network with X;; = 0,
assuming the rest of the network is the same, then the log odds of the
conditional probability of the edge increases by

nk,11+m(e) - 77k,11+m71(6) =61 - eXP(—“))m"l, m=2, ..,ll — 2.

If 6,5 > 0 and a > 0, then 6,5, (1 — exp(—a))"'_l decreases geome-
trically as m increases. In other words, the added value of the mth
shared playmate decreases at a geometric rate, controlled by the decay
parameter a:

612

m=1

> 61 —exp(-a) > Op(l — exp(—a))* > -

m=2 m=3

Note that when a = 0, the penalty zeros out contributions for all shared
partners beyond the first.

A graphical representation of the predicted added value of addi-
tional shared playmates for Models 2-4 is shown in Fig. 7, using the
estimates of the base 0;, and decay parameters a under Models 2-4
from each model. The decay parameter values rise from 0 in Model 2 to
.913 in Model 4, and the impact is clearly visible, lowering the penalty
on the value of additional shared partners, and increasing predicted
density in the right tail of the distribution. Under Model 2, the added
value of the first shared playmate is 1.055, while the added value of all
subsequent shared playmates is 0 (m = 2, ..., l.o4| — 2). Under Models 3
and 4, the added value of the first shared playmate is 1.237 and .713,
respectively, and the added value of the mth shared playmate is
1.237 x .221™71 and 713 x .599™" 1, respectively
(m = 2, ..,l.e%| — 2). The added value of additional shared playmates is

Model 4 - OTP(free)
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Fig. 7. Estimated added value of additional shared playmates of type OTP under Models 2-4, as explained in the text. The added value of the first shared playmate is
615, while the added value of mth shared playmate is 6, (1 — exp(—oz))m’1 (m = 2, ...,l.o%| — 2). To make the plots, we used the estimates of 0;, and a shown in

Table 2.

108



J. Stewart, et al.

always positive, but it decreases at a geometric rate, and the rate of
decrease is slower when the value of the decay parameter is higher. The
rate of geometric decay is high enough to ensure that the added value of
the fifth shared playmate is less than .1 in all cases.

In terms of the impact on the odds of a tie, the positive effect of
adding the first shared partner is still not enough to outweigh the large
negative estimated edge coefficients 7, ,(6) = 6; — logl.4|, which are
less than — 3 under Models 2—4. So the log odds of a tie are still negative
if the tie only adds a shared playmate, but they can become positive if
that tie has other benefits such as reciprocity or homophily by sex.

Turning to Models 5-8, we find that the base parameter estimates of
all of the GW terms are positive and significant according to Table 3,
and the decay parameters are also large and positive. While there is a
positive tendency toward each type of triadic closure, there are sub-
stantial differences in the specific base and decay parameter estimates,
and the joint effect of these differences can be seen in Fig. 8, which
plots the added value each model assigns to additional configurations.
Note that the models are displayed in order by type of closure: the three
transitive closure specifications (Models 4-6, GW-OTP, OSP and ISP),
followed by GW-RTP, which represents both transitive and cyclical
closure, and finally the cyclical closure specification GW-ITP in Model
8.

A clear distinction can be seen in Fig. 8 between the added value
assigned by transitive versus purely cyclical (Model 8: ITP) specifica-
tions, and this follows directly from the parameter estimates. In Model
8, the base parameter estimate is much smaller that in any other model,
and this will reduce the overall value of these cyclic triads, relative to
the transitive triads. However, the decay parameter estimate is much
larger that in the other models, and this reduces the rate at which the
added value of additional configurations declines. The joint effect is the
lower, flatter distribution of added value we see in the last panel of
Fig. 8. In the hierarchical world of children, it is not surprising that
egalitarian cyclic triads have lower value than transitive hierarchical
triads. The difference in the base parameter estimates between Models
4 and 8 — exp(.713 — .134) = 1.78 - implies a nearly 80% increase in
the odds of a tie if it forms the first triad of type OTP, compared to a
triad of type ITP. But the decay parameter estimate for the GW-ITP term
is a surprisingly large 2.105 — almost an order of magnitude larger than
the commonly used fixed estimate of .25. While this increases the value
of multiple cyclic triads formed by a single tie, the low overall value
keeps the net impact in line with the transitive triads.

By contrast, the transitive GW terms of types OSP, and ISP and the
combined transitive and cyclic term of type RTP in Models 5-7 display a
pattern more similar to the transitive GW-OTP in Model 4. Recall that
OTP, OSP, and ISP all lead to the same transitive triad 030T in the triad
census of Holland and Leinhardt (1970), but each closes one of the
three legs of that triad. Comparing the base parameter estimates GW

Model 4 - OTP Model 5 - OSP

Model 6 - ISP
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terms of types OTP, OSP, and ISP suggests that the GW-OTP has the
strongest initial triadic closure effect, increasing the relative odds of a
tie by about 20 to 30% (exp(.713 — .522) to exp(.713 — .435)). OTP is
the classic “a friend of my friend is my friend” dynamic. By contrast,
OSP suggests that pairs of playmates nominate the same shared play-
mates, whereas ISP suggests that pairs of playmates are nominated by
the same shared playmates. Both of these latter social forces make
sense, but the stronger effects for OTP may explain why only it has a
special cultural phrase.

Models can include multiple GW terms. An example is Model 9,
which contains three GW terms: GW-OTP, GW-ITP, and GW-Indegree.
The estimates and standard errors of all parameters of Model 9, in-
cluding the base and decay parameters of all three GW terms, can be
found in Table 4. We do not attempt to interpret them here, although
these estimates can be interpreted by using conditional log odds and log
odds ratios as explained above. While Model 9 demonstrates that the
base and decay parameters of multiple GW terms can be estimated, we
caution that the interpretation of models with multiple GW terms is
more complicated, and possible correlations among GW terms may
raise multicollinearity issues (as in ordinary regression with correlated
predictors).

Last, but not least, we turn to the question of which GW terms to
use. GW terms can be selected based on AIC or BIC (see, e.g., Hunter
et al., 2008). The BIC of Models 1-9 is shown Fig. 9. It is notable that
the BIC of Model 4 with unrestricted decay parameter is much lower
than the BIC of Models 1, 2, and 3 with restricted decay parameter,
underscoring once again the importance of estimating, rather than
fixing, decay parameters. Among the models with GW terms of types
OTP, OSP, ISP, RTP and ITP, the models capturing transitive closure
(Models 4, 5, and 6) clearly outperform the models capturing cyclical
closure (Models 7 and 8) in terms of BIC, while Model 9 with three GW
terms is heavily penalized by the BIC. The BIC hence agrees with the
informal observation made above: it is transitive closure, rather than
cyclical closure, that drives network formation in the Polish multilevel
network.

5.3.4. Standard errors

In addition to facilitating the estimation of decay parameters, the
standard errors of the decay parameter estimates in Tables 2-4 de-
monstrate that multilevel networks, by providing replication, help re-
duce the uncertainty about the decay parameter estimates.

The standard errors of the decay parameter estimates for the di-
rected, transitive GW terms of types OTP, OSP, and ISP range from .014
(GW-OTP in Model 4) to .020 (GW-OTP in Model 9). As noted before,
we know of only four other published papers that estimated the decay
parameters in a curved ERGM, Hunter (2007), Koskinen et al. (2010),
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Fig. 8. Models 4-8: Added value of additional configurations of type OTP (Model 4), OSP (Model 5), ISP (Model 6), RTP (Model 7), and ITP (Model 8), as explained in
the text. The added value of the first configuration of the specified type is 6y, while the added value of mth configuration is 65 (1 — exp(—a))™ '
(m =2, ..,l.#4| — 2). To make the plots, we used the estimates of 6;, and a shown in Tables 2 and 3.
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Fig. 9. BIC of Models 1-8. The BIC of Model 9, not plotted, is 239,581.

Suesse (2012), and Almquist and Bagozzi (2015). These are not strictly
comparable studies as all of them are based on undirected networks,
which were slightly larger than our largest network (Hunter, Koskinen
et al., and Suesse: 36; Almquist and Bagozzi: 143; here: 11 to 33). Still,
the comparison is suggestive, as the standard errors reported for the
GW-ESP decay parameter estimates in their models are .109 (Hunter,
2007), .151 (Suesse, 2012), and .099 and .706 (Almquist and Bagozzi,
2015) — roughly an order of magnitude higher than ours. Note that
Koskinen et al. (2010) follow a Bayesian approach and do not report
standard errors, but summaries of the posterior suggest that the pos-
terior standard deviation may be as large as the standard errors re-
ported by Hunter (2007) and Suesse (2012) for the same network, the
Lazega law firm advice network.

5.4. In-sample performance: goodness-of-fit

The traditional approach to evaluating the goodness-of-fit (GOF) of
ERGMs is to assess how well the model predicts observed network
features that were not included in the model (Hunter et al., 2008). This
is done by comparing the statistics from the observed network to sta-
tistics from networks simulated from the model. Because the compar-
ison relies on the same network that was used to estimate the model,
this is an assessment of the in-sample performance of ERGMs. The
purpose of this type of assessment is to evaluate the generative per-
formance of the fitted model: to determine whether a parsimonious set
of terms that capture local, micro-level effects are able to reproduce the
overall macro-level structural signatures in the network. As always with
statistical assessments, bad performance allows hypotheses to be re-
jected, and good performance is not a form of proof, but in this case
simply implies that the data are consistent with the hypothesized gen-
erative model.

The presence of missing data complicates GOF comparisons, be-
cause we want to compare model-based predictions to the 304 sampled
school classes, but 260 of them have missing data. We could compare
model-based predictions of subgraph statistics to fully observed sub-
graphs: e.g., we could compare model-based predictions of the number
of mutual edges to the number of pairs of students for which both edges
are observed. Such comparisons have at least two disadvantages,
however. First, we would make the implicit assumption that the pairs of
students for which one edge is present while the other one is missing or
for which both edges are missing do not reciprocate edges. Second, it
would reduce the number of pairs of students on which the comparison
is based. The issue exists for both dyadic statistics (e.g., mutual edges)
and triadic statistics (e.g., transitive edges), but it tends to be worse
when the statistic involves more edges.

To avoid these two disadvantages, we compare model-based pre-
dictions of statistics to the conditional expectation of those statistics
given the observed data. In other words, we compare model-based
predictions to weighted averages of those statistics, averaging over all
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possible values of the missing data, with the weights given by the
conditional distribution of missing data given observed data. The con-
ditional expectations of statistics cannot be calculated analytically, but
it is possible to approximate them by Markov chain Monte Carlo sample
averages of those statistics based on simulations of networks from the
conditional distribution of missing data given the observed data.

Figs. 10 and 11 compare the GOF of Models 1-8, using the statistics
proposed by Hunter et al. (2008): distributions of geodesic distances,
indegrees, the number of dyads (unconnected or connected) with m
shared partners (DSP), and the number of connected dyads with m
shared partners (ESP). For each model, we use the directed versions of
the DSP and ESP statistics that match the type of the GW term in the
model. Additional GOF plots for other types of DSP and ESP statistics
are shown in Appendix E, and GOF plots for the outdegrees can be
found in Appendix D. All GOF plots are based on 10,000 simulated
networks generated from the estimated models. Given the missing data,
we compare the statistics of the simulated networks to the conditional
expectation of the statistics given the observed data. The conditional
expectations of statistics are model-dependent and can therefore vary
from model to model, but the variation is small, as can be seen in
Figs. 10 and 11.

The GOF performance of Models 1-4 different quite a bit, reflecting
the impact of estimating, rather than fixing, the decay parameter of the
GW-OTP. Model 1, which does not have a GW term, is unable to match
any of the GOF statistics of the observed network data. The models with
the GW-OTP (Models 2-4) do progressively better, as the fixed decay
parameter value gets closer to the MLE. Model 4 — which estimates the
decay parameter — shows superior GOF performance across the board. It
provides a very good fit to the indegree distribution, especially when
compared to Model 1, without requiring a specialized term like a
geometrically weighted degree. This is a classic example of how a
macro-level network signature, like the indegree distribution, may be
consistent with a generative process rooted in a very different dynamic,
like triad closure. Model 4 also matches the full DSP and ESP dis-
tributions almost perfectly, using a single parsimonious curved ESP
term with two parameters. The fact that this model also fits the DSP
distribution indicates that an additional DSP term is not required.

The performance of Models 5-8 with GW terms of types OSP, ISP,
RTP and ITP is shown in Fig. 11. It is evident that the models with
transitive triad terms (OTP, OSP, and ISP) outperform the models with
cyclical triad terms (RTP and ITP). These results reinforce the findings
from Section 5.3 that cyclical closure fails to capture the micro-level
patterns that lead to hierarchical structure in the nomination of play-
mates.

In summary, reciprocity, attribute homophily and triadic closure are
important micro-level determinants in the nomination of playmates.
Curved ERGMs with GW terms are parsimonous models that can ac-
curately capture the observed triadic closure along with other aggregate
network patterns. Multilevel network data make it possible to estimate
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Fig. 10. In-sample performance of Models 1-4. The red curves indicate the conditional expectations of the statistics given the observed data. The in-sample per-
formance of Models 1-4 in terms of outdegrees is assessed in Appendix D. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

the MLE:s of the triadic closure decay parameters, which results in better

goodness of fit.

e Step 1: Stratify the 304 school classes by size and sample without
replacement 50% of the school classes from each stratum (rounded
up) to create a training data set for estimating models and a held-out
data set for model-based predictions.

5.5. Out-of-sample performance: cross-validation

The final advantage of multilevel networks we will demonstrate
here is that such data make it possible assess the out-of-sample per-
formance of ERGMs using the traditional statistical principle of cross-
validation. We can divide the 304 school classes into two subsets, use
one as a training subset to estimate the model, and the other as a held-
out subset to assess the predictive power of the estimated model. For
convenience, we use the GOF statistics from Section 5.4 to assess the
predictive power of ERGMs, but in principle any network statistics
could be used.

We assess the out-of-sample performance of models by generating
100 model-based predictions as follows:

e Step 2: Estimate models based on the training data set.
o Step 3: Compare model-based predictions of the GOF statistics to the
observed GOF statistics for the held-out data set.

Some remarks are in order. Step 1 uses stratified random sampling
based on class size to facilitate the comparison of network statistics. The
reason is that network statistics depend on class size and stratifying by
class size helps compare network statistics across multiple random
splits of the 304 school classes. The 50-50% split implies that the
training data set is small while the held-out data set is large, relative to
conventional cross-validation procedures with more observations in the
training data set than the held-out data set. The small training data set
makes the estimation more challenging as there is less information
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Fig. 11. In-sample performance of Models 5-8. The red curves indicate the conditional expectations of the statistics given the observed data. The in-sample per-
formance of Models 5-8 in terms of outdegrees is assessed in Appendix D. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

about the parameters of interest (in the statistical sense of Fisher in-
formation), but it has the advantage of reducing computing time. Step 2
is the most time-consuming step of the procedure, because it requires
estimating curved ERGMs from 100 different training subsets. Even
when parallel computing on multi-core computers or computing clus-
ters is used, estimating curved ERGMs from 100 different training
subsets can take days or weeks (depending on how the parallel com-
puting is implemented and how much computing power is available).
Step 3 generates out-of-sample predictions for the held-out data sets by
using the estimates of the size-invariant parameters 0y, ..., @ obtained in
Step 2 and the size-dependent offsets logl.2%4 | based on the sizes of the
school classes .o in the held-out data set. For each held-out data set,
10,000 model-based predictions are generated, averaged, and com-
pared to the observed held-out data set.

To demonstrate the cross-validation approach we use Model 4 (GW-
OTP with estimated decay parameter), because the in-sample perfor-
mance of Model 4 is the best of all of the models. Assessing the out-of-
sample performance of other models is possible but time-consuming.

Fig. 12 shows the results of the out-of-sample predictions based on
Model 4. Overall, the out-of-sample predictions seem to be close to the
observed network data. The strong out-of-sample performance suggests
that our findings can be generalized to the population of third-grade
classes in Poland.

6. Discussion

We have demonstrated that multilevel network data facilitate the
estimation of curved ERGMs with GW terms, without fixing the decay
parameters or conditioning on the observed number of edges. The MLE
of the decay parameter for the traditional GW-OTP term was sig-
nificantly different than the fixed values commonly used in practice.
When we fixed the decay parameters at these values, we found this also
affected all of the other parameter estimates in the model, in some cases
quite substantially. The model with the estimated decay parameter had
much better in-sample performance characteristics, and showed re-
markable goodness of fit across the board. We also estimated the decay
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Fig. 12. Out-of-sample predictions based on Model 4 with GW-OTP and estimated decay parameter. Each black curve represents one of the 100 out-of-sample
predictions while each red curve represents one of the 100 out-of-sample observations. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

parameters of four additional GW triad specifications for directed net-
works. To the best of our knowledge, estimates of those decay para-
meters have never been published before.

The multilevel network data improved statistical inference in other
ways also, reducing the uncertainty in our parameter estimates, and
allowing us to conduct a traditional cross-validation analysis, to com-
plement the traditional in-sample goodness of fit assessments used for
ERGMs. When used with recently developed size-invariant para-
meterizations, the multilevel analytic framework provides a robust
basis for curved ERGM estimation and performance assessment.

Substantively, our results suggest that the nomination of playmates
among third-grade school children in Poland is driven by reciprocity,
heterogeneity and homophily by sex, and transitive closure. These re-
sults agree by and large with the results obtained by others (e.g.,
Lubbers, 2003; Lubbers and Snijders, 2007; Goodreau et al., 2009),
though we have more confidence in the triadic effects now that we have
the MLEs for the decay parameters. As we demonstrated in Section 5.3,
fixing the decay parameter of GW terms at values far from the MLE
affects all other parameter estimates, and can lead to incorrect in-
ferences. In our application the value of additional shared partners was
2-3 times greater than the fixed levels suggested, and the effects of both
reciprocity and homophily by sex fell by 30-40% once the decay term
was properly estimated.

An important direction of future research is the development of
more sophisticated size-adjustments for curved ERGMs. We have used
here curved ERGMs with a simple form of size-adjusted parameteriza-
tion based on Krivitsky et al. (2011) and Krivitsky and Kolaczyk (2015)
and have demonstrated that both the in-sample and out-of-sample
performance of the resulting models is excellent. While encouraging, it
is worth remembering that the sizes of the school classes in our appli-
cation range from 11 to 33, different but similar. If the sizes of school
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classes were more dissimilar, the simple size-adjusted parameterization
we used may not be appropriate. However, more sophisticated size-
adjusted parameterizations for curved ERGM terms are possible. In
particular, Krivitsky and Kolaczyk (2015) developed a size-adjusted
parameterization for the transitive edge term for undirected networks,
which is equivalent to the undirected, transitive GW term with decay
parameter fixed at 0. It would be interesting to investigate size-adjusted
parameterizations for GW terms with unrestricted decay parameters,
although the fact that GW terms are nonlinear functions of products of
base and decay parameters requires a careful analysis of size-adjust-
ments, which is beyond the scope of our paper. Last, but not least, an
interesting idea would be to use network size as a covariate (Slaughter
and Koehly, 2016). However, we do not expect a substantial improve-
ment in in-sample and out-of-sample performance, because our simple
size-adjusted parameterization shows strong in-sample and out-of-
sample performance, in particular for triadic effects.

We provide a software implementation of the proposed models and
methods in the form of R package hergm, which supports parallel
computing on multi-processor computers and computing clusters. In the
near future, we intend to split R package hergm into two R packages:

® mlergm: ERGMs with known block structure (multilevel ERGMs
with nodes belonging to known blocks, with ties within and between
blocks).

® hergm: ERGMs with unknown block structure (hierarchical ERGMs
with nodes belonging to unknown blocks, with ties within and be-
tween blocks).

Both of them will be released to https://cran.r-project.org (R Core
Team, 2018). The code we used here will be included in mlergm.


https://cran.r-project.org
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Appendix A. Maximum likelihood estimation of curved ERGMs with missing data

One of the most appealing properties of MLEs is that, in the simplest case when ERGMs do not contain curved ERGM terms and there are no
missing data, MLEs match the expected and observed values of the sufficient statistics: e.g., the MLE of ERGMs with edge terms ensures that the
expected number of edges equals the observed number of edges. However, we are dealing here with curved ERGMs with missing data, so the
interpretation of MLEs is more complicated. We review here some important implications.

To do so, let X5 be the collection of all edge variables whose values are observed and X,,,;s be the collection of all edge variables whose values are
unobserved. By definition, the MLE maximizes the probability of the observed network data x,5;. Maximizing the probability of the observed network
data x,ps is equivalent to solving

Ve log pg (Xabs) = O,
which in turn is equivalent to solving
Vo 1nge (xobs) = Eo[ Ve Inge (Xobs> Xmis) [ Xobs = Xobs] = (Vo 77(6))T Eg[s (Xobss Xmis)|[Xobs = Xobs] — (Vo 77(9))T Eo[s Xobs> Xmis)]) = 0, 2

where the first line follows from a well-known missing-data identity dating back to Fisher (1925) and Dempster et al. (1977) (see the discussion of
Efron, 1977), while the second line follows from exponential-family theory (Brown, 1986). Here, the expectation [E o5 (Xobs, Xmis) | Xobs = Xobs] is with
respect to the conditional distribution of X,,;; given X,ps = X,ps, the expectation [E g [s(Xops, Xmis)] is with respect to the joint distribution of X,;s and
Xpnis, and (Vg 7(0))" is the matrix of partial derivatives of natural parameters 7;(6) with respect to parameters 0;.

Eq. (2) implies that the MLE & ensures that

M 7 (6) Ie:é)T E 4[5 Xobs» Xmis)] = (Vb 1 (e)ls:é)T E 4[5 (Xobs> Ximis) [ Xobs = Xobs)-

To discuss the implications of the maximum likelihood equation shown above, consider one of the sex-related sufficient statistics, the female
outdegrees summed across all school classes. Denote the sum of female outdegrees by s;(X,ps, Xmis) and its natural parameter by 7,(6) = 0;. The partial
derivative of #;(8) with respect to 6; is 1, whereas the partial derivative of #;(8) with respect to 6; is 0 for all j = i. As a consequence, the MLE ensures
that the unconditional and conditional expectation of female outdegrees match:

E ¢ [5; Xobs, Xmis)] = E4[5i (Xobs» Xmis) [Xobs = Xobs]-
When there are no missing data, the MLE matches the observed female outdegrees, s;(x,ps):
|Eé[si Xobs)] = 5 (Xgps)- 3)

Otherwise, when there are missing data, it matches the conditional expectation of female outdegrees given the observed network data,
IEé[Si (Xobss Xmis) [ Xobs = xobs]:

IEé[si (Xobs: Xmis)] = [Eé[si (xobs, Xmis)lxobs = xobs]~ (4)

Two remarks are in order.

First, the left-hand side of Egs. (3) and (4) is the same, but the right-hand side is not: when there are missing data, the sufficient statistic — the sum
of female outdegrees across all school classes — cannot be computed, so it is replaced by a conditional expectation of the sufficient statistic given the
observed network data. In other words, the sufficient statistic is averaged over all possible realizations of the missing data, where the possible
realizations of the missing data are weighed by the conditional probabilities of the missing data given the observed network data.

Second, the female outdegrees are summed across all school classes, both school classes without missing data and school classes with missing
data, which has subtle implications: the MLE matches the conditional expectation of the sum of female outdegrees summed across all school classes,
but there is no guarantee that it matches the observed female outdegrees of school classes without missing data. To match the observed female
outdegrees of school classes without missing data, class-specific female outdegree parameters would be needed. While it is possible to include class-
specific female outdegree parameters, the resulting models would have a large number of parameters and would not be parsimonious, which would
increase computational costs (e.g., computing time) as well as statistical costs (e.g., standard errors).

By the same argument, the MLE matches the conditional expectation of the number of edges, mutual edges, female outdegrees, female indegrees,
sex-matched edges, and the number of students with outdegrees 1, ..., 6. The GW terms are more complicated: the MLE matches weighted sums of
conditional expectations of the number of configurations of the specified type. The weights are given by partial derivatives, and most of the partial
derivatives are neither 0 nor 1, because the natural parameters of GW terms are nonlinear functions of products of parameters, and all natural
parameters of GW terms depend on the same two parameters (the base and decay parameter).

Last, but not least, it is worth noting that we use Monte-Carlo based approximations of MLEs (as explained in Section 4), because it is infeasible to
compute exact MLEs. However, the arguments concerning the behavior of MLEs we presented above also shed some light on the behavior of
approximate MLEs, such as Monte Carlo MLEs.

Appendix B. Convergence
To assess whether the Monte Carlo maximum likelihood procedure converged, we used trace plots of the sufficient statistics of the model, as is
common practice (Hunter and Handcock, 2006; Hunter et al., 2008, 2008). We present trace plots of the sufficient statistics of Model 4 in Fig. 13. The

trace plots for all other models may be obtained from the authors upon request. None of these trace plots shows signs of non-convergence. Trace plots
of the other models are not shown, but those trace plots do not show signs of non-convergence either.
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Fig. 13. Model 4: Trace plots of sufficient statistics of Model 4 with GW of type OTP and estimated decay parameter. ESP1, ESP2, and ESP3 refer to the number of
pairs of students with 1, 2, and 3 edgewise shared partners of type OTP, respectively.

Appendix C. Outdegree estimates

Models 5-8, respectively.

Table 5

Tables 5 and 6 show Monte Carlo maximum likelihood estimates, including standard errors, of the outdegree parameters of Models 1-4 and

Monte Carlo maximum likelihood estimates, including standard errors, of all outdegree parameters of Models 1-4. Monte Carlo maximum likelihood estimates of all
other parameters can be found in Table 2.

Model 1 Model 2 Model 3 Model 4

No GW GW-OTP(0) GW-OTP(.25) GW-OTP(free)
05 Outdegree 1 —.930 (.074)"" —.116 (.074) .006 (.075) —.587 (.075)"""
04 Outdegree 2 —.855 (.046)"" —.022 (.048) .503 (.049)"" 593 (.051)""
05 Outdegree 3 —.665 (.034)"" .137 (.038)"" .765 (.040)""" 1.362 (.044)""
06 Outdegree 4 —.603 (.032)"" .094 (.037)"" .731 (.039)™" 1.565 (.043)"""
0, Outdegree 5 —.067 (.029) 487 (.034)" 1.044 (.036)"" 1.920 (.040)"
0s Outdegree 6 —.797 (.046)"" —.409 (.047)""" .027 (.049) .790 (.051)""

A graphical representation of GW-OTP is shown in Fig. 5.
"Significance at level .1.
“Significance at level .05.
"Significance at level .001.
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Monte Carlo maximum likelihood estimates, including standard errors, of all outdegree parameters of Models 5-8. Monte Carlo maximum likelihood estimates of all
other parameters can be found in Table 3.

Model 5 Model 6 Model 7 Model 8
GW-0SP GW-ISP GW-RTP GW-ITP
03 Outdegree 1 —.768 (.075)"" —1.196 (.076)""" —1.239 (.076)""" —1.344 (.075)"""
A Outdegree 2 .270 (.050)"" —.101 (.053)" —.633 (.047)""" —.919 (.051)"""
05 Outdegree 3 1.010 (.044) .807 (.048)"™" —.045 (.039) —.451 (.042)""
06 Outdegree 4 1.248 (.043)"" 1.267 (.049) 246 (.038)""" —2.180 (.041)"""
0, Outdegree 5 1.654 (.040)""" 1.885 (.046)""" .832 (.035)""" 411 (.037)"™"
05 Outdegree 6 577 (.053)"" .956 (.055)"" —.015 (.049) —.321 (.049)"™""
Graphical representations of GW terms of types OSP, ISP, RTP, and ITP are shown in Fig. 5.
“Significance at level .1.
" Significance at level.05.
“Significance at level .001.
Appendix D. In-sample performance of Models 1-8 in terms of outdegrees
We present plots for assessing the in-sample performance of Models 1-8 in terms of outdegrees in Fig. 14.
Model 1 Model 2 Model 3 Model 4
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Fig. 14. In-sample performance of Models 1-8 in terms of outdegrees. The red curves indicate the conditional expectations of the outdegrees given the observed data.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Appendix E. In-sample performance of Models 5-8 in terms of DSP and ESP

Figs. 16 and 15 show the in-sample performance of Models 5-8 with GW terms of types OSP, ISP, RTP and ITP in terms of DSP and ESP statistics

of types OSP, ISP, RTP and ITP.
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Fig. 15. In-sample performance of Models 5-8 with GW terms of types OSP, ISP, RTP, and ITP in terms of DSP statistics of types OSP, ISP, RTP, and ITP. The red
curves indicate the conditional expectations of the DSP statistics given the observed data. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 16. In-sample performance of Models 5-8 with GW terms of types OSP, ISP, RTP, and ITP in terms of ESP statistics of types OSP, ISP, RTP, and ITP. The red
curves indicate the conditional expectations of the ESP statistics given the observed data. (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)
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