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ABSTRACT

The work explores how Reinforcement Learning can be used to re-time traffic signals around cordoned neighborhoods. An RL-based controller is
developed by representing traffic states as graph-structured data and customizing corresponding neural network architectures to handle those data.
The customizations enable the controller to: (i) model neighborhood-wide traffic based on directed-graph representations; (ii) use the re-
presentations to identify patterns in real-time traffic measurements; and (iii) capture those patterns to a spatial representation needed for selecting
optimal cordon-metering rates. Input to the selection process also includes a total inflow to be admitted through a cordon. The rate is optimized in a
separate process that is not part of the present work. Our RL-controller distributes that separately-optimized rate across the signalized street links
that feed traffic through the cordon. The resulting metering rates vary from one feeder link to the next. The selection process can reoccur at short
time intervals in response to changing traffic patterns. Once trained on a few cordons, the RL-controller can be deployed on cordons elsewhere in a
city without additional training.

This portability feature is confirmed via simulations of traffic on an idealized street network. The tests also indicate that the controller can reduce
the network’s vehicle hours traveled well beyond what can be achieved via spatially-uniform cordon metering. The extra reductions in VHT are
found to grow larger when traffic exhibits greater in-homogeneities over the network.

1. Introduction

Metering vehicle inflows to cordoned neighborhoods is a promising means of combatting city-street traffic congestion. The task
entails re-timing the traffic signals that reside along a cordon and feed traffic to the neighborhood inside (Daganzo, 2007; Geroliminis
et al., 2013; Aboudolas and Geroliminis, 2013; Ramezani et al., 2015; Haddad, 2017; Keyvan-Ekbatani et al., 2012, 2015a,b, 2017,
Kouvelas et al., 2017). This form of control can reduce the neighborhood’s congestion, but can cause considerable queueing on the
outlying feeder links, and on other links upstream. In essence, the objective is to determine the traffic-signal metering rates that
balance these effects and reduce vehicle hours traveled (VHT) in, and around the neighborhood.

Efforts of this kind have often been pursued using Macroscopic Fundamental Diagrams (MFDs); e.g. see Daganzo (2007),
Geroliminis and Daganzo (2008), Daganzo and Geroliminis (2008), Daganzo et al. (2011), Ji et al. (2010), Gayah and Dixit (2013),
Du et al. (2016) and Knoop et al. (2013). These provide simple, but physically-realistic descriptions of neighborhood traffic; and
enable one to model neighborhood streets as simple, a-spatial queueing systems. In certain cases, MFDs have been combined with
flow conservation laws to produce what we term Network Transmission Models (Daganzo, 2007; Geroliminis et al., 2013; Aboudolas
and Geroliminis, 2013; Ramezani et al., 2015; Haddad, 2017; Keyvan-Ekbatani et al., 2012, 2015a,b, 2017; Kouvelas et al., 2017).
These NTMs forecast a neighborhood’s future traffic states over short time horizons. The forecasts are used in combination with PID-,
state feedback or model predictive control to generate a cordon’s optimal allowable inflows at specified time steps. In most works,
each optimized total metering rate is uniformly distributed across the cordon. Each time step is thus characterized by a common
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Fig. 1. Two-stage process for cordon control.

metering rate on every feeder link.

Yet when traffic conditions are not homogeneous over a street network, further reduction in VHT might come by varying the
metering rates from one feeder link to the next. Feeders with high demands, for example, might be metered less restrictively, to
shorten their queues. To compensate for the higher flows that pour into the neighborhood via those links, metering might be made
more restrictive on low-demand feeders. Restrictive metering could also reduce the occurrence of queues fully dissipating, and thus
wasting green times on those low-demand links. It might even make sense to spatially-vary metering rates in response to traffic in-
homogeneities across non-feeder links. These could include physically-remote links both inside and outside a cordon.

Difficulties can arise in the implementation, however. For example, spatially-varying metering rates might induce driver route-
choice decisions that are difficult to anticipate. Wasted green times may be similarly difficult to forecast. And impacts of cordon
metering on physically remote links would seem especially hard to predict.

Despite the challenges in modeling these sorts of cause-and-effect relations, several analytical-based methods for designing
cordon-control systems have been proposed. These are described below.

1.1. Review of earlier methods

The literature includes three particularly relevant efforts; see Ramezani et al. (2015), Keyvan-Ekbatani et al. (2016) and Jusoh
and Ampountolas (2017). In each of those works, spatially-varying metering plans were generated and updated over time as per the
two-stage hybrid framework diagrammed in Fig. 1. Allowable cordon-wide inflows were optimized in Stage I. This was done in
Keyvan-Ekbatani et al. (2016) using a PID controller in combination with a Neighborhood Transmission Model. The works in
Ramezani et al. (2015) and Jusoh and Ampountolas (2017) combined the use of NTMs with model predictive control instead.

The process of spatially distributing the allowable inflows occurred in Stage II of the framework. The methods used in that second
stage were distinct for each of the three above-cited works. Each sought, moreover, to reduce street-network VHT by targeting
distinct proxy measures.

The Stage II process was pursued in Keyvan-Ekbatani et al. (2016) by formulating the task as a continuous quadratic knapsack
problem. The objective was to balance the lengths of the feeder-link queues that formed due to the metering. Simulations showed that
feeder queues under this balancing scheme spilled-back less often onto upstream links. Network-wide VHT reportedly diminished as a
result. In Jusoh and Ampountolas (2017), that same balancing of queue lengths was combined with the minimization of trip-com-
pletion rates on the network. Simulations in that work again showed reductions in VHT as a result.

The work in Ramezani et al. (2015) is notable in that it sought to balance not the lengths of feeder-link queues, but rather the
vehicle loading across all links inside cordoned neighborhoods. It did so by partitioning the neighborhood into multiple sub-regions,
with boundaries that remained fixed over time. Metering rates were varied along the encircling cordon so as to balance the traffic
densities across all sub-regions.

Simulated outcomes in Ramezani et al. (2015) were favorable, and the work deserves credit for the unique attention given to
traffic states on (non-feeder) links residing inside a network. The work raises certain concerns, however. These are described below.

First, the method assumes that a well-defined MFD exists for each sub-region. This may not be the case when sub-regions are
small, or when larger-sized sub-regions are not each homogeneously-loaded with traffic; see (Daganzo, 2007)." Second, the quantity
of input needed in Ramezani et al. (2015) expands to include origin—destination demands disaggregated by sub-region. Those de-
mands can be difficult to obtain, particularly if they change with time. Finally, a driver route-choice model is also required, which
may be complex and not fully tested.

1.2. Present approach

Like its predecessors described above, the present work advocates a two-stage, hybrid framework for spatially distributing cordon-
metering rates; see again Fig. 1. The present focus is solely on Stage II, however. Allowable cordon inflows generated in a Stage I
process would be taken as inputs. These could come from previously-cited sources such as Geroliminis et al. (2013), Haddad (2017)
and Ni and Cassidy (2018), which combine Network Transmission Models either with PID-, state feedback or model predictive
control.” Attention now turns to our Stage-II approach for distributing the allowable inflows in spatially-varying fashion.

! These concerns could make the task of delimiting sub-regions difficult in its own right, especially for street networks with irregular geometries.
2 The method in Ni and Cassidy (2018) will be used for simulation experiments in Section 3, and our reasons for selecting this method will be
explained in that section as well.
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Unlike earlier approaches, the present one features Reinforcement Learning (RL). RL has been applied on a few traffic control
problems like (Zhu and Ukkusuri, 2014; Balakrishna et al., 2010; Cai et al., 2009), but never in the domain of cordon metering. Our
work produced an RL-based cordon controller that: (i) automatically identifies patterns in real-time measurements of neighborhood
traffic; and (ii) learns through trail-and-error iteration how to spatially distribute the allowable cordon inflows generated in Stage I to
obtain the greatest reward. The reward in this case is a proxy measure of VHT, much as in the previous works cited in Section 1.1. To
obtain that reward, the RL-controller can spatially-vary metering rates in response to traffic patterns on feeder- and non-feeder links
alike, both near and far from a cordon line.” It does so despite our limited understanding of relevant cause-and-effect relations. It does
so, moreover, without partitioning neighborhoods into sub-regions; without requiring (human) operators to obtain origin—destination
data; and without need for route-choice models. The controller is portable to boot: once trained on a few cordons, it can be deployed
on other cordons without additional training.

The controller itself is represented by neural networks. Part of the present innovation lies in representing street networks as
directed graphs. These representations enable the bundling of (directed!) traffic flows together with street topologies in well-
structured fashion. Once trained on data, the controller automatically recognizes patterns on the graph representations through the
process of graph convolution (Bruna et al., 2013; Defferrard et al., 2016; Henaff et al., 2015; Levie et al., 2017). Enabling this process
required customizations to neural network architectures. Lastly, the controller agglomerates recognized patterns through the process
of average pooling (Dhillon et al., 2007). This process generates new directed graphs with fewer vertices, which reduces the size of
the inputs needed for decision-making. The convolution and pooling processes produce simpler, more generalizable decision rules,
which give the controller its portability.

1.3. Road map

The methodological contributions noted above are detailed in the following section. Payoffs are explored in Section 3 by si-
mulating traffic on an idealized street network. Practical implications and the likelihood of real-world deployments are discussed in
Section 4.

Before proceeding further, all symbols used in the present work are defined in Table 1. Each symbol will be defined again when it
first appears in the discussion. The redundancy of Table 1 is offered for the convenience of the reader, and in deference to a
suggestion by a reviewer.

2. Methods

Reinforcement Learning entails the training of a software-controlled agent to interact with its environment in the manner shown
in Fig. 2. At each time step, t, the agent takes control action, a®, in response to the current system state, s). The environment
transitions to state s“+V and a reward, r), is fed-back to the agent. The objective at each ¢ is to maximize the reward that accumulates
over an infinite horizon, starting from ¢ = 0. This accumulated reward is kept to a finite quantity, and temporally-proximate rewards
are more heavily weighted than are distant ones, by means of discounting, such that Zf;o y-r@+D where 0 < y < 1 is the discounting
factor.

For the present work, reward r© was set to be the metered flow that actually passes through the cordon during time step t. That
inflow can be lower than the optimal allowable rate generated in Stage I. Differences can occur due to: wasted green times on low-
demand feeders; and vehicle blocking from queued links inside or outside a cordon. The point is that maximizing this reward reduces
street-network VHT. As a bonus, this chosen reward is directly affected by the metering rates selected by the controller, which
simplifies its task of learning the relation between r® and (s, a®).

The reward is achieved via a control policy, 7. It is a function that maps system state to control action; i.e. a® = 7(s®). Thereisa
corresponding Q-function for 7. Its value represents the accumulated discounted reward if action a®) is taken for s and 7 is followed
from ¢t + 1 onwards; see Sutton and Barto (1998). This second function is defined as

er(st’ al) = [E[rt + ;VQJT(SI‘Fl, H(Sﬁrl))lst‘ (Il]. (2A1)

An optimal policy, 7%, is sought, such that E[Q” (s!, 7 (s*))] is maximized.

A directed-graph representation that was customized to transfer data to the RL-controller is described in Section 2.1. The control
problem is formulated as an RL task atop that representation in Section 2.2. A customized algorithm that finds 7* by modeling
network traffic based on the graph representation is presented in Section 2.3.

2.1. Graph representation

The directed-graph representation described below provides means of inputting data to our controller. Data to be input can
include both: the static features of a street network’s geometry; and the dynamic features of its traffic conditions and directional
movements. The representation can thus describe street networks in comprehensive fashion. It is to our knowledge the only means of
transferring these particular kinds of data in ways that can be handled by neural networks.

3 The RL-controller can engage all signals along a cordon in the metering effort, or can decide (from the data) to allow some of those signals to
operate in normal, non-metering fashion.
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Table 1

Symbols.
Symbol Meaning
@ System state at time step t
a® Control action at t
o) Reward at t
¥ Discounting factor
7 (s) Control policy, or “actor” function
Q(s, @) Q function, or “critic” function
G=(E, V) Graph representing street network, with vertex set V, and edge set E
u A particular vertex (or road link)

U A set of vertexes (or road links)

w Adjacent matrix of a graph

L Laplacian matrix of a graph

i) Matrix of the eigen-vectors of a laplacian matrix

A Diagonal matrix of eigen-values of a laplacian matrix

£ A parametrized spectral filter
n® Vehicle accumulation on vertex u at t
n
0 Accumulations on each vertex in V at t
P1g] Indicator of whether vertex u is located on the cordon at t
4 Indicator of whether each vertex in V is located on the cordon at t
b, Static characteristics of vertex u, including length, capacity, etc
P Static characteristics of each vertex in V, including length, capacity, etc
oy Capacity of vertex u
c Capacity of each vertex in V
£ Metering rate on vertex u at step t under a spatially-uniform policy
u

f® Metering rate on each vertex in V at step ¢t under a spatially-uniform policy
a9 Parameters of the “critic” function
on Parameters of the “actor” function
F; Dimension of system state
Fis,a) Dimension of system state and control action
T Synchronizing parameter for DDPG algorithm

al®

)

agent environment
(1)

'y s

Fig. 2. Reinforcement learning.

The notation for graph representation, G, will be G = (V, E), where: vertex, V, is the collection of all directed street links on a
network of interest; and an edge from vertex u to vertex v is assigned to set E if and only if traffic flows directly from u to v.

As per this notation, street links are represented as vertices. This has been done in certain previous works as well; see
Saeedmanesh and Geroliminis (2016) and Ji and Geroliminis (2012). Data to be stored in each vertex can include a link’s physical
length, number of lanes, speed limit and capacity. Each vertex can also store dynamic data concerning time-varying traffic conditions.
These can include the link’s vehicle accumulation and average vehicle speed at every t.

Distinct traffic movements (through and turning) are represented as edges of a directed graph, and this is more of a novelty. The
weight of each edge, e € E, is determined by the time-varying percentages of vertex u’s traffic that moves onto v. These weights are
often called turning ratios, and are indicators of connectivity strength.

An example of our customized representation is shown for a street intersection in Fig. 3. The left-hand side of the figure shows the
intersection with its traffic movements labeled i-viii. The corresponding graph-representation is shown to the right.

2.2. Problem formulation
Define the set of street links subjected to cordon control as U € V; i.e. U is the set of feeder links that reside along a cordon.

Denote as h®) the measured vehicle accumulation on a vertex at t, such that n{" is the accumulation on vertex u. Denote d{° as the
indicator as to whether u belongs to U; i.e. YV u € U, d,E" =1;Vu ¢ U, d&') = 0. Denote as p, the static attributes of u, including its

* Using edges to represent directed traffic movements (and not links or their physical connections) is a departure from custom (Braess et al., 2005;
Castillo et al., 2008; Ji and Geroliminis, 2012; Saeedmanesh and Geroliminis, 2016). Though we did not include U-turns in our network, the
proposed graph representation can handle U-turns as well.
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Fig. 3. Directed graph representation of an intersection.

capacity, c,. Finally, denote as f® the time-varying metered link flows under a baseline policy that assigns a single metering rate
(determined from Stage I) to all feeder links along a cordon, such that fu[‘) is the metered flow on u. Foru ¢ U, fé‘) = ¢, since only
vertices in U are metered.

Formulating the control problem as an RL task now requires only a straightforward re-definition of the (s, a?, r®). To that end,
the system state is defined as s = (n®, f®, d®, p), which stacks all the arguments. Control action, a*), becomes a redistribution of
f® for those vertices that are metered, while the total rate allowed through the cordon is unchanged; i.e. 3, _ a{ = Duev fo'). Note

again that o’ = c,, Yu ¢ U.

uel

2.3. Optimization algorithm

The optimal control policy, 7%, and corresponding Q_«, were obtained by customizing the actor-critic method (Konda and
Tsitsiklis, 2000); where the terms “actor” and “critic” are aliases for the 7 and Q functions, respectively. The idea is to maintain
parameterized actors and critics, 7 (s16;) and Q(s, al6p); and to train them in alternating fashion, first by updating 8, to satisfy (2.1),
and then by updating 9, with a policy gradient defined by E [V, Q(s, al69)ly—r (- Ve, 7 (s187)].

As per recent custom, parameterization was performed in the present work using neural networks (Lillicrap et al., 2015; Mnih
et al., 2013, 2015), and this entailed the use of graph convolution and average pooling processes. The former process searches for
patterns in data. Searches occur at local levels, meaning that patterns are sought across a graph’s neighboring vertices. Average
pooling thereafter agglomerates those patterns into a smaller number of composite vertices.

The neural networks were designed in the present work to repeat the convolution and pooling processes three times for each
decision generated. In the context of the present work, the reader might envision that convolution and pooling occur first at the layer
of neighboring street links; then at neighboring square blocks; and finally across adjacent neighborhoods. This set-up enables the RL-
controller to accommodate a street network with hundreds of links.

2.3.1. Convolution on directed graphs

Graph convolution, as originally developed, searches for patterns in data stored in undirected graphs. Customizations were
therefore developed to accommodate our directed-graph representations. These customizations occurred at the graph’s spectral
domain, meaning as matrix representations that are friendly to the computer.

As a starting point, denote as W the adjacent matrix to a directed graph G = (V, E), where W is not symmetric. Define D as a
diagonal matrix, where D; = ZJ, W;. The normalized laplacian matrix is L = I — D~'W, where I is the unit matrix. In the case of an
undirected graph, the eigen-decomposition of L is ®A®?, where: A is a diagonal matrix with diagonal elements that are the real-
valued eigenvalues of L; and ® represents real-valued eigenvectors. Since in the present case the asymmetry of W also makes L
asymmetric, the decomposition of L is instead ®Ad~!, and A and @ are both complex- rather than real-valued. Our customized
convolution proceeds as follows.

Start with an attribute z on G’s vertexes, and define a polynomial parameterized filter of order K as g,(A) = Ef:o B A¥, where the
set of 6 are parameters of the filter (Defferrard et al., 2016). The spectral filtering of z using g, is the output attribute Z, defined as

Z = 0ga(A) D7z (2.2)

Eq. (2.2) is also referred to as the application of a convolution operation on attribute z with filter g,. If the input, z, and the output, Z,
have M and N dimensions respectively, then

VISREN, 2=, 0, (NP 'z,
m 2.3)

where 8, m(A) = Zf:o Bp.mx N with a total number of M x N x K parameters. In the terminology of neural networks, the operation
of (2.3) is called a graph convolution layer of shape (M, N, K).

2.4. Building the neural networks
The processes of parameterizing the Q-function (the critic) and the m-function (the actor) are separately illustrated in Fig. 4.
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Critic Network Actor Network
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Fig. 4. Critic and actor networks.

Unshaded boxes represent data, including input, output and intermediate variables; and shaded boxes represent operational layers.
The layers of each network are numbered to clarify the discussion below.

Note from the top-left box that input to the critic is (s, a®) and is of dimension IVl X F ), where |V1 is the graph’s number of
vertices and F q) is the dimension of (s, a) on each vertex. Layers 1-3 form a pipeline consisting of two convolution and one average
pooling layer.” The convolution in layer 1: is of shape F ) X 8 x 3; transforms the input; and passes it to layer 2. Layer 2 does
convolution again. The third layer pools each group of four neighboring vertices on a directed graph into a single, consolidated vertex
with attributes that are the average values of the original four.

Note from the figure that layers 4-6 of the critic network repeat the 2-convolution-1-pooling sequence. This is followed by two
additional convolution layers (7 and 8), and a summation operation that consolidates all of the attributes of a graph’s remaining
vertices into a single Q-value (layer 9).

Turning now to the actor network, note the input as annotated in the top-right box in Fig. 4. It is piped to four consecutive
convolution layers (1-4). Layer 5 is a concatenation that pastes the output from layer 4, together with the actor’s original input. The
concatenation is piped to a convolution operation in layer 6. Its output is a preliminary control action (i.e. a link-specific metering
rate) still in need of fine-tuning. The tuning occurs in layer 7 via the customized operation annotated in its shaded box. The final
control action, a®, results.

Recall from Section 2.2 that the a® must satisfy three constraints: (i) the inflow from a metered feeder link cannot exceed the
link’s capacity, 0 < af) < ¢y, ¥V u € Uj; (ii) only feeder links to a cordoned neighborhood are controlled, als‘) =c, Y u & U;and (iii)
the link-specific metered inflows must collectively equal the single allowable rate generated by the model-based control (Stage I) of
the two-stage framework, i.e. 3 ., a = Diveu ff). The customized operation in layer 7 guarantees that the output satisfies (i) and
(ii). Constraint (iii) is enforced by minimizing the penalty loss introduced by the customized operation annotated in layer 8 of the
actor network.

The connection and arrangement of operations, and the parameters for each layer, were determined for the critic and actor
networks by trying different combinations, and selecting the ones that generated the best control in simulated tests. These best
outcomes (i.e. outcomes generated by the neural networks in Fig. 4) are presented in the following section.

Before doing so, we conclude this section by noting that the critic and actor networks were trained via a customized version of the
Deep Deterministic Policy Gradient (DDPG) method proposed in Lillicrap et al. (2015). Details on that customization are given in the
appendix.

5 Each convolution operation features an activation function that applies a nonlinear transformation to the output. The ReLU (Nair et al., 2010)
and Sigmoid function were used in the present work, as annotated in Fig. 4. Average pooling was performed using the Graculus algorithm (Dhillon
et al., 2007), also as annotated in the figure.
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3. Experiments

The RL-controller’s performance was tested against that of spatially-uniform control. Tests were conducted for idealized settings,
which served two purposes. First, the simplicity of these settings enabled better understanding of when and why spatially-varying
control can outperform uniform metering. (Our understanding of these matters turned out to be limited even with our idealizations,
as will be evident in Section 3.4.) Second, the idealizations limited the spatial in-homogeneities that occurred in traffic, and thus the
advantages of spatially-varying control.® This gave the experiments a conservative quality.

The analyses were made further conservative by generating spatially-uniform metering rates using the methods in Ni and Cassidy
(2018). The Network Transmission Model in that reference was developed to remedy shortcomings of its predecessors, and was
shown to produce more effective cordon-control actions in idealized settings, like the ones used in the present experiments. The RL-
controller was found to improve performance (i.e. reduce VHT) over and above what was achevied by spatially-uniform metering
rates produced as per Ni and Cassidy (2018). Evidence will be shown momentarily.

3.1. Set-up

Our tests used the AIMSUN simulation platform (Castillo et al., 2008). It powers its own software for simulating traffic in mi-
croscopic fashion, and interacted with the DDPG algorithm described in the appendix.

The test site is shown in Fig. 5(a). It consisted of 15 N-S and 15 E-W streets laid-out in a perfect square grid.” Each link was 200 m
long with 2 lanes for serving traffic in each direction. Capacity (i.e. queue discharge flow) for each lane was set at 1800 vehicles per
hour of green time.

All street intersections were controlled by pre-timed traffic signals with 60-s cycle lengths. Random off-sets were used, just as in
Daganzo et al. (2017), to denote the absence of signal progression. When not functioning as a meter, a signal operated with two
phases and equal green splits of 28s. (Lost times were 4s per cycle.) Metering was enabled only during the 28s allocated to that
inflowing movement each cycle.

Trip origins were uniformly distributed over the entire 15 X 15 network at the time-varying rates shown in Fig. 5(b). Simulations
started with an empty street network, and demand fell to zero at t = 1.8 h.

Under these conditions, most or all vehicles could be served within each 3-h period used for simulations. Trip destinations were
uniformly distributed, but solely within a cordoned neighborhood, like neighborhood B in Fig. 5(a). This O-D pattern was selected to
roughly emulate a morning rush in a mono-centric city. The set-up created severe congestion, which enabled stress-testing of the RL-
controller.

Input for the controller came from two (simulated) sources: loop detectors placed in each lane on all feeder links; and onboard
information systems placed in 10% of the vehicles served in each simulation. The first source (detectors) measured vehicle inflows to
a cordoned neighborhood; e.g. flows from neighborhood A to B in Fig. 5(a). Part of the present experiments entailed moving the
cordon to different regions within the larger 15 X 15 neighborhood (see Section 3.3), and the loop detectors were moved along with
the cordon lines. The 10% of the vehicles that comprised the second source for input data served as probes. They were instrumented
as if they were connected vehicles. Their locations on the network were determined at every 60-s time step, and were used to estimate
the time-varying vehicle accumulations on each link.

3.2. Training

The training process consisted of repeatedly simulating the above conditions over successive 3-h windows, which we refer to as
epochs. A distinct random seed was used in each epoch, so as to emulate randomness in trip scheduling, route-choice behavior and
the like. A discount factor of y = 0.96 was selected for all cases.®

Outcomes are shown in Fig. 6. It presents the controller’s performance, as measured by the resulting network-wide VHT vs the
number of epochs used in the training. Notice the diminishing trend in VHT until around 60 epochs. The training process was
therefore a time-consuming one. Yet a city might view this as a one-time cost, as per analysis and discussion to come.

3.3. Performance

Tests of the trained controller entailed 3-h simulations under three cordon-control strategies: (i) a do-nothing strategy in which
cordon metering did not occur; (ii) spatially-uniform metering rates deployed around a cordon as determined from stage I of our
framework; and (iii) the spatially-varying redistribution of those rates via the RL-controller.

& Spatial in-homogeneities still occurred: near the corners of a cordoned neighborhood, since the links there fed traffic from two (perpendicular)
directions; and because of the stochastic features of AIMSUN’s simulations. Further, but still modest in-homogeneities occurred when a cordoned
neighborhood was moved to other areas within the street network used for our tests; see Section 3.3.

7 Use of a square grid was convenient, because much of the input needed for simulating traffic on this idealized geometry can be coded auto-
matically in AIMSUN. The RL-controller can, however, be applied to almost any street-network geometry, including irregular ones.

8 The DDPG’s hyper parameter, 7, was set at 0.02; see the algorithm in the appendix.
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The first set of experiments were performed for the cordon arrangement previously shown in Fig. 5(a).” Outcomes are presented in
Fig. 7. Each of its three curves is the time-series of network-wide vehicle accumulation for one of the three control strategies. And
each is the average of five simulations with distinct random seeds.""

The unshaded area between the dot-dash and solid curves is the network VHT saved via spatially-uniform control. A reduction of
21% was achieved over the do-nothing strategy in which signals did not function as cordon meters. We attribute the large reduction
to the high traffic demand and to our use of a Network Transmission Model that was specially developed to improve upon short-
comings of existing models; see again Ni and Cassidy (2018).

The lightly-shaded area between the solid and dashed curves in Fig. 7 indicates that the RL-controller’s redistribution of metering
rates (i.e. the spatially-varying actions) saved an additional 7% in VHT, above and beyond the impressive reduction achieved via
uniform metering. We note for good measure that the extra savings generated in each of the five simulations ranged from 2% to 13%
relative to spatially-uniform control. The point being that extra savings occurred via spatially-varying control, without exception, in
all five trials.

? Eight links fed traffic through each side of the cordon.
10 A t-test for the samples from 5 simulation runs generated a p-value of 0.023, indicating that the effectiveness of our proposed RL-controller is
statistically significant.
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Not surprisingly, the added savings grew when demand patterns were altered to create greater traffic inhomogeneities over the
network. This was tested in a simple way by transferring part of the demand to cross one of B’s perimeters (e.g. the north perimeter)
to the opposite (e.g. south) perimeter. With shifts of this kind, the RL-controller saved greater amounts of VHT relative to what was
saved under uniform metering. For example, a 15% shift in demand as described above, resulted in 10% additional savings in VHT,
up from the 7% shown in Fig. 7.

These sensitivity tests were conducted without re-timing the RL-controller. More is said on this matter below.

3.4. Portability

In light of the time-consuming nature of the training process (see again Section 3.2), we explore how well the trained controller
can be used on distinct cordons without additional training. The first experiments along these lines entailed moving the cordon to the
right-side of the network, as shown in Fig. 8(a), to surround the neighborhood labeled B'. Trip destinations were likewise moved to fit
uniformly across B’ (only).'" Origins continued to be uniformly distributed over the entire network, neighborhoods A and B’ in the
present case.

The rightward shift of the cordon changed the character of the network’s O-D demand pattern. Note that rightward-bound trips
from A to B’ now double in number relative to rightward trips from A to B in Fig. 5(a). This increased rightward demand (and the
longer queues that were now apt to form at the cordon’s vertical perimeter) added to traffic’s spatial in-homogeneity. Moreover, the
limits of what could be achieved via cordon control changed, since now only a 3-sided perimeter could be metered. And a greater
number of vehicles per unit length now crossed what remained of the cordon line.

Outcomes are shown in Fig. 8(b). The curves are again the averages of five simulations. By visually comparing the figure’s dot-
dash curve with its counterpart in Fig. 7, one sees how VHT, when left uncontrolled, increased due to the above-noted changes in the
network.* Fig. 8(b) also shows that spatially-uniform control continued to ameliorate congestion. In this case, VHT was reduced by
over 23%. The figures’s lightly-shaded region shows that the RL-controller continued to squeeze-out additional savings in VHT. The
4% improvement in this case is down from the reductions of 7% or more described in Section 3.2. The degraded performance is surely
due in part to the controller’s lack of case-specific training. Some of the degradation may also be caused by the limits imposed on
cordon control by having lost a meter-able perimeter. In contrast, traffic’s increased inhomogeneity may have influenced the con-
troller’s performance in the opposite (i.e. favorable) direction. Our failure to sort-out the individual effects of these various influences
does not change the following observation: once trained in one environment, the controller can be applied elsewhere on the network
and still reap benefits.

The same finding came in our second test on portability. In it, the cordon (and the uniformly-distributed trip destinations) were
moved to the network’s lower-right corner, as shown in Fig. 9(a). The cordon could now be metered on two sides only. Queuing was
therefore now more pronounced at the cordon, as can be inferred from the dot-dash curve in Fig. 9(b). Cordon control was especially
effective in this more congested environment. Spatially-uniform metering reduced network VHT by more than 28%. Redistribution of
those metering rates via the RL-controller was more effective as well: the extra VHT reduction in this case came to 5%, up from the
4% achieved in the previous test.

4. Conclusions

Reinforcement Learning has been used in diverse fields that include robotics, operations research, economics and even game-
playing. Extending RL to the cordon-control problem would seem worth exploring, especially in light of the uncertainties that
surround the problem, and of the need for real-time (i.e. rapid) decision-making. The present paper is, to our knowledge, the first to
pursue this extension. It entailed use of directed-graph representations to embed information on both: link geometries and other static
features of a street network; and dynamic elements of the network’s directionally-served traffic. These representations required
customizations to neural network architectures. The customization enabled the creation of an RL-controller that selects spatially-
varying metering rates in optimal fashion.

On a downside, the automated learning style of neural networks produces a “black-box” solution. Our customized convolution
process, for example, aggregated static and dynamic information in non-transparent ways. The decision-making rules that produced
optimal control actions are similarly unknown.

These concerns are offset by the benefits, at least in part. After all, the controller selects optimal metering actions despite our own
limited understanding of how best to respond to traffic in-homogeneities. This would seem to be of much practical value. It bears
repeating that selections are made in ways that remedy pitfalls of previous methods. Little wonder perhaps that the RL-controller
diminished network-wide VHT in all of the idealized cases tested. The reductions were over and above those achieved by spatially-
uniform metering plans. The latter plans were already highly effective on their own.

Other of the controller’s useful features includes its customized convolution process. It produces generalizable rules that give the
controller its portability. The time- and resource-intensive costs of training the RL-based system thus become a one-time expenditure
for a city to bear.

1 Destinations were moved in this way since it would be counterproductive to meter a cordon that skirts destination-rich areas on a network; see
Daganzo (2007).
12 yisual inspection of that curve also reveals that some vehicles remained on the network when the 3-h simulations ended.
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Fig. 9. Portability test 2 (shifted cordon and VHT).

The controller’s two-stage framework has practical advantages as well. Within this framework, control actions selected by the
black-box approach in Stage II are constrained by the optimal allowable inflows generated via the model-based approach in Stage I.
The controller is thus constrained in how far its metering rates can drift from an optimum. This would be the case even during
training periods. Any lingering fears about counterproductive actions during training might be eased by pre-training the controller
using computer simulation, much like in the present work.

The above consideration could ally a city’s fears about black-box control rules, and enhance the likelihood of deploying the
controller in real settings. Field tests will be needed first. Our hope is that the present paper might hasten the occurrence of these
needed, real-world tests.
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Appendix A. Deep deterministic policy gradient

We trained our actor and critic networks together using the Deep Deterministic Policy Gradient (DDPG) method proposed in
Lillicrap et al. (2015). Prioritized experience replay (Schaul et al., 2015), Target network (Mnih et al., 2015) and Adaptive e—greedy
exploration policy (Tokic, 2010) were also used in the training process. The Adam algorithm (Kingma and Ba, 2014) was used for the
optimization. The single change made to the original DDPG algorithm involved updating the actor by minimizing the penalty loss, as
was presented in Fig. 4. Psuedo-code for the customized DDPG algorithm is shown below.

Algorithm 1. Deep Deterministic Policy Gradient (Lillicrap et al., 2015)

Initialize critic network Q(s, al6?) and actor network 7 (s16™)

Initialize target critic network Q(s, aIBQ’) and target actor network rr(slﬂ”’)
Initialize prioritized experience replay buffer R

while not converge do
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Observe system state s()
Select action a® for s*) following e-greedy exploration policy
Observe transition pair (s, a®®, s¢+D, (1)), and store in R
Sample a mini-batch (s, a(®), 5+, r(0)) of size N from R
Set y® = r@ 4 yQ(s+D), 7 (s0+D1g™) 169
Update critic by minimizing

> @ — Q(s®, a®|gQ))2

Update actor with the sampled policy gradient:

Vord ~ 1 53 YaQ(s, @91 _ @, 0, Ver 7610
Update actor by minimizing the penalty loss

2} AT (D40 — o.g0yy2
Update target networks:

¢ 0"+ (1 - 167,609 « 762 + (1 — 7)-6¢
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