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Abstract

The advance of a chemical weathering front into the bedrock of a hillslope is often limited by

the rate weathering products that can be carried away, maintaining chemical disequilibrium.

If the weathering front is within the saturated zone, groundwater flow downslope may affect

the rate of transport and weathering—however, weathering also modifies the rock permeability

and the subsurface potential gradient that drives lateral groundwater flow. This feedback may

help explain why there tends to be neither ‘‘runaway weathering’’ to great depth nor exposed

bedrock covering much of the earth and may provide a mechanism for weathering front advance

to keep pace with incision of adjacent streams into bedrock. This is the second of a two-part

paper exploring the coevolution of bedrock weathering and lateral flow in hillslopes using a

simple low-dimensional model based on hydraulic groundwater theory. Here, we show how a

simplified kinetic model of 1-D rock weathering can be extended to consider lateral flow in

a 2-D hillslope. Exact and approximate analytical solutions for the location and thickness of

weathering within the hillslope are obtained for a number of cases. A location for the weathering

front can be found such that lateral flow is able to export weathering products at the rate

required to keep pace with stream incision at steady state. Three pathways of solute export

are identified: ‘‘diffusing up,’’ where solutes diffuse up and away from the weathering front into

the laterally flowing aquifer; ‘‘draining down,’’ where solutes are advected primarily downward

into the unweathered bedrock; and ‘‘draining along,’’ where solutes travel laterally within the

weathering zone. For each pathway, a different subsurface topography and overall relief of

unweathered bedrock within the hillslope is needed to remove solutes at steady state. The

relief each pathway requires depends on the rate of stream incision raised to a different power,

such that at a given incision rate, one pathway requires minimal relief and, therefore, likely

determines the steady-state hillslope profile.
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1 INTRODUCTION

Critical zone science has advanced toward an understanding of the

internal architecture of hillslopes, particularly from a geochemical and

geophysical perspective (Brantley et al., 2017; St Clair et al., 2015), and

a number of hypotheses about drivers of critical zone architecture have

recently been articulated (Riebe, Hahm, & Brantley, 2017). Several

of these directly address the issue of how chemical weathering in

hillslopes is able to ‘‘keep pace’’ with the rate of stream incision into

tectonically uplifted bedrock. The lateral movement of water and

solutes in the subsurface plays a role in several of these hypotheses

(but not all), and there have been general calls for an improved

understanding of the role of lateral flow in geochemical weathering

processes (Riebe et al., 2017). Lateral flow refers to the movement of
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2 HARMAN AND COSANS

water toward the toe of the hillslope rather than strictly vertically. We

sometimes speak of lateral flow partitioning to refer to the downslope

diversion of some portion of vertically percolating water.

Lateral subsurface flow features prominently in the conceptual

model presented by Brantley et al. (2017), who argue that where

landscapes approach a geomorphic steady state, weathering-induced

changes in porosity and permeability, rock fracturing, and surface ero-

sion drive the long-term evolution of water flow paths: ‘‘In effect, we

argue that the hill evolves to remove minerals of different solubilities

at different surfaces by partitioning water into vertical and horizontal

flow paths’’ (Brantley et al., 2017). The ‘‘surfaces’’ referred to are (a)

where weathering is initiated in parent rock at the deepest extent of

chemical transformation by meteoric water, (b) an intermediate surface

where saprolite transitions to soil, and (c) the land surface. Brantley

et al. (2017) argue that the internal partitioning of water between

shallow and deep flow paths and overland flow evolves toward a con-

figuration in which all minerals are removed at the same rate: easily

dissolved minerals at depth via the slow movement of groundwater,

more resistant minerals through dissolution into more rapid lateral

interflow perched at the soil–saprolite transition, and most recalci-

trant primary and secondary minerals via physical erosion at or near

the surface. They liken these surfaces to valves regulating the par-

titioning of water between two fates: lateral flow that will remove

minerals from a surface (through dissolution or erosion) and vertical

percolation toward a deeper surface.

Brantley et al. (2017) present detailed arguments about geochemical

processes but do not attempt to connect their theory to a mechanistic

treatment of flow hydraulics. Other hypotheses have been put forward

that emphasize the importance of hillslope hydraulics as both a driver

and result of critical zone evolution. Rempe and Dietrich (2014) and

Braun, Mercier, Guillocheau, and Robin (2016) make use of hydraulic

groundwater theory to build quantitative frameworks predicting the

influence of lateral flow on critical zone architecture (for a discussion

of Braun et al., 2016, see Harman, Cosans, and Putnam, 2017). Rempe

and Dietrich's (2014) model suggests that lateral flow through the

unweathered bedrock, driven by its relief above the adjacent stream,

could draw reactive water into pores (and even evacuate them when

water was not available) at the upper extent of the unweathered rock,

initiating weathering. Thus, the rate of stream incision would set the

relief of the bedrock that is required for weathering initiation to keep

pace with that incision. Rempe and Dietrich (2014) make novel use

of well-understood hydraulics and geomorphic principles but do not

attempt to connect their theory to quantitative models of geochemical

weathering.

Is it possible to develop a simplified but useful treatment of the

coupling between weathering and lateral flow that captures both

the geochemical and hydraulic controls highlighted by these previous

studies? Could the major results of Brantley et al. (2017) and Rempe

and Dietrich (2014) fall out of such an analysis as ‘‘special cases’’

arising in particular circumstances, thus reconciling them?

Here, we aim to better understand the feedback between lateral

flow and weathering and how this feedback influences the architecture

of hillslopes. We do so by constructing and analysing a simplified yet

physically justified model that captures these feedbacks and can be

(approximately) analytically solved in a number of useful cases. This

model will enable us to examine how lateral flow might influence the

location and properties of weathering fronts within hillslopes, and the

internal architecture required to enable lateral flow to export dissolved

weathering products at the rate required by stream incision.

This approach can perhaps be criticized along the same lines that all

such equilibrium hypotheses in earth science are that they neglect the

contingencies of place and the unsteadiness of the climate. Landscapes

evolve over long periods with unsteady climatic and tectonic drivers

and evolve more rapidly at some periods of time than at others.

Steady-state equilibrium is at best a ‘‘convenient fiction’’ (Phillips,

2005). Nevertheless, it is a fiction that perhaps we can learn from and

use what we learn to make sense of observations from the field.

The paper is structured as follows. Section 2 lays out our simplified

model of coupled lateral flow, rock weathering, and the modification

of porosity and permeability that it causes. In Section 3, we examine

numerical solutions as well as exact and approximate analytical solu-

tions to the model in 1-D vertical sections of an hillslope, under the

assumption that advection is large relative to diffusion, paying atten-

tion to sensitivity of the results to model parameters relative to a ‘‘base

case’’ scenario of plagioclase feldspar weathering. These solutions

proceed from the simple 1-D infinite column with no lateral flow, to a

full solution that includes the modification of permeability by weath-

ering. In Section 4, we then consider diffusion and develop a measure

of its importance within the weathering front. We then consider the

end-member case that the parent rock is completely impermeable,

and so diffusion must play the primary role in weathering and develop

an analytical solution applicable to a 1-D vertical section solution for

this case, to complement those developed for the advective cases

previously.

In Section 5, these pieces are brought together in the context of the

whole hillslope morphology. Three end-member ‘‘pathways’’ for the

export of weathering products are proposed; each of which implies

a distinct analytical solution for the longitudinal profile (and overall

relief) of the unweathered bedrock surface in a hillslope. The paper

concludes by discussing the implications of the results.

2 SIMPLIFIED MODEL OF FEEDBACKS
BETWEEN LATERAL FLOW AND WEATHERING

2.1 Model assumptions

Building on the hypotheses mentioned above, we are interested in

landscapes in geomorphic steady state, such that the rate of weather-

ing is not limited by the rate of chemical reaction or by the availability of

meteoric water that can carry solutes away but rather adjusted to the

rate of stream incision. This has been described as the ‘‘supply-limited’’

case (Riebe, Kirchner, & Finkel, 2004), because the rate of weather-

ing is tied to the rate fresh rock is ‘‘supplied’’ by incision. We will

further discuss the question of whether our conclusions hold under

transient conditions in the discussion and leave full consideration for

future work.



HARMAN AND COSANS 3

There are a number of ways an increase in stream incision might

induce a corresponding increase in the pace of chemical weathering.

One way is by increasing the rate of surface erosion. This will reduce

the proportion of mineral that must be removed by chemical weather-

ing and expose material that is less weathered at the surface where it

may contact chemical conditions that can increase the rate of weath-

ering (Riebe et al., 2004). We neglect this case here and choose to

focus instead on the case where a mineral is mostly weathered within

the hillslope profile. How then can its weathering keep pace with the

rate of stream incision?

Lateral flow offers one mechanism that could allow it to do so, as

suggested by Brantley et al. (2017). For lateral flow to occur, the pore

space must be at or near saturation; otherwise, flow paths are typically

exclusively vertical. Weathering that occurs exclusively within the

unsaturated zone cannot (in principle) be directly influenced by the

effect of stream incision on lateral flow—only regions of the hillslope

that are persistently or transiently saturated can.

Unlike the Rempe and Dietrich (2014), the model developed here

will not consider the role of surface erosion. Processes operating at

the surface and in the unsaturated zone will determine the boundary

conditions of the model, but a fully coupled model is left for future

work. Many of the arguments that Rempe and Dietrich (2014) make

about the coupling between surface weathering and the base of the

critical zone also apply to the model presented here.

We also do not consider weathering processes within parts of the

hillslope that are freely draining and unsaturated, because weath-

ering processes in freely draining parts of the landscape are likely

well approximated by 1-D column models (e.g., Lebedeva, Fletcher,

Balashov, & Brantley, 2007). Instead, we focus on those weathering

reactions that are primarily limited by the transport of weathering

products away from the reaction site, and this transport occurs pri-

marily while the pores are saturated and flow is driven in part by lateral

pressure gradients.

As Brantley et al. (2017) and others point out, weathering is not

a single chemical reaction. It is not necessarily primarily a dissolution

reaction. The reactions do not all occur within a single ‘‘weathering

zone,’’ below which is pristine parent rock and above which is com-

pletely modified saprolite. Because different minerals may weather at

different depths, we must stipulate that the model refers to one col-

lection of colocated reactions. Dissolution of plagioclase feldspar will

be taken as a prototype ‘‘base case.’’ Others may occur below (such

as oxidation of biotite) and still more above (such as dissolution of

mica). Therefore, when we refer to the ‘‘weathering zone,’’ ‘‘weather-

ing front,’’ and ‘‘weathered’’ and ‘‘unweathered’’ rock, these should not

be taken as absolute terms, rather they are with respect to a particular

weathering reaction, perhaps one of several occurring at a range of

depths.

2.2 Further assumptions regarding deep

percolation and lateral flow

For lateral flow to occur, there must be a reduction in permeability or a

no-flow boundary that prevents the continued (vertical) free drainage

of recharge. A weathering front may itself be associated with a small or

large change in permeability (perhaps permitting substantial drainage

of water below the weathering front, or perhaps only a little) or may

occur at a boundary between permeable saprolite and impermeable

bedrock. Consequently, we must distinguish between unweathered

permeable and unweathered impermeable rock below the weathering

zone. Figure 1 illustrates some of the arrangements we will consider.

Where the weathering front represents a permeability contrast

such that the unweathered rock is effectively impermeable, we will

consider mechanisms by which reaction products can be removed

from the weathering zone through lateral flow within or above the

weathering zone. This situation is complicated by the need for there

to be appreciable solute transport within a region where permeability

is becoming negligible with depth. As we shall see, this is possible

through both advection and diffusion of solutes under the right

circumstances. Transport of solutes out of the weathering front is

simpler if the unweathered material below the weathering front has

nonnegligible permeability, so that weathering products can percolate

vertically from the base of the weathering front.

In that case, we will assume there exists an additional deeper

no-flow boundary within the unweathered material some distance

below the weathering front that causes water to be diverted laterally

toward the hillslope toe. This boundary will be referred to as B. Without

such a boundary, the percolating water can freely drain vertically from

the base of the weathering zone at a rate limited by the unweathered

rock's hydraulic conductivity or by the supply of water from above

(in which case, the unweathered rock will be under tension and may

become desaturated—this situation is not being considered here, as

discussed above). However, deep percolation below the weathering

front cannot continue indefinitely, because flow must eventually be

diverted laterally toward an outflow location, and so some deeper

permeability change or no-flow boundary is a necessary assumption.

We will assume that this deep boundary also propagates downward

at a rate that keeps pace with the rate of stream incision.

The presence of a no-flow boundary at depth will reduce the

percolation from the base of weathering zone by an amount that

depends on the thickness and hydraulic gradient of the unweathered

rock aquifer toward the outflow location and so provides a connection

to channel incision (as suggested by Rempe and Dietrich, 2014, and

explored further in Section 5). Here, we will assume this location is the

hillslope base, but it may be that the outflow location controlling the

drainage hydraulics draws from a larger groundwatershed than surface

topography would suggest. In that case, the groundwater ‘‘hillslope’’

considered here may be much larger than a surface hillslope.

There may be a number of physical causes for this deeper boundary

B, depending on the circumstances. If the weathering front under

consideration led to the removal of an abundant but not readily

soluble primary mineral (like feldspar), B might represents a deeper

incipient weathering front where a more soluble mineral is removed

or transformed (such as pyrite oxidation), leading to the formation of

a permeability contrast at that location. Following the terminology of

Brantley et al. (2017), the weathering reaction at B would be termed

the ‘‘profile initiating reaction,’’ whereas the one above would be the

‘‘major porosity initiating reaction.’’

Alternatively, B might arise from factors other than weathering. It

may be the depth at which topographically induced stress fields open

pre-existing fractures (St Clair et al., 2015), or the depth to which
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FIGURE 1 Overview of the problem domain and definition of terms. We consider the laterally flowing portion of a hillslope of length L being
uniformly recharged from above at rate r with water of constant initial concentration CH . Rock with initial mineral content M0 is being weathered,
resulting in changes in the porosity 𝜙 and permeability K. The thickness of the laterally flowing aquifer H(x) above impermeable boundary B(x)
(with constant slope 𝜃) can be divided into (up to) three domains: a low-permeability unweathered parent rock Hp(x) (brown coloured zone), a
weathering zone Hw(x) (purple), and a zone of more permeable weathered rock Hs(x) (blue). The thickness of these layers varies with location x
along the hillslope (measured from the hillslope divide). Parent rock below B is assumed to be impermeable. Boundary conditions are imposed at
the downslope boundary of the domain: The full thickness of the laterally flowing zone is Hb; Hbp is the thickness of only the weathering and
unweathered zones. The entire domain is assumed to be in dynamic equilibrium with an adjacent stream incising into bedrock at rate 𝜔. Elevations
are given by a co-ordinate z measured upward from the boundary B. The lower part of the figure shows (left) completely submerged and (right)
incompletely submerged profile. We refer to the location where mineral content M is changing the fastest as the weathering ‘‘front’’ zw . The
length scale 2𝛿 is obtained by extrapolating the slope of the weathering front at zw (fine dotted line). Note that in the incompletely submerged
case, the weathering zone Hw is less than 2𝛿, as Hw only includes weathering in the saturated zone. The model does not consider the behaviour of
the system in the freely draining unsaturated part of the profile (green zone, thick dashed line) or the evolution of the ground surface topography



HARMAN AND COSANS 5

root or frost-cracking damages rock (Anderson, von Blanckenburg, &

White, 2007). It may even be the depth of circulation imposed by the

regional Tothian groundwater system (Toth, 1963).

In order to make use of the theory developed in the companion

paper, Harman and Kim (2018), we will assume that the impermeable

surface (whether it is at the base of the weathering zone or at some

deeper level) has a relatively small relief. This allows us to assume that

the flow system is characterized by a small hillslope number (Hi ⪅ 1),

and so most of the hydraulic gradient driving flow is provided by the

mounding of the saturated zone within the hillslope, and not imposed

by the geometry of an underlying surface. This is not to say that the

ground surface topography is necessarily gentle or that our analysis

does not apply in mountainous terrain. The proposed model may

apply in steep terrain so long as the slope of the boundary controlling

groundwater circulation is not steep.

2.3 Solute flow and transport

The work presented here builds on the companion paper to this one

(Harman & Kim, 2018) in which we showed how hydraulic groundwater

theory can be used to construct a model of flow pathways and solute

transport through a hillslope at steady state.

In the companion paper, it was demonstrated that in hillslope

aquifers with a small hillslope number Hi (Brutsaert, 2005; i.e., those

whose impermeable lower boundary has small relief), water age does

not increase downslope but instead forms a kind of stack, with oldest

water at the impermeable base and youngest water near the recharging

surface. As the saturated thickness of laterally flowing water is not con-

stant, the ‘‘layers’’ are not of constant absolute thickness but become

approximately so when the vertical dimension z is scaled by the satu-

rated thickness H(x) at each location along the slope x (see Figure 1).

It was also shown that if other properties (porosity, permeability, and

solute source terms) also have this ‘‘scaled lateral symmetry’’ (that is

they vary exclusively in terms of the scaled co-ordinate Z = z∕H) then

the two-dimensional advection–diffusion–reaction equation collapses

into a 1-D vertical equation:

𝜕(𝜙C)
𝜕t

= −q∗
z
𝜕C
𝜕z

+ Dm
𝜕2(𝜙C)
𝜕z2

+ 𝜙R, (1)

for solute concentration C, where q∗
z is an effective downward flux

that varies with z as

𝜕q∗
z

𝜕z
= −qx

x
. (2)

Note that q∗
z is defined as positive upward, so −q∗

z represents the

downward flux rate. The lateral flux rate qx is approximated using the

Dupuit approximation for the hydraulic gradient term ∇h:

qx = −K dh
dx

(3)

= H′(x) cos 𝜃 − sin 𝜃, (4)

where H
′
(x) is the gradient of saturated thickness, 𝜃 is the angle the

(assumed impermeable) base of the aquifer makes with the horizontal,

and K is the hydraulic conductivity. We will assume that permeability

is isotropic, even where it is not homogeneous in space (and so K

is a scalar, not a tensor). The lateral flow rate qx may vary with z

as K changes, but under the Dupuit assumption, the lateral hydraulic

gradient ∇h is invariant in z.

2.4 Simplified kinetic model of rock weathering

There has been significant progress in understanding and quantifying

rock weathering reactions over recent decades (Maher, 2011; Riebe

et al., 2017; White & Blum, 1995; Murphy, Oelkers, & Lichtner, 1989).

That understanding has matured through numerical models of reactive

transport in 1-D, as in a reaction column, where the flux rate of water

through the column is constant in space and time. This has led to

the development of simplified kinetic models of rock weathering that

capture some emergent properties of 1-D weathering profiles.

Here, we will adapt one such simplified model of rock weathering

(similar to, e.g., Lebedeva, Fletcher, & Brantly, 2010; Li, Jacobson, &

McInerney, 2014) and apply it to the lateral flow model described

above. The transformation of primary minerals into dissolved products

is given by the rate of primary mineral consumption Rj:

𝜕Mj

𝜕t
= −Rj = −kjMj

(
1 − Sj

)
, (5)

where Mj (mol m−3) is the moles of mineral j per control volume of

porous media (i.e., solid plus pore volume), Sj is a saturation index

that is 1 when the aqueous phase is in equilibrium with the primary

mineral, and kj (year−1) is a reaction rate. The reaction rate is related

to the specific surface area of the mineral as

kj = k∗
j FjAj, (6)

where k∗
j

(mol m−2 year−1) is the area-specific reaction rate, Fj is the

molecular (formula) weight (g mol−1), and Aj is the specific surface

area (m2 g−1), which (following Li et al., 2014; White & Blum, 1995;

White & Brantly, 2003) can be estimated by Aj = 6𝛽 j∕(𝜌jDj) assuming

spherical particles with an effective grain diameter Dj, density 𝜌j, and

a surface roughness factor 𝛽 j. We will assume that these factors are

constant (though they likely vary as the rock weathers).

The rate of production Ri of a particular dissolved weathering

product with concentration Ci is related to the weathering rate as

Ri =
nijRj

𝜙
, (7)

where nij is a stoichiometric ratio of moles of product released per

mol of primary mineral consumed, and porosity 𝜙 accounts for the

differing volumes used to normalize Ci (the fluid-filled pore volume)

and Mj (the total porous media volume).

Finally, we assume that the saturation index Sj is primarily deter-

mined by the production of a single aqueous phase, such that we can

approximate:

Sj ≈
Ci

Ceq
ij

, (8)

where Ceq
ij

is the equilibrium concentration of i with respect to j at

saturation.
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2.5 Effect of weathering on porosity and hydraulic

properties

Unfortunately, there is not currently a well-developed parsimonious

approach to modelling the effects of weathering on rock hydraulic

properties that we are aware of, at least not one grounded in obser-

vational and modeling studies of rock weathering. Certainly, the

dissolution of minerals can increase porosity, and relations like the

Kozeny–Carmen equation (Carmen, 1837; Kozeny, 1927) provide

relationships between porosity and permeability, but there are poten-

tial complications. Minerals can react nonisovolumetrically (Nettleton,

Flach, & Nelson, 1970), and saprolite may volumetrically expand or

collapse as it is modified by chemical and physical weathering (Parizek

& Girty, 2014), complicating the relationship between porosity and the

degree of weathering. The precipitation of secondary minerals can infill

pores and reduce porosity (Navarre-sitchler, Steefel, Yang, Tomutsa,

& Brantley, 2009). Furthermore, it is necessary to know which pores

become infilled. Permeability will be much less reduced by the infilling

of less connected or fine pores than large pores or pores with high

connectivity. Consequently, it is not clear whether simple relation-

ships like the Kozeny–Carmen relation, or other equations derived for

‘‘packed spheres’’ or such idealizations (Xu & Yu, 2008), can be applied.

Unfortunately, there are not clearly superior options at this point.

Therefore, to make progress, we will assume isovolumetric weathering

and account for the feedback in a simplistic way by assuming porosity

increases linearly as primary minerals are dissolved:

𝜙= 𝜙0+𝜙m

(
1 − M

M0

)
, (9)

where 𝜙0 is the porosity of the parent rock, 𝜙m is the porosity once

weathering is complete, and M0 is the mineral content of parent rock.

We crudely account for the effect of infilling by secondary mineral

precipitation by setting 𝜙m = M0
j

Fj𝜌j−𝜙s, where 𝜙s is the infilled

porosity.

In the absence of a better approach, we assume that conductivity K

varies with porosity 𝜙 according to the Kozeny–Carman relationship:

K ∼ 𝜙3∕(1 − 𝜙)2. To set a value for the coefficient in this relationship,

we will assume the conductivity of the parent rock K0 is known, and so

K =

(
K0

/
𝜙3

0

(1−𝜙0)2

)
𝜙3

(1 − 𝜙)2
. (10)

The rate conductivity increases with porosity is consequently highly

sensitive to the parent rock porosity.

2.6 Scaled lateral symmetry and boundary

conditions

The system of differential equations given by (1), (2), and (5) can be

solved if an appropriate set of parameters and initial and boundary

conditions are supplied. We must be careful however to ensure

that these parameters and conditions do not violate the assumption

of scaled lateral symmetry used to derive Equations 1 and 2 in

the companion paper. Equation 5 does not break the scaled lateral

symmetry if we assume its parameters are spatially constant, and so

the variations in Mj arise endogenously due to interactions with Ci and

qz. In addition, we assume that the rate and concentration of recharge

are invariant in x, as are the composition and properties of the parent

material.

2.7 Traveling wave formulation

Steady-state solutions to the equations above take the form of a

traveling wave, much like those investigated by Ortoleva, Chadam,

Merino, and Sen (1987) and Lichtner (1988). Let us assume that the

wave is traveling in the −z direction (downward) at rate w and define

z′ = z + wt as a spatial co-ordinate traveling with that wave. Applying

this to the system of equations above, we find that the rate of change

of C, M, and qz with respect to z′
can be expressed as

𝜕M
𝜕z′

= − R
w
, (11)

𝜕C
𝜕z′

= − nR
(−q∗

z ) − w𝜙

(
1 − C𝜙m

nM0

)
+ Dm

(−q∗
z ) − w𝜙

𝜕2𝜙C

𝜕z′2
, (12)

𝜕q∗
z

𝜕z′
= −K|Δh|

x
, (13)

where z′
and q∗

z are both positive upward and negative downward, and|∇h| ≥ 0. The reaction rate R is given by (5), the porosity 𝜙 by (9), and

the conductivity by (10). Spatial derivatives of 𝜙 have been simplified

in this equation using (9) and (5). The i and j subscripts have been

omitted for clarity. From this point on, the prime will be omitted from

z, and all equations will be expressed in terms of the moving frame of

reference.

2.8 Numerical solution

The equations above can be solved numerically, though some care is

needed to properly account for the boundary conditions. Solutions

must be found iteratively if the diffusion term is included. If we neglect

the effects of diffusion, the second term in (12) disappears and only

first-order spatial derivatives remain, so the equation can be solved as

a system of ordinary differential equations. Here, we solved them in

Python using the SciPy function scipy.integrate.ode, which provides

an interface to the LSODA integrator (Jones, Oliphant, & Peterson,

2001).

We typically choose values of the recharge concentration CH at the

top of the saturated zone z = H and the parent rock composition M0 at

the base z = 0. However, these values are specified at opposite ends

of the domain (making this a boundary value problem). To proceed,

we chose an initial guess for MH at z = H and integrated in the

−z direction to z = 0. The value of MH was then adjusted until the

computed value of M at z = 0 reached the desired value M0. This is

essentially a ‘‘shooting method’’ (Roberts & Shipman, 1972).

2.9 Base case parameters

In the remainder of this paper, we will present numerical and analytical

solutions to the equations above using (unless otherwise specified)

a base case set of parameters representative of plagioclase feldspar
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weathering (parameters are listed in Table 1). These parameter values

are taken from Li et al. (2014), White and Brantley (2003), and

references therein.

3 INSIGHTS FROM ANALYTICAL SOLUTIONS
(ADVECTION ONLY)

Equations 11, (12), and (13) can be solved numerically, but insights

can also be gained by investigating exact and approximate analytical

solutions that arise under various assumptions. Below, we will develop

such several solutions and discuss the insights they generate into

controls on the location and thickness of the weathering front in a 1-D

vertical ‘‘slice’’ of a hillslope at a given lateral co-ordinate x, or where

the thickness of the saturated zone H(x) is known. In this section,

we will assume that diffusion is not important. The next section will

consider the case where it dominates.

We will use the terms weathering front and weathering zone through-

out the remainder of this paper. Weathering front refers to the location

of the steepest rate of change of M with depth, which is also (by

definition) the inflection point of the curve describing M. The weather-

ing zone should be taken as shorthand for the submerged weathering

zone. It is the region around the weathering front in which M is chang-

ing appreciably with depth within the saturated zone. For simplicity of

expression in the discussion, the term excludes the region above the

saturated zone, as it is outside the domain of the model considered

here. The region above may be unsaturated saprolite or soil in which

weathering continues to take place, or it may be that the upper extent

of saturation coincides with the ground surface, which is being low-

ered by erosion. Regardless the term ‘weathering zone’ will only refer

to the region within the model domain.

3.1 1-D vertical-only flow

To begin, we can consider a case that is already well studied: that of

flow in a column without lateral flow. If we assume that the horizontal

flux is zero qx = 0, Equation 13 shows that the vertical flux rate qz

must be constant. Assuming variations in 𝜙 can also be neglected,

there is an exact solution to the system of differential equations:

C(z) = Ceq
(

1 −
( w

k𝛿

(
1 + tanh

( z − zw

𝛿

))))
(14)

M(z) = Ceq

kn𝛿
(−q∗

z − 𝜙w)(
(

1 − tanh
( z − zw

𝛿

))
.

This solution can be checked by substituting it into the equations

above. Li et al. (2014) obtained an equivalent solution, though their

formulation is slightly different. Here zw [L] and 𝛿 [L] are constants of

integration.

These functions are sigmoidal curves centred on zw , in the sense

that at zw , the rate of change of both curves is greatest. We will refer to

zw as the ‘‘location’’ of the weathering front, although the weathering

may be substantial at that point. The value of 𝛿 controls the steepness

of the weathering front, with small 𝛿 implying a sharp front and large

𝛿 implying a broad, gradual front. The precise relationship of zw and 𝛿

to other parameters will depend on the boundary conditions applied.

3.1.1 Infinite column

In the simplest case, we could assume that the system is effectively

infinitely long, with C = CH at z = ∞, and M = M0 (the parent rock

mineral content) at z = −∞. The ‘‘location’’ for the weathering front

relative to the origin is arbitrary, as it is not constrained by any point

of reference. We can therefore choose to say that at z = zw the rock

TABLE 1 Base case parameters representative of plagioclase feldspar weathering, along with assumed hillslope,
recharge, and landscape incision rates

Parameter Base-case value Units Description

k∗ = 2.5 ×10−6 mol m−2 year−1 Area-specific reaction rate

F = 265.44 g mol−1 Formula weight

𝛽 = 9 - Surface roughness factor

𝜌 = 2.66 ×106 g m−3 Mineral density

D = 2 ×10−4 m Mineral grain diameter

𝜙0 = 0.15 - Porosity of parent rock

𝜙s = 0.215 - Final volume of secondary mineral precipitation

nij, n = 0.8 - Stoichiometric ratio

Dm = 0.0315 m2 year−1 Molecular diffusion coefficient

Ceq = 9.68×10−1 mol m−3 Equilibrium concentration

M0 = 3.16×103 mol m−3 Mineral content of parent rock

CH = 0 mol m−3 Concentration of recharge

K0 = 11 m year−1 Permeability of unweathered rock

r = 0.3 m year−1 Recharge rate

L = 250 m Hillslope length

x = 25 Location along hillslope from divide|∇h| = 0.03 Total hydraulic head gradient

Hb = 4 m Depth of circulation below stream/valley

𝜔 = 3 ×10−5 m year−1 Rate of stream/valley incision
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is half weathered (M = M0∕2). Substituting these into (14) provides a

system of equations that can be solved to give:

w = (−q∗
z ) ×

Ceq − CH

M0n + 𝜙Ceq
, (15)

𝛿 = 2w
k

, (16)

where (−q∗
z ) is the steady flow rate through the column. Substituting

these into (14) gives

C(z) = Ceq × 1
2

(
1 − tanh

( z − zw

𝛿

))
, (17)

M(z) = M0 × 1
2

(
1 − tanh

( z − zw

𝛿

))
. (18)

The term 1

2
(1 − tanh(·)) has a sigmoidal form that varies from 1 at

−∞ to 0 at ∞. The maximum rate of change is located at z = zw and

is equal to 1∕(2𝛿). About 75% of the change in C and M occurs over

a distance of 2𝛿 between z = −𝛿 and z = 𝛿 (about 96% occurs in a

range of 4𝛿). As the lower panels in Figure 1 suggest, 2𝛿 is the distance

that would be required for M to go from 0% weathered to 100% if it

were changing (in space) at the maximum rate.

The rate of weathering front propagation w in this case is a

well-known expression (Lichtner, 1988) that arises from the balance

between the supply of weatherable material to the reaction front as it

propagates, wM0n, and the rate they are carried away by the moving

fluid phase, q∗
z Ceq. The term 𝜙Ceq) added to the denominator accounts

for the equilibrated pore fluid that arrives with the supply of weather-

able material and can be ignored because it is much smaller than

M0n.

3.1.2 Finite column

Moving closer to a realistic scenario, we could instead assume that

we are interested in a finite ‘‘window’’ of weathered and weatherable

material that extends from an upper location (at z = H) where

the concentration of fluid is known to a location at depth (z = 0)

where rock is unweathered. The value of M is fixed at z = 0, where

unweathered rock is entering the window, at M(0) = M0, and C

is fixed where flow enters at C(H) = CH . Conversely, the aqueous

concentration C(0) = C0 (not necessarily at equilibrium) and primary

mineral remaining M(H) = MH (not necessarily zero) are not known.

Let us further assume this window moves in the direction of flow

(i.e., in the negative z direction) at some known fixed rate w. The shape

of the weathering front (i.e., the profile of C(z) and M(z)) will need to

simultaneously conform to the boundary conditions, and weather rock

at a sufficient rate that dynamic steady state is achieved at this rate

of progression w. This may be feasible for only some combinations of

parameters.

Substituting the finite column boundary conditions into (14) yields

solutions for zw and 𝛿, and C(z) and M(z) that are determined by a set of

implicit equations. We can first define for convenience the sigmoidal

function:

S(z) = 1
2

(
1 − tanh

( z − zw

𝛿

))
. (19)

Using this, implicit equations determining zw and 𝛿 can be written as

−q∗
z = w𝜂 × 1 − S(H)

S(0)
, (20)

𝛿 = 2w
k

× Ceq − S(H)Ceq

Ceq − CH
, (21)

and the solutions for C(z) and M(z) are given by solving

Ceq − C(z)
1 − S(z)

= Ceq − CH

1 − S(H)
, (22)

M(z)
S(z)

= M0

S(0)
. (23)

Some simplification has been introduced based on the assumption

that the mineral is relatively abundant and insoluble, so M0n ≫ 𝜙Ceq .

The dimensionless quantity

𝜂 = M0n
Ceq − CH

(24)

represents the volume of water at initial concentration CH that would

be required to fully weather a unit volume of rock with initial content

M0. It varies inversely with solubility of the rock in the inflowing water

and can be thought of as the resistance of the rock to dissolution.

Recharge arrives with concentration CH and can dissolve weathering

products until it reaches concentration Ceq . The amount it must dissolve

(per unit of volume rock) in the parent material is M0n.

The location of zw in this finite column case turns out to be

highly sensitive to the dimensionless ratio w𝜂∕(−q∗
z ) in (20), which

represents the balance between the rate that weatherable minerals are

moving into the window 0 < z < H, and the rate dissolved products

are removed if the inflowing water is allowed to reach equilibrium.

Equation 15 is equivalent to w𝜂∕(−q∗
z ) = 1, showing that this balance

holds in the infinite case regardless of the values of zw and 𝛿. Here,

this w𝜂∕(−q∗
z ) ratio needs not necessarily be equal to 1 (though it must

be close), but zw and 𝛿 must be chosen so that Equation 20 is satisfied.

When w𝜂∕(−q∗
z ) is large, zw is close to H, and considerable residual

unweathered mineral MH remains at the top of the column at z = H

and passes out of the solution domain. Conversely, when it is small, zw

is close to 0, and the fluid may not have a chance to reach equilibrium

before it leaves. For values of w𝜂∕(−q∗
z ) that are too small or too large,

there may be no value of zw that satisfies the boundary conditions.

This behaviour can be understood intuitively as arising from the

limited degrees of freedom available for the solution to satisfy the

requirement that the weathering front propagate at rate w. It can only

modify the values of the outflow concentration C0 or the residual

mineral content MH . If the thickness of the weathering front is small

compared with H, then zw can be chosen to modify C0 or MH sub-

stantially away from their asymptotic values (C0 → Ceq and MH → 0),

but not both. The thickness of the front is on the order of 2𝛿, which

is (again) approximately 4w∕k by Equation 21. Thus, if the front is to

advance ‘‘slowly’’ (w > (−q∗
z )∕𝜂), zw must be within a distance 4w∕k

of the top of the column (z = H) so that the weathering front is not

required to fully weather the rock before it passes out of the domain

(MH
> 0). If it must advance ‘‘quickly’’ (w < (−q∗

z )∕𝜂), zw must be within
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a distance 4w∕k of the bottom of the column (z = 0) so that the fluid

reacting with the fresh rock is far from equilibrium (C0
< Ceq).

3.2 Lateral flow—homogeneous K

Let us now consider the case of a homogeneous aquifer but ignore

the effect of feedbacks with permeability and porosity (this will be

relaxed in subsequent sections). The key difference between this and

the column considered above is that in this case, the fluid flux rate is

not a constant, but instead varies in z. This makes it possible to look

for a value of zw that provides the ‘‘right’’ flux rate to carry solutes

away at the rate required by the supply of fresh rock and satisfies the

boundary conditions.

This reasoning is the basis for the approximate analytical solution

for a homogeneous aquifer provided in this section. The solution is

based on the assumption that the vertical flux rate is relatively constant

within the weathering front, but that flux rate is the ‘‘right’’ one.

Let us assume that the aquifer is draining to a stream that is

incising at rate 𝜔. To maintain dynamic steady state, the weathering

front advance rate must ‘‘keep up’’ with incision rate, so w = 𝜔. The

elevation of the impermeable surface at z = 0 is also assumed to

lower (through an unspecified process) at the rate of stream incision,

so that its position relative to the stream is constant.

In order to propagate at rate 𝜔, the weathering front must be at

the location within the hillslope where the flux is sufficient to remove

weathering products at the rate they are supplied. The effective

vertical flux rate in a homogeneous aquifer varies linearly with depth

as −q∗
z = r z

H
(see companion paper Harman and Kim, 2018). We will

therefore assume that the flow rate at the inflection point of the

weathering front zw is

−q∗
z (zw) = r

zw

H
, (25)

where r is the recharge at the top of the saturated zone. Let us assume

this rate is approximately constant across the weathering zone and

substitute it into the general solution (14), along with the requirement

that w = 𝜔. This yields a solution similar to the previous one, except

that now,

zw

H
= 𝜂𝜔

r
× 1 − S(H)

S(0)
, (26)

𝛿 = 2𝜔
k

× Ceq − S(H)Ceq

Ceq − CH
. (27)

Figure 2 shows the relationship between zw∕H and H for a number of

cases of 𝜔𝜂∕r predicted by this analytical approximation. To calculate

each curve in the plot, the base case parameters 𝜔 = 30 m Ma−1 and

r = 0.3 m year−1 have been held fixed, and the weathering resistance

term 𝜂 has been varied between curves. The curves were determined

by varying the gradient |Δh| to obtain a range of aquifer thicknesses H

at x = 25 m (varying |Δh| means the total flux crossing the modeled

profile is held constant, but the flux per vertical unit of distance is

varied). Figure 2b,c shows the full profiles of C(z) and M(z) for the

case of H = 10 m for both the numerical and approximate analytical

solutions. The results are very close to one another in most cases.

They diverge only for C(z) close to the bottom boundary, where −q∗
z

FIGURE 2 Weathering fronts in the absence of feedbacks with porosity and permeability for base case parameters, with diffusion neglected. (a)
The location of the steepest part of the weathering front zw as a proportion of the saturated thickness H is determined primarily by the
dimensionless ratio 𝜔𝜂∕r. There is some sensitivity to the saturated thickness H because the boundary conditions at z = 0 and z = H can
influence the shape of the front (rather than just its upper and lower limits) if H𝜔𝜂∕r is within a distance 4𝜔∕k of the boundary. For the base case
parameters 4𝜔∕k = 1.8 m. (b,c) The analytical approximation given by (26) and (27) closely match the numerical solutions for the vertical profile
of dissolved phase concentration (b) and primary mineral remaining (c). Here, we have set qx so that H = 10 m for the base case parameters. The
‘‘width’’ of the front 2𝛿 is the approximate distance over which C and M are changing, so long as they are not affected by the boundary
condition. The circular marker in each plot gives the location of the inflection point zw , where the profile is changing most rapidly
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is changing rapidly over the 2𝛿 thickness of the weathering front. The

approximate solution is based on the assumption of a constant −q∗
z ,

and so cannot capture the behaviour as accurately there.

The results show that the relative location of the weathering front

within the aquifer (zw∕H) where the w = 𝜔 condition is satisfied

is largely controlled by the dimensionless ratio 𝜔𝜂∕r. The 𝜔𝜂∕r ratio

captures the effects of recharge rate, mineral solubility, and incision

rate. Values closer to 1 imply lower solubility, higher incision rates,

and lower recharge rates. Values closer to 0 imply the opposite.

Equation 27 shows that the thickness of the weathering zone (which

is around 2𝛿) as a proportion of the total thickness H varies inversely

with a Damkhöler number kH∕4𝜔 that depends on stream incision

and reaction rates. For large kH∕4𝜔, the weathering front is a sharp

transition, whereas for small kH∕4𝜔, it is a gradual change over the

thickness of the aquifer.

When the weathering front is close to the boundary (i.e., when

𝜔𝜂∕r ⪅ 0 + 4𝜔∕(kH) and/or 𝜔𝜂∕r ≿ 1 − 4𝜔∕(kH)), the boundary con-

ditions have some influence on the location zw through the term

(1 − S(H))∕S(0). The region where the boundary conditions might have

an influence is shaded grey in Figure 2. The reaction rate k only affects

the location of the weathering front zw through these terms due to its

influence on 𝛿. This influence can be seen in Figure 2a in the deviation

of zw∕H from 𝜔𝜂∕r in the shaded region.

This suggests that we can distinguish between two types of profiles:

a completely submerged profile where weathering is largely complete

below z = H and an incompletely submerged profile where residual

weatherable mineral reaches the top of the saturated zone. In the

first case, the location of zw is only determined by the need to find

the ‘‘goldilocks’’ level zw∕H = 𝜔𝜂∕r at which the solute transport rate

matches the rock supply rate, and 2𝛿 = 4𝜔∕k. In the second case,

the proximity to the upper boundary does have an effect on zw and 𝛿,

and some portion of the weathering of M occurs in the unsaturated

zone, and/or M is removed by erosion (both of which occur outside

the domain of the model developed here). These can be distinguished

quantitatively by 𝜔𝜂∕r ≿ +4𝜔∕(kH) < 1 and 𝜔𝜂∕r ≿ +4𝜔∕(kH) > 1,

respectively. Similar concepts and terminology have been suggested by

Bazilevskaya et al. (2012) to distinguish regimes in which weatherable

mineral is completely removed in the subsurface or reaches the

surface, where they are also referred to as ‘‘local equilibrium’’ and

‘‘kinetic limitation’’ regimes. Here, there is no direct connection to

surface erosion though, because H is the top of the saturated zone,

not the ground surface (though it may be colocated with it), and the

rate of advance is set by stream incision.

3.3 Lateral flow—thin weathering zone

approximation

So what happens when the weathering does increase porosity and

permeability? Higher K in (13) means that q∗
z declines faster, as more

water is partitioned to lateral flow (per unit increment of depth).

Under the steady-state assumptions used here, this will not mean less

water reaches the weathering zone but rather that the thickness of

the saturated zone above a completely submerged weathering zone

will be less. As shown above, the location of the weathering front is

determined such that the ‘‘right’’ amount of flow passes through it

to remove the weathering products. All excess recharge is diverted

laterally above the weathering front. If the amount of flow passing

through the weathering front were to decline, the rate of weathering

front advance would decline relative to the rate of stream incision, and

the front would ‘‘rise up’’ the profile (in a relative, not absolute, sense)

until it captured sufficient vertical flux to propagate at the required

rate, or for M to be removed by erosion.

Consequently, only the increase in permeability that occurs within

the weathering zone can have any affect on the position of the

weathering front zw or thickness 2𝛿. One can imagine a limiting case

in which the weathering zone is relatively ‘‘thin’’ (small 2𝛿) such that

the amount of lateral flow that occurs within it is relatively small,

even with the increased permeability. In that case, the vertical flux

through the weathering zone (which is responsible for carrying away

weathering products) will be determined by the ability of the aquifer

below the weathering zone to drain the water laterally.

If that is the case, we can essentially ignore the weathering zone

thickness and simply try to determine the thickness of aquifer below

the weathering zone necessary to drain the weathering front at the

required rate. That rate will be −q∗
z = 𝜔𝜂, because we do not need

to consider the effect of any boundary conditions on the flow. If

that rate of vertical flow holds across the length of the hillslope,

then it must balance the rate of lateral flow at any location x, so

−q∗
z x = K0zw|∇h|, where K0 is the hydraulic conductivity of the rock

below the weathering zone. This can be solved to give

zw = x𝜂𝜔
K0|Δh| , (28)

which is independent of the recharge rate r and H. This expression

suggests that the position of the weathering front in this case is

determined largely by the hydraulic properties of the rock below the

weathering front, not above it.

3.4 Lateral flow—thick weathering zone

approximation

We can also attempt to develop insights for the case where the

thickness weathering zone cannot be neglected, and lateral flow

along the weathering zone itself is an important pathway by which

weathering products exit the hillslope. This may be the case if the

weathering front is very gradual, or when the permeability of the

unweathered bedrock is very low.

To do this, we will divide the aquifer into three zones (below, above,

and within the weathering zone) and construct coupled water and

solute mass balance equations for each by integrating the governing

equations vertically over the zones. To solve the resulting integrals,

we will assume that C and M are constant above and below the

weathering zones and vary linearly within the weathering zone. For a

completely submerged weathering zone, C and M will be assumed to

vary at a rate proportional to 1∕(2𝛿). When the weathering zone is not

completely submerged, C will be allowed to vary at a rate that ensures

the boundary condition C(H) = CH is satisfied.

The mass balance equations are presented here, whereas additional

details can be found in Appendix A. The three zones are defined as

the following:

• Below the weathering zone (0 < z < Hp): Here, the rock is not

yet altered (M = M0), and the fluid is completely equilibrated
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(C = Ceq), so 𝜙 = 𝜙0 and K = K0 (the permeability of the parent

rock) and the vertical flux q∗
z varies linearly.

• Within the weathering zone (Hp < z < Hp + Hw): Here, C and

M are assumed to vary linearly at a rate given by 1∕(2𝛿), and

so 𝜙, K, and q∗
z are also varying (the latter two non-linearly). In

completely submerged profiles, Hw = 2𝛿, and the weathering

front is assumed to be entirely contained within 0 < z < H.

Otherwise, Hw only refers to that portion of the weathering zone

that is within the saturated zone, and Hw is some fraction f of 2𝛿.

• Above the weathering zone (Hp + Hw < z < Hp + Hw + Hs = H):

Here, 𝜙 = 𝜙0 + 𝜙m and K = Km (the permeability of rock once

completely weathered with respect to the mineral of interest).

The thickness of this zone, Hs , is zero in incompletely submerged

profiles.

The total saturated thickness is the sum of these parts:

H = Hp + Hw + Hs. (29)

Water balance requires that the total recharge upslope of location

x must be balanced by the lateral flux through the three zones:

rx = ∫
Hp

0
K0|Δh|dz + ∫

Hp+Hw

Hp

K(z)|Δh|dz + ∫
H

Hp+Hw

Km|Δh|dz. (30)

The three terms on the right are lateral flux of water below, within,

and above the weathering zone, respectively. They differ only in the

lateral conductivity assumed to apply in each zone. K is constant in

the first and last terms, and so these integrals can be solved trivially.

The permeability within the weathering front varies however, so the

integral cannot be simplified easily.

Solute mass balance requires that nM0
𝜔x, the rate primary minerals,

enter the weathering zone upslope of x, plus the solutes brought in

with recharge at the top of the weathering zone CHrx balance the rate

that the resulting solutes are carried away by the lateral flow below

and within the weathering front. Thus,

nM0𝜔x + CHrx = ∫
Hp

0
CeqK0|Δh|dz + ∫

Hp+Hw

Hp

C(z)K(z)|Δh|dz. (31)

Here, the first term, representing lateral export of solutes below the

weathering zone, is again trivial to integrate, because the integrand is

constant. However, in the second integral, both K and C vary in the

vertical.

In addition to these mass balance constraints, we must also

ensure that the boundary conditions are properly accounted

for. This is particularly important in the case of an incom-

pletely submerged profile. Let us call the vertical flux at

zw as −qw . We will assume that (20) and (21) apply

(with −q∗
z → −qw) so

−qw = 𝜂𝜔
1 − S(H)

S(0)
, (32)

𝛿 = 2w
k

× Ceq − S(H)Ceq

Ceq − CH
. (33)

This vertical flux of water through zw must be equal to lateral flux

below zw:

−qwx = ∫
Hp

0
K0|Δh|dz + ∫

zw

Hp

K(z)|Δh|dz. (34)

Equations (29)–(34) are a sufficient set of constraints to determine

the values of H, Hp , Hw , Hs , zw , and 𝛿 and will be referred to as the thick

weathering zone approximation. Appendix A gives an iterative method

for doing so that involves linearizing the variations in C and M within

the weathering zone.

This set of equations can be simplified in the case of a completely

submerged profile. In that case, we can assume Hw = 2𝛿, S(H) =
0, S(0) = 1, zw = Hp + Hw∕2, and the size of Hs is immaterial.

Equations (31)–(34) are then sufficient to characterize the system

(using the same linearization method to handle the integrals, as given

in Appendix A). These equations can be combined to give a simpler

form of (31):

𝜂𝜔x =
(

zw − 2𝜔
k

)
K0|Δh| + 4𝜔

k
KmF∗

C|Δh|, (35)

where F∗
C

is a constant that accounts for the variations in K and C in

the weathering zone. F∗
C

decreases with larger Km∕K0. When K does

not vary with M, F∗
C
= 0.5, and for the base case parameters (for which

weathering increases permeability by a factor of 6), F∗
C
≈ 0.2. In the

limit of a completely impermeable bedrock (i.e., K0 = 0), F∗
C
= 1∕20.

This equation captures the balance that must be struck between

permeability, lateral hydraulic gradients, solubility, and reaction rates

when the unweathered bedrock is impermeable and diffusion can be

neglected. It reduces to (28) when 𝜔∕k is small, as we would expect.

However, when K0 = 0, we see that all terms with zw disappear, and

𝜔 cancels, leaving

|Δh| = k𝜂x
4KmF∗

C

. (36)

This implies that in the limit where lateral flow along the weathering

zone dominates, the weathering front elevation zw is not determined

by the model laid out so far. As we shall see in Section 5 though, it can

be determined by the constraint (36) places on the hydraulic gradient|∇h|.
3.5 Comparison with numerical solutions

The thick and thin weathering zone approximations given were eval-

uated and compared with numerical solutions for the base case

parameters. Several parameters were also varied to explore the sensi-

tivity of the solutions and illustrate insights gained from the analytical

approximations. The results are shown in Figure 3.

For the parameter sets explored, the thick weathering zone approx-

imation (dashed line) matches the numerical result very closely in all

cases apart from those where the thickness of the weathering zone

approaches the saturated thickness (e.g., the case with the smallest

ks). The deviation in those cases can be attributed to the large change

in the vertical flux rate across the weathering zone, in violation of the

assumptions.

The thin weathering zone approximation tends to overestimate the

location of zw obtained from the numerical solution (solid line). Unsur-
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FIGURE 3 Sensitivity of the profile of primary mineral content M to various factors. The third column of plots above (plots c, g, k, etc.) represents
the vertical profile at a distance of 25 m from the groundwater divide for the base case parameters (see Table 1). (a–d) Varying the permeability of
the weathered rock (by varying the final porosity of the weathered rock) has only a small effect on the weathering front location zw , and varying
the recharge rate (e–h) has almost no effect. (i–l) The reaction rate modifies the thickness of the weathering zone, but not its location. (m–p) The
solubility of the rock, however, has a strong effect, as does the distance downslope from the divide (q–t) and hydraulic head gradient (u–x)

prisingly, it does better for larger k (plot l), which gives a thinner

weathering zone. More surprisingly perhaps, it is nearly exactly right

for the case where weathering does not affect the permeability (plot

a) but becomes increasingly inaccurate as weathered permeability

increases. This can be understood by considering the thick approxima-

tion Equation 36. When K0 = Km , the factor F∗
C

that accounts for the

vertical variation in lateral flow through the weathering zone equals

0.5. This causes the term accounting for front lateral flow within

the weathering front to exactly cancel the −2𝜔∕k part of the term

accounting for lateral flow below the weathering front. The resulting

equation can be rearranged to yield an expression identical to the thin

weathering zone approximation (28).

The relatively small difference between the thin approximation

and the numerical results suggests that in the cases examined here,

the porosity–permeability feedbacks are not critical in controlling the

position of the weathering front. The reason why it can be seen by

considering the vertical distribution of water and solute mass fluxes

moving laterally, as shown by the pink and blue shaded regions in
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Figure 3. In most cases, the majority of the water flux exits the system

above the weathering front and consequently has a low concentration

of weathering products. The water below the weathering front is

saturated in weathering products and carries away the majority of

the weathered mass, despite being a much smaller flux of water.

The lateral flux of weathered solutes within the weathering zone is

greater than the lateral flux below per unit vertical distance because of

the porosity–permeability feedbacks, but the limited thickness of the

weathering zone means that contribution of this to the total solute

flux is relatively small.

This explains the sensitivity of the weathering front to the parame-

ters shown in Figure 3. Increasing the permeability of the weathered

rock does drive the weathering front slightly deeper, but the effect is

not very great, even over a 22-fold change in Km . The lateral flux of

weathering products in the higher permeability material is still small

compared with the vertical flux into the unweathered zone. Changing

the recharge rate r has no apparent effect at all, as the extra water

moves laterally above the weathering front and does not carry away

extra solutes. Changing the reaction rate k∗ alters the thickness of the

weathering front but not the location.

Two of the parameters varied in Figure 3 relate to the location of the

vertical profile considered in the context of the hillslope as a whole:

x and |∇h|. As the distance downslope from the ridge x is increased,

more flow must be transported from upslope and so the thickness of

the aquifer below the weathering front must increase. Alternatively, if

the hydraulic gradient |∇h| is decreased, the saturated thickness must

increase to compensate. However, |∇h| varies in x due to variations in

the elevation of the impermeable base B and the saturated thickness

H. And the saturated thickness H is itself determined by the model

presented here.

This means that when considered in the context of the hillslope,|∇h| is not a free variable but rather must be determined along with

the other parameters. This point will be returned to in section 5. First

though, we must consider the role of diffusion.

4 INSIGHTS FROM ANALYTICAL SOLUTIONS
(ADVECTION AND DIFFUSION)

4.1 Advective versus diffusive transport

The above numerical model and analytical solutions are derived under

the assumption that advection dominates the transport of weathering

products away from the weathering front. What happens if diffusion

dominates instead? When is this likely to be the case?

Analytical solutions that incorporate both diffusion and advection

are not available. However, we can estimate the potential importance

of diffusion by calculating a Peclet number for the weathering zone.

The Peclet number is the ratio of the rate of advection to the rate

of diffusion. The advection rate is set by the pore fluid velocity q∗
z∕𝜙.

The diffusion rate declines with distance as 2Dm∕Δz. The relevant Δz

is the thickness of the reaction zone Hw .

We can use the results derived above for a completely submerged

profile to obtain a first-order estimate of the flow rate and thickness

of the reaction zone in the absence of diffusion and use the calculated

Peclet number to determine whether the assumption that diffusion

is negligible can be ignored. If we find that Pe ≫ 1 or even Pe∼ 1

it is unlikely that diffusion affects the location or thickness of the

weathering front. However, if Pe ≪ 1, this cannot be said. Thus,

setting Δz = 2𝛿 = 4𝜔∕k, and −q∗
z = 𝜔𝜂. This gives

Pe = 2𝜂𝜔2

kDm𝜙
. (37)

This implies that (assuming weathering keeps pace with the rate of

incision) the relevance of vertical diffusion within the weathering zone

varies with the square of the incision/rock supply rate, 𝜔2. Advection

dominates when incision is rapid, whereas diffusion dominates when it

is not. For the base case parameters (with 𝜙 = 𝜙0), we have Pe= 14.8.

This suggests advection dominates in the base case parameters. We

might expect that a numerical solution that includes diffusion would

deviate only slightly from the solution provided above as a result.

4.2 Weathering of an impermeable bedrock

by diffusion

When the permeability of the bedrock is very small, diffusion may be

the only way weathering products can be transported away from the

weathering front. Advection laterally through the weathering zone is

possible, but this is only capable of carrying away sufficient solutes to

keep up with incision if the weathering zone is sufficiently thick.

Is it possible for diffusion upwards from the weathering front (i.e.,

against the direction of vertical advective flow) to drive sufficient

weathering products into the into the overlying aquifer and then out

of the system? Here, we will consider this case and attempt to derive a

relationship between diffusive transport and the rock supply rate. Let

us assume that the thickness of the weathering zone is relatively small,

and so lateral flow along the weathering front itself can be neglected.

Consequently, all lateral flow is in the saturated zone above the

weathering zone (Hs , as defined above). Therefore, we will set z = 0

at the weathering front, and let K = Km throughout (i.e., permeability

is homogeneous). The vertical flux rate in this case declines linearly

with depth as −q∗
z = rz∕H(x) = zKm|Δh|∕x. The weathering reaction

is assumed to occur only at this lower boundary, where it maintains

the concentration at equilibrium. This is represented by the boundary

condition C(x,0) = Ceq at z = 0. Equation 1 then has a solution:

C(x, z) = Ceq

(
1 − 𝛾 Erf

(
z

HD(x)

))
, (38)

where Erf() is the error function, HD defined as

HD(x) =

√
2Dmx𝜙
Km|Δh| , (39)

and 𝛾 is a value that depends on HD and H (see Appendix A). We

have neglected the terms arising from transforming (1) into a moving

frame of reference, which are small when 𝜔 is small relative to r∕𝜙,

and would disappear in later results anyway.

The variable 𝛾 accounts for the constraint that diffused solutes are

removed laterally within a distance H(x), and varies approximately as

𝛾 ≈ 1 − e−H∕HD . This converges rapidly to 1 if H > HD (i.e., when the
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back-diffusing solutes are not limited by the thickness of H). This will

be assumed to be the case for subsequent results.

The weathering front advance rate can be obtained by setting

the supply of weatherable minerals equal to the rate of removal of

weathering products from the weathering front by diffusion, so

nM𝜔 = −𝜙Dm
𝜕C
𝜕z

||||z=0
, (40)

so 𝜂𝜔 = 2Dm𝜙

HD

√
𝜋
. (41)

Substituting the definition of HD (39) and rearranging then gives us

𝜂𝜔 =
√

2Dm𝜙Km|Δh|
𝜋x

. (42)

This provides an expression for the diffusion-dominated case that

is analogous to (35) for the advection-dominated case.

5 THREE MODES OF HILLSLOPE-SCALE
FEEDBACK BETWEEN LATERAL FLOW AND
WEATHERING

Equations 35 and 42 describe the essential balance between the supply

of fresh rock to the weathering zone in a hillslope and the capacity

of the hillslope to transport the resulting weathering products away

through lateral flow. The head gradient |Δh| appears in each of these

and has been treated up to now as a fixed parameter. However, it is a

gradient that arises from the broader context of the hillslope and the

valley to which it is draining. It is therefore as much a consequence of

the coevolved hillslope structure as it is a driver of that coevolution.

Here, we will consider this gradient and the hillslope architecture

implied by it in several cases.

From the analysis so far, we can distinguish three ‘‘end-member’’

configurations of hillslopes implied by Equations 35 and 42 (see

Figure 4):

• Diffusing up. Parent rock permeability is low and the weathering

zone is thin—consequently, advection alone is not capable of

removing weathering products. Instead, they diffuse back up

into the aquifer above the weathering zone, where lateral flow

is sufficient to remove them at the required rate. In this case,

(42) applies.

• Draining down. The permeability of the parent rock K0 is suf-

ficiently large (perhaps due to fracturing) that deep drainage

vertically through the weathering front carries the great major-

ity of weathering products away. In this case, the last term in

(35) can be neglected, so that (28) applies.

• Draining along. Although the permeability of the parent rock is

low (effectively zero), weathering is able to increase permeability

sufficiently for lateral drainage within the weathering zone itself

to remove the weathering products. In this case, we neglect the

first term in (35), so that (36) applies.

These three possibilities each imply a different relationship between

𝜔 and |∇h|. Here, we will explore these relationships in order to extend

the 1-D analysis presented above to a 2-D slice of a hillslope. We will

also determine the maximum relief of the bedrock, which is to say,

Relief = Hp(0) − Hp(L). (43)

FIGURE 4 Three ways lateral flow removes weathering products from hillslopes. Each transmits the solutes in a different primary direction, has
a different dependence of bedrock relief on the driving factors (stream incision rate 𝜔, resistance to dissolution 𝜂, reaction rate k, and hillslope
length L), and responds differently to an increase in stream incision (rock supply) rates
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This is not the relief of the surface topography, but it does put a

lower bound on the surface topographic relief.

5.1 Draining down

In the draining down case, we might assume that Km∕K0 is sufficiently

large that the thickness of the overlying aquifer Hs is relatively small,

and the gradient of the bedrock–saprolite interface Hp provides the

primary hydraulic gradient driving flow in the system. If we assume

that the gradient of the impermeable boundary B is small (so that the

requirements laid out in Harman and Kim (2018) are met) then Δh ≈

∇Hp = dHp∕dx. This means we may treat the unweathered bedrock

itself as a hydraulic groundwater aquifer with recharge rate 𝜂𝜔, and

we can simply use the analytical solution for this case (Equation 12

of the companion paper, Harman and Kim, 2018) to predict its upper

elevation Hp:

Hp(x) =
√

H2
bp
+ 𝜂𝜔

K0

(
L2 − x2

)
, (44)

where Hbp is specifically the thickness of the permeable unweathered

bedrock at x = L, rather than the saturated thickness. We can then

obtain the elevation of the weathering front as zw = Hp + 𝛿. Using

this equation, the hydraulic gradient at a location x downslope of the

divide can be approximated as

|Δh| = x𝜂𝜔
K0Hp(x)

. (45)

Note that this equation is entirely independent of the recharge rate

r and the conductivity of the weathered rock, and zw is only dependent

on reaction rate k through the 𝛿 term.

This simple approximation of the weathering front elevation is very

similar to that suggested previously by Rempe and Dietrich (2014).

Indeed, Equation 44 is almost identical to their Equation 3, with two

differences. First, where (44) has the term 𝜂, Rempe and Dietrich

FIGURE 5 (a) Relationship between rock supply rate (i.e., the rate of stream incision) and bedrock relief required to export weathering products
from the hillslope at a matching rate, assuming base case parameters (representative of plagioclase feldspar weathering in a humid climate). Each
of the three mechanisms requires a different relief—in a situation where all three might be operating, we would expect the one that requires the
least relief to determine the actual relief. Here, because the bedrock is slightly permeable (K0 = 11 m year−1), the ‘‘draining down’’ requires the
least relief over the realistic range of rock supply rates. ‘‘Diffusing up’’ dominates only for very low incision rates, and ‘‘draining along’’ only for
very high incision rates (and anyway would have a hillslope number Hi> 1, violating the assumptions of the model). The ‘‘draining down’’ result is
sensitive to the thickness of parent rock at the downslope boundary through which water can exit the hillslope (Hbp , dotted red lines). The model is
not technically valid in the grey area, as the assumed recharge rate r is not sufficient to remove weathering products at the rate required to keep up
with rock supplied by channel incision 𝜔𝜂. Rock would need to be removed by physical erosion in those cases.) (b–d) The sensitivity to modifying
various parameters by factors of 1/25, 1/5, 5, and 25. (e,f) The effect of 𝜔 on the thickness of the weathering zone 2𝛿, and the weathering zone
Peclet number. (g) The distribution of 482 observed basin-scale erosion rates for temperate climates reported in Portenga and Bierman (2011)
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(2014) has porosity 𝜙. This difference reflects the different arguments

used to derive the models. Rempe and Dietrich (2014) derived their

model based on the assumption that weathering is initiated when the

original formation water of the rock (occupying the initial porosity

𝜙) has been removed and replaced with reactive water or air. Under

the ‘‘draining down’’ scenario, the unweathered bedrock must be

flushed with approximately 𝜂 pore volumes of reactive water before

weathering is complete. For our base case parameters, 𝜂 = 2612.

Second, Rempe and Dietrich (2014) set the Hbp to zero in order to

determine an upper bound on bedrock relief. As Figure 6 shows,

this thickness has a moderate control on the required relief, and we

therefore include the case where Hbp > 0.

Figure 5 shows the effect of varying several parameters in the

draining down case. The slope used in the numerical solution at each

x is the slope implied by (45). Note that the surface elevation is not

shown here and has not entered into our calculations.

The results show that (44) is a good match to the numerical solution

for zw . As implied by the analytical approximation, varying the recharge

rate has no effect on the elevation of the weathering front, only on the

thickness of the aquifer above. The effect of varying the permeability

of the weathered rock is also small. The largest effect comes from

varying 𝜂𝜔∕K0. The toe boundary condition Hb also has an effect on

the position of the weathering front.

The maximum relief of bedrock at the ridge relative to bedrock at

the toe can be written as

Relief deep = L
√

𝜂𝜔

K0

√
H2

b
K0

L2𝜂𝜔
+ 1 − Hbp, (46)

where the −Hbp is included so relief is measured relative to the top

of the parent bedrock (rather than from B) at the toe of the hillslope.

This result implies that the relief necessary to sustain weathering by

deep drainage varies with the rock supply rate as 𝜔1/2.

5.2 Draining along

For the ‘‘draining along’’ case, the thickness of the flow carrying

weathering products is the weathering zone itself Hw = 2𝛿 = 4𝜔∕k, as

K0 ∼ 0. This also implies F∗
C
= 1∕20. Assuming a completely submerged

profile, Equation 36 gives a relationship between |∇h| and x, whereas

(30) can also be used to determine an equation for HS (see Appendix A):

Hs =
r − 5𝜂𝜔

5k𝜂
. (47)

This equation demonstrates that Hs is invariant in x, because

everything on the right of the equation is constant. Consequently,

H′
w(x) + H′

s(x) = 0, and so the potential gradient must be provided by

the bedrock gradient. Therefore, we must have |Δh| = −H′
p(x). Insert-

ing this into (36) and integrating (assuming Hp(L) = 0), we can obtain

Hp(x) =
5k𝜂
Km

(L2 − x2), (48)

which implies that the maximum relief in this case is

Relief lat =
5L2k𝜂

Km
. (49)

This relationship is independent of 𝜔. Increases in the rock supply

rate in this case do not require changes in the relief of the hillslope

but only in the thickness of the weathering zone.

5.3 Diffusing up

For the ‘‘diffusing up’’ regime, we can rewrite (42) as

qx(x) = x
𝜋𝜂2𝜔2

2Dm𝜙
. (50)

This equation suggests that the lateral flow rate must increase

linearly downslope. For this to occur under spatially uniform recharge,

the thickness of the flow must be constant, so as before H′
w(x)+H′

s(x) =
0. Combining the equation above with (3), setting |∇h| = −H′

p(x), and

integrating, we can obtain

Hp(x) =
𝜋𝜂2𝜔2

4Dm𝜙Km
(L2 − x2), (51)

and so total relief is

Relief diff =
𝜋L2𝜂2𝜔2

4Dm𝜙Km
. (52)

This suggests that when back-diffusion balances weathering rates

the relief varies with 𝜔2.

5.4 Synthesis of the three modes, and the principle

of least relief

Figure 6a shows the relief required for the base case (plagioclase

feldspar weathered with 300 mm year−1 of recharge; see Table 1)

if the rate of rock supply by channel incision 𝜔 is varied. Figure 6g

shows the distribution of basin erosion rates from temperate regions

measured using 10Be, as reported by Portenga and Bierman (2011).

Most are within the range of 1–10,000 m million year−1.

The ‘‘diffusing up’’ mode requires very little bedrock relief to export

weathering products when 𝜔 is very small, but the required relief

increases rapidly, and for the rate used in Section 3 above (𝜔 =
30 m million year−1) reaches around 600 m (over a 250-m-long

hillslope). For 𝜔 > 5 m million year−1, the relief is enough that

Hi > 1, which means the assumption of scaled lateral symmetry may

be violated in those cases.

The relief required by the ‘‘draining down’’ mode increases more

slowly than ‘‘diffusing up’’ mode (𝜔1/2 rather than 𝜔2) and is less for all

𝜔 > 2 m million year−1. For the base case, ‘‘draining down’’ requires

relief of about 20 m. The result is somewhat sensitive to the thickness

Hbp through which water can exit the hillslope—Less relief is required

when the thickness of permeable parent rock is larger. Advection is

faster at transporting solutes through the weathering zone only once

𝜔 > 20 m million year−1, so it is possible that for slower incision, rates

diffusion has additional effects on the shape of the weathering zone

even while weathering products are removed by downward advection.

The relief required by the ‘‘draining along’’ mode is insensitive to

the incision rate and is always around 420 m (and Hi > 1). However,

as the sensitivity analysis in Figure 6 shows, that value is sensitive

to hillslope length, solubility, and (uniquely of the three mechanisms)

reaction rate k.
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FIGURE 6 Sensitivity of a hillslope in the ‘‘draining down’’ mode to variations in the parameters around the base case. The slope of Hp implied by
Equation 44 was used to set Δh for the numerical and approximate solutions. The gradient colours are interpolated from the 1-D numerical
solution evaluated at a range of x locations. Estimates of zw from the thick and thin weathering front approximations are given with red dashed
and blue dotted lines. The thick weathering front approximation for zw with base case parameters is shown in the lighter coloured line for
comparison. The note that the upper parts of the profiles in plots (d) and (e) extend above the axis range

So which of these three mechanisms will actually dominate in

any given scenario? If we constructed a model that includes all the

processes that contribute to these export mechanisms, we would

likely find that the one that requires the least relief to export the

solutes at the rate required by rock supply would in fact dominate and

would set the steady-state relief. If the higher relief required by the

other mechanisms was imposed as an initial condition in the model,

the ‘‘least relief’’ mechanism would inevitably export solute at a rate

higher than 𝜔 and thus lower the bedrock relief toward its own limiting

required rate.

This reasoning makes it unlikely that the ‘‘diffusing up’’ mechanism

is significant for plagioclase feldspar dissolution. Few landscapes have

𝜔 < 2 m million year−1, and all are deserts where hillslopes are unlikely

to have a persistent saturated zone draining to adjacent streams. The

sensitivity analysis suggests that ‘‘diffusing up’’ may be significant for

more soluble minerals in slowly eroding landscapes.

The ‘‘draining along’’ mechanism also seems unlikely to be significant

within the range of conditions captured by the model assumptions.

However, if the reaction rate k were substantially slower (so that the

weathering zone is thicker than the 1.8 m of the base case considered

here), it may be significant in areas where the unweathered rock is

relatively impermeable.

Equations describing the ‘‘draining down’’ mode were derived under

the assumption that the effects of diffusion can be neglected. How-
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ever, Figure 6f shows that the weathering front Peclet number is less

than 1 for a wide range of realistic 𝜔. Within these cases, we would

expect the effects of diffusion to modify the shape of the weathering

profile, but it is not clear whether diffusion would substantially modify

the pathway by which weathering products are exported.

Strictly speaking, the results shown in Figure 6 are only valid for

where the recharge is in excess of the that required to remove

weathering products at the rate required by 𝜔, that is, r > 𝜂𝜔. The

region where this assumption is violated for the base case parameters

is shown in grey in Figure 6a—about half the Portenga and Bierman

(2011) observations fall in the invalid region under the base case

parameters. In those cases, we would expect that weathering occurs

primarily in the freely draining unsaturated portion of the hillslope

and/or that much of the primary mineral survives to the upper part of

the regolith where it must be removed by erosion.

6 DISCUSSION

6.1 Weathering, lateral flow, and coevolution

The model presented here can be seen as an elaboration of the

hypothesis presented by Brantley et al. (2017) that weathering fronts

and lateral flow pathways are mutually adjusted within hillslopes such

that weathering products are exported at the rate required to keep

pace with stream incision. It also provides a possible explanation for

the observation that in systems with permeable bedrock, weathering

fronts in the subsurface tend to be nested with the most soluble

products removed at depth, and the least soluble higher up (Brantley,

Holleran, Jin, & Bazilevskaya, 2013). This outcome is directly predicted

by Equation 26, which suggests a proportionality between weathering

front elevation zw and 𝜂 (which varies inversely with solubility). It

also demonstrates the circumstances under which a mechanism for

coupling weathering to stream incision similar to that suggested by

Rempe and Dietrich (2014) could arise.

These results suggest mechanisms by which hillslopes' hydrologic

structure may arise from the coevolution of water flow and geochemi-

cal reactions. Beyond insights into the evolution of the critical zone, an

understanding of coevolved hydrologic flow paths adapted to the dic-

tates of geochemical and geomorphic processes is of interest to those

pursuing a ‘‘Darwinian’’ sort of understanding of hydrologic science

(Harman & Troch, 2014). It offers hope that the unknown properties of

the landscape controlling hydrologic function (the storage and release

of water to a stream) are explicable, and potentially predictable, in

terms of the long-term evolution of the system.

The potential importance of Hbp examined in Section 5 highlights the

importance of understanding the physical meaning of B if the ‘‘draining

down’’ mode is actually operating in a real-world case, because Hbp

is nothing more than the depth of B below the weathering zone at

the hillslope toe. The alternative origins discussed in Section 2.2 all

imply a connection between surface processes and topography and

the deepest extent of meteoric water circulation, with implications for

everything that happens in between. Future work might investigate

the feedbacks that arise from this interaction.

6.2 Simplified models as a baseline

for understanding complexity and framing hypotheses

The simplified model presented here could be tested against empirical

data by examining whether the relationships underlying Figure 6

predict variations in the elevation of important weathering fronts

between hillslopes with similar geological settings but differing rates

of overall erosion. Where data on the weathering front elevations are

not available, curves like those in Figure 6 might predict the lower

envelope of overall landscape relief. However, it would be necessary

to determine the hydraulic conductivity of the hillslope material (a

difficult proposition) or assume that it does not vary significantly

(which is dubious).

It may be more useful though as a baseline for understanding

the role of lateral flow processes in more complex situations. The

quantitative relationships presented here could be useful for those

attempting to model weathering and lateral flow processes using more

sophisticated spatially explicit numerical models (Li et al., 2017). We

would expect that a model constructed with assumptions similar to our

simpler model (or in such a way that the assumptions are not violated)

would produce results that are in agreement with it. Our model should

anticipate the relief and dominant solute export pathway of more

complex models over a range of stream incision rates.

However, the insights that have been gleaned so far from the model

allow us to speculate a little on what the effect might be of relaxing

various model assumptions. These speculations amount to hypotheses

that might be tested either through data or more detailed numerical

modeling.

6.2.1 Geochemical complexity

The model presented here is built on the type of simplified kinetic

rock weathering models extensively explored in the geochemistry

literature (e.g., Lebedeva et al., 2010; Li et al., 2014; Maher, 2011).

This model is analytically tractable and can be parameterized based

on measured parameter values. However, it does not do justice to the

full complexity of chemical weathering reactions. Weathering is not

simply the dissolution of one species and the production of another. It

typically involves multiple components being consumed and produced

concurrently and in sequence.

Even so, insights from the analysis above can be applied to under-

stand how more complex reaction sequences play out in hillslopes.

Reactions may be limited not only by the saturation of the fluid by

some dissolved species (as has been assumed here) but by the con-

sumption of important species carried in with the recharge (e.g., acidity

in acid-base weathering reactions or electron receptors in oxidation

reactions). In that case, it may be that the supply of these species

determines the depth of the weathering front. If so, the partitioning

of flow laterally is still an important consideration, because it repre-

sents a loss of unreacted species from the system. This loss will limit

the supply in the reaction zone, creating the (perhaps paradoxical) sit-

uation whereby the overall reaction rate is limited by the availability

of some species that seems abundant in the lateral outflow from the

hillslope. In that case, the vertical location of the weathering front (at

dynamic steady state) will presumably still be such that the supply of

the reactive species with percolating recharge is just sufficient for the
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weathering front advance rate to keep up with the rate of channel

incision.

6.2.2 Fine-scale heterogeneity and the efficiency of the
‘‘draining along’’ mode

The simplified kinetic rock weathering model employs the implicit

assumption that the weathering rock can be treated locally as a homo-

geneous and well-mixed porous medium. Where this assumption is

violated, there may be differences between local parameters and the

‘‘effective’’ parameters that determine the larger scale behaviour. For

example, the value of reaction rate k used in the base case may be

substantially larger than that required to reproduce hillslope-scale pro-

cesses. Recent work (Jung and Navarre-sitchler, 2018a, 2018b) has

demonstrated that fine-scale heterogeneity in permeability can have

significant effects on apparent values of effective weathering reaction

rates k, perhaps accounting for well-documented reduction in reaction

rates over time. Weathering proceeds first along fast flow paths where

the small effective porosity means weathering products can be rapidly

removed by advection. Once primary minerals are exhausted in those

areas, the rate of weathering becomes limited by the rate solutes that

can diffuse between the high- and low-permeability zones. This is

essentially a small-scale version of the process of core-stone weath-

ering in which weathering proceeds from fracture faces (where fluid

is frequently refreshed) into the unfractured block interiors where

solutes must move via diffusion (e.g., Buss, Sak, Webb, & Brantley,

2008). These processes might lead to a smaller effective k in heteroge-

neous weathering zones, which in turn produces a substantially larger

weathering zone. This may mean that in heterogeneous material the

‘‘draining along’’ mode is a substantially more effective mechanism

for exporting weathering products than the analysis presented above

would indicate.

6.2.3 Porosity-permeability feedbacks in weathering

The model also adopts a very simple representation of the effects

of weathering on permeability. It neglects effects on pore morphol-

ogy, size distribution, and connectivity and assumes that secondary

precipitation occurs linearly with primary mineral dissolution. These

deficiencies may not be critical though. The results above suggested

that the increase in permeability with weathering did not strongly

control the location or thickness of the weathering zone. If ‘‘draining

down’’ dominates, it is only really essential to know the permeability

of the unweathered rock. The results for the ‘‘diffusing up’’ and ‘‘drain-

ing along’’ cases hint that it is more important to know the relative

permeability of weathered and unweathered rock than it is to know

the nature of the non-linear increase between these end members.

However, further work in this area is surely required.

6.2.4 Surface erosion and vadose zone weathering

As stated, the model does not directly account for the effects of

weathering in the unsaturated zone, or the effects of surface erosion.

However, nothing in the formulation requires the assumption that

surface erosion and weathering above the saturated zone are unim-

portant. Rather they will alter the conditions at the upper boundary of

the model domain: the recharge r and inflow concentration CH . These

in turn will modify the value of H and the residual mineral content MH

that satisfies the boundary condition that M = M0 at z = 0.

In effect, these boundary conditions communicate the terms of the

‘‘balance of labour’’ between surface erosion, weathering in the vadose

zone, and weathering in the saturated zone in removing minerals

from the system. The more soluble a mineral is, the deeper in the

profile it is weathered, and the more completely developed its profile

(Lebedeva & Brantley, 2013). Relatively insoluble minerals will survive

the relatively low vertical flux rates in the saturated zone and progress

to the vadose zone to be weathered there (perhaps more effectively

due to the greater acidity or availability of oxidants), or to the surface

to be removed by physical erosion.

Depending on the mineral considered, the degree of weathering

M∕M0 of material that arrives in the upper regolith might affect the

cohesion and grain size of that material and so affect the depth of soil

that develops and the slope and upslope area required to transported

regolith by surface erosion and mass movement (Dixon, Heimsath, &

Amundson, 2009). In principle, landscape evolution models could be

modified to account for these effects.

However, it may be the case that (at steady state) the surface slope

required to transport colluvium and the subsurface slope required to

transport weathering products are different. This will lead to variations

in the depth of weathering across the hillslope, with deeper weathering

at the ridge than at the hillslope toe, or vice versa. These differences

may have the secondary effect of modifying the values of CH and r

across the length of the hillslope, violating the assumptions of the

model as presented here. This could produce additional downslope

variations in weathering processes not predicted by this simple model.

It would be interesting to examine these interactions in a fully coupled

model (Li et al., 2017).

6.2.5 Transient recharge dynamics and the importance
of the saprolite water retention curve

Models of geochemical weathering often assume steady-state flow,

as we have here. In reality, recharge is intermittent, arriving seasonally

and as pulses following precipitation and snowmelt. It is worth con-

sidering whether the event-like nature of recharge events could have

a significant bearing on the weathering.

If we relax the steady-state assumption and allow recharge rates r

to vary in time, one might initially expect that this will produce similar

variations in the vertical flux rate q∗
z through the weathering zone,

leading to variations in the overall rate of weathering. In fact, it is

unlikely to be so simple. Under the assumptions adopted, the saturated

aquifer is nearly hydrostatic, and so q∗
z is determined in the model by

mass balance, not by vertical pressure gradients. An increase in r can

be accommodated by increasing the thickness of the laterally flowing

portion of the aquifer or by increasing the lateral pressure gradient

so that qx increases. The rate of vertical percolation can only increase

if qx increases. If an increase in r does not lead to an increase in the

lateral pressure gradient within or below the weathering zone, then

all the additional water will be released laterally above the weathering

zone and will not affect the weathering front advance rate.

Therefore, it is worth asking what determines the effective extent

of H in saprolite under transient conditions. As noted previously, H
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should not be confused with the water table, which represents the

contour of pore water at atmospheric pressure. In fact lateral flow can

occur well above the water table in areas with pore pressure below

atmospheric so long as the pore space remains saturated. Rather H is

the transition from (predominantly) free vertical drainage (in which the

vertical profile of pore water pressure is approximately constant with

depth) to drainage constrained to flow laterally (in which the vertical

profile of pore water pressure is approximately hydrostatic).

Consequently, it may be that the volume of saprolite in which water

is flowing laterally may be less dynamic than the water table itself.

Saprolite often contains fine pores that would require substantial ten-

sion to desaturate (e.g., a 1-𝜇m pore requires about 14 m of hydraulic

tension below atmospheric). In that case, the saprolite will only cease

to be hydrostatic if sufficient tension is supplied by the relief of the

hillslope itself or by root water uptake by plants (which can supply

very substantial amounts of tension). If the saprolite remains at or near

hydrostatic conditions and pores do not desaturate, fluctuations in

recharge could generate rapid variations the pore pressure (and in the

water table) that would lead to rapid variations in the lateral pressure

gradient and therefore the vertical flow rate through the weathering

zone. If the permeability is relatively low, these pressure fluctuations

may not be visible in wells or may be substantially muted.

The consequence however would be a fluctuating flow rate through

the saturated thickness. The importance of these fluctuations depends

on the timescale over which they operate. The timescale for weath-

ering is determined by the reaction rate and the mineral content as

∼ (kM0)−1. This is around 4.7 years for the base case parameters.

Fluctuations in the flow rate over timescales substantially less than

4.7 years (event scale and seasonal variations) would therefore have

little effect on the weathering profile. Fluctuations at longer timescales

(decadal-scale and longer) would presumably matter more, with the

weathering zone thickness presumably reducing during periods of low

flow and expanding during periods of high flow. This is consistent with

observations of changes in apparent weathering rates associated with

shifts in climate over several decades (Manning, Verplanck, Caine, &

Todd, 2013).

Of course, this picture changes substantially in the presence of

fractures and large connected pores. These can desaturate at lower

tensions and may hydraulically disconnect the matrix in a block from

the hillslope-scale pressure gradients. The potential transport-related

effects discussed above are also separate from the any effects that

would arise from temporal variability in the chemical composition or

temperature of the recharge itself. The complexities that might result

from either of these complications are beyond the scope of what we

consider here.

7 CONCLUSION

We have presented a simplified model of weathering within hillslopes

at geomorphic steady state that captures the two-way interactions

between weathering and lateral subsurface flow in hillslopes. The

model couples together (a) the 2-D advection–diffusion reaction

equation, simplified by the assumption of ‘‘scaled lateral symmetry’’

(see companion paper Harman and Kim, 2018); (b) a simplified kinetic

model of rock weathering; and (c) a model of weathering's effect on

porosity and permeability based on the Kozeny–Carmen equation.

The results suggest three end-member modes of solute export,

which we have termed for convenience ‘‘diffusing up,’’ ‘‘draining

down,’’ and ‘‘draining along.’’ Each of these pathways of solute export

requires a different amount of bedrock relief (elevation of bedrock

under the ridge, relative to the elevation of bedrock at the hillslope

toe) in order to export solutes at the rate required to keep pace

with stream incision. The ‘‘principle of least relief’’ suggests that the

pathway that requires the least relief will be the one that operates in a

given scenario. For the example parameters explored here, ‘‘diffusing

up’’ required the least relief at low incision rates, whereas ‘‘draining

down’’ requires the least at higher rates. The ‘‘draining along’’ case is

the least likely condition, but this mechanism may be sensitive to the

presence of heterogeneity. Further study is required on this point.

The three mechanisms elaborated by this model recapituate both

the conceptual models of Brantley et al. (2017) and Rempe and

Dietrich (2014). They suggest a suite of ways the architecture of the

critical zone might be configured to export the products of weathering

of minerals with different solubilities at the pace they are supplied, as

suggested by Brantley et al. (2017). One of the three configurations is

a ‘‘bottom-up’’ control of the sort suggested by Rempe and Dietrich

(2014), though with some important differences. These results serve as

a baseline for framing hypotheses that can inform more sophisticated

analyses of field observations and numerical models.
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NOTATIONS

𝜶 factor in thick weathering zone approximation that

accounts for weathering front asymmetry

𝜷 weathering model surface roughness factor

𝜼 dimensionless ratio of parent rock mineral con-

tent and equilibrium concentration, adjusted for

stoichiometry

∇h total hydraulic head gradient

𝝎 rate of stream/valley incision (L T−1)

𝝓m final porosity once weathering is complete

𝝓, 𝝓0, 𝝓s porosity, porosity of parent rock, porosity infilled by

secondary precipitation

𝝆 mineral density (M L−3)

𝜽 angle the (assumed impermeable) base of the aquifer

B makes with the horizontal

A mineral specific surface area (L−2 M−1)

C, Ceq, CH concentration, equilibrium concentration, and con-

centration of recharge (mol L−3)

Dm molecular diffusion coefficient (L−2 T−1)

D mineral grain diameter (L)
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FC, F∗
C factor that accounts for the variations in K and C

within the weathering front

FW, F∗
W factor that accounts for the variations in K within the

weathering front

F primary mineral molecular (formula) weight (M mol−1)

Hb saturated thickness at the downslope boundary (L)

Hbp thickness of the permeable unweathered bedrock at

the downslope boundary (L)

HD diffusion length scales (L)

Hp, Hw, Hs saturated thickness below the weathering zone, the

thickness of weathering zone, and the saturated

thickness above weathering zone (L)

H total saturated thickness (L)

K hydraulic conductivity (L T−1)

Km conductivity of rock once completely weathered

(L T−1)

K0 conductivity of unweathered rock (L T−1)

k, k∗ reaction rate [1/T], and area-specific reaction rate

(mol L−2 T−1)

L hillslope length (L)

M, M0, MH mineral content, that of parent rock, and at z = H

(mol L−3)

nij, n stoichiometric ratio of moles of solute product per

mole of primary mineral

qp vertical flux from the weathering zone into the

unweathered bedrock (L T−1)

qw vertical flux at the weathering front (L T−1)

qx horizontal component of Darcy flux (L T−1)

q∗
z effective vertical flux adjusted for lateral variations

in the saturated thickness (L T−1)

r recharge rate (L T−1)

R solute source term (mol L−3 T−1)

S saturation index

w weathering front advance rate (L T−1)

x horizontal location along hillslope from divide, parallel

to base B (L)

zw vertical co-ordinate where rock is half-weathered (L)

..

z′
vertical co-ordinate, moving frame of reference (L)

Z scaled-vertical co-ordinate z∕H

z vertical co-ordinate, perpendicular to base B (L)

ORCID

Ciaran J. Harman https://orcid.org/0000-0002-3185-002X

Cassandra L. Cosans https://orcid.org/0000-0001-9121-532X

REFERENCES

Anderson, S. P., von Blanckenburg, F., & White, A. F. (2007). Physical and
chemical controls on the critical zone. Elements, 3(5), 315–319.

Bazilevskaya, E., Lebedeva, M., Pavich, M., Rother, G., Parkinson, D. Y., Cole,
D., & Brantley, S. L. (2012). Where fast weathering creates thin regolith
and slow weathering creates thick regolith. Earth Surface Processes and
Landforms, 38(8), 847–858.

Brantley, S. L., Holleran, M. E., Jin, L., & Bazilevskaya, E. (2013). Prob-
ing deep weathering in the Shale Hills Critical Zone Observatory,
Pennsylvania (USA): The hypothesis of nested chemical reaction fronts
in the subsurface. Earth Surface Processes and Landforms, 38(11),
1280–1298.

Brantley, S. L., Lebedeva, M. I., Balashov, V. N., Singha, K., Sullivan, P. L.,
& Stinchcomb, G. (2017). Toward a conceptual model relating chemical
reaction fronts to water flow paths in hills. Geomorphology.

Braun, J., Mercier, J., Guillocheau, F., & Robin, C. (2016). A simple model
for regolith formation by chemical weathering. Journal of Geophysical
Research: Earth Surface, 121(11), 2140–2171.

Brutsaert, W. (2005). Hydrology. New York: Cambridge University Press.

Buss, H. L., Sak, P. B., Webb, S. M., & Brantley, S. L. (2008). Weathering of
the Rio Blanco quartz diorite, Luquillo Mountains, Puerto Rico: Coupling
oxidation, dissolution, and fracturing. Geochimica Et Cosmochimica Acta,
72(18), 4488–4507.

Carmen, P. C. (1837). Flulid flow through granular beds. Institution of
Chemical Engineers, 15, 150–166.

Dixon, J. L., Heimsath, A. M., & Amundson, R. (2009). The critical role of
climate and saprolite weathering in landscape evolution. Earth Surface
Processes and Landforms, 34(11), 1507–1521.

Harman, C. J., Cosans, C. L., & Putnam, S. M. (2017). Comment on ‘‘a simple
model for regolith formation by chemical weathering’’ by Braun et al.:
Contradictory concentrations and a tale of two velocities. Journal of
Geophysical Research-Earth Surface, 122(10), 2033–2036.

Harman, C. J., & Kim, M. (2018). A low-dimensional model of bedrock
weathering and lateral flow coevolution in hillslopes: 1. Hydraulic theory
of reactive transport, Hydrological Processes https://doi:10.1002/hyp.
13360.

Harman, C. J., & Troch, P. A. (2014). What makes Darwinian hydrology
‘‘Darwinian’’? Asking a different kind of question about landscapes.
Hydrology and Earth System Sciences, 18(2), 417–433.

Jones, E., Oliphant, T., & Peterson, P. (2001). SciPy: Open source scientific
tools for Python. (Tech. Rep.) https://www.scipy.org/citing.html

Jung, H., & Navarre-sitchler, A. (2018a). Scale effect on the time depen-
dence of mineral dissolution rates in physically heterogeneous porous
media. Geochimica Et Cosmochimica Acta, 234, 70–83.

Jung, H., & Navarre-sitchler, A. (2018b). Physical heterogeneity control on
effective mineral dissolution rates. Geochimica Et Cosmochimica Acta,
227, 246–263.

Kozeny, J. (1927). Ueber kapillare Leitung des Wassers im Boden.
Sitzungsberichte Wiener Akademie,136, 271–306.

Lebedeva, M. I., & Brantley, S. L. (2013). Exploring geochemical controls
on weathering and erosion of convex hillslopes: Beyond the empirical
regolith production function. Earth Surface Processes and Landforms,
38(15), 1793–1807.

Lebedeva, M. I., Fletcher, R. C., Balashov, V. N., & Brantley, S. L. (2007).
A reactive diffusion model describing transformation of bedrock to
saprolite. Chemical Geology, 244(3-4), 624–645.

Lebedeva, M. I., Fletcher, R. C., & Brantley, S. L. (2010). A mathematical
model for steady-state regolith production at constant erosion rate.
Earth Surface Processes and Landforms, 35(5), 508–524.

Li, D. D., Jacobson, A. D., & McInerney, D. J. (2014). A reactive-transport
model for examining tectonic and climatic controls on chemical weath-
ering and atmospheric CO2 consumption in granitic regolith. Chemical
Geology, 365, 30–42.

Li, L., Maher, K., Navarre-sitchler, A., Druhan, J., Meile, C., Lawrence, C., ...
Beisman, J. (2017). Expanding the role of reactive transport models in
critical zone processes. Earth-Science Reviews, 165, 280–301.

Lichtner, P. C. (1988). The quasi-stationary state approximation to cou-
pled mass transport and fluid-rock interaction in a porous medium.
Geochimica Et Cosmochimica Acta, 52(1), 143–165.

Maher, K. (2011). The role of fluid residence time and topographic scales
in determining chemical fluxes from landscapes. Earth and Planetary
Science Letters, 312(1-2), 48–58.

https://orcid.org/0000-0002-3185-002X
https://orcid.org/0000-0002-3185-002X
https://orcid.org/0000-0001-9121-532X
https://orcid.org/0000-0001-9121-532X
https://doi:10.1002/hyp.13360.
https://doi:10.1002/hyp.13360.
https://www.scipy.org/citing.html


22 HARMAN AND COSANS

Manning, A. H., Verplanck, P. L., Caine, J. S., & Todd, A. S. (2013). Links
between climate change, water-table depth, and water chemistry in a
mineralized mountain watershed. Applied Geochemistry, 37, 64–78.

Murphy, W. M., Oelkers, E. H., & Lichtner, P. C. (1989). Surface reaction
versus diffusion control of mineral dissolution and growth rates in
geochemical processes. Chemical Geology, 78(3-4), 357–380.

Navarre-sitchler, A., Steefel, C. I., Yang, L., Tomutsa, L., & Brantley, S. L.
(2009). Evolution of porosity and diffusivity associated with chemical
weathering of a basalt clast. Journal of Geophysical Research, 114(F2),
1–14.

Nettleton, W. D., Flach, K. W., & Nelson, R. E. (1970). Pedogenic weathering
of tonalite in southern California. Geoderma, 4(4), 387–402.

Ortoleva, P., Merino, E., Moore, C., & Chadam, J. (1987). Geochem-
ical self-organization, I; reaction-transport feedbacks and modeling
approach. American Jourmal of Science,287, 979–1007. https://doi:10.
2475/ajs.287.10.979

Parizek, J. R., & Girty, G. H. (2014). Catena assessing volumetric strains and
mass balance relationships resulting from biotite-controlled weathering:
Implications for the isovolumetric weathering of the Boulder Creek
Granodiorite, Boulder County,. Catena, 120, 29–45.

Phillips, J. D. (2005). Deterministic chaos and historical geomorphology: A
review and look forward. Geomorphology, 76, 109–121.

Portenga, E. W., & Bierman, P. R. (2011). Understanding Earth's eroding
surface with 10Be. Gsa Today, 21(8), 4–10.

Rempe, D. M., & Dietrich, W. E. (2014). A bottom-up control on
fresh-bedrock topography under landscapes. Proceedings of the National
Academy of Sciences, 111(18), 6576–6581.

Riebe, C. S., Hahm, W. J., & Brantley, S. L. (2017). Controls on deep critical
zone architecture: A historical review and four testable hypotheses.
Earth Surface Processes and Landforms, 42(1), 128–156.

Riebe, C. S., Kirchner, J. W., & Finkel, R. C. (2004). Erosional and climatic
effects on long-term chemical weathering rates in granitic landscapes
spanning diverse climate regimes. Earth and Planetary Science Letters,
224(3-4), 547–562.

Roberts, S. M., & Shipman, J. S. (1972). Two-point boundary value
problems: Shooting methods, Modern analytic and computational meth-
ods in science and mathematics, No. 31: American Elsevier Pub. Co.
New York.

St Clair, J., Moon, S., Holbrook, W. S., Perron, J. T., Riebe, C. S., Martel, S. J.,
... Richter, D. D. (2015). Geophysical imaging reveals topographic stress
control of bedrock weathering. Science (New York, N.Y.), 350(6260),
534–538.

Toth, J. (1963). A theoretical analysis of groundwater flow in small drainage
basins. Journal of Geophysical Research, 68(16), 4795–4812.

White, A. F., & Blum, A. E. (1995). Effects of climate on chemical weathering
in watersheds. Geochimica Et Cosmochimica Acta, 59(9), 1729–1747.

White, A. F., & Brantley, S. L. (2003). The effect of time on the weathering
of silicate minerals: Why do weathering rates differ in the laboratory
and field? Chemical Geology, 202(3-4), 479–506.

Xu, P., & Yu, B. (2008). Developing a new form of permeability and
Kozeny – Carman constant for homogeneous porous media by means
of fractal geometry. Advances in Water Resources, 31, 74–81.

How to cite this article: Harman CJ, Cosans CL. A

low-dimensional model of bedrock weathering and lateral

flow co-evolution in hillslopes: 2. Controls on weath-

ering and permeability profiles, drainage hydraulics, and

solute export pathways. Hydrological Processes. 2019;1–23.

https://doi.org/10.1002/hyp.13385

APPENDIX A: SOLUTION METHOD FOR THICK WEATHER-

ING FRONT APPROXIMATION

The integrals in (30), (31), and (34) can be solved by approximating the

variations in C(z) and M(z) as straight lines. We can assume that C ≈ Ceq

and M = M0 at the bottom of the weathering zone z = Hp and the

upper boundary condition give C ≈ CH at the top of the weathering

zone z = Hp + Hw . Numerical results and the analytical solutions

suggest that M will vary with a slope given by M0∕(2𝛿) (which is the

rate of change at the inflection point zw). Thus, we can approximate

M(z) ≈ M0

(
1 −

z − Hp

2𝛿

)
(A1)

C(z) ≈ CH + (Ceq − CH)
(

1 −
z − Hp

2𝛿f

)
, (A2)

where f = HW∕(2𝛿).
We also simplify the Kozeny–Carmen relation (10) by assuming

that most variation in K is due to variation in the numerator 𝜙3 rather

than the denominator (1 − 𝜙)2, so K = K0(𝜙∕𝜙0)3. The maximum

permeability is therefore Km = K0((𝜙0 + 𝜙m)∕𝜙0)3. This will be true so

long as 𝜙 is small. By substituting the linear approximation for M (A1)

into (9) and then (10), we can obtain

FW(k) = ∫
Hp+k2𝛿

Hp

K(z)
2𝛿Km

dz

= ∫
k

0
(𝜁 + Φ − 𝜁Φ)3d𝜁

=
Ω4

k
− Φ4

4(1 − Φ)
, (A3)

where Φ = 𝜙0∕𝜙m and Ωk = k + Φ − kΦ. This allows us to write (30) as

rx = −qpx + HwFW( f)Km|Δh| + HsKm|Δh|, (A4)

where −qpx = HpK0|∇h| is the water flux below the weathering zone

and FW is evaluated at k → f = HW∕(2𝛿). We can also write (34) as

−qwx = −qpx + 2𝛿FW(𝛼)Km|Δh|, (A5)

where

𝛼 = (zw − Hp)∕(2𝛿) (A6)

gives the relative location of zw within Hw . In completely submerged

profiles, we would expect this to be close to 𝛼 = 0.5.

For (31), we have to account for the fact that the concentration is

also varying in z. Using the same linear approximations, we can write

FC( f) = ∫
Hp+f2𝛿

Hp

C(z)K(z)
Ceq2𝛿Km

dz

= ∫
f

0

(
1 −

(
1 − CH

Ceq

)
𝜁

f

)
(𝜁 + Φ − 𝜁Φ)3d𝜁

=
5
(
Ω4

f
− Φ4

)(
Ωf − Φ CH

Ceq

)
− 4

(
1 − CH

Ceq

)(
Ω5

f
− Φ5

)
20f(1 − Φ)2

, (A7)

where Ωf = f + Φ − fΦ. This allows us to write (35).
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F∗
W

and F∗
C

refer to the values of FW(f) and FC(f) when f = 1.

Parameters for base case example give F∗
W

= 0.54 and F∗
C
= 0.2. In

completely submerged profiles, 𝛼 is typically slightly larger than 0.5

but is smaller in incompletely submerged profiles.

To find values of zw and 𝛿 using this approximation, we used the

following procedure:

1. Calculate initial estimates qp = qw = 𝜂𝜔 and 𝛿 = 2𝜔∕k.

2. f is determined by checking whether (r − qp)x > 2𝛿F∗
W

K0|∇h|. If

it is, we set f = 1, and (A4) can be used to find Hs . If not, Hs = 0

and Equations A4 and A3 can be inverted to obtain f.

3. The value of f is used to determine FC from (A7) and a new

estimate of qp from (35).

4. Steps 2 and 3 are iterated to find a consistent value of qp .

5. Equations A5 and A3 can be inverted to obtain 𝛼.

6. The values of 𝛼 and f can then be fed into (A6) and (29) to obtain

estimates of zw and H.

7. Equation 32 is used to obtain a new estimate of qw .

8. Steps 5–7 are iterated to find a consistent value of qw .

9. Equation 27 is used to obtain a new estimate of 𝛿

10. Steps 2–9 are iterated to obtain a consistent value of 𝛿.

APPENDIX B: DETERMINATION AND EVALUATION OF

CONSTANTS IN THE DIFFUSION SOLUTION

The solution to (1) under the given conditions can be expressed

succinctly as

C(x, z) = Ceq + cHD(x)
√

𝜋

4
Erf

(
z

HD(x)

)
, (B1)

where c is a constant of integration. To determine c, we can apply

the condition that the rate of diffusion away from the lower boundary

upslope of x is equal to the rate of removal by lateral flow at x. The

rate of transport into the aquifer by diffusion is given by

Mass in = ∫
x

0
−𝜙Dm

𝜕C
𝜕z

||||z=0
dx, (B2)

= −c𝜙Dmx. (B3)

The rate of removal is obtained by integrating the product of the

lateral flow and the vertical profile of concentration qxC from z = 0

to z = H:

Mass in = ∫
H

0
qxC dz, (B4)

= CeqHqx − c𝜙Dmx

(
1 − exp

(
− H2

H2
D

)
−
√
𝜋

H
HD

Erf

(
H

HD

))
. (B5)

Equating these and solving for c yields

c = − 2Ceq𝛾

HD

√
𝜋
, (B6)

where 𝛾 is given by

𝛾 =

(
exp

(
− H2

H2
D

)
∕
(√

𝜋
H

HD

)
+ Erf

(
H

HD

))−1

. (B7)

The value of 𝛾 is very nearly 1 for H > HD (indeed for H = HD

𝛾 = 0.95, and for H = 2HD 𝛾 = 0.9995). Given the base case

parameters, the value of H at which H = HD is 0.0315 m. For all H

greater than this, the steady-state concentration distribution will be

well approximated by

C(x, z) = Ceq Erfc

(
z

HD

)
. (B8)
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