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Abstract

This is the first of a two-part paper exploring the coevolution of bedrock weathering and lateral

flow in hillslopes using a simple low-dimensional model based on hydraulic groundwater theory

(also known as Dupuit or Boussinesq theory). Here, we examine the effect of lateral flow on the

downward fluxes of water and solutes through perched groundwater at steady state. We derive

analytical expressions describing the decline in the downward flux rate with depth. Using these,

we obtain analytical expressions for water age in a number of cases. The results show that when

the permeability field is homogeneous, the spatial structure of water age depends qualitatively

on a single dimensionless number, Hi. This number captures the relative contributions to the

lateral hydraulic potential gradient of the relief of the lower-most impermeable boundary (which

may be below the weathering front within permeable or incipiently weathered bedrock) and

the water table. A ‘‘scaled lateral symmetry’’ exists when Hi is low: age varies primarily in

the vertical dimension, and variations in the horizontal dimension x almost disappear when

the vertical dimension z is expressed as a fraction z∕H(x) of the laterally flowing system

thickness H(x). Taking advantage of this symmetry, we show how the lateral dimension of

the advection–diffusion-reaction equation can be collapsed, yielding a 1-D vertical equation in

which the advective flux downward declines with depth. The equation holds even when the

permeability field is not homogeneous, as long as the variations in permeability have the same

scaled lateral symmetry structure. This new 1-D approximation is used in the accompanying

paper to extend chemical weathering models derived for 1-D columns to hillslope domains.
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1 INTRODUCTION

The movement of water vertically and laterally through a hillslope is

both determined by its internal permeability structure and a control

on the evolution of that structure (Anderson, von Blanckenburg, &

White, 2007; Brantley et al., 2017). This paper and its companion

(Harman & Cosans, ) are concerned with understanding the feedback

between the weathering of bedrock and the lateral flow of water.

Weathering modifies the porosity and permeability of the rock as it

weathers (Goodfellow et al., 2015), and so modifies the storage of

water and the potential gradients driving its release to streams. Our

interest here is not in the details of the weathering reactions or their

relationship to permeability, but rather on the way this feedback might

determine the internal organization of water, solutes, and minerals

within hillslopes (Brantley et al., 2017; Rempe & Dietrich, 2014; Riebe,

Hahm, & Brantley, 2017), and provide a mechanism by which the rate

weathering fronts advance downward can become adjusted to the

rate adjacent streams incise into the bedrock in tectonically uplifted

areas (Ferrier, Riebe, & Hahm, 2016; Rempe & Dietrich, 2014).

Although 3-D transient reactive transport models suitable for mod-

eling weathering exist (Steefel et al., 2014), prior modeling studies

aiming to understand first-order controls on the organization of weath-

ering fronts within hillslopes have not considered the role of lateral

flow (e.g., Lebedeva, Sak, Ma, & Brantley, 2015). Simplified models can

sometimes provide elegant and revealing insights into first order con-

trols that are difficult to tease out from the results of more complex

Hydrological Processes. 2019;1–10. wileyonlinelibrary.com/journal/hyp © 2018 John Wiley & Sons, Ltd. 1

https://doi.org/10.1002/hyp.13360
https://orcid.org/0000-0002-3185-002X
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fhyp.13360&domain=pdf&date_stamp=2019-01-18


2 HARMAN AND KIM

models. Much has been learned from the application of 1D weathering

models that can be solved analytically (Lebedeva, Fletcher, & Brantley,

2010; Li, Jacobson, & McInerney, 2014; Maher & Chamberlain, 2014),

but such insights are more difficult to extend to the 2-D or 3-D case.

The objective of these two papers is to develop a low-dimensional

model coupling lateral flow and transport in hillslopes to weathering

reactions and porosity–permeability relationships, and use this model

to understand basic controls on weathering in hillslopes. The model

can be solved analytically or approximately in a number of interesting

cases, yielding direct insights into the nature of the feedback and

the particular mechanisms determining it. The second paper describes

the weathering and permeability models and explores the broader

issues introduced above. We will defer until then a more thorough

introduction to those issues. This first paper discusses lateral flow

processes in hillslopes and lays out assumptions used to simplify the

groundwater flow and advection–diffusion-reaction equations.

Lateral flow is almost exclusively saturated flow. Although satura-

tion and lateral potential gradients can extend well above the water

table (e.g., Silliman, Berkowitz, Simunek, & Van Genuchten, 2002),

flow in the unsaturated zone is primarily vertical, not lateral. For this

reason, geochemical processes in the unsaturated zone can be treated

as 1-D ‘‘pedons’’ (Maher, 2011), freely draining to some deeper water

table. Here, we will instead focus on that deeper system, and ultimately

show how (under appropriate assumptions) it too can be approximated

as a 1-D vertical system from the perspective of solute transport and

reaction.

We will assume that the transport of solutes produced by weath-

ering can be modeled by the advection–dispersion-reaction equation

(ADE; Logan, 2001):

𝜕𝜙C
𝜕t

= −∇(q⃗ C) + ∇(𝜙D∇C) + 𝜙R, (1)

where C is a solute concentration, 𝜙 is porosity, q⃗ is the Darcy flux

field, and D is the hydrodynamic dispersion tensor, and R(x⃗, t) is the

rate C is produced by reactions. The interaction between mechanical

dispersion and effective reaction rates can be complex, and a full

treatment here would introduce considerable complexity. Here, we

will neglect the full description of dispersion, retaining only molecular

diffusion, which is believed to play an important role in weathering

reactions (Murphy, Oelkers, & Lichtner, 1989).

The Darcy flux q⃗ is determined by the 3-D distribution of hydraulic

potential (pressure and elevation) and the spatial field of permeability.

Within hillslopes, this field can be complex. The inputs of rainfall

or snowmelt vary in space and time, with recharge to depth often

believed to be vary along a hillslope (e.g., Woods et al., 1997) and

in time, often with a seasonal periodicity determined by the relative

timing of water inputs and transpiration demand (e.g., Lee & Kim,

2007). In addition, a host of physical and biological processes can

generate preferential flow (along bedrock fractures, decayed root

channels, animal burrows, frost cracks) that rapidly transports water

to depth (Beven & Germann, 2013; Sidle, Noguchi, Tsuboyama, &

Laursen, 2001). Here, we will neglect these complications, and instead

focus on developing first-order insights that might help to frame

and interpret more sophisticated treatments in the future. Indeed, a

number of recent studies have begun to examine weathering reaction

processes using fully spatially resolved numerical models (e.g., Bao, Li,

Shi, & Duffy, 2017; Lebedeva, Fletcher, Balashov, & Brantley, 2007;

Lebedeva, Fletcher, & Brantley, 2010; Lebedeva, Sak, Ma, & Brantley,

2015; Li et al., 2017).

To develop a simplified description of the processes, we will make

use of the hydraulic theory of groundwater flow and consider only

steady state, spatially uniform recharge. Hydraulic groundwater theory

provides useful and tractable approximations predicting the position

of water tables and lateral flow rates and has been the subject of

extensive research (e.g., Boussinesq, 1877; Brutsaert, 1994; Troch

et al., 2013). A relatively small proportion of studies have considered

the implications for solute transport (e.g, Fiori, 2012; Haitjema, 1995),

perhaps because of a common misconception that hydraulic theory

assumes flow paths to be horizontal (or at least aligned with the

lower boundary), which is not the case. Without information about the

vertical component of water flux, hydraulic groundwater theory would

not be able to say much about the propagation of solutes through the

system.

Here, we will discuss the use of hydraulic groundwater theory for

predicting flow pathways in hillslopes, and derive results illustrating

the implications for reactive transport in some cases relevant to

weathering in the critical zone. We will use water age as a useful proxy

for visualizing the effects of hillslope-scale flow and transport on a

generic reaction. For a first-order reaction, age determines reaction

progress, and so, the spatial structure of age is expected to correlate

with the spatial structure of the reacting species. The spatial structure

of age reveals some useful spatial symmetry in certain hillslopes

that can be used to simplify the problem. In the companion paper

(Harman & Cosans, ), we will argue that these symmetries (and the

simplifications that arise from them) can carry over to certain nonlinear

weathering reactions, so long as the associated boundary conditions

do not ‘‘break’’ the symmetry.

2 HYDRAULIC GROUNDWATER THEORY

2.1 The Dupuit–Forcheimer assumptions and the

Boussinesq equation

Hydraulic groundwater theory aims to provide a simplified description

of unconfined, saturated groundwater flow in systems that are sub-

stantially larger in lateral than vertical extent. Typically, it is applied

in aquifers receiving recharge from above and bounded below by an

impermeable or nearly impermeable base B. The theory rests on cer-

tain simplifying assumptions that allow hydraulic gradients normal to

the (semi)impermeable base to be ignored. It is sometimes suggested

that these include the assumption that all flow is parallel to the base,

but this is not correct. In fact, the necessary assumption is that the

dissipation of total hydraulic head h (i.e., head loss due to internal

viscous damping) is primarily due to lateral flow (along the slope),

rather than normal flow (e.g., Haitjema, 2016). Flow normal to the

base may occur, but it is not responsible for the major part of the

head dissipation over the problem domain. As a result, the variation

in pressure normal to the base does not significantly impact the over-

all shape of the water table surface. This condition can be met in an

isotropic aquifer at steady state if the lateral extent of stream tubes

in the domain are typically much larger than their vertical extent in
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most parts of the domain. This is generally the case in topographically

controlled shallow hillslope aquifers, where the saturated thickness is

on the order of at least 101 − 102 times smaller than hillslope lateral

extent (from divide to stream; Gleeson, Marklund, Smith, & Manning,

2011; Haitjema & Bruker, 2005. Consequently, variations in h in the

normal dimension z can be neglected in these systems. The approach

is expected to perform less well where vertial gradients are steep,

such as in the vicinity of a seepage face or pumping well (Bear, 1988).

Hillslope hydraulic groundwater theory has been applied to hill-

slopes whose (semi)impermeable surface B is horizontal, has a constant

slope, or a convex/concave profile, and a plan form that may be

straight, convergent, or divergent (e.g., Fan & Bras, 1998; Troch, Pani-

coni, & Van Loon, 2003). We will consider the specific case of a straight

hillslope domain with a constant base slope, bounded by a groundwa-

ter divide (at x = 0) and at the toe of the hillslope by some boundary

condition representing the hillslope's interaction with a stream or

floodplain (at x = L). Figure 1 illustrates the idealized domain.

The total head at a location x (measured along the impermeable

boundary) can be expressed in terms of the elevation of the lower

boundary of the flowing domain B, and the height of the water column

up to the free surface boundary H.

h(x) = B(x) + H(x) cos 𝜃, (2)

where 𝜃 is the angle, B is inclined from horizontal. The factor of cos 𝜃

accounts for the fact that H is measured normal to the base, rather

than vertically.

The upper boundary H is typically taken to be the water table

(defined as the location where the pressure is atmospheric), but lateral

flow through the tension-saturated capillary fringe can be extensive

(e.g., Silliman et al., 2002), and so the upper boundary can be extended

to a head corresponding to the air-entry pressure to account for this.

Here, we will take H to mean the upper extent of the saturated zone,

corresponding to the water table and capillary fringe. Flux is described

by the Darcy flux vector field q⃗ = {qx, qy , qz}, which has components

directed downslope parallel to the base (qx), transversally across the

hillslope (qy), and upward normal to the base (qz). The upward flux will

be negative in much of what follows, since flow is downward (thus −qz

is a positive number), and qy = 0 since the hillslope is assumed to be

straight (neither converging nor diverging). Under the assumptions of

hydraulic groundwater theory, the lateral component qx of the Darcy

flux vector q⃗ is given by (Childs, 1971):

qx = −K
(
𝜕H
𝜕x

− tan 𝜃

)
cos 𝜃. (3)

The horizontal components are invariant in the z direction if the

aquifer is homogeneous.

2.2 Flow paths in a homogeneous hillslope aquifer

The hydraulic theory makes definite predictions about flow paths

through the saturated zone for the case of a homogeneous aquifer

under steady recharge r. Flowpaths originating at the water table must

descend below the water table and make room for recharge entering

further downslope. Consequently, both the horizontal and vertical

components can be obtained from continuity (mass balance) if H(x) is

known.

The horizontal component of the flux is obtained simply by equating

the recharge upslope of a point x to the lateral flow at that point, so

rx = qx(x)H(x) (e.g., Strack, 1984; Vogel, 1966). This can be rearranged

to give:

qx(x) = r x
H(x)

. (4)

An expression for qz can be obtained from the continuity equation,

which at steady state requires:

𝜕qx

𝜕x
+ 𝜕qz

𝜕z
= 0. (5)

Differentiating (4) with respect to x, and substituting the result into

(5) yields:
𝜕qz

𝜕z
= −qx

x

(
1 − x

H′(x)
H(x)

)
. (6)

FIGURE 1 A vertically exaggerated cross section of the idealized hillslope groundwater system considered here, and the symbols used to refer
to it. The lower boundary B(x) is assumed to be straight, planar, and impermeable, and recharge is spatially and temporally constant rate at rate r.
The blue contours within the water table show the location of constant values of the scaled vertical coordinate Z = z∕H
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Since the right hand side is a constant with respsect to z, this

equation shows that the vertical component of the flux varies linearly

(Strack, 1984; Streltsova, 1975). It is highest at the water table where

−qz = r − qxH′(x), and qz = 0 at the impermeable base (e.g., Bear,

1988). The term in parentheses modifies the vertical flux to account

for increases or decreases in the thickness of the saturated flow

downgradient.

We can also obtain these results by considering a streamline extend-

ing downslope of a point x0. If we assume a unit width of hillslope,

the total recharge upslope of the point is x0r. Since all that water must

be transmitted downslope, x0r = H(x0)qx(x0). Further downslope, the

recharge originating from upslope of x0, is confined to the region

under the streamline originating at x0, while recharge entering fur-

ther downslope of x0 is above the streamline. If the streamline passes

through an elevation z = zs(x, x0) at location x, the total flux below

this streamline must therefore be x0r = zs(x, x0)qx(x), while above the

streamline, it is (x − x0)r = (H(x) − zs(x, x0))qx(x) (e.g., Strack, 1984).

Combining these by eliminating r shows that the streamlines vary

hyperbolically as a proportion of total thickness H(x):

zs(x, x0) = H(x) x0

x
. (7)

Differentiating this with respect to x, setting dzs∕dx = qz∕qx, elim-

inating x0, and taking the derivative with respect to z, we can obtain

the same result as in Equation 6.

2.3 Flow paths in a heterogeneous hillslope aquifer

The situation becomes more complex if the assumption of homoge-

neous K is relaxed, but a useful result can still be obtained. In particular,

we are interested in the case where K varies as a function of a scaled

vertical coordinate, Z(x, z) = z∕H(x). This assumption will be justified

and used later in Section 3.

Let us assume K = K(x,Z), allowing (for the moment) an arbitrary

conductivity field. At steady state, upslope recharge must balance and

downslope Darcy flux, so rx = ∫ H
0 qx dz. Using Darcy's law under the

Dupuit assumptions (3), we can obtain:

qx(x,Z) = r x
H(x)

K(x,Z)

K(x)
, (8)

where K(x) = ∫ 1

0 K dZ is a vertically averaged conductivity.

Taking the derivative of this with respect to x and using continuity

(5) to eliminate 𝜕qx∕𝜕x yields:

𝜕qz

𝜕z
= −qx

x

(
1 − x

(
H′(x)
H(x)

(
1 + Z

𝜕K∕𝜕Z
K

)
+
𝜕 log(K∕K)

𝜕x

))
. (9)

This provides a generalization of (6) and reduces to it when K is

constant. Let us assume that K only varies in the Z direction. That is,

K may vary in x if the vertical dimension z is held constant, but does

not vary if Z is held constant instead. Setting the x-derivatives to zero

gives:

𝜕qz

𝜕z
= −qx

x

(
1 − x

(
H′(x)
H(x)

(
1 + Z

K′(Z)
K

)))
, (10)

which allows the effect of this type of layering to be accounted for

when computing fluxes and flow paths.

These results show that we need only derive (or observe) the

steady state recharge rate and elevation of the upper surface H(x) to

determine both the qx and qz components of the entire flux field. This

result arises from the kinematics imposed by mass balance and the

position of the water table. However, to predict H(x), we must further

invoke Darcy's Law.

2.4 Storage and flux in hillslope aquifers

The two terms in the parentheses in Equation (3) represent the

contributions of the two gradients driving flow: the gradient in the

thickness of the aquifer and the gradient of the underlying impervious

surface B. The first of these has the form of a diffusion term, tending

to smooth out steep gradients in the saturated thickness, while the

second acts like an advection term, translating variations in saturated

thickness downslope without transforming them.

The relative importance of these two terms determines the

character of the hillslope hydraulics. The hillslope number Hi is

a dimensionless number that captures their relative importance

(Brutsaert, 2005):

Hi = L tan 𝜃

H
, (11)

where L tan 𝜃 is the relief of the hillslope (really the relief of the

base surface B), and H is an effective thickness of the aquifer. This

is approximately the average thickness (Appendix A gives a practical

approximation for this). This quantity appears in derivations of ana-

lytical solutions predicting storage and flow in hydraulic groundwater

theory (e.g., Brutsaert, 1994) where it has also been called the Hills-

lope Peclet number (Berne, Uijlenhoet, & Troch, 2005; Lyon & Troch,

2007). Under unsteady conditions, Hi has been found to be useful

when H is replaced by a mean or effective aquifer thickness (e.g.,

Brutsaert, 1994; Harman & Sivapalan, 2009a).

When Hi ≪ 1 larger than the relief of B, and the saturated thickness

gradients play an important role in determining the storage and flux

of water in the landscape. When Hi ≫ 1, the relief is larger, and

saturated thickness variations are less important — the topography of

the underlying (semi)impermeable surface dominates. For example, a

1-m thick aquifer within a hillslope of 250-m length in a mountainous

area with a slope of 30 degrees would give Hi = 144. A 100 m

hillslope of 2 degrees with a 5-m thick aquifer would have Hi = 0.7.

Hydraulic groundwater theory gives analytical solutions for the

saturated thickness H(x) for the limiting cases of small and large

hillslope number. When Hi ∼ 0 (Boussinesq, 1877):

H(x) =

√
H2

b
+ H2

d

(
1 − x2

L2

)
, (12)

where Hd = L
√

r∕K is the maximum thickness of the saturated thick-

ness at the groundwater divide if Hb = 0. When Hb ≳ Hd, the saturated

thickness becomes relatively uniform.

When Hi ≫ 1, the saturated thickness simply reflects the accumu-

lation of water down the slope. The downstream boundary condition

becomes less important and the saturated thickness approaches the

linear relationship (e.g., Troch, van Loon, & Hilberts, 2002):

H(x) = xr
K sin 𝜃

. (13)
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Approximate solutions can also be found for the more general case

where Hi > 0 (see Appendix A).

3 REACTIVE TRANSPORT IN A HILLSLOPE
AQUIFER

3.1 2-D advection–diffusion-reaction

With this framework in place, we can consider the nature of reactive

transport through a hillslope aquifer. This will lead to a novel expression

of simplifed reactive transport in such systems. In two dimensions, the

ADE (1) becomes:

𝜕(𝜙C)
𝜕t

= −qx
𝜕C
𝜕x

− qz
𝜕C
𝜕z

+ Dm

(
𝜕2(𝜙C)
𝜕x2

+ 𝜕2(𝜙C)
𝜕z2

)
+ 𝜙R, (14)

where Dm is the molecular diffusion coefficient, and we have used

continuity under steady flow to eliminate derivatives of qx and qz.

We can simplify this equation by considering the relative importance

of each term in the context of hillslope-scale flow and transport.

We can do this by expressing the vertical and horizontal dimensions

relative to the mean thickness H, and hillslope length L, respectively,

as z = z′H and x = x′L, and time relative to the mean turnover time of

the aquifer t = t′r∕(H𝜙). Using these, the ADE becomes:

𝜕(𝜙C)
𝜕t′

= −v′
x
𝜕C
𝜕x′ − v′

z
𝜕C
𝜕z′

+Pe−1

(
H

2

L2

𝜕2(𝜙C)
𝜕x′2

+ 𝜕2(𝜙C)
𝜕z′2

)
+ H𝜙

r
R, (15)

where v′
x and v′

z are dimensionless forms of the pore velocity, and

Pe= Hr∕(Dm𝜙) is a Peclet number. The new coordinates x′, z′, and t′

will have magnitudes on the order of unity for hillslope-scale problems.

The factor of H
2
∕L2 multiplying the horizontal diffusion term will be

very small in hillslope problems, suggesting that in hillslope weathering

reactions, the horizontal diffusion term is likely to be much less

important than the vertical. In addition, since weathering products

must be produced in solution all along the hillslope from ridge to toe,

concentration gradients will be largely in the vertical direction, and

less so in the horizontal. Horizontal advection is therefore likely to

be much more important than horizontal diffusion, and the horizontal

diffusion term can therefore be neglected.

In the homogeneous case, the advective terms can be further

simplified by expressing them in terms of age rather than location. This

is done first by substituting in Equations 4 and 6 (integrated in z) for

qx and qz. We then change the coordinates system from the Cartesian

coordinates C(x, z, t) to a coordinate system based on the flow lines

C(x0,Z, t), where x0 = xz∕H(x) is the x coordinate of the origin of the

flow path passing through (x, z) (as per Equation 7), and Z = z∕H(x) is

the vertical location scaled by the total saturated thickness. If diffusion

is neglected, the equation then simplifies to:

𝜕C
𝜕t

− rZ
𝜙H(x0∕Z)

𝜕C
𝜕Z

= R, (16)

If we define the effective vertical velocity as vZ(Z) = − rZ
∕
(𝜙H(x0∕Z)),

then the left hand side of this equation has the form of a material

derivative along the streamline initiating at x0. The age of a parcel of

water T = T(x0,Z) can be obtained by integrating 1∕vZ from the point

where it enters (x,Z) = (x0,1) down to its present location:

T(x0,Z) = ∫
1

Z

1
vZ(𝜁 )

d𝜁 = ∫
1

Z

𝜙H(x0∕𝜁 )
r𝜁

d𝜁. (17)

Note that since t = t0 + T (the current time is the sum of the time

a parcel entered and its age), then the left hand side of (16) can be

seen as the result of applying the chain rule to a concentration field

C(x0, T, t0) specified in terms of age T rather than Z:

𝜕t
𝜕T

𝜕C
𝜕t

+ 𝜕Z
𝜕T

𝜕C
𝜕Z

= dC
dT

= R. (18)

Thus, the concentration C(x0, T, t) can be obtained by simply

integrating the reaction rate along a streamline:

C(x0, T, t0) = C(x0,0, t0) + ∫
T

0
R d𝜏, (19)

where the first term on the right hand side is the initial concentration of

the recharge. This gives the concentration field for arbitrary saturated

thickness H(x) and spatially variable source/sink R. Equation (19) allows

us to evaluate the distribution of water age T by setting R = 1/day

(so the ‘‘amount’’ of age represented by C increases by 1 day per day),

and C(x0,0, t0) = 0.

3.2 Illustrative examples of water tables and age

distributions

Below, we consider three asymptotic cases for which exact analytical

solutions for water age can be obtained by integrating (17). Three

examples that represent or approximate these cases are illustrated in

Figure 2. In each, water tables and flow paths are shown for three

hillslope aquifers, each L = 100-m long, with conductivity K = 0.1

m/day, porosity 0.15, and recharged at a rate of r = 100 mm/year.

One has a flat lower boundary, so Hi = 0, and the saturated thickness

at the toe is set to Hb = 1 m. In the other two cases, the thickness at

the toe is set to 5.2 m, which is approximately the value of Hd in all

three cases. The second case has a base slope of 2%, and a resulting

Hi = 0.3, while the third has a base slope of 10%, and Hi = 2.5.

Uniform thickness (Hi ≪ 1, Hb ≳ Hd): When H is approximated

as constant, the integral in (17) can be solved exactly to give (Vogel,

1966):

T = −𝜙H
r

log Z. (20)

The age distribution varies only in the vertical and not down the

hillslope. The ages stack like pancakes, with the pancakes thickest at

the top, and squeezed thinner and thinner at the bottom. This situation

is most closely approximated when Hi is small and Hb is not so small

that it causes the aquifer to pinch out at the downslope end (the

middle case shown in Figure 2 illustrates this pinching effect).

Thickening upslope (Hi ≪ 1, Hb < Hd) : If we assume H(x) is given

by (12), the solution is slightly more complex, and is a function of Z

and H at the initial and current locations:

T(x0,Z) = −𝜙H∗

r
(log Z + 𝜓(x0,Z)) , (21)

where

𝜓(x0,Z) =
H(x0) − H(x)

H∗ − log

(
H(x0) + H∗

H(x) + H∗

)
, (22)
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FIGURE 2 The spatial organization of water age in saturated hillslope aquifers and its dependence on the Hillslope Number, Hi. Plots A–C show
the water table and age distribution with 4× vertical exaggeration. Plots D–F show the same age distribution, but with the vertical and horizontal
axes scaled by H(x) and L, respectively. The grey area represents impermeable bedrock. While lines are flow paths predicted by conservation of
mass (see Section 2.2). When Hi < 1, the age structure varies mainly with z∕H, and not with x. The same is not true with Hi > 1

with H∗ =
√

H2
b
+ H2

d
and H(x) = H(x0∕Z). This correction term 𝜓 turns

out to be very small for much of the domain, and the age distribution

is still well approximated by setting 𝜓 = 0. In that case, the situation

is similar to the previous case, but rather than stacking like pancakes,

the ages vary in z as a proportion of the saturated thickness H(x).
This case can be seen in the left case of Figure 2, which is similar to

the centre plot in having roughly horizontal isochrones, although the

mean of the age distribution in storage is less.

Thickening downslope (Hi ≫ 1) : When the aquifer thickness

varies linearly with distance downslope, the age distribution is (e.g.,

Cook & Böhlke, 2000):

T(x, z) = 𝜙(H(x) − z)
r

. (23)

Water age in this case varies only as a function of depth below

the water table, H(x) − z. However ,since the saturated thickness

is increasing downslope, this implies that the age of the water at

the impermeable boundary is increasing downslope. The right case in

Figure 2 approximates this behaviour. A more general approximate

solution for Hi > 0 is provided in Appendix A.

3.3 1-D advection–diffusion-reaction with scaled

lateral symmetry

Based on the results above, we can surmise that when Hi < 1, the

solution to the ADE (14) depends largely on a vertically scaled coordi-

nate Z = z∕H(x) and much less on x. We can therefore approximately

account for horizontal fluxes using a 1-D version of the ADE that only

contains derivatives in the Z direction. The resulting equation is:

𝜕(𝜙C)
𝜕t

= −q∗
z
𝜕C
𝜕z

+ Dm
𝜕2(𝜙C)
𝜕z2

+ 𝜙R, (24)

where:

𝜕q∗
z

𝜕z
= −qx

x
. (25)

The derivation of this is given in Appendix B. The lateral flux qx in the

equations above can be obtained from the hydraulic approximation to

Darcy's Law, which we can write for convenience as:

qx = −K∇h, (26)

with ∇h = H′(x) cos 𝜃 − sin 𝜃 representing the lateral gradient of total

hydraulic head.

4 DISCUSSION

Equaitons 24, 25, and 26 provide a parsimonious description of flow

and solute transport in an aquifer with scaled lateral symmetry in K.

The derivation of these is the primary purpose of this paper, as they

are the foundation for the analysis in Part 2.

This derivation is largely built on hydraulic groundwater theory,

which has an extensive literature (see for example Troch et al. (2013)).

Much of what is presented above is not new, and more detailed

treatments can be found in the citations provided. The main results

related to the concept of scaled lateral symmetry (Sections 3.3 and

2.3) are the original theoretical contributions of this work.

However, the results above also illustrate some important issues

and qualitative features of lateral flow relevant for understanding

weathering in hillslopes. These are discussed below. They are fea-

tures of a highly idealized hillslope, and so should be viewed with an

appropriate degree of skepticism. However, they will likely be reca-

pitulated in spatially resolved numerical models that adopt broadly

similar assumptions (Lebedeva et al., 2010; Li et al., 2017). Hydraulic

groundwater theory in general, and the theory developed here in par-

ticular, will therefore be useful for framing hypotheses to be tested

by numerical experiments. It will be particularly interesting to explore

how weathering proceeds differently under high and low Hillslope

number Hi.
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4.1 Flow paths and the importance of the Hillslope

number Hi

There are qualitative differences between the Hi < 1 and Hi > 1

cases in the arrangement of flow paths relative to the impermeable

boundary B (Figure 2). In both cases, only water that recharges

near the ridge approaches the vicinity of the lower boundary of

the system. If the lower boundary of the aquifer is the site of the

majority of the weatherable material, the majority of the flow will not

directly participate in the weathering reaction. However, for cases

where Hi > 1, water does not even move significantly closer to

the lower boundary as it travels through the hillslope, and instead

primarily travels downslope. The accumulation of recharge downslope

is accommodated by an increase in saturated thickness. By contrast,

when Hi< 1, the accumulation of recharge is accommodated primarily

by an increase in the lateral flow rate downslope.

This difference is significant. A region of weatherable material

located in a strip above and parallel to B will receive more flow from

upslope if Hi > 1 than if Hi < 1. In the former case, it will likely

therefore tend to weather along its length from upslope to downslope,

whereas in the latter case, it may weather more from top to bottom.

Interestingly, this may tend to flatten the gradient of the strip in the

Hi > 1 case. These speculations could be tested in a numerical model,

and against field observations.

There are further important differences between the Hi > 1 and

Hi < 1 cases under unsteady conditions, many of which have been

explored in literature (e.g., Berne et al., 2005). The boundary condi-

tion at the toe of the hillslope (representing the connection to the

riparian zone) does not significantly affect the storage and release of

water from the hillslope if Hi is large, but does if it is small (Harman

& Sivapalan, 2009a). Spatial heterogeneity in permeability within the

hillslope (such as might be generated by the presence of large core-

stones or variable lithology) can drive variations in the water table

that reroute the flow around low permeability areas if Hi is small, but

the capacity to do so is more limited if it is large (Harman & Sivapalan,

2009b). This affects both the rate and age structure (residence time

and transit time) of water released by heterogeneous hillslopes sub-

ject to variable recharge rates (Harman & Sivapalan, 2009b). It is not

immediately clear what the implications of these differences are for

weathering, or how weathering might tend to drive Hi in one direction

or another as it modifies the position of the lower boundary B.

4.2 The lower boundary B and boundary condition

Hb

The results also demonstrate the importance of the downslope bound-

ary condition for the Hi ≪ 1 case. The thickness of the left and centre

cases in Figure 2 differ by a factor of two, and there is much more

relief in the water table in the left case (≈ 4 m) than the centre (≈ 1 m).

The physical meaning of Hb is tied directly to that of B. For example,

the left plot in Figure 2 might represent the case where B is imper-

meable unweathered bedrock, and the water table perched in the

saprolite above this bedrock steepens and thins towards a seepage

face of thickness Hb in the stream bank. The centre plot could repre-

sent the case where bedrock is highly permeable or fractured down to

some depth below the stream, and lateral flow occurs through a much

larger thickness of saturated material. Rather than being a material

boundary, it is possible that the circulation of saturated flow and the

hydraulic gradients are coupled to a larger regional flow system, and

B represents the lower extent of the local flow cell (Toth, 1963).

In practical applications of this theory, it may be difficult to empir-

ically determine an appropriate location for B and depth for Hb . Age

dating tracers may be of some help in identifying the appropriate

storage of water so long as the recharge rate is known, although to

convert that value into a physical location for B and Hb an effective

porosity will also be required.

4.3 Scaled lateral symmetry and effects

of dispersion

It is important to consider the conditions that must be placed on R

and the boundary fluxes for the scaled lateral symmetry assumption

to be valid. The assumed concentration of C at the recharge boundary

must be spatially invariant. R does not need to be spatially invariant,

but it must vary only in Z = z∕H for scaled lateral symmetry to

hold. If R ‘‘breaks’’ the symmetry in some sense, Equation (24) will no

longer hold. This may occur if R depends on other spatially varying or

temporally varying quantities that do not follow the same symmetry.

We have also neglected the effects of hydrodynamic dispersion

or macrodispersion. There are two reasons why including dispersion

would substantially complicate the analysis. First, dispersion is not

isotropic. Longitudinal dispersion is typically an order of magnitude

larger than transverse, and the dispersion term must be treated as a

tensor, not a scalar (Whitaker, 1999). However, we can conjecture that

moderate dispersion would not interrupt the scaled lateral symmetry,

so long as the dispersion length scale is relatively small compared with

the (vertical) dimension of the domain. Theoretical analysis (Eldor &

Dagan, 1972, especially their Figure 9b) supports this argument. Sec-

ond, dispersion can introduce departures from idealized ‘‘well-mixed’’

conditions at the sub-Darcy scale that modify the effective rate laws

describing the chemical reactions. This is because dispersion does

not refer to the true intermingling of fluids of distinct concentra-

tions necessary for reactions, only to the approximate colocation of

fluids that may be segregated at scales smaller than we wish to

resolve (for an overview of these issue, see Dentz, Le Borgne, Englert,

and Bijeljic (2011)). There are observations to suggest this is true

even for pore-scale dispersion effects (Gramling, Harvey, & Meigs,

2002), as well as for macrodispersion associated with spatially variable

conductivity fields (Luo, Dentz, Carrera, & Kitanidis, 2008).

It is likely that heterogeneity in hydraulic conductivity has important

effects on effective weathering rates at the hillslope scale (see e.g.,

Jung and Navarre-sitchler, 2018a, 2018b), which may in turn have

important implications for the internal organization of weathering

and flow paths in hillslopes. However, it may be useful to consider

those effects in the context of the overall hillslope-scale concepts

being developed here. Some potential effects of heterogeneity will be

discussed further in the companion paper.
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5 CONCLUSIONS

In this paper, we have demonstrated an approximate ‘‘scaled lateral

symmetry’’ in solutions to solute transport through hillslope aquifers

when the hillslope number Hi is small. Hi is small if the slope of the

base of the saturated flow system does not substantially contribute to

the hydraulic gradient driving lateral flow. This symmetry, illustrated

by an analysis of water age distributions in the 2-D case, means that

variations in the solution along the vertical dimension z up to the top

of the saturated thickness H depend only on the relative location z∕H

and not on z alone or the location downslope x.

We have also demonstrated how this symmetry can be exploited

to derive a 1-D approximation of the advection–diffusion-reaction

equation describing solute transport in a saturated hillslope domain.

This approximation replaces the 2-D ADE (we have neglected vari-

ations along a hillslope contour) with a 1-D vertical equation. The

advective flux term in the 1-D equation is not constant, but rather is

an effective vertical flux that declines as it approaches the imperme-

able lower boundary of the domain. The approximation can account

for spatially variable reaction terms and hydraulic conductivity so long

as they possess the same scaled lateral symmetry. The resulting sys-

tem of independent Equations 24, 25, and 26 provide a simplified

description of reactive transport through saturated hillslope aquifers.

This approximate ADE has been derived under assumptions

appropriate for investigating bedrock weathering processes. In the

companion paper (Harman & Cosans, ), we will make use of it to inves-

tigate the effects of lateral flow on bedrock weathering reactions and

the feedback engendered by the effects of weathering on the prop-

erties and structure of the flow domain. It should be noted that the

analysis there is restricted to the case of small Hi. Further work is

required to understand the control of lateral flow on weathering (and

vice versa) in landscapes underlain by steep impermeable boundaries.
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APPENDIX A

If the aquifer is being recharged at a spatially and temporally steady

rate r, the lateral flux Qx(x) must balance the recharge being delivered

from upslope of a location x (measured from the drainage divide), so

Qx(x) = xr.

Setting this expression for Qx equal to Equation (3) above, gives a

differential equation that can be solved if a boundary condition at the

toe of the hillslope (x = L) can be specified. Simple cases take the

form of a fixed value H(L) = Hb or a fixed gradient H′(L) = H′
b

. As

noted above, the boundary condition can be important in low-relief

hillslopes, but for larger relief, the boundary condition only affects the

flow domain in the vicinity of the hillslope toe, and not far upslope.

When Hi = 0 and the base is horizontal (𝜃 = 0), this gives:

xr = −HK 𝜕H
𝜕x

(A1)

or
𝜕H2

𝜕x
= −2r

K
x, (A2)

which can be solved by simply integrating and applying the boundary

condition H(L) = Hb to obtain (12). For the case where the base is

sloping, there is not an explicit analytical solution for the steady state

case. However, if we linearize (3) as suggested by Brutsaert (1994) by

replacing H(x) in the coefficient of the diffusive term with an effective

saturated thickness H:

Qx = Hqx = −KH 𝜕H
𝜕x

cos 𝜃 + KH sin 𝜃, (A3)

a solution to the mass balance equation (xr = Qx) can be found. The

solution in this case can be expressed succinctly as:

H(x) =
H2

d

H Hi2

(
X Hi + 1 − e−Hi(1−x̂)(1 + Hi)

)
+ Hbe−Hi(1−x̂), (A4)

where:

Hd = L

√
r

K cos 𝜃
. (A5)

https://doi.org/10.1002/hyp.13360
https://doi.org/10.1002/hyp.13360
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The appropriate value of H can be found by taking the aver-

age of (A4), but this yields a cumbersome implicit solution. A good

approximation is:

H =
⎧⎪⎨⎪⎩
√

H2
b
+ 2

3
H2

d
− 1

2
L tan 𝜃 Hd < Hb

0.57(Hd + Hb) Hd > Hb.

(A6)

An expression for the water age can be found in the same manner

as for the Hi = 0 case. In this case, although

T(x0,Z) = −T∗

Hi
(log Z + 𝜓(x0,Z)) , (A7)

where T∗ = L𝜙∕(K sin 𝜃) is the hillslope kinematic timescale (Berne

et al., 2005), and

𝜓 = e−Hi

(
1 + Hi

(
1 −

Hb𝜙

T∗w

))(
Ei
(

Hi
x
L

)
− Ei

(
Hi

x0

L

))
− Hi

x − x0

L
.

(A8)

Ei(·) is the exponential integral function (Abramowitz & Stegun,

1964).

APPENDIX B

The 2-D advection-dispersion-reaction equation is simplified to the

effective 1-D form by defining C∗(x,Z, t) = C∗(x, z∕H(x), t) = C(x, z, t)
and taking the derivative with respect to x and z and t to obtain the

substitution rules:

𝜕C
𝜕x

→
𝜕C∗

𝜕x
− Z

H′(x)
H(x)

𝜕C∗

𝜕Z
, (B1)

𝜕C
𝜕z

→
1

H(x)
𝜕C∗

𝜕Z
, (B2)

𝜕2C
𝜕z2

→
1

H(x)2

𝜕2C∗

𝜕Z2
, (B3)

𝜕C
𝜕t

→
𝜕C∗

𝜕t
. (B4)

Applying these to (1) (with lateral diffusion neglected) gives:

𝜕(𝜙C∗)
𝜕t

= −qz − ZqxH′(x)
H(x)

𝜕C∗

𝜕Z
+ Dm

H(x)2

𝜕2(𝜙C∗)
𝜕Z2

+ 𝜙R, (B5)

if we assume 𝜕C∗∕𝜕x = 0. Reversing the transformation again yields

(24). The new variable q∗
z is an effective flux adjusted for lateral

variations in the saturated thickness:

q∗
z = qz − zqx

H′(x)
H(x)

. (B6)

Taken in isolation, this equation makes no particular assumptions

about the flux terms qx and qz. However, it will only be valid if the

conductivity field is homogeneous or has scaled lateral symmetry.

Taking the derivative of (B6) in z and substituting in (10) (the rate of

change of vertical flux), we obtain (25).

Notation

• 𝝓 Porosity [-]

• 𝜽 The angle B is inclined from horizontal [-]

• B Base (or impermeable layer) elevation [L]

• C,C∗ Solute concentration in Cartesian coordinate and in

rescaled coordinate [mol/L3]

• D Hydrodynamic dispersion tensor [L2/T]

• Dm Diffusion rate [L2/T]

• Hb Saturated thickness at the downslope boundary [L]

• Hd Maximum thickness when Hb = 0 and 𝜃 = 0 [L]

• H,H Saturated thickness, effective saturated thickness [L]

• H′ Gradient in x of saturated thickness [-]

• h Hydraulic head [L]

• K,K Hydraulic conductivity and its average in the Z

dimension [L/T]

• L Hillslope length [L]

• q⃗ = (qx, qy , qz) Darcy flux [L/T]

• q∗
z Effective vertical flux adjusted for lateral variations in the

saturated thickness [L/T]

• r Recharge rate [L/T]

• R Solute source term [mol/L3/T]

• t, t0 Time, injection time [T]

• T, T∗ Water age and hillslope kinematic timescale [T]

• x Horizontal coordinate (parallel to the impermeable layer)

[L]

• z, zs Vertical coordinate (orthogonal to the impermeable

layer) and that of a water particle injected at x0 at x [L]

• Z Scaled vertical coordinate [-]
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