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An Online Tool Temperature Monitoring Method
based on Physics-guided Infrared Image Features
and Artificial Neural Network for Dry Cutting

Kok-Meng Lee’, Fellow, IEEE, Yang Huang, Jingjing Ji", Member, IEEE, and Chun-Yeon Lin

Abstract— The paper presents an efficient method, which
reconstructs the temperature field around the tool/chip interface
from infrared (IR) thermal images, for online monitoring the
internal peak temperature of the cutting tool. The tool
temperature field is divided into two regions; namely, a far field
for solving the heat-transfer coefficient between the tool and
ambient temperature, and a near field where an artificial neural
network (ANN) is trained to account for the unknown heat
variations at the frictional contact interface. Methods to extract
physics-based feature points from the IR image as ANN inputs are
discussed. The effects of image resolution, feature selection, chip
occlusion, contact heat variation and measurement noises on the
estimated contact temperature are analyzed numerically and
experimentally. The proposed method has been verified by
comparing the ANN-estimated surface temperatures against “true
values” experimentally obtained using a high-resolution IR
imager on a custom-designed testbed as well as numerically
simulated using finite-element analysis. The concept feasibility of
the temperature monitoring method is demonstrated on an
industrial lathe-turning center with a commerecial tool insert.

Note to Practitioners —The internal tool-temperature field around
the tool/chip interface during cutting offers essential information
to monitor tool-wear and ensure surface-quality particularly in
finishing cuts, which is difficult to be monitored because of the
stringent real-time requirements (including low cost and high
accuracy) in harsh working environments. This paper presents a
potentially low-cost solution that combines non-contact surface
temperature measurements with high-fidelity physics-based
computational models for monitoring the internal peak
temperature at the tool/chip frictional contact during cutting.
This physics-based method requires only a small number of
pre-selected features, and uses thermal isotherms and streamlines
to detect and substitute any occlusions in the IR images. The
method does not rely on high-resolution images to infer the steep
temperature gradient near the tool-tip where the peak
temperature occurs, and thus can be implemented with a
relatively low-cost IR imager. Unlike traditional least-square
methods that bases solutions to a heat-conduction partial
differential equation (PDE), the ANN is trained with precomputed
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physics-based models based on a novel dual-field (far-field and
near-field) approach. The ANN-based method not only eliminates
the need to solve the time-demanding PDE in real time, but also
effectively accounts for parameter variations due to the uncertain
frictional heat-fluxes at the contact interface during cutting.

Index Terms — online monitoring, infrared (IR) imaging,
temperature measurements, artificial neural network (ANN),
thermal field reconstruction, manufacturing, machining.

I. INTRODUCTION

APID advancements in imaging/computing technologies
R[l] and machine intelligence [2] have motivated

manufacturers to develop online sensing methods to
maintain product quality with improved production rate [3][4],
particularly for monitoring tool wear and controlling the
dynamic behaviors in fabricating thin-walled aircraft
components which are generally made of hard-to-machine
materials (such as titanium alloy) that typically have a low heat
conductivity. Among the challenges is the online measurement
of the internal tool-temperature field and its peak value of the
cutting tool subject to unknown contact heat variations, which
are essential information to monitor tool-wear behaviors,
prevent premature tool-failure, and ensure surface quality
particularly in finishing cuts. As the contact temperature and its
steep gradient along with the unpredictable contact heat
variations cannot be directly measured [2], existing methods to
predict tool wear are empirical and rely on operationally
expensive pre-scheduled tool-changes. There is a need for an
online monitoring method capable of reconstructing the
internal temperature field around the tool/chip interface from
high-fidelity models with non-contact surface measurements
while the component is being fabricated.

Existing methods that determine the heat exchange at the
micro-scale contact area can be broadly divided into three
categories:  Experimental  techniques with embedded
thermocouples (TCs) focus on direct measurements of the
cutting tool temperatures. Predictive theoretical models aim at
understanding the physical phenomena to improve or optimize
the cutting process. Hybrid experimental/ numerical inverse
heat-conduction methods estimate the boundary conditions at
the contact interface. To gain physical insights into thermal
effects on tool wear, several direct- measurement methods have
been explored. Based primarily on conventional thermocouples
(TCs) [6][7] and recently developed thin-film TCs (TFTCs)
[8][9] that take advantages of MEMS technology, an embedded
or surface-mounted TCs/TFTCs was integrated in a cutting tool
as micro-scale sensors to monitor the tool temperature near the
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tool/chip interface during cutting. Experimentally measured
temperature (up to 900°C) at a distance of 0.2mm from the tool
tip was reported [10]. Predictive theoretical models [11] are of
great interest for assessing the temperature field at the tool/chip
interface; such models often rely on assumptions to estimate
parameters and experiments to validate calculations. Hybrid
methods generally use an inverse technique to determine the
boundary  conditions numerically = with  temperature
measurements at specified points in the tool, and then solve the
heat conduction equation for the internal temperature at the
tool/chip interface. Most existing inverse methods generally
base on a least-square formulation that numerically solves the
3D partial differential equation (PDE) using finite element [12]
or finite difference [13] techniques, which are computationally
demanding for real-time applications. These (experimental,
theoretical and hybrid) methods more or less involve
experimental measurements typically with TCs, more recently
with infrared (IR) measurements [14]. Although embedded
TCs can be used to quantitatively investigate the cutting
temperature, their applications are generally considered
unsatisfactory (since their placement can interfere with heat
flow and limit the tool strength), and limited to research in a
laboratory setting because of the costly tool insert that requires
customized fabrication and the operationally expensive
scheduled tool-changes.

As a non-contact alternative, IR thermal imagers (utilizing
microbolometer sensitive to infrared light) have been used to
measure surface temperature fields for thermal analysis of
cutting tool [15] and sheet metal [16] in manufacturing
applications. Most existing IR-based measurement devices
(that simply use an IR camera quantitative) analyze the data
using signal and/or image processing methods [17]. While they
are effective to detect certain machining states [18] and can be
potentially implemented at low-cost [19], the internal tool
temperature field and its peak value (near the tool/chip interface)
which are essential information in general machining
applications cannot be determined from the measured surface
temperature distribution directly. As reported in [20][21][22]
where a transparent yittrium aluminum garnet (YAG) tool and a
high-resolution IR imager were used, as much as 30%
difference between the maximum contact temperature and the
maximum surface temperature was experimentally found in
orthogonal cutting (with negligible tool-workpiece offset).
These findings suggest that a 3D heat transfer model must be
coupled with IR measurements to reconstruct the internal
temperature field of the cutting tool.

To relax the stringent requirements commonly encountered
when using an IR thermal imager for monitoring the internal
temperature field during dry cutting, this paper presents a novel
dual-field (far-field and near-field) approach for robust feature
extraction from IR images and for training ANN with
precomputed physics-based models to account for uncertain
heat-flux variations at the tool/chip interface. Unlike existing
inverse methods solving the PDE with TC-measured
temperature, the ANN once trained is computationally efficient
[23] and exhibits excellent learning capability in noisy
environment with high interpolation accuracy [24]; thus the
physics-based ANN could offer a viable easy-to-implement
approach in industry. The remainder of this paper offers the
followings:

— A 3D conduction heat-transfer model along with the
numerical algorithm is formulated for reconstructing the
temperature field of the tool from the measured surface
temperature field. Based on an order of magnitude analysis,
the measured field is divided into a far field and a near field.
In the far field, the effect of the frictional tool/chip contact
heat on the temperature is treated as an ideal heat-source for
solving the heat-transfer coefficient between the tool and
ambient temperature. The near field temperature is solved
numerically to train an ANN that accounts for the unknown
heat-flux variations at the contact interface.

— Practical implementation issues encountered in extracting
temperature features that provides the boundary conditions
(BCs) for solving the heat transfer equation from the IR
surface temperature are discussed. The effects of image
resolution, feature selection, chip occlusion, contact heat
variation and measurement noises on the maximum contact
temperature are analyzed experimentally and numerically
using finite-element analysis (FEA). For verification, the
ANN-estimated surface temperatures are compared against
“true value” experimentally obtained with a high-resolution
IR imager on an orthogonal cutting testbed as well as
numerical results simulated using FEA.

— The concept-feasibility of the temperature monitoring
method based on IR surface temperature measurements and
model-trained ANN for online applications is demonstrated
on an industrial lathe-turning center. The ANN-estimated
results are compared with temperatures experimentally
measured using two TCs and a commercial IR imager as well
as FEA simulations, which are existing benchmark
measurement and numerical methods, commonly reported in
published literature. As will be illustrated, this method
requires only a small number of pre-selected features from a
relatively low-cost standard IR imager (with 320x240
resolution) to reconstruct the internal tool-temperature field,
and capable of detecting and substituting any occlusions in
the IR images using two thermal properties (isotherms and
streamlines). As the method does not rely on expensive
close-up lenses to infer the steep temperature gradient near
the tool-tip, it represents a practical low-cost solution that has
the potential to be utilized in industry.

II. INFRARED IMAGE BASED TEMPERATURE MONITORING

Fig. 1 illustrates a typical cutting process where frictional
heat is generated at the tool/chip contact interface. During
machining, the tool insert (with thermal conductivity &, mass
density p, and specific heat capacity c,) acts as a heat sink
through which the heat flux ¢, generated at the tool/chip
frictional contact dissipates from its surfaces by convection
(characterized by the heat transfer coefficient 4 that depends on
ambient conditions). Mathematically, the steady-state tool
temperature T (x, y, z) is governed by the heat conduction
equation (1a) where V denotes the gradient operator, which can
be uniquely solved with appropriately specified BCs (1b) for a
given tool geometry:

V(kVT)=0 (1a)


http://en.wikipedia.org/wiki/Laplace_operator
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q, (1) contact area (u =0, )

T 1
ok {h(T—Tm) far field exposed to ambient (10)

where # =x,yor z and 7. is the ambient temperature. The

solutions to (1a, b) for a cutting tool with known material and
geometry can be solved if ¢., (and its contact area) and / are
specified. In (1b), the far field is the region far from the heat
source where heat dissipates by convection from the surfaces.
The interest here is to monitor the maximum internal
temperature T;, as well as the maximum surface temperature
T.m of the tool during machining, which occur in the near field
(or the vicinity of the tool/chip interface).
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Fig. 1 Cutting temperature measurement system

Unlike material properties, # must be experimentally
determined. The contact area (defined here as a product of
contact length /. and cutting thickness w) is generally very
small (in microns) relative to the cutting tool, and cannot be
measured online. As ¢, cannot be measured directly, empirical
relationships based on the measured cutting forces are
commonly used to approximate ¢. that not only depends on
specified cutting requirements but also varies with the actual
cutting tool conditions. To be effective, the on-line temperature
monitoring method has the following abilities:

— It can reconstruct the tool-temperature field around the
tool/chip interface and determine its peak value from IR
surface temperature measurements.

— It is capable of multi-scale temperature measurements in the
micro-scale contact area, and can detect and substitute any
chip occlusions during machining.

— It accounts for a range of frictional heat variations at the
tool/chip interface.

To meet the above requirements, Fig. 1 illustrates an online
method consisting of three parts for monitoring the interface
temperature of a cutting tool:

1) an IR imager that moves with the cutting tool for measuring
the surface temperature of the tool side:

2) a coupled set of heat transfer models to estimate s and to
reconstruct the tool temperature; and

3) a trained artificial neural network (ANN) for on-line
monitoring of the tool temperature.

As illustrated in Fig. 1, the on-line method begins with an IR
surface temperature image (presented in pseudo-colors for ease
of visualization). The fin model described in Appendix, which

reduces the processing of a 2D image to that along a streamline
and thus speed up the computation, is then used to estimate the
heat transfer coefficient # from the far-field temperature.
Selected surface temperatures in the near field are extracted as
features 7,(x, y) for on-line temperature monitoring of the
cutting tool using a trained ANN. For general cutting
applications, empirical relationships based on the measured
cutting force can be used to approximate g, along with the
on-line estimation of h to specify the boundary conditions in
(1b). Once the solutions to (1a. b) are validated, commercial
software can be utilized to simulate large data to characterize
the 3D temperature field of the cutting-tool, for a range of
different (g: /. and /) BCs to support model-based data-driven
monitoring of the critical tool temperatures.

A. Physics-based model-trained ANN for online monitoring

Fig. 2 illustrates the method to account frictional heat
variations at the tool/chip interface in practice, where the ANN
offers a nonlinear mapping between the IR measured surface
temperatures (as inputs) and the monitored temperature (as
responsive outputs). As shown in Fig. 2(a), large data based on
the solutions to (1a) for a specified range of BCs (1b) are
computed offline to train an ANN as shown in Fig. 2(b) for
model-based monitoring of the critical tool temperature.
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Fig. 2 Training data preparation and trained ANN structure

The off-line training preparation is illustrated in Fig. 2(a) for

a given tool and cutting conditions (with constant w), where the

initial ¢ is estimated empirically. The empirical contact length
I. can be found in [25]. For Ti6Al4V material,

[ =A1.15d_+0.7d, (2)

In (2). the chip-compression ratio A depends on the cutting
velocity v. and depth-of-cut d., where the relationship can be
found in [25] for a range cutting conditions. The initial ¢, is
estimated as a fraction of the dissipated heat grin terms of the
cutting velocity and forces at the tool/chip interface:

38 k |a
= — where f=— [
% (%m_]qf 7 e

and 45 =v, (f.siny+ ficosy)/A.

(3a.b)

(3¢)
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In (3b) where (k, o) and (k., o) are the heat conductivity and
thermal expansion coefficient of the cutting tool and workpiece
materials respectively, the empirical £ depends on the materials
of the cutting tool and workpiece. In (3c) where 7 is the rake
angle of the cutting tool, the cutting and feeding forces (f;, f;)
can be experimentally measured in real time or simulated
offline using commercially available cutting software (such as
AdvantEdge).

To estimate 4 in real time, the far-field heat transfer is
approximated by a fin model in Appendix where the contact
heat is modeled as an ideal point source at R = 0 (Fig. A.1); and
heat transfer out at the sufficiently far end (at R = L) is
neglected. The significance of the fin model (A.6) is illustrated
with an order-of-magnitude analysis in Appendix, suggesting
that the far-field temperature does not depend on ¢, and can be
determined along a streamline. Thus, the Biot number m (and
hence /) can be determined from the isotherms and streamlines
of an IR temperature image using (A.6).

Numerically, the temperature fields were found to be more
sensitive to g, than 4 and /. To reduce the number of ANN
models (each corresponding to a set of BCs), (4, I.) are grouped
in (p, ¢ ) intervals within which their average values

(i_t I, ) are used:

po et

(b, L): 4, =5 T ]I, ﬂm]T}j 4)
Since there is no relative motion between the IR imager and the
tool, the feature locations are fixed points on the IR images in
the ANN where the input-output pairs are defined (4). However,
the number of the feature points (that characterize the surface
temperatures of the tool insert) and their locations have
significant effects on the robustness and accuracy of maximum
temperature predicted by the trained ANN.

Once the BCs are completely defined, the 3D temperature
field of the cutting tool can be computed from (1a). The ANN is
trained with supervised learning using the solutions to (la)
which are solved for a broad range of different boundary
conditions (g, ., /) to generate the input-output data-pairs.

B.  Near-field feature extraction with occlusion handling

The IR image provides selected temperature data for the
far-field estimation of the heat transfer coefficient /4, and for the
on-line monitoring of the tool temperature using a trained ANN.
In the selection of feature points located in the near field, the
assumption of an ideal point heat source is no longer valid. As
an illustration, Fig. 3(a) shows an IR image captured during
orthogonal cutting and the surface temperature 7(s) and its
gradient 07/0s along the streamline s. For a homogeneous
object, T and 0T/0s are continuous. As defined in its top—right
image, the streamline s starts at an arbitrary point where
T(s=0)=T) in far-field, and ends at the tool/chip interface where
the temperature is continuous and peaks at 7(s= s;m)=7 but its
gradient 07/0s is discontinuous and equal to 0. To help gain
intuitive insights into the heat-source effect on the near-field
thermal behaviors, the orthogonal cutting is simulated using
FEA in Fig. 3(b) where the top—left plots illustrate the effects of
the two heat-sources (same g,/c but different /.) on the isotherms
(constant temperature curves) and streamlines (which
characterize 07/0s and are perpendicular to isotherms). In Fig.

3(b) where the (7, T,) values are listed, the temperature
difference (7—-T)) is normalized to (7., —T1p).
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Fig. 3 Temperature along a streamline (near heat source)

The following observations can be made from Fig.3:

— As revealed in the IR image (top-right in Fig. 3a), the
0T/0s monotonically approaches to zero in far field (0 < s
<'sy); and the isotherms are approximately concentric and
circular. This is further confirmed in the top-left of Fig.
3(b), where the two streamlines, for /=100um (thin-black
line) and for /=300um (red line), converge at far field.

— The near-field temperature and its gradient of the rake
surface (top—left in Fig. 3b), depend on the frictional
heat-flux ¢, and contact length /. for a given tool geometry
(b, p); see Fig. A.1 in Appendix.

— In Fig. 3(b), the normalized temperature (7—T0)/(T,n—Tv)
along the streamline for a given /¢ has the form:

T_]—; Slﬂ B
=exp| —
T,-1, g

Equation (5) is independent of g,/c, but weakly depends on
I as shown in Fig. 3(b).

S] where s 2 0+. )

— Foragiven gilc, I has a direct influence on the location of
T'» but plays no role in the value of 7.

In practice, the IR images could be occluded by chips during
machining. Thus, the two thermal properties (isotherms and
streamlines), which are continuous for a homogeneous object,
are used as criteria in the feature selection algorithm to detect
and substitute any occlusions in the IR images. The procedure
is illustrated numerically with an example in Fig. 4 where a
broke-away chip occludes the surface near the tool tip; as a
result, the temperature and its gradient are discontinuous along
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the streamline, and thus can be detected by the criteria based on
the principle of continuity. The temperature values of the
occluded pixels can be uncovered using (5) characterized by the
two parameters (g, T,,) for a specified streamline (s,, Sm). As
I1(s) is extracted while tracing along a streamline, », data prior
to the occurrence of the occlusion can be used to determine the
parameters (g, T») for approximating the occluded pixels with
(5). The original and replacement temperature along the
streamline on the occluded IR image are compared in Fig. 4.
Given that the IR thermal imager is fixed relative to the
cutting tool, the feature points for reconstructing the near-field
temperature can be pre-selected. To allow for simultaneously
uses of the two thermal properties, feature points are selected at
intercepts between the streamlines and the isotherms. As will
be illustrated experimentally, this scheme significantly
improves the robustness of the feature selection in near field.

(°C)pg (mm
200 l .

100

[

2 4
Fig. 4 Occluded temperature interpolation

III. RESULT AND DISCUSSIONS

The IR-image method with a model-trained ANN for online
temperature monitoring of the cutting tool is illustrated and
validated numerically and experimentally. Three sets of results
are presented: The firsf numerically analyzes the effects of the
feature selection and sensor noise on the robustness and
accuracy of the model-trained ANN. The second investigates
the effects of image resolution on the maximum temperature
(Tew and Ti,) estimated by the trained ANN using
experimentally obtained IR images. Since no published data
were available for benchmark comparison, high-resolution
surface-temperatures were obtained both experimentally and
numerically in the first two sets of results for investigating the
effects of image resolution, temperature gradient and chip
occlusion on the online temperature monitoring. Once these
effects are well understood, the third demonstrates the
effectiveness of the model-trained ANN method on an
industrial lathe-center with a commercial tool insert, where the
surface temperature was measured with a standard IR imager.

The steady-state equation (la) and its BCs (1b) were
numerically solved for the near-field temperature in COMSOL
(a commercial 3D FEA software) to simulate the input-output
data-pairs for training the ANN shown in Fig. 2(b). The fully
connected 3-layer network with a hidden layer of six neurons
(sigmoid function) and a pair of input and output layers (linear
function) was trained in MATLAB (Neural Network Toolbox)
based on the Levenberg-Marquardt algorithm [26].

Experiments were conducted on a customized orthogonal
cutting testbed (Fig. 5) [27]with a high-resolution (HR)
IR-imager (FLIR A325sc camera with a close-up X1 lens,
320240 pixels, 60Hz) to allow close capturing of the surface
temperature field and its steep gradient around the tool-chip

interface. As shown in Fig. 5, the rectangle workpiece was fed
vertically with the constant speed towards the high-speed steel
(HSS) cutting tool fixed on a stationary tool holder, where the
parametric values of the tool are listed in Table 1. The IR
imager is mounted (fixed relative to tool table) with its optical
axis perpendicular to the side surface of the tool/chip interface
of the orthogonal cutting. With this customized setup, the
measured surface temperatures (with very high spatial
resolution of 25um/pixel, or in other words, a set of 8x8
measurements within an area of 200umx200um) offer the
essential 2D “true-values™ for experimental verification of the
solved temperature field. These data represent an order
improvement over the linear distance of 0.2mm (for a single
measurement from the tool-tip) reported in [10].

Cuiting speed, v, (m/min)
=W Cl = 4, C2= 8

Depth of cut, d. (mm)
Chip D;=0.1,D,=0.2

Contact area

o) (Ti-6A1-4V)

Tool insert

d (offset) (high-speed steel)

S Tool holder

Fig. 5 Experiment with high-resolution IR

Table 1 Parametric values of customized cutting experiments

Materials p (kg/m?) ¢p (J/kg/ °C) k (W/m/°C)
WP (Ti4AI6V) | 4430 505.6 7
Tool (HSS) 8000 450 15

Tool geometry: @ =73°, b=2.6mm

Cutting condition: v. =8m/min, dc =0.2mm
FEA BCs: g: = 6.3W/mm?’; h = 540W/(Km?); w=2.5mm = 0.3mm

" P 2 7 _
3,000 Initial g, =10.8W/mm" and /, = 0.37mm
training gs (W/mm?) h(W/€ ) Ioxw (mm?)
pairs
0.2:0.2:25 100:100:800  0.27.0.54,0.81

In all experiments (7% = 20°C), the workpieces are titanium
alloy (Ti-6A1-4V) with characteristic thermal properties given
in Table 1. For consistency in IR temperature measurements, a
thin-layer of thermal grease (less than 0.5mm thick, k=
1.5W/m/K) with a constant emissivity & of 0.95 [28]
experimentally calibrated using the procedure described in [29]
was applied on the viewing surface of the cutting tool, where
generally has a high Young’s modulus and remains
un-deformed during machining.

A. Effects of feature noise and selection on model-trained ANN

Unlike the maximum surface temperature T, that can be
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measured by the high-resolution (HR) imager, the maximum
internal temperature Tj, is hidden and can only be analyzed
numerically by solving (1a) with BCs derived from the surface
temperature of the side face. For practical implementation on a
typical lathe-center that generally does not permit close
capturing of the tool/chip interface, the FEA computed
temperature is discretized to simulate the spatial resolution
commonly in practice. For this reason, the FEA models were
coded with high-resolution meshes to provide “numerical true
values” for training the ANN, while the simulated surface was
discretized to model the low-resolution (LR) of the IR-images
in the third set of experiments for comparison.

FEA Models

Fig. 6(a) shows the FEA model (meshed with tetrahedral
elements) for the cutting tool in Fig. 5, where most of the
elements are located in the region near the tool tip. Table 2
shows the effect of the mesh sizes on the computation errors for
maximum and average temperature (relative to Case 6). The
numerical study has led to the choice of 104,264 tetrahedral
elements with the acceptable computing time of 18 seconds
(with the largest element size of 25um) in the subsequent
computation. Fig. 6(b) shows a typical 3D temperature field of
the tool, where the parametric values of the cutting condition
and the boundary conditions used in the simulation can be
found in Table 1. Because of an offset =0.1mm that was set in
the experiment to reduce the chip occlusion in the IR images
(Fig. 5), the internal maximum temperature 7;, is expected to
be higher than the surface maximum temperature 7.
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Fig.6 FEA numerical simulation

Table 2 Effects of mesh numbers on accuracy

Case Num. of Computing % Relative Error
elements time (seconds) (Max., Ave.)

1 4,107 6 (21.83, 0.45)

2 15,237 8 (11.06, 0.22)

3 25,441 9 (5.09,0.12)

4 60,014 14 (1.43,0.07)

5 104,264 18 (0.37,0.02)

6 123,654 21  Basis for comparison

With initial §, =10.8W/mm? and [ =0.37mm computed

using (2) and (3), 3000 input-output training pairs over a range
of (qs, h, I) as shown in the last row of Table 1 are
pre-computed to account any possible variations in BCs during
cutting. The ANN weights (Fig. 2b) were trained with 70% of
the data-pairs; and the remainder was divided into 2 halves;

15% for validation and 15% for testing. The validation set
minimizes overfitting and halt weight updating when the
generalization stops improving. The testing set provides an
independent measure of the network performance during and
after training.

Effect of feature patterns on model-trained ANN

The number of feature points and their locations (which are
referred to here as feature patterns) have significant effects on
the robustness and accuracy of the trained ANN as well as on
the computation time required to train the ANN and the online
recall. The time required to train the ANN with 750 data pairs
(on a 64-bit PC, Intel Core 17-6600, 2.6GHz,16GB RAM) is
25.75 minutes when all 403 points in a original temperature
distribution image are treated as features, which would be 5.1
minutes for training with 20 feature points and 3.75 minutes for
15 feature points. With no detection of image occlusion, the
ANN takes 8.3ms (referred to here as recall time) to estimate
two outputs (T, Tim) with 20 inputs, and 5.5ms with 15 inputs.
As an illustration, Fig. 7(a) compares three different types of
15-point-distribution in the simulated image:

D1: 3 streamlines, each with 5 equally spaced points.

D2: Similar to D1 but points distributed using the bisection
method to account the increasing gradient in the near field.

D3: 9 equally spaced points in near field and 6 other points at
intercepts between the streamlines and isotherms.

(a) Three different feature point distribution of 15 points
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(b) Effects of noise on the trained ANN

Fig. 7 Feature points selection and analysis
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To investigate the effects of the feature pattern on the
robustness, a random zero-mean (x=0) Gaussian noise to the
FEA-simulated input 7; so that the feature surface temperatures

(f,. where /= 1, ..., n) are numerically corrupted by noise, and
have the form in (6) where ¢; is the random error associated with
the i measurement and o is a standard deviation:

T =T +¢(u0) (6)

Fig. 7(b) compares the effects of the corrupted inputs (o=
0.05T;) on the robustness (among three types of distribution) in
terms of the errors (Ey, and E;,) defined in (7):

E,(%)=100(7, ~T,)/T, (7
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In (7), (f"m and fm) are the outputs of the trained ANN in
response to the noise-corrupted inputs, and (75, and T;,,) are the
“true-value™ originally computed by the FEA. For the equally
spaced DI, the maximum (E,,, E;,) values are (12%, 25%)
which can be effectively reduced to (4%. 15%) for D2 and
(4.5%, 7%) for D3 as numerically demonstrated in Fig. 8(b).

B. Effect of image resolution on model-trained ANN

To investigate the effect of image resolution on the trained
ANN, HR (25um/pixel) images were captured on the
customized orthogonal cutting setup (Fig. 5). from which LR
images (with a 10x scaled down to simulate the resolution of
250um/pixel typically found in surface temperature
measurements of a standard IR imager) were obtained. The HR
and LR IR-images are compared in Fig. 8(a). The 15-feature
D3 scheme was experimentally evaluated on the IR images for
four cutting conditions (Ci, D;) where the subscripts (i=1. 2) of
the cutting speed v. (m/min) and the depth-of-cut d. (mm) are
defined in Fig. 5:

CC1 (4. 0.2); CC2 (8, 0.2); CC3 (4, 0.1); CC4 (8. 0.1)

100

51

(mm)
300 -l Thg ey 27 T —Tm I Tm
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§“m K ";
< =y 7 7
5150 o | G 7 7
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(b) ANN estimated T, and relative errors
Fig. 8 Results of maximum machining temperature prediction

Some findings from Fig. 8 are summarized as follows:

— As each LR pixel-value represents an average value over
10x10 HR pixels, the LR measured T, values are lower than
and thus underestimate the “true value” (HR measurements).
The maximum relative errors in these four experimental
cutting conditions are in the order of 15%.

— The T.» error caused by the low-resolution of the IR imager
can be effectively reduced by the model-trained ANN. As
shown in Fig. 8(b), the error of the ANN-estimated T, is
reduced to less than 5% of the “true value”, which represents
an order-of-magnitude improvement over the measurements
with the LR imager.

— Additionally, the model-trained ANN offers a means to
determine the maximum temperature T}, in the tool/chip
interface, which cannot be captured by IR due to the small
offset #=0.1mm between the tool and workpiece.

The effects of low image resolution on a feature pattern is
illustrated in Fig. 9(a), where 6 different patterns in a FEA
simulated image (12x12pixels, 250um/pixel resolution) are
compared; 5 features in P1, 9 in P2, 15 in each of the P3, P4 and
PS5 patterns, and 20 features in P6. To predict the effects of low
image resolution on the robustness, the model-trained ANN is
recalled with and without Gaussian noise as defined in (6). Fig.
(9b) comparing the (7, and T;,) errors defined in (7) in terms
of noise (varying from 0.1% to 5% of 7;) among the six
input-patterns, where each error represents an average over 30
different g, (with constant /. and /).

P1-5 (3.4ms) P2-9 (3.7ms)

TE®)
200

150

100

P4-15 (5.5ms)

P5-15 (5.7ms)
(a) Feature pattem in a 3mmx<3mm image, P1 to P6 (recall time)
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(b) Effects of measurement noise on T, and T,

Fig. 9 Feature points selection and analysis

Without noise, the model-trained ANN is capable of
estimating (7T, and Tj,) from the low-resolution surface
temperature measurements with a mean relative error of less
than 0.1%. As the signal-to-noise ratio degrades (Fig. 9b), the
estimation becomes less accurate but can be improved by
increasing the number of feature inputs. As shown in Fig. 9(b),
T can be estimated with less than 5% errors from 15 low
resolution measurements; and the T;, estimation errors were
reduced from 17% (P1 with 5 feature inputs) to less than 10%
(P3. P4 with 15 feature inputs). Significant improvements can
be further achieved by appropriately distributing the 15 features
(P5) cover both the far field and near field and located on the
intercepts (between isotherms and streamlines), reducing the
relative (T and Ty) errors to (3%. 5%). Further increasing in
the feature inputs to 20 at the expense of online recall time does
not significantly improve the robustness. Thus, the feature
pattern P5 is chosen in the subsequent experiments.

C. Experimental validation

The online monitoring method using surface temperature
measurements with a model-trained ANN was evaluated on a
conventional lathe center with a commercial tool insert for
high-speed orthogonal cutting of a titanium workpiece (Fig. 10),
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where the tool geometry is relatively more complex than that in
the customized setup (Fig. 5). The surface temperature was
measured by the FLUKE Ti400 IR imager (250pm/pixel
resolution and 9Hz frame-rate). Due to the limited image
resolution, the IR observed maximum is lower than the actual
tool maximum temperature during machining. To validate the
FEA-computed internal temperature experimentally, the two
thermocouples are embedded 0.5mm and 1mm from the tool tip
to measure the temperature in real time.

The parametric values of the cutting condition, the BCs for
FEA and the number of data-pairs for training ANN in this
experimental evaluation are summarized in Table 3. The results
obtained experimentally are summarized in Figs. 11 and 12,
and Table 4.

Fluke IR imager

Fig. 10 Experimental setup

Table 3 Parametric values of the lathe-turning center

Materials p (kg/m?) ¢» (J/kg/ °C) k (W/m/°C)

Tool (WC/Co) | 14000 148 55

Tool geometry: @ =79°, b=2.9mm

Cutting condition: v.=120.2m/min, dc =0.1mm
BCs: ¢y =54.5W/mm?; h = 512W/(Km?); w=1.5mm /= 0.17mm

3,000 Initial 7, =124.6W/mm” and /, =0.185mm
Lr;i‘r‘;‘“g ¢ (Wmm?)  A(Wm¥€)  foow (mm?)
2:2:250 100:100:800  0.255

Fig. 11(a) shows the FEA model (meshed with 699,204
tetrahedral elements in COMSOL) of the cutting tool-insert to
solve for the temperature field, where the two thermocouples
TC1 and TC2 embedded in the tool-insert capable of transient
measurements. The time dependent term, pc, (07 /0r), was

included on the right side of (1a) to solve for the 3D transient
temperature in FEA. Fig. 11(b) shows a typical IR surface and
the following four different feature patterns as real-time inputs
to the model-trained ANN.

Case 1: Same as D2 in Fig. 7(a)

Cases 2, 3, 4: Same as (P3, P4, P5) in Fig. 9 respectively.
Case 4a) with no detection of image occlusion
Case 4b) with online detection of image occlusion

The effects of the four feature patterns (all with 15 feature
points) on the maximum surface and internal temperatures
monitored in real time were experimentally evaluated. For

each feature pattern, the three-layer ANN (15 inputs, 6
hidden-neurons and 2 outputs) take less than 4 minutes to
complete the offline training. Table 4 tabulates the time
required for online data-recall time in milliseconds (ms), the
average (Ave.), standard deviations (SD) and maximum (Max.)
errors of the ANN-estimated T, and T;,, where the errors are
relative to that computed by the FEA. The online recall with no
detection of image occlusion (Cases 1, 2, 3 and 4a) took less
than 6ms. In Case 4b (where any discontinuities due to image
occlusion were detected online), the ANN took 12.1ms to
compute the outputs but greatly improve the 7}, estimation.

FEA surface temperature

(a) 3D temperature distribution by FEA

8 -
; []
6 11

7(€)
N -\ 250
8

200

[1]
7 150
o 0 B
100
5 O
50
4N
2 4 6 2 4 (mm) 6
(b) Feature points in IR image
Fig. 11 Training pairs and feature points
Table 4 Comparison of monitoring results
E= (lTANN - TFEAl) /Teen  (Ave., SD, Max.) Recall
Pattern Esm Eim (ms)
Case 1 (19, 1.8, 7.7) (83, 54, 25.3) 5.4
Case 2 (9.3, 3.1,183) (15.6,10.1, 44.2) 5.6
Case 3 (3.2, 2.1,104) (9.5, 6.1, 22.5) 5.5
Case 4a 2.1, 12, 48) (74, 53, 21.3) 5.7
Case 4b (2.1, 0.96, 4.1) (2.7, 3.5, 10.9) 12.1

Using the feature pattern in Case 4b (Fig. 11) as ANN inputs,
the effectiveness of the FEA, online image-occlusion detection,
and model trained ANN were experimentally validated. The
results are illustrated in Figs. 12(a, b, ¢) Fig. 12(a) shows a
typical image captured during transient, within which the
distinct edge lines are detected by the local changes in intensity
of IR image. Based on the edge lines of the tool insert (green
lines in the middle of Fig. 12a), where the tool outline was
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determined online by means of a pattern-matching algorithm
with known tool geometry. As shown in Fig. 12(a). the

tool/chip interface is in the scale of microns.
0,

IWI
250

(40 < 3

(a) Image captured during transient

0 2

4 (mm) 2

(b) Chip occlusion during monitoring
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(c) Comparison among FEA, ANN and measurements

Fig. 12 Experimental investigation on conventional lathe center

Three examples are given in Fig. 12(b) to illustrate image
occlusion and its handling for obtaining high fidelity surface
temperature features as inputs to the trained ANN:

—The first column shows a breakaway chip occluding the
image in the far-field region. As h does not change
significantly between time steps, the value of » from the
previous time-step is assumed. The non-occluded feature
temperatures are inputs to ANN for estimating the target
output temperatures being monitored.

—The second column shows a sweeping chip occluding a
portion of feature temperatures in the far field at the steady
state. The occlusion was detected, where drastic temperature
differences between the points on the same isotherm and
between two consecutive time steps occur. The occluded
temperatures were then replaced by a value interpolated from
the non-occluded feature temperatures.

—The third column shows a chip in near field, which was
detected as it exhibits a dramatic temperature-discontinuity

with other feature temperatures on a specific isotherm. Using
the streamlines in the near field. the occluded temperatures
are replaced with interpolated values computed from the
exponential fit illustrated in (5).

With the high-fidelity feature-inputs, the temperatures (77,
and T:,) being monitored online can be estimated from the
ANN trained with FEA models. Fig. 12(c) plots the
FEA-simulated temperatures at specified locations during
transient and steady state, which are compared with
measurements using the proposed and existing benchmark
measurement methods. Specifically, the FEA results are
compared against the IR-measured surface temperature T,
(discrete red circle) at an observed point, the ANN-estimated
Tom and Ty, (discrete black square and triangle respectively),
and the thermocouple measurements (TC1 and TC2) during
cutting. Although the IR imager is capable of measuring the
surface temperature during transient, the ANN was trained with
surface temperature measurements at steady state; thus, only
the steady state (ANN-estimated) T, and T;, are plotted in Fig.
12(c). The followings are some observations made in the
comparisons:

—Because of the limited IR-image resolution, the observed
maximum surface temperature underestimates the actual
maximum temperature of the cutting tool. The TC1 and TC2
measurements (located at 0.5 and 1mm apart from the tool tip)
support the need for a model-trained method.

—Since T cannot be experimentally measured, the FEA
simulates the transient response so that the FEA model (and
hence the model-trained ANN) can be validated by
comparing with TC1, TC2 and 7. measurements at the
specified positions. The good agreement among the FEA, the
ANN estimation, thermocouple measurements, and IR
surface temperatures confirm the effectiveness of the
model-trained ANN in practical dry-cutting environment.

IV. CoNCLUSION

An online temperature monitoring system consisting of an
IR thermal imager, far-field and near-field heat transfer models,
and a model-trained ANN for monitoring the maximum
steady-state temperature at the tool/chip interface during dry
cutting has been presented. The IR image provides selected
temperature feature points for estimating the heat transfer
coefficient s, and for on-line monitoring of the tool temperature
using a trained ANN. The robustness of the ANN-estimated
surface temperatures has been verified against data from a
high-resolution IR imager (with a 10x10 higher spatial
resolution than typical standard IR imager) as well as
numerically simulated using FEA.

Experimentally investigated on a lathe-turning center with a
commercial tool-insert that has a relatively more complex
geometry, the robustness of the near-field temperature
reconstruction can be significantly improved with pre-selected
intercepts between the streamlines and the isotherms as feature
points. With 15 points, the three-layer ANN (15 inputs, 6
hidden-neurons and 2 outputs) took less than 4 minutes to
complete the offline training, and 12.1ms to recall (Tim. Tim)
which includes the time to detect any discontinuities due to
image occlusion. For each feature pattern, the average, standard
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deviation and maximum errors of the ANN-estimated 7, and
Tim telative to that computed by the FEA are (2.1%, 0.96%,
4.1%) and (2.7%. 3.5%, 10.9%) respectively.

The ANN-estimated results agree well with the
temperatures measured with two built-in TCs and commercial
IR imager as well as FEA simulations. Results show that the
steady-state maximum femperature at the tool/chip interface
was 620°C as compared to the maximum surface temperature
of 320°C directly measured by the IR imager.

APPENDIX
FIN MODEL

Figure A.1 shows a tool-insert (characterized by the
geometric parameters, thickness b and angle @) modeled in
cylindrical coordinates for estimating the heat transfer
coefficient 7. Because of the high thermal conductivity and
small thickness of the tool insert, (1a) is approximated by the
following fin model:

d[a(r)]
s

P oT(r)
a{k( T)A(r) }—h(i‘") -

or
In (A.2) where r is the radial distance from the tool tip, the 1%
term accounts for heat conduction through the cross-section
area A(r) whereas the 2% term models the heat convection at the
cooling surface area a(r):

A(r)=bor and a(r) = r’+2rb.

[T()-T.]=0 (A1)

(A.2a.b)

Fig. A.1 Fin model in cylindrical coordinates
For generality, the following dimensionless parameters (6,
R, L, Q;) are used to normalize the governing equations:
(L-L.)6 _ R _ L _FLO, _,
T-T,

“rIb /b b, (A-3a~d)
Consider a steady state (with uniform & and /) leading to a
Sturm-Liouville problem (A.4a) where m? is the Biot number
and the BCs (A.4c, d):

d’e de m’ 2hb
—+———(Rp+1)0=0 where m*==—— (A4ab
T S y (Adab)
deé de
—| =@ and — =0.
iR, 0, .., (A4c.d)
For a large R such that Rp >>1,
2
%— me=0 (A.5)

Along with the BCs (A. 4c.d). the solution to (A.5) is given by

6 —coshm(L—R) 2

—=————"""—- where 6, == A6

6. sinh mL (A.6)
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