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   
Abstract— The paper presents an efficient method, which 

reconstructs the temperature field around the tool/chip interface 
from infrared (IR) thermal images, for online monitoring the 
internal peak temperature of the cutting tool. The tool 
temperature field is divided into two regions; namely, a far field 
for solving the heat-transfer coefficient between the tool and 
ambient temperature, and a near field where an artificial neural 
network (ANN) is trained to account for the unknown heat 
variations at the frictional contact interface. Methods to extract 
physics-based feature points from the IR image as ANN inputs are 
discussed. The effects of image resolution, feature selection, chip 
occlusion, contact heat variation and measurement noises on the 
estimated contact temperature are analyzed numerically and 
experimentally. The proposed method has been verified by 
comparing the ANN-estimated surface temperatures against “true 
values” experimentally obtained using a high-resolution IR 
imager on a custom-designed testbed as well as numerically 
simulated using finite-element analysis. The concept feasibility of 
the temperature monitoring method is demonstrated on an 
industrial lathe-turning center with a commercial tool insert.  

Note to Practitioners —The internal tool-temperature field around 
the tool/chip interface during cutting offers essential information 
to monitor tool-wear and ensure surface-quality particularly in 
finishing cuts, which is difficult to be monitored because of the 
stringent real-time requirements (including low cost and high 
accuracy) in harsh working environments. This paper presents a 
potentially low-cost solution that combines non-contact surface 
temperature measurements with high-fidelity physics-based 
computational models for monitoring the internal peak 
temperature at the tool/chip frictional contact during cutting. 
This physics-based method requires only a small number of 
pre-selected features, and uses thermal isotherms and streamlines 
to detect and substitute any occlusions in the IR images. The 
method does not rely on high-resolution images to infer the steep 
temperature gradient near the tool-tip where the peak 
temperature occurs, and thus can be implemented with a 
relatively low-cost IR imager. Unlike traditional least-square 
methods that bases solutions to a heat-conduction partial 
differential equation (PDE), the ANN is trained with precomputed 
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physics-based models based on a novel dual-field (far-field and 
near-field) approach. The ANN-based method not only eliminates 
the need to solve the time-demanding PDE in real time, but also 
effectively accounts for parameter variations due to the uncertain 
frictional heat-fluxes at the contact interface during cutting. 

Index Terms — online monitoring, infrared (IR) imaging, 
temperature measurements, artificial neural network (ANN), 
thermal field reconstruction, manufacturing, machining. 

I. INTRODUCTION 
APID advancements in imaging/computing technologies 
[1] and machine intelligence [2] have motivated 
manufacturers to develop online sensing methods to 

maintain product quality with improved production rate [3][4], 
particularly for monitoring tool wear and controlling the 
dynamic behaviors in fabricating thin-walled aircraft 
components which are generally made of hard-to-machine 
materials (such as titanium alloy) that typically have a low heat 
conductivity.  Among the challenges is the online measurement 
of the internal tool-temperature field and its peak value of the 
cutting tool subject to unknown contact heat variations, which 
are essential information to monitor tool-wear behaviors, 
prevent premature tool-failure, and ensure surface quality 
particularly in finishing cuts. As the contact temperature and its 
steep gradient along with the unpredictable contact heat 
variations cannot be directly measured [2], existing methods to 
predict tool wear are empirical and rely on operationally 
expensive pre-scheduled tool-changes. There is a need for an 
online monitoring method capable of reconstructing the 
internal temperature field around the tool/chip interface from 
high-fidelity models with non-contact surface measurements 
while the component is being fabricated.  

Existing methods that determine the heat exchange at the 
micro-scale contact area can be broadly divided into three 
categories: Experimental techniques with embedded 
thermocouples (TCs) focus on direct measurements of the 
cutting tool temperatures.  Predictive theoretical models aim at 
understanding the physical phenomena to improve or optimize 
the cutting process. Hybrid experimental/ numerical inverse 
heat-conduction methods estimate the boundary conditions at 
the contact interface. To gain physical insights into thermal 
effects on tool wear, several direct- measurement methods have 
been explored. Based primarily on conventional thermocouples 
(TCs) [6][7] and recently developed thin-film TCs (TFTCs) 
[8][9] that take advantages of MEMS technology, an embedded 
or surface-mounted TCs/TFTCs was integrated in a cutting tool 
as micro-scale sensors to monitor the tool temperature near the 
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tool/chip interface during cutting.  Experimentally measured 
temperature (up to 900°C) at a distance of 0.2mm from the tool 
tip was reported [10]. Predictive theoretical models [11] are of 
great interest for assessing the temperature field at the tool/chip 
interface; such models often rely on assumptions to estimate 
parameters and experiments to validate calculations. Hybrid 
methods generally use an inverse technique to determine the 
boundary conditions numerically with temperature 
measurements at specified points in the tool, and then solve the 
heat conduction equation for the internal temperature at the 
tool/chip interface.  Most existing inverse methods generally 
base on a least-square formulation that numerically solves the 
3D partial differential equation (PDE) using finite element [12] 
or finite difference [13] techniques, which are computationally 
demanding for real-time applications.  These (experimental, 
theoretical and hybrid) methods more or less involve 
experimental measurements typically with TCs, more recently 
with infrared (IR) measurements [14].  Although embedded 
TCs can be used to quantitatively investigate the cutting 
temperature, their applications are generally considered 
unsatisfactory (since their placement can interfere with heat 
flow and limit the tool strength), and limited to research in a 
laboratory setting because of the costly tool insert that requires 
customized fabrication and the operationally expensive 
scheduled tool-changes.  

As a non-contact alternative, IR thermal imagers (utilizing 
microbolometer sensitive to infrared light) have been used to 
measure surface temperature fields for thermal analysis of 
cutting tool [15] and sheet metal [16] in manufacturing 
applications. Most existing IR-based measurement devices 
(that simply use an IR camera quantitative) analyze the data 
using signal and/or image processing methods [17]. While they 
are effective to detect certain machining states [18] and can be 
potentially implemented at low-cost [19], the internal tool 
temperature field and its peak value (near the tool/chip interface) 
which are essential information in general machining 
applications cannot be determined from the measured surface 
temperature distribution directly. As reported in [20][21][22] 
where a transparent yittrium aluminum garnet (YAG) tool and a 
high-resolution IR imager were used, as much as 30% 
difference between the maximum contact temperature and the 
maximum surface temperature was experimentally found in 
orthogonal cutting (with negligible tool-workpiece offset). 
These findings suggest that a 3D heat transfer model must be 
coupled with IR measurements to reconstruct the internal 
temperature field of the cutting tool.  

To relax the stringent requirements commonly encountered 
when using an IR thermal imager for monitoring the internal 
temperature field during dry cutting, this paper presents a novel 
dual-field (far-field and near-field) approach for robust feature 
extraction from IR images and for training ANN with 
precomputed physics-based models to account for uncertain 
heat-flux variations at the tool/chip interface. Unlike existing 
inverse methods solving the PDE with TC-measured 
temperature, the ANN once trained is computationally efficient 
[23] and exhibits excellent learning capability in noisy 
environment with high interpolation accuracy [24]; thus the 
physics-based ANN could offer a viable easy-to-implement 
approach in industry. The remainder of this paper offers the 
followings:  

 A 3D conduction heat-transfer model along with the 
numerical algorithm is formulated for reconstructing the 
temperature field of the tool from the measured surface 
temperature field. Based on an order of magnitude analysis, 
the measured field is divided into a far field and a near field. 
In the far field, the effect of the frictional tool/chip contact 
heat on the temperature is treated as an ideal heat-source for 
solving the heat-transfer coefficient between the tool and 
ambient temperature. The near field temperature is solved 
numerically to train an ANN that accounts for the unknown 
heat-flux variations at the contact interface. 

 Practical implementation issues encountered in extracting 
temperature features that provides the boundary conditions 
(BCs) for solving the heat transfer equation from the IR 
surface temperature are discussed. The effects of image 
resolution, feature selection, chip occlusion, contact heat 
variation and measurement noises on the maximum contact 
temperature are analyzed experimentally and numerically 
using finite-element analysis (FEA). For verification, the 
ANN-estimated surface temperatures are compared against 
“true value” experimentally obtained with a high-resolution 
IR imager on an orthogonal cutting testbed as well as 
numerical results simulated using FEA.  

 The concept-feasibility of the temperature monitoring 
method based on IR surface temperature measurements and 
model-trained ANN for online applications is demonstrated 
on an industrial lathe-turning center. The ANN-estimated 
results are compared with temperatures experimentally 
measured using two TCs and a commercial IR imager as well 
as FEA simulations, which are existing benchmark 
measurement and numerical methods, commonly reported in 
published literature. As will be illustrated, this method 
requires only a small number of pre-selected features from a 
relatively low-cost standard IR imager (with 320×240 
resolution) to reconstruct the internal tool-temperature field, 
and capable of detecting and substituting any occlusions in 
the IR images using two thermal properties (isotherms and 
streamlines). As the method does not rely on expensive 
close-up lenses to infer the steep temperature gradient near 
the tool-tip, it represents a practical low-cost solution that has 
the potential to be utilized in industry. 

II. INFRARED IMAGE BASED TEMPERATURE MONITORING 
Fig. 1 illustrates a typical cutting process where frictional 

heat is generated at the tool/chip contact interface. During 
machining, the tool insert (with thermal conductivity k, mass 
density , and specific heat capacity cp) acts as a heat sink 
through which the heat flux qs, generated at the tool/chip 
frictional contact dissipates from its surfaces by convection 
(characterized by the heat transfer coefficient h that depends on 
ambient conditions). Mathematically, the steady-state tool 
temperature T (x, y, z) is governed by the heat conduction 
equation (1a) where  denotes the gradient operator, which can 
be uniquely solved with appropriately specified BCs (1b) for a 
given tool geometry: 

  0k T    (1a) 

http://en.wikipedia.org/wiki/Laplace_operator
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where  , or u xy z

 

and T∞ is the ambient temperature. The 

solutions to (1a, b) for a cutting tool with known material and 
geometry can be solved if qs, (and its contact area) and h are 
specified.  In (1b), the far field is the region far from the heat 
source where heat dissipates by convection from the surfaces.  
The interest here is to monitor the maximum internal 
temperature Tim as well as the maximum surface temperature 
Tsm of the tool during machining, which occur in the near field 
(or the vicinity of the tool/chip interface).
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Fig. 1 Cutting temperature measurement system 

Unlike material properties, h must be experimentally 
determined. The contact area (defined here as a product of 
contact length lc and cutting thickness w) is generally very 
small (in microns) relative to the cutting tool, and cannot be 
measured online. As qs cannot be measured directly, empirical 
relationships based on the measured cutting forces are 
commonly used to approximate qs that not only depends on 
specified cutting requirements but also varies with the actual 
cutting tool conditions. To be effective, the on-line temperature 
monitoring method has the following abilities:  

 It can reconstruct the tool-temperature field around the 
tool/chip interface and determine its peak value from IR 
surface temperature measurements. 

 It is capable of multi-scale temperature measurements in the 
micro-scale contact area, and can detect and substitute any 
chip occlusions during machining. 

 It accounts for a range of frictional heat variations at the 
tool/chip interface.  

To meet the above requirements, Fig. 1 illustrates an online 
method consisting of three parts for monitoring the interface 
temperature of a cutting tool: 

1) an IR imager that moves with the cutting tool for measuring 
the surface temperature of the tool side;  

2) a coupled set of heat transfer models to estimate h and to 
reconstruct the tool temperature; and  

3) a trained artificial neural network (ANN) for on-line 
monitoring of the tool temperature.  

As illustrated in Fig. 1, the on-line method begins with an IR 
surface temperature image (presented in pseudo-colors for ease 
of visualization). The fin model described in Appendix, which 

reduces the processing of a 2D image to that along a streamline 
and thus speed up the computation, is then used to estimate the 
heat transfer coefficient h from the far-field temperature. 
Selected surface temperatures in the near field are extracted as 
features Ts(x, y) for on-line temperature monitoring of the 
cutting tool using a trained ANN. For general cutting 
applications, empirical relationships based on the measured 
cutting force can be used to approximate qs along with the 
on-line estimation of h to specify the boundary conditions in 
(1b). Once the solutions to (1a, b) are validated, commercial 
software can be utilized to simulate large data to characterize 
the 3D temperature field of the cutting-tool, for a range of 
different (qs, lc and h) BCs to support model-based data-driven 
monitoring of the critical tool temperatures.   

A. Physics-based model-trained ANN for online monitoring  

Fig. 2 illustrates the method to account frictional heat 
variations at the tool/chip interface in practice, where the ANN 
offers a nonlinear mapping between the IR measured surface 
temperatures (as inputs) and the monitored temperature (as 
responsive outputs).  As shown in Fig. 2(a), large data based on 
the solutions to (1a) for a specified range of BCs (1b) are 
computed offline to train an ANN as shown in Fig. 2(b) for 
model-based monitoring of the critical tool temperature.
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Fig. 2 Training data preparation and trained ANN structure 

The off-line training preparation is illustrated in Fig. 2(a) for 
a given tool and cutting conditions (with constant w), where the 
initial qs is estimated empirically. The empirical contact length 
lc can be found in [25]. For Ti6Al4V material, 

1.15 0.7c c cl d d 
 

 (2) 

In (2), the chip-compression ratio  depends on the cutting 
velocity vc and depth-of-cut dc, where the relationship can be 
found in [25] for a range cutting conditions. The initial qs is 
estimated as a fraction of the dissipated heat qf in terms of the 
cutting velocity and forces at the tool/chip interface:

3
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In (3b) where (k, t) and (kw, w) are the heat conductivity and 
thermal expansion coefficient of the cutting tool and workpiece 
materials respectively, the empirical  depends on the materials 
of the cutting tool and workpiece.  In (3c) whereγ is the rake 
angle of the cutting tool, the cutting and feeding forces (fc, ft) 
can be experimentally measured in real time or simulated 
offline using commercially available cutting software (such as 
AdvantEdge). 

To estimate h in real time, the far-field heat transfer is 
approximated by a fin model in Appendix where the contact 
heat is modeled as an ideal point source at R = 0 (Fig. A.1); and 
heat transfer out at the sufficiently far end (at R = L) is 
neglected. The significance of the fin model (A.6) is illustrated 
with an order-of-magnitude analysis in Appendix, suggesting 
that the far-field temperature does not depend on , and can be 
determined along a streamline. Thus, the Biot number m (and 
hence h) can be determined from the isotherms and streamlines 
of an IR temperature image using (A.6).   

Numerically, the temperature fields were found to be more 
sensitive to qs than h and lc. To reduce the number of ANN 
models (each corresponding to a set of BCs), (h, lc) are grouped 
in (p, ) intervals within which their average values 
 ,p ch l are used:  

      T T
1, ;   ,p c sj i n sm im

j
h l q T T T T T  (4) 

Since there is no relative motion between the IR imager and the 
tool, the feature locations are fixed points on the IR images in 
the ANN where the input-output pairs are defined (4). However, 
the number of the feature points (that characterize the surface 
temperatures of the tool insert) and their locations have 
significant effects on the robustness and accuracy of maximum 
temperature predicted by the trained ANN. 

Once the BCs are completely defined, the 3D temperature 
field of the cutting tool can be computed from (1a). The ANN is 
trained with supervised learning using the solutions to (1a) 
which are solved for a broad range of different boundary 
conditions (qs, lc, h) to generate the input-output data-pairs. 

B. Near-field feature extraction with occlusion handling  

The IR image provides selected temperature data for the 
far-field estimation of the heat transfer coefficient h, and for the 
on-line monitoring of the tool temperature using a trained ANN. 
In the selection of feature points located in the near field, the 
assumption of an ideal point heat source is no longer valid. As 
an illustration, Fig. 3(a) shows an IR image captured during 
orthogonal cutting and the surface temperature T(s) and its 
gradient T/s along the streamline s.  For a homogeneous 
object, T and T/s are continuous.  As defined in its top–right 
image, the streamline s starts at an arbitrary point where 
T(s=0)=T0 in far-field, and ends at the tool/chip interface where 
the temperature is continuous and peaks at T(s= sm)=Tm but its 
gradient T/s is discontinuous and equal to 0. To help gain 
intuitive insights into the heat-source effect on the near-field 
thermal behaviors, the orthogonal cutting is simulated using 
FEA in Fig. 3(b) where the top–left plots illustrate the effects of 
the two heat-sources (same qslc but different lc) on the isotherms 
(constant temperature curves) and streamlines (which 
characterize T/s and are perpendicular to isotherms).  In Fig. 

3(b) where the (T0, Tm) values are listed, the temperature 
difference (TT0) is normalized to (TmT0).  
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Fig. 3 Temperature along a streamline (near heat source) 

The following observations can be made from Fig.3:   
 As revealed in the IR image (top-right in Fig. 3a), the 

T/s monotonically approaches to zero in far field (0  s 
 sf); and the isotherms are approximately concentric and 
circular.  This is further confirmed in the top-left of Fig. 
3(b), where the two streamlines, for lc=100m (thin-black 
line) and for lc=300m (red line), converge at far field. 

 The near-field temperature and its gradient of the rake 
surface (top–left in Fig. 3b), depend on the frictional 
heat-flux qs and contact length lc for a given tool geometry 
(b,); see Fig. A.1 in Appendix.  

 In Fig. 3(b), the normalized temperature (TT0)/(TmT0) 
along the streamline for a given lc has the form: 

exp  where 0 .mo

m o

s sT T
s

gT T
  

   
  

 (5) 

Equation (5) is independent of qslc, but weakly depends on 
lc as shown in Fig. 3(b). 

 For a given qslc, lc has a direct influence on the location of 
Tm but plays no role in the value of Tm.    

In practice, the IR images could be occluded by chips during 
machining. Thus, the two thermal properties (isotherms and 
streamlines), which are continuous for a homogeneous object, 
are used as criteria in the feature selection algorithm to detect 
and substitute any occlusions in the IR images. The procedure 
is illustrated numerically with an example in Fig. 4 where a 
broke-away chip occludes the surface near the tool tip; as a 
result, the temperature and its gradient are discontinuous along 
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the streamline, and thus can be detected by the criteria based on 
the principle of continuity. The temperature values of the 
occluded pixels can be uncovered using (5) characterized by the 
two parameters (g, Tm) for a specified streamline (so, sm).  As 
T(s) is extracted while tracing along a streamline, ns data prior 
to the occurrence of the occlusion can be used to determine the 
parameters (g, Tm) for approximating the occluded pixels with 
(5). The original and replacement temperature along the 
streamline on the occluded IR image are compared in Fig. 4.   
Given that the IR thermal imager is fixed relative to the 

cutting tool, the feature points for reconstructing the near-field 
temperature can be pre-selected. To allow for simultaneously 
uses of the two thermal properties, feature points are selected at 
intercepts between the streamlines and the isotherms. As will 
be illustrated experimentally, this scheme significantly 
improves the robustness of the feature selection in near field. 
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Fig. 4 Occluded temperature interpolation 

III. RESULT AND DISCUSSIONS 

The IR-image method with a model-trained ANN for online 
temperature monitoring of the cutting tool is illustrated and 
validated numerically and experimentally. Three sets of results 
are presented:  The first numerically analyzes the effects of the 
feature selection and sensor noise on the robustness and 
accuracy of the model-trained ANN. The second investigates 
the effects of image resolution on the maximum temperature 
(Tsm and Tim) estimated by the trained ANN using 
experimentally obtained IR images.  Since no published data 
were available for benchmark comparison, high-resolution 
surface-temperatures were obtained both experimentally and 
numerically in the first two sets of results for investigating the 
effects of image resolution, temperature gradient and chip 
occlusion on the online temperature monitoring. Once these 
effects are well understood, the third demonstrates the 
effectiveness of the model-trained ANN method on an 
industrial lathe-center with a commercial tool insert, where the 
surface temperature was measured with a standard IR imager.  
The steady-state equation (1a) and its BCs (1b) were 

numerically solved for the near-field temperature in COMSOL 
(a commercial 3D FEA software) to simulate the input-output 
data-pairs for training the ANN shown in Fig. 2(b). The fully 
connected 3-layer network with a hidden layer of six neurons 
(sigmoid function) and a pair of input and output layers (linear 
function) was trained in MATLAB (Neural Network Toolbox) 
based on the Levenberg-Marquardt algorithm [26]. 
Experiments were conducted on a customized orthogonal 

cutting testbed (Fig. 5) [27]with a high-resolution (HR) 
IR-imager (FLIR A325sc camera with a close-up X1 lens, 
320240 pixels, 60Hz) to allow close capturing of the surface 
temperature field and its steep gradient around the tool-chip 

interface.  As shown in Fig. 5, the rectangle workpiece was fed 
vertically with the constant speed towards the high-speed steel 
(HSS) cutting tool fixed on a stationary tool holder, where the 
parametric values of the tool are listed in Table 1. The IR 
imager is mounted (fixed relative to tool table) with its optical 
axis perpendicular to the side surface of the tool/chip interface 
of the orthogonal cutting.  With this customized setup, the 
measured surface temperatures (with very high spatial 
resolution of 25m/pixel, or in other words, a set of 88 
measurements within an area of 200m200m) offer the 
essential 2D “true-values” for experimental verification of the 
solved temperature field. These data represent an order 
improvement over the linear distance of 0.2mm (for a single 
measurement from the tool-tip) reported in [10].
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Fig. 5 Experiment with high-resolution IR 

Table 1 Parametric values of customized cutting experiments 

Materials ρ (kg/m3) cp (J/kg/ °C) k (W/m/°C) 

WP (Ti4Al6V) 4430 505.6 7 

Tool (HSS) 8000 450 15 

Tool geometry :       =73°, b=2.6mm 

Cutting condition:  vc =8m/min, dc =0.2mm 

FEA BCs:  qs = 6.3W/mm2; h = 540W/(Km2); w=2.5mm lc= 0.3mm 

3,000 
training 
pairs  

Initial 210.8W/mm and  0.37mms cq l   

qs (W/mm2) h (W/m2/°C) lcw (mm2) 

0.2:0.2:25 100:100:800 0.27,0.54,0.81 

In all experiments (T∞ = 20°C), the workpieces are titanium 
alloy (Ti-6Al-4V) with characteristic thermal properties given 
in Table 1. For consistency in IR temperature measurements, a 
thin-layer of thermal grease (less than 0.5mm thick, k≈

1.5W/m/K) with a constant emissivity  of 0.95 [28] 
experimentally calibrated using the procedure described in [29] 
was applied on the viewing surface of the cutting tool, where 
generally has a high Young’s modulus and remains 
un-deformed during machining. 

A. Effects of feature noise and selection on model-trained ANN  

Unlike the maximum surface temperature Tsm that can be 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6 

measured by the high-resolution (HR) imager, the maximum 
internal temperature Tim is hidden and can only be analyzed 
numerically by solving (1a) with BCs derived from the surface 
temperature of the side face. For practical implementation on a 
typical lathe-center that generally does not permit close 
capturing of the tool/chip interface, the FEA computed 
temperature is discretized to simulate the spatial resolution 
commonly in practice.  For this reason, the FEA models were 
coded with high-resolution meshes to provide “numerical true 
values” for training the ANN, while the simulated surface was 
discretized to model the low-resolution (LR) of the IR-images 
in the third set of experiments for comparison. 

FEA Models 
Fig. 6(a) shows the FEA model (meshed with tetrahedral 

elements) for the cutting tool in Fig. 5, where most of the 
elements are located in the region near the tool tip. Table 2 
shows the effect of the mesh sizes on the computation errors for 
maximum and average temperature (relative to Case 6). The 
numerical study has led to the choice of 104,264 tetrahedral 
elements with the acceptable computing time of 18 seconds 
(with the largest element size of 25µm) in the subsequent 
computation. Fig. 6(b) shows a typical 3D temperature field of 
the tool, where the parametric values of the cutting condition 
and the boundary conditions used in the simulation can be 
found in Table 1. Because of an offset d=0.1mm that was set in 
the experiment to reduce the chip occlusion in the IR images 
(Fig. 5), the internal maximum temperature Tim is expected to 
be higher than the surface maximum temperature Tsm. 

Tsm
Tim

FEA surface
temperature

h

h

qs

(b) Boundary condition in COMSOL 

T (°C)

(a) Meshgrid in COMSOL
w = bw= 2.5mm

 
Fig.6 FEA numerical simulation 

Table 2 Effects of mesh numbers on accuracy 
Case Num. of 

elements 
Computing 

time (seconds) 
% Relative Error  

(Max., Ave.) 
1 4,107 6 (21.83, 0.45) 
2 15,237 8 (11.06, 0.22) 
3 25,441 9 (5.09, 0.12) 
4 60,014 14 (1.43, 0.07) 
5 104,264 18 (0.37, 0.02) 
6 123,654 21 Basis for comparison  

With initial sq =10.8W/mm2 and cl =0.37mm computed 
using (2) and (3), 3000 input-output training pairs over a range 
of (qs, h, lc) as shown in the last row of Table 1 are 
pre-computed to account any possible variations in BCs during 
cutting. The ANN weights (Fig. 2b) were trained with 70% of 
the data-pairs; and the remainder was divided into 2 halves; 

15% for validation and 15% for testing. The validation set 
minimizes overfitting and halt weight updating when the 
generalization stops improving. The testing set provides an 
independent measure of the network performance during and 
after training. 

Effect of feature patterns on model-trained ANN  
The number of feature points and their locations (which are 

referred to here as feature patterns) have significant effects on 
the robustness and accuracy of the trained ANN as well as on 
the computation time required to train the ANN and the online 
recall. The time required to train the ANN with 750 data pairs 
(on a 64-bit PC, Intel Core i7-6600, 2.6GHz,16GB RAM) is 
25.75 minutes when all 403 points in a original temperature 
distribution image are treated as features, which would be 5.1 
minutes for training with 20 feature points and 3.75 minutes for 
15 feature points.   With no detection of image occlusion, the 
ANN takes 8.3ms (referred to here as recall time) to estimate 
two outputs (Tsm, Tim) with 20 inputs, and 5.5ms with 15 inputs. 
As an illustration, Fig. 7(a) compares three different types of 
15-point-distribution in the simulated image: 
D1:  3 streamlines, each with 5 equally spaced points. 
D2:  Similar to D1 but points distributed using the bisection 

method to account the increasing gradient in the near field. 
D3:  9 equally spaced points in near field and 6 other points at 

intercepts between the streamlines and isotherms.  

D1 
D2
D3

qs (W/mm2)

(a) Three different feature point distribution of 15 points 

(b) Effects of noise on the trained ANN
qs (W/mm2)

Esm(%) Eim(%)

D1 D2 D3

 
Fig. 7 Feature points selection and analysis 

To investigate the effects of the feature pattern on the 
robustness, a random zero-mean (µ=0) Gaussian noise to the 
FEA-simulated input Ti so that the feature surface temperatures 
( iT  where i= 1, ..., n) are numerically corrupted by noise, and 
have the form in (6) where εi is the random error associated with 
the ith measurement and  is a standard deviation: 

 ,i i iT T      (6) 
Fig. 7(b) compares the effects of the corrupted inputs (σ= 
0.05Ti) on the robustness (among three types of distribution) in 
terms of the errors (Esm and Eim) defined in (7): 

 (%) 100 /m mm mE TT T   (7) 
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In (7  and sm imT T), ( ) are the outputs of the trained ANN in 

response to the noise-corrupted inputs, and (Tsm and Tim) are the 
“true-value” originally computed by the FEA.  For the equally 
spaced D1, the maximum (Esm, Eim) values are (12%, 25%) 
which can be effectively reduced to (4%, 15%) for D2 and 
(4.5%, 7%) for D3 as numerically demonstrated in Fig. 8(b). 

B. Effect of image resolution on model-trained ANN  

To investigate the effect of image resolution on the trained 
ANN, HR (25m/pixel) images were captured on the 
customized orthogonal cutting setup (Fig. 5), from which LR 
images (with a 10 scaled down to simulate the resolution of 
250m/pixel typically found in surface temperature 
measurements of a standard IR imager) were obtained.  The HR 
and LR IR-images are compared in Fig. 8(a).  The 15-feature 
D3 scheme was experimentally evaluated on the IR images for 
four cutting conditions (Ci, Di) where the subscripts (i=1, 2) of 
the cutting speed vc (m/min) and the depth-of-cut dc (mm) are 
defined in Fig. 5: 

CC1 (4, 0.2); CC2 (8, 0.2); CC3 (4, 0.1); CC4 (8, 0.1)

y

CC4

(a) High-resolution (HR) and low-resolution (LR) IR images

(b) ANN estimated Tsm and relative errors

T (°C)

x(mm)

(240 200) (24 20)

CC1 CC2 CC3CC4CC1 CC2 CC3

TLRTLR
THRTHR
TLR
THR

Tim (ANN)Tim (ANN)
Tsm (ANN)Tsm (ANN)
Tim (ANN)
Tsm (ANN)

T
s
m 
(°
C)

Re
la
ti
ve
 
% 
Er
ro
r 

LR HR

HR

T T

T

 sm HR

HR

T T

T


LR HR

HR

T T

T

 sm HR

HR

T T

T



 

 
Fig. 8 Results of maximum machining temperature prediction 

Some findings from Fig. 8 are summarized as follows: 

 As each LR pixel-value represents an average value over 
1010 HR pixels, the LR measured Tsm values are lower than 
and thus underestimate the “true value” (HR measurements). 
The maximum relative errors in these four experimental 
cutting conditions are in the order of 15%.  

 The Tsm error caused by the low-resolution of the IR imager 
can be effectively reduced by the model-trained ANN.  As 
shown in Fig. 8(b), the error of the ANN-estimated Tsm is 
reduced to less than 5% of the “true value”, which represents 
an order-of-magnitude improvement over the measurements 
with the LR imager. 

 Additionally, the model-trained ANN offers a means to 
determine the maximum temperature Tim in the tool/chip 
interface, which cannot be captured by IR due to the small 
offset d=0.1mm between the tool and workpiece. 

The effects of low image resolution on a feature pattern is 
illustrated in Fig. 9(a), where 6 different patterns in a FEA 
simulated image (1212pixels, 250m/pixel resolution) are 
compared; 5 features in P1, 9 in P2, 15 in each of the P3, P4 and 
P5 patterns, and 20 features in P6.  To predict the effects of low 
image resolution on the robustness, the model-trained ANN is 
recalled with and without Gaussian noise as defined in (6).  Fig. 
(9b) comparing the (Tsm and Tim) errors defined in (7) in terms 
of noise (varying from 0.1% to 5% of Ti) among the six 
input-patterns, where each error represents an average over 30 
different qs (with constant lc and h).

T (°C)

 P1–5 (3.4ms)  P2–9 (3.7ms) P3–15 (5.6ms)

P4–15 (5.5ms)  P6–20 (8.3ms) P5–15 (5.7ms)

% increment  in  
 R
el
at
i
ve
 e
rr
or
 
E i
m 
(
%)

Re
la
ti
ve
 e
rr
or
 
E s
m 
(
%)

(a) Feature pattern in  a 3mm3mm image, P1 to P6 (recall time)

(b) Effects of measurement noise on Tsm and Tim 
% increment  in  

P6
P5
P4

P1
P2
P3

 

Fig. 9 Feature points selection and analysis 

Without noise, the model-trained ANN is capable of 
estimating (Tsm and Tim) from the low-resolution surface 
temperature measurements with a mean relative error of less 
than 0.1%.  As the signal-to-noise ratio degrades (Fig. 9b), the 
estimation becomes less accurate but can be improved by 
increasing the number of feature inputs. As shown in Fig. 9(b),  
Tsm can be estimated with less than 5% errors from 15 low 
resolution measurements; and the Tim estimation errors were 
reduced from 17% (P1 with 5 feature inputs) to less than 10% 
(P3, P4 with 15 feature inputs).  Significant improvements can 
be further achieved by appropriately distributing the 15 features 
(P5) cover both the far field and near field and located on the 
intercepts (between isotherms and streamlines), reducing the 
relative (Tsm and Tim) errors to (3%, 5%).  Further increasing in 
the feature inputs to 20 at the expense of online recall time does 
not significantly improve the robustness. Thus, the feature 
pattern P5 is chosen in the subsequent experiments. 

C.  Experimental validation 

The online monitoring method using surface temperature 
measurements with a model-trained ANN was evaluated on a 
conventional lathe center with a commercial tool insert for 
high-speed orthogonal cutting of a titanium workpiece (Fig. 10), 
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where the tool geometry is relatively more complex than that in 
the customized setup (Fig. 5). The surface temperature was 
measured by the FLUKE Ti400 IR imager (250µm/pixel 
resolution and 9Hz frame-rate). Due to the limited image 
resolution, the IR observed maximum is lower than the actual 
tool maximum temperature during machining.  To validate the 
FEA-computed internal temperature experimentally, the two 
thermocouples are embedded 0.5mm and 1mm from the tool tip 
to measure the temperature in real time.  

The parametric values of the cutting condition, the BCs for 
FEA and the number of data-pairs for training ANN in this 
experimental evaluation are summarized in Table 3. The results 
obtained experimentally are summarized in Figs. 11 and 12, 
and Table 4. 

Cutting 
tool

Fluke IR imager
 

Fig. 10 Experimental setup 

Table 3 Parametric values of the lathe-turning center 
Materials ρ (kg/m3) cp (J/kg/ °C) k (W/m/°C) 
Tool (WC/Co) 14000 148 55 

Tool geometry:        =79°, b=2.9mm  

Cutting condition:  vc =120.2m/min, dc =0.1mm 
BCs:  qs = 54.5W/mm2; h = 512W/(Km2); w=1.5mm lc= 0.17mm 

3,000 
training 
pairs  

Initial 2124.6W/mm  and 0.185mms cq l   

qs (W/mm2) h (W/m2/°C ) lcw (mm2) 
2:2:250 100:100:800 0.255 

Fig. 11(a) shows the FEA model (meshed with 699,204 
tetrahedral elements in COMSOL) of the cutting tool-insert to 
solve for the temperature field, where the two thermocouples 
TC1 and TC2 embedded in the tool-insert capable of transient 
measurements. The time dependent term, ( / )pc T t   , was 
included on the right side of (1a) to solve for the 3D transient 
temperature in FEA. Fig. 11(b) shows a typical IR surface and 
the following four different feature patterns as real-time inputs 
to the model-trained ANN. 

Case 1:  Same as D2 in Fig. 7(a) 
Cases 2, 3, 4:  Same as (P3, P4, P5) in Fig. 9 respectively. 

Case 4a) with no detection of image occlusion 
Case 4b) with online detection of image occlusion   

The effects of the four feature patterns (all with 15 feature 
points) on the maximum surface and internal temperatures 
monitored in real time were experimentally evaluated.  For 

each feature pattern, the three-layer ANN (15 inputs, 6 
hidden-neurons and 2 outputs) take less than 4 minutes to 
complete the offline training. Table 4 tabulates the time 
required for online data-recall time in milliseconds (ms), the 
average (Ave.), standard deviations (SD) and maximum (Max.) 
errors of the ANN-estimated Tsm and Tim, where the errors are 
relative to that computed by the FEA. The online recall with no 
detection of image occlusion (Cases 1, 2, 3 and 4a) took less 
than 6ms. In Case 4b (where any discontinuities due to image 
occlusion were detected online), the ANN took 12.1ms to 
compute the outputs but greatly improve the Tim estimation. 

FEA surface temperature

T (°C )

x
yz

TC1
TC2

(a) 3D temperature distribution by FEA

(b) Feature points in IR image
(mm)

T (°C )

Fig. 11 Training pairs and feature points  

Table 4 Comparison of monitoring results 

ANN FEA FEA( ) /E T T T      (Ave., SD, Max.) Recall 
(ms) Pattern Esm Eim 

Case 1 (1.9,   1.8,   7.7) (8.3,   5.4,  25.3) 5.4 
Case 2 (9.3,   3.1, 18.3) (15.6, 10.1,  44.2) 5.6 
Case 3 (3.2,   2.1, 10.4) (9.5,   6.1,  22.5) 5.5 
Case 4a (2.1,   1.2,   4.8) (7.4,   5.3,  21.3) 5.7 
Case 4b (2.1,  0.96,  4.1) (2.7,   3.5,  10.9) 12.1 

Using the feature pattern in Case 4b (Fig. 11) as ANN inputs, 
the effectiveness of the FEA, online image-occlusion detection, 
and model trained ANN were experimentally validated.  The 
results are illustrated in Figs. 12(a, b, c) Fig. 12(a) shows a 
typical image captured during transient, within which the 
distinct edge lines are detected by the local changes in intensity 
of IR image. Based on the edge lines of the tool insert (green 
lines in the middle of Fig. 12a), where the tool outline was 
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determined online by means of a pattern-matching algorithm 
with known tool geometry. As shown in Fig. 12(a), the 
tool/chip interface is in the scale of microns. 

°C
(320  240) (40  30)

(a) Image captured during transient

4

2

0 2 4 (mm)

4

2

0 2 4 (mm)

(b) Chip occlusion during monitoring

4

2

0 2 4 (mm)

(b) Chip occlusion during monitoring

Te
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T (TC1)
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 Time (s)
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FEA

T 1Ts Tsm TimT2
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(c) Comparison among FEA,  ANN and measurements
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e 
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T (TC1)
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 Time (s)

Tsm (ANN)

Tim (ANN)
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(c) Comparison among FEA,  ANN and measurements

 

Fig. 12 Experimental investigation on conventional lathe center 

Three examples are given in Fig. 12(b) to illustrate image 
occlusion and its handling for obtaining high fidelity surface 
temperature features as inputs to the trained ANN: 

 The first column shows a breakaway chip occluding the 
image in the far-field region. As h does not change 
significantly between time steps, the value of h from the 
previous time-step is assumed. The non-occluded feature 
temperatures are inputs to ANN for estimating the target 
output temperatures being monitored. 

 The second column shows a sweeping chip occluding a 
portion of feature temperatures in the far field at the steady 
state.  The occlusion was detected, where drastic temperature 
differences between the points on the same isotherm and 
between two consecutive time steps occur. The occluded 
temperatures were then replaced by a value interpolated from 
the non-occluded feature temperatures.  

 The third column shows a chip in near field, which was 
detected as it exhibits a dramatic temperature-discontinuity 

with other feature temperatures on a specific isotherm.  Using 
the streamlines in the near field, the occluded temperatures 
are replaced with interpolated values computed from the 
exponential fit illustrated in (5). 

With the high-fidelity feature-inputs, the temperatures (Tsm 
and Tim) being monitored online can be estimated from the 
ANN trained with FEA models. Fig. 12(c) plots the 
FEA-simulated temperatures at specified locations during 
transient and steady state, which are compared with 
measurements using the proposed and existing benchmark 
measurement methods. Specifically, the FEA results are 
compared against the IR-measured surface temperature Ts 
(discrete red circle) at an observed point, the ANN-estimated 
Tsm and Tim (discrete black square and triangle respectively), 
and the thermocouple measurements (TC1 and TC2) during 
cutting.  Although the IR imager is capable of measuring the 
surface temperature during transient, the ANN was trained with 
surface temperature measurements at steady state; thus, only 
the steady state (ANN-estimated) Tsm and Tim are plotted in Fig. 
12(c). The followings are some observations made in the 
comparisons:  

 Because of the limited IR-image resolution, the observed 
maximum surface temperature underestimates the actual 
maximum temperature of the cutting tool.  The TC1 and TC2 
measurements (located at 0.5 and 1mm apart from the tool tip) 
support the need for a model-trained method.  

 Since Tim cannot be experimentally measured, the FEA 
simulates the transient response so that the FEA model (and 
hence the model-trained ANN) can be validated by 
comparing with TC1, TC2 and Ts measurements at the 
specified positions.  The good agreement among the FEA, the 
ANN estimation, thermocouple measurements, and IR 
surface temperatures confirm the effectiveness of the 
model-trained ANN in practical dry-cutting environment. 

IV. CONCLUSION 

An online temperature monitoring system consisting of an 
IR thermal imager, far-field and near-field heat transfer models, 
and a model-trained ANN for monitoring the maximum 
steady-state temperature at the tool/chip interface during dry 
cutting has been presented. The IR image provides selected 
temperature feature points for estimating the heat transfer 
coefficient h, and for on-line monitoring of the tool temperature 
using a trained ANN. The robustness of the ANN-estimated 
surface temperatures has been verified against data from a 
high-resolution IR imager (with a 10×10 higher spatial 
resolution than typical standard IR imager) as well as 
numerically simulated using FEA. 
Experimentally investigated on a lathe-turning center with a 

commercial tool-insert that has a relatively more complex 
geometry, the robustness of the near-field temperature 
reconstruction can be significantly improved with pre-selected 
intercepts between the streamlines and the isotherms as feature 
points. With 15 points, the three-layer ANN (15 inputs, 6 
hidden-neurons and 2 outputs) took less than 4 minutes to 
complete the offline training, and 12.1ms to recall (Tsm, Tim) 
which includes the time to detect any discontinuities due to 
image occlusion. For each feature pattern, the average, standard 
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deviation and maximum errors of the ANN-estimated Tsm and 
Tim relative to that computed by the FEA are (2.1%, 0.96%, 
4.1%) and (2.7%, 3.5%, 10.9%) respectively. 
The ANN-estimated results agree well with the 

temperatures measured with two built-in TCs and commercial 
IR imager as well as FEA simulations. Results show that the 
steady-state maximum temperature at the tool/chip interface 
was 620°C as compared to the maximum surface temperature 
of 320°C directly measured by the IR imager. 

APPENDIX 

FIN MODEL 

Figure A.1 shows a tool-insert (characterized by the 
geometric parameters, thickness b and angle ) modeled in 
cylindrical coordinates for estimating the heat transfer 
coefficient h. Because of the high thermal conductivity and 
small thickness of the tool insert, (1a) is approximated by the 
following fin model: 


 

 
()()

() () () 0
darTr

kTAr hT Tr T
r r dr



  
     

 

 (A.1) 

In (A.2) where r is the radial distance from the tool tip, the 1st 
term accounts for heat conduction through the cross-section 
area A(r) whereas the 2nd term models the heat convection at the 
cooling surface area a(r):

()Ar br

 

 2() 2ar r rb and . (A.2a,b)

Flank face

r
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T(r)


b

 

 
Fig. A.1 Fin model in cylindrical coordinates 

For generality, the following dimensionless parameters (, 
R, L, Qs) are used to normalize the governing equations:
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 (A.3a~d) 

Consider a steady state (with uniform k and h) leading to a 
Sturm-Liouville problem (A.4a) where m2 is the Biot number 
and the BCs (A.4c, d):
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Along with the BCs (A. 4c,d), the solution to (A.5) is given by
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where   (A.6) 
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