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a b s t r a c t

Thermal dynamics of hard-to-machined components during manufacturing contributes to micro defects
and residual stresses in final products and overheating on machine tools, where temperature plays a crit-
ical role in the study of the tool-workpiece interface. However, typical temperature sensing approaches
are limited in manufacturing due to their dependence on controlled environments without blockages and
cutting fluids/chips, complicated algorithms with long computation time, and knowledge of heat source
intensity that is hard to estimate. This paper proposes a temperature field reconstruction (TFR) method as
a real-time and online approach to investigate the thermal dynamics of a thin-wall disk-like workpiece
(WP) during a turning process. Formulating in a modal expansion with physical laws, the method decou-
ples the temperature field into products of spatially-distributed temperature mode shapes and time-
varying modal coefficients that are determined from a finite number of nodal measurements. The TFR
method is demonstrated and verified with simulated measurements in finite element analysis, and an
illustrative application to TFR during machining is presented to justify its ability for real-time computing
and online sensing in manufacturing.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Thin-wall components, made from hard-to-machined materials
and featured with high strength-to-weight ratio, have been in great
demands from aviation industries. However, their thermal dynam-
ics during manufacturing contributes to micro defects [1] and
residual stresses [2] in final products as well as overheating on
cutting tools [3], which deteriorates the final product qualities
and shortens the tool-service life. While the temperature plays a
critical role in the study of the tool-workpiece interface, it is
challenging to monitor the time-varying and spatially-distributed
temperature fields under machining conditions [4]. Motivated by
the interests to investigate the thermal effects on workpiece
(WP) deformations and residual stresses, this paper proposes a
temperature field reconstruction (TFR) method as a real-time and
online approach to capture the thermal dynamics of a thin-wall
disk-like WP during a turning process.
Existing measuring technologies are limited to harsh require-
ments and hard to implement for process state monitoring in
practice. While thermocouples are one of the most widely used
methods for measuring temperatures in machining [5,6], they
could not be installed on WP surfaces because of the material
removal in cutting. Also, it is not practical to embed thermocouples
in a WP in a destructive way, although it can be done for one-time
trial testing in laboratory studies [7]. As thermocouples provide
nodal measurements of temperature, sensor arrays are embedded
in machine tools to estimate temperature distributions close to
the cutting region [8]. Besides, non-contact approaches such as
infrared sensing have been developed for measuring temperature
fields. Infrared thermal imaging was used to measure the tool
and WP temperatures even at high temperature regions as there
is no direct contact with the heat source [9,10]. Though compli-
cated the manufacturing environments are with cutting fluids
and chips, thermal images do provide a direct way to capture the
temperature distribution across the WP. Considering the small cut-
ting region is usually blocked or obscure in an image, it is desired
to develop a method to predict the temperature at the inaccessible
region based on information of other measurable locations. Field
reconstruction methods have been developed analytically or
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Fig. 1. A circular plate with an axisymmetric heat source.
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numerically when the physical problems can be mathematically
modeled in advance [11–13].

Formulating the thermal dynamics as a boundary value prob-
lem (BVP), numerical methods can be employed to reconstruct
the distributed temperature fields, among which finite element
analysis (FEA) has been widely used [14–18]. With prescribed
heating inputs and boundary conditions, the BVP can be solved
numerically for the resulting temperature distribution within a
targeted space [13,19–22]. This forward approach is well-defined
in theory and offers a powerful tool for analysis; however, in man-
ufacturing practices, heat sources are usually unknown and
immeasurable because they are affected by cutting processes. Sim-
ilarly, the assumptions of ideal boundary conditions, such as the
Dirichlet’s condition [21–26], could lead to modeling errors and
thus affect the sensing accuracy in practical applications. To esti-
mate the unknown heat source, inverse approaches have been
developed for applications of metal casting [27], welding [28],
forming [29] and machining [30–32], and different methods have
been proposed such as the least square inverse scheme [33,34],
golden section technique [35,36], conjugate gradient method
[37,38], local meshless method [39,40], sequential function specifi-
cation method [41,42]. Most inverse approaches involving itera-
tions are usually too time consuming for real-time applications.
In another way, heat generated in metal cutting can be estimated
using measured cutting forces and other cutting parameters, such
as depth of cut, feed-rate and cutting speed [43]. Recently, the flex-
ible division algorithm is developed with the time-efficiency of
100 ms for real-time prediction of the temperature in cutting with
the heat flux estimated from an energy equation and cutting force
measurements [13].

As dynamics of physical fields conforms to certain governing
partial differential equations whose solutions are derived with
the separation of variables, general solutions can be obtained as
a summation of eigenfunctions or mode shapes. In this way, dis-
placement and strain fields are reconstructed across a thin-wall
WP under machining based on prior knowledge of vibration mode
shapes and finite number of nodal measurements [12]. This paper
proposes a TFR method as a real-time and online approach to
investigate the thermal dynamics of a thin-wall disk-like WP dur-
ing a turning process. This method does not require expensive
instruments, complicated algorithms or even knowledge of heating
source intensity in prior, so it provides a simple yet effective
approach for process state monitoring in manufacturing. The
remainder of this paper offers the following:

� By formulating the WP thermal dynamics as a boundary value
problem, the proposed TFR method is developed with modal
expansion techniques, where the spatially distributed informa-
tion and time-varying factors are decoupled, so that the temper-
ature field can be determined from a finite number of nodal
measurements.

� Demonstrating the proposed TFR method via modal analysis,
dimensionless variable groups are introduced to study effects
of material properties on field reconstruction, based on which
a guideline is provided to determine the modes employed in
reconstruction.

� The TFR method is numerically verified with simulated mea-
surements using FEA, and an illustrative application to TFR
during machining is presented to justify its ability for real-
time computing and online sensing in manufacturing.

2. Problem formulation

As shown in Fig. 1, the thermal dynamics of a rotatingWP under
lathe-machining is modeled as a thin circular plate (of radius a and
thickness h) subjected to the heat source at the tip of the cutting
tool. A polar coordinate is established at the plate center where
the r and h axes span the plate mid-surface and the z-axis is colli-
near with the WP rotation axis. Because the heat conduction rate is
much slower than the rotation speed X, the thermal dynamics is
dominated by the rotational effect and is assumed to be axisym-
metric. The heat source at the cutting position (r = rc, z = zc) is
described by the energy generation (W/m3) of g(t, r, z) = g1(t)
d(r � rc)d(z � zc) characterizing any heat generated during cutting
or dissipated into environments. The top (z = h/2) and bottom
(z = �h/2) plate surfaces are subjected to convection while the
radial boundary (r = a) is thermally insulated given the large aspect
ratio (a/h). The initial temperature is set to the room temperature.
It is desired to obtain the dynamic temperature distribution across
the WP, especially the temperature at the cutting region which is
inaccessible in practice.

The temperature distribution T(t, r, z) across the plate is
governed by the following partial differential equation
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where kt is the thermal conductivity, and the thermal diffusivity
(m2/s) is defined as a = kt/(qCp) with q and Cp denoting the density
and specific heat, respectively.

Initially, the temperature distribution on the WP is uniformly
equal to the initial temperature T0

Tjt¼0 ¼ T0 ð10aÞ

and the boundary condition on the plate surface is provided by

Tjr¼0 < 1; @T=@rjr¼a ¼ 0 ð10b; cÞ
ðkt@T=@zþ kcTÞjz¼h=2 ¼ kcT1; ðkt@T=@z� kcTÞjz¼�h=2 ¼ �kcT1

ð10d; eÞ

where T1 is the ambient temperature; the convection heat-transfer
coefficient is calculated via kc ¼ 0:335ka

ffiffiffiffiffiffiffiffiffi
X=m

p
[44]; and ka, m and X

are the heat conductivity, air kinematic viscosity and angular
velocity, respectively. It is noted that ka and m are temperature-
dependent; and for a disk temperature ranging between 20 �C and
220 �C, kc is approximated as 20 W/m2 K with X = 800 rpm to
emulate the axisymmetric case under high-speed turning. In prac-
tice, the initial and ambient temperatures, T0 and T1, are usually
the same.



A.H. Elsheikh et al. / International Journal of Heat and Mass Transfer 126 (2018) 935–945 937
To estimate the temperature at the tool-WP interface, it is
desired to develop a novel reliable and efficient method to recon-
struct the temperature field across the WP under machining condi-
tions. Typical forward approaches to calculate the temperature
field governed by (1) requires knowing all inputs and boundary
conditions as well as parametric values. While the material
thermo-physical properties can be obtained in advance, the heat
source intensity is hard to estimate during machining and only
nodal temperatures far from the tool-WP interface are practically
measurable. In this way, the proposed field reconstruction method
only employs the measured temperature at a finite number of
sensing locations, which does not require the knowledge of the
heating input. Specifically, the temperature field is reconstructed
with mode shapes obtained from dynamic analysis of (1).

3. Temperature field reconstruction

The thermal dynamic analysis is carried out for TFR, where the
time-varying temperature distribution is expanded with mode ser-
ies and the modal coefficients will be determined by experimental
measurements. To facilitate the analysis, the above problem is
reformulated by homogenization of the boundary conditions (10d,
e) and separation of the variables. Then, the closed-form solution,
obtained via the Green’s function approach, is used to justify the
number of employed mode shapes.

3.1. Transient response

The temperature field T(t, r, h) can be divided into two compo-
nents, T = T1 + w, the constant ambient component T1 satisfying
(1) with g(t, r, z) = 0 and the dynamic component w satisfying the
following:
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wjt¼0 ¼ T0 � T1 ð20aÞ

wjr¼0 < 1; @w=@rjr¼a ¼ 0 ð20b; cÞ

ð�kt@w=@z� kcwÞjz¼h=2 ¼ 0; ðkt@w=@z� kcwÞjz¼�h=2 ¼ 0 ð20d; eÞ
Employing the separation of variables wðt; r; zÞ ¼ w1ðtÞ

w2ðrÞ w3ðzÞ, the homogeneous BVP (2) and (20) (temporarily setting
g = 0 for modal analysis) is decoupled into the following:
Governing equations Initial/boundary conditions

_w1 þ ak2w1 ¼ 0 w1ð0Þ ¼ 1 (3a)

r€w2 þ _w2 þ d2rw2 ¼ 0 w2ð0Þ < 1; _w2ðaÞ ¼ 0 (3b)
€w3 þ b2w3 ¼ 0 ð�kt _w3 � kcw3Þ

��
z¼h=2 ¼ 0; ðkt _w3 � kcw3Þ

��
z¼�h=2 ¼ 0 (3c)
The solutions to the above initial/boundary value problems are
obtained as

w1ðtÞ ¼ e�ak
2
ij t ð4aÞ

w2ðrÞ ¼ J0ðdirÞ with J00ðdiaÞ ¼ 0 ð4b; cÞ
w3ðzÞ ¼ cos bjz�
1� ð�1Þ j

4
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where J0 is the first kind of Bessel functions with the zeroth order,
di’s and bj’s are eigenvalues determined from the boundary condi-
tions (4c,e) and kij’s are given by k2ij ¼ d2i þ b2

j (i, j = 0, 1, 2, . . .).
Then, the solution to the BVP (2) and (20) can be obtained as

wðt; r; zÞ ¼
X1
i¼0

X1
j¼0

qijðtÞUijðr; zÞ ð5Þ

where Uij’s are the temperature mode shapes obtained from (4) to
characterize the spatial distribution, and the time-varying modal
coefficients qij’s are derived in Appendix A:
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As the difference between T and w is only the constant T1, the
temperature field is represented by w(=T � T1) in the following
analysis.

3.2. Field reconstruction procedure

Once the modal coefficients qij’s are calculated, the temperature
field w can be reconstructed with superposition of mode shapes Uij

as indicated in (5). The detailed reconstruction procedure is
formulated in the following. The serial summation in (5) can be
rearranged as

wðt; r; zÞ ¼
X1
k¼1

qkðtÞUkðr; zÞ ð6Þ

and the estimated quantity can be approximated by the modes of
the lowest K orders:

~wðt; r; zÞ ¼
XK
k¼1

qkðtÞUkðr; zÞ ð60 Þ
With measured w at N different locations (rn, zn), n = 1, 2, . . ., N, qk’s
can be obtained from (7):

q ¼ ðSTSÞ�1
ST ~W ð7Þ

where

W
�
¼ ½w

�
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�
ðt; r2; z2Þ � � � w

�
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T
; qðtÞ ¼ ½q1 q2 � � � qK �T,
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and S ¼

U1ðr1; z1Þ U2ðr1; z1Þ � � � UKðr1; z1Þ
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..

. ..
. . .

. ..
.

U1ðrN ; zNÞ U2ðrN; zNÞ � � � UKðrN ; zNÞ

2
66664

3
77775:

Using N sensing points and K modes for the reconstruction pro-

cess, there are N knowns (organized in the N � 1 vector W
�
) and K

unknowns (the K � 1 vector q), where N � K is enforced for a deter-
mined or over-determined problem to guarantee a unique solution.
While themode shapesUij’s are obtainedoffline and stored in adata-
base, the coefficient vector q is real-time calculated with online
measurements, then the temperature field w across the plate is
approximated and calculated using (6

0
). It is noted that the recon-

structed w
�
is a smooth field; local discontinuities caused by inputs,

such as steps or impulses, can be retrieved with interpolation or
extrapolation from reconstructed data close to the discontinuous
regions.

3.3. Asymptotic and normalized analyses

The non-dimensional groups in (8a-e) are defined to account for
the material properties effects on the temperature field and facili-
tate the parametric analysis for a guideline of selecting mode
shapes in the field reconstruction:

R
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where cij ¼ a k2ij
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0
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Determination of b’s in (4e) is equivalent to the following two
equations:

tan bjh=2 ¼ kc=ðktbjÞ and cot bjh=2 ¼ �kc=ðktbjÞ:
For a small bj, the approximation bjh=2 ’ kc=ðktbjÞ gives rise to

b0 ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kc=ðhktÞ

q
; ð9aÞ

as bj ! 1, the zeros of tan bjh/2 and cot bjh/2 can be used as the
asymptotic estimates of bj’s:

bj ’ jp=h ðj ¼ 1;2; . . .Þ ð9bÞ

Then the normalized bj’s are �b0 ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hkc=kt

p
and �bj ’ jp,

and the qij’s (derived in Appendix A) are normalized as

�qijðtÞ ¼ ð1� e�ak
2
ij tÞRcUijðRc; ZcÞ=kt (i and j = 0, 1, 2 . . .) for a unit

input. It is noted that the intensity and location of an applied heat
source are accounted by �qij while cij characterizes the weighted
effects of each mode on the final output.

4. Numerical verification and illustrative example

The simulated results are presented for different materials to
justify approximations in the above formulation and verify the
Table 1
Material properties.

Materials Density q (kg/m3) Conductivity kt (W/m-K

Copper 8960 401
Aluminum 2700 200
AISI 4340 7850 44.5
Inconel 718 8190 11.4
Ti-6Al-4V 4430 6.7
proposed field reconstruction method with FEA, where the mate-
rial properties are listed in Table 1. Four groups of results are orga-
nized for the following objectives:

(1) Normalized eigenvalue analysis is carried out to investigate
effects of material properties and plate dimensions on the
distributions of eigenvalues.

(2) Mode shapes are simulated to illustrate the temperature dis-
tributions in each mode.

(3) Weighted modal coefficients are investigated and compared to
provide a guideline to determine the dominant modes.

(4) Illustrative examples are presented to verify the TFR method
using simulated measurements in FEA.

4.1. Normalized eigenvalue analysis

The eigenvalues di’s and bj’s are numerically calculated as the
zeros of (4c) and (4e) respectively, and kij’s are evaluated using
k2ij ¼ d2i þ b2

j (i, j = 0, 1, 2, . . .) in the following way:

ð1=kaÞ2

ð1=�dÞ2
þ ð1=khÞ2

ð1=�bÞ2
¼ 1 ð10Þ

Then the normalized analysis of eigenvalues is presented in the
following:

� Fig. 2(a) plots the Bessel function J0 and its derivative against
the normalized variable �d. The eigenvalues are obtained from
the depicted roots of J00, where the smallest �d is zero and they
increase with the order (subscript i) in an asymptotical period
of p. It is noted that only the lowest orders will be employed
in the reconstruction, so the first few eigenvalues are numeri-
cally calculated. Besides, di’s are only related to the outer radius
a and independent of material properties.

� As shown in the logarithmic plots (Fig. 2b and c), bj’s are
obtained at the local minimum peaks of |f(b)| which are equiv-
alent to the zeros of (4e). Fig. 2(b) shows that b0 of different
materials increases with the decreasing thermal conductivity
kt for the same thickness h. As bj’s increase in Fig. 2(c), different
curves of |f(b)| for various materials collapse into one and bj’s
are found as integer times of p/h. On the other hand, when nor-
malizing b0 with respect to the material properties as shown in
Fig. 2(d), a straight line is obtained in the logarithmic scale
between b0 and h. So Fig. 2(c) and (d) verify the asymptotic
results of (4d, e), where the material properties only affects b0
while bj’s (j = 1, 2, . . .) are proportional to 1/h.

� Fig. 2(e) shows ellipses defined by (10) with coordinates (1/kija,
1/kijh) in the first quadrant for positive kij’s, where the lengths of
principal axes are 1=�di and 1=�bj. So each of the ellipses can be
denoted by their geometric features ð�di; �bjÞ. Given any
slenderness of a circular plate, a straight line can be drawn by
passing through the origin at a slope of a/h. Then the coordinate
of the intersecting point between the straight line and an
ellipse ð�di; �bjÞ will lead to the eigenvalue kij. This is the
geometric interpretation of the relation among d, b and k and
) Specific heat Cp (J/kg-K) Diffusivity a (10�6 m2/s)

385 116.25
900 82.31
475 11.93
435 3.20
526 2.88



Fig. 2. Illustration of eigenvalues: (a) Distribution of di; (b) normalized b0 for different materials; (c) normalized bj for different materials; (d) effect of h on b0; (e) the relation
among eigenvalues and geometries; (f) kij for aluminum.
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it is valid for different materials. It is noted that k0j = bj and

ki0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2i þ2kc=hkt

q
are not included for analysis. It can be visu-

alized from Fig. 2(e) that the intersecting points approach
towards the origin with an increasing order of ð�di;�bjÞ, indicating
that kij’s increase with i and j. It is also observed that bj’s play a
more significant effect on kij’s than di’s for a thin-wall plate that
is represented by a straight line of a large slope a/h. This obser-
vation is verified by taking an aluminum plate (a = 150 mm,
h = 5 mm) for example in Fig. 2(f).

4.2. Temperature mode shapes

Given the calculated eigenvalues of di’s and bj’s, the temperature
mode shapes are simulated using (5

0
a) where the lowest orders are

used for illustration. As the mode shapes are obtained by the
product of w2 and w3 in (4b,d), Fig. 3 plots the eigenfunctions for
Fig. 3. Illustration of eigenfunctions: (a) w2 against normalized r; (b) w3 against
normalized z.
different eigenvalues in the normalized coordinates. The Bessel
function w2 has a maximum value of unity at the disk center and
then fluctuates and decreases along the radius; while the sinu-
soidal function w3 oscillates at a frequency of jp (rad/s), and at
the disk mid-plane w3 = 0 for an odd j and w3 = 1 for an even j. It
is noted that for the zeroth order w2 is a constant one because
d0 = 0, while w3 appears like a constant due to the small plate
thickness. It is also observed that the subscripts i and j indicate
the number of zeros of the corresponding w2 and w3 whose num-
ber of peaks is equal to i + 1 and j + 1, respectively. The above prop-
erties characterize the geometric features of mode shapes as
illustrated in Table 2, where the temperature along the dashed
lines is zero.
4.3. Weighted modal coefficients

The coefficients cij’s from (8f) indicate the contribution of each
modes in the temperature field, thus the values of these weighted
modal coefficients provide a guideline to select mode shapes for
reconstruction in (6

0
). The bar charts in Fig. 4(a) show the cij’s val-

ues for aluminum and titanium alloy in the range of 0 � i � 15 and
0 � j � 14. It is observed that the weights of orders with j � 1 are
negligible because cij’s are reciprocal of kij’s that increase drasti-
cally with j (Fig. 2f); while the lowest orders with j = 0 dominate
the temperature field. Besides, the subplot in Fig. 4(a) compares
the coefficients for j = 0 among different materials (Table 1). It is
shown that the lowest order (i = 0, j = 0) for copper and aluminum
provides the largest weight compared to the others, while the



0 5 10
15

1
10

10
2

ij

j

i0

0

Aluminum

Ti-6Al-4V
i

Copper

Ti-6Al-4V

103

Aluminum
AISI 4340
Inconel 718

i (a)

(b)

1 10

1

10

10

Fig. 4. Distribution of weighted modal coefficients.

Table 2
Mode shapes.
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largest modal weights for Steel AISI 4340, Inconel 718 and Ti-6Al-
4V come from the order (i = 1, j = 0). This can be explained by the
ratio (Appendix B)

c00
c10

¼ J20ð�d1Þ
J20ð�d0Þ

1þ
�d21

2pkc
Vkt

� �

where V is the plate volume, J20ðd1aÞ=J20ðd0aÞ is the same for different
materials, thus c00/c10 can be plotted as a function of V and kt as
shown in Fig. 4(b).
4.4. Illustrative examples

The proposed TFR method is numerically verified with FEA in
COMSOL, where an axisymmetric heating source (intensity of
P = 120 W) is applied on the top surface (rc, zc = h/2) of a thin circu-
lar plate, and the sensing points are allocated on the bottom surface
(ri, i = 1, 2, . . ., N, zc = �h/2). The ambient temperature T0 is taken as
20 �C. Two illustrative examples are presented with aluminum for
Case 1 and titanium alloy for Case 2, where the parametric values
for simulation are listed in Tables 1 and 3. The FEA results for both
cases are shown in Fig. 5(a) and (b) that the titanium plate embod-
ies much higher peak temperature at the heating zone and larger
variation (difference between maximum and minimum tempera-
tures) than the aluminum plate, even though the input power den-
sity g1(=P/2prc) for Case 2 is smaller than that of Case 1. This is
because the conductivity kt of titanium is much smaller than that
of aluminum. In this way, Fig. 5(c) plots the temperature ratio
against kt for different materials, where Tt and Tb are the steady-
state temperatures simulated in FEA at the points (rc, h/2) and
(rc, �h/2), respectively, and the regression curve (plotted in a red
dashed line) is obtained as

Tt=Tb ¼ 1þ 1:1792e�1:4543log10kt : ð11Þ
The field reconstruction procedure is demonstrated in the

following:

(1) The temperature field outside the heating region is recon-
structed using (6) with K modes and N nodal temperatures
obtained on the bottom surface.

(2) The temperature Tt at the heating point is estimated using
(11) with the reconstructed Tb.

(3) The temperatures within the heating region are interpolated
with Tt and the reconstructed data adjacent to the heating
region boundary (Table 3).

The reconstructed results are shown in Fig. 6 where the upper
and bottom rows are for Case 1 and Case 2, respectively. The recon-
structed temperatures on both surfaces (z = ±h/2) are plotted along
the radius and compared with FEA in Fig. 6(a) and (b). Tempera-
tures are very close on both surfaces far away from the heating
region because of the small thickness, while within the heating
region the temperatures rise dramatically as it gets closer to the
heating sources. The reconstruction formula (6

0
) is good at captur-

ing smooth distributions that are distant from the impulses in
these cases, so the peak temperatures must be estimated from
(11) and the temperature fields in the heating region are obtained
with interpolation. Revolving the reconstructed curves around the
z-axis, the temperatures across the disk upper surfaces are embed-
ded in Fig. 6(a) and (b) to compare with the FEA results in Fig. 5.
The temperatures distributed in the cross-section areas are shown
in Fig. 6(c) and (d) with the dashed lines indicating the boundaries
of the heating regions. The sizes of the heating regions, symmetric
with the heating points, are estimated from the slopes of the recon-
structed curves (z = �h/2) as the temperature gradient increases as
it gets closer to the heat source. Fig. 6(e) and (f) plot the errors
between the reconstructed fields and FEA results, where the max-
imum percentage errors are 1.12% and 6.48% for aluminum and
titanium, respectively, at the heating point. It is noted that the rip-
ples in errors along the radius are due to neglection of higher order
modes in the approximation. In other words, the errors will
decrease by employing more mode shapes in reconstruction. It
costs about 0.07 and 0.1 s in Cases 1 and 2, respectively, for recon-
struction with spatial resolutions of 1 mm in the r direction and
0.1 mm in the z direction on a desktop computer (Intel i7 CPU
3.5 GHz, 32 GB RAM). Fig. 6(g) and (h) plot the percentage errors
between the reconstructed temperature fields and the FEA results



Table 3
Design configuration for field reconstruction.

Case rc (mm) K N ri (mm) Heating region

1 75 5 6 10, 40, 60, 100, 130, 150 60 � r � 90 mm
2 123 8 9 10, 30, 50, 70, 90, 110, 120, 130, 150 117 � r � 129 mm

40
80

a
h

Ti-6Al-4VAluminum

59

65

62

120
°C °C(b)(a)

(c)

Fig. 5. Finite element analysis: (a) Case 1; (b) Case 2; (c) Ratio of temperatures.

20 W

120 W

240 W

R

T

Fig. 7. Verification with temperature-dependent material properties.
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on the upper surface for an increasing K to examine the error con-
vergence in both reconstruction cases. The sensing nodes are
equally distributed along the radius with N = K. It can be observed
that overall, the percentage errors decay when more mode shapes
are employed for reconstruction. While the errors in the region
near the boundaries and the heating source tend to be large, they
decrease with an increasing K. Furthermore, the root-mean-
square errors (RMSEs) between the TFR and FEA results can also
be calculated, which are

(0.369, 0.101, 0.088 and 0.081 �C) for K (=3, 6, 9 and 12) in Case
1; and
(9.431, 6.677, 1.241, 1.144 and 1.015 �C) for K (=2, 5, 8, 12 and
16) in Case 2.
TFR FEA
Z= -0.5
Z=  0.5

(a)

)b(

(c)

(d)

Heating region

Heating region

Fig. 6. Reconstructed temperature fields: (a and b) Temperature distributions on both su
of reconstructed temperatures; (g and h) Convergence analysis of reconstruction errors.
The RMSEs verify the error convergence with an increasing
number of mode shapes.

While the thermal properties of materials are temperature-
dependent in practice, their nominal values (Table 1) are used for
the TFR here; the approximations are to be verified with an FEA.
Given the steep temperature-gradient for Case 2 in Fig. 6, the real-
istic thermal properties of titanium alloy (600 < Cp � 750 J/kg-K
and 6 < kt < 20 W/m-K for 0 < T � 1000 �C) [45] are employed to
simulate the temperature distributions in COMSOL for different
heat source intensities P = 20 W, 120 W and 240W. The recon-
structed temperature fields, which were obtained with the same
setup as in Table 3, match with the FEA results on both surfaces
as shown in Fig. 7, where the RMSEs are listed in Table 4. Although
the errors increase with P or the maximum temperature Tmax, the
percentage errors (estimated at about 1%) are very small. Thus,
the TFR method is robust with errors in material properties,
because it is not built on material models but actual measure-
ments. Since the measured data represent the material effects on
temperature distributions, the material property approximation
is well compensated during reconstruction. Besides, the mode
(g)

(h)

K=2

K=8
K=16
K=12

K=5

K=3 K=9
K=12K=6

)f(

(e)

%

%

rfaces; (c) and d) Reconstructed temperature fields in cross sections; (e and f) Errors
The upper row is for Case 1 and the bottom row is for Case 2.



Table 5
Specifications of Fluke Ti400 infrared camera.

Specifications Values

Range �20 �C to +1200 �C
Accuracy ±2 �C or 2% (whichever is greater)
Contrast �0.05 �C at 30 �C
Frequency 9 Hz or 60 Hz sampling rate
Detector type Focal Plane Array (320 � 240 pixels)
Spectral band 7.5–14 lm

Table 4
RMSE for different heat source intensities.

P (W) Tmax RMSE (Z = �0.5) RMSE (Z = 0.5)

20 35.87 0.21 0.57
120 127.28 1.19 1.24
240 199.56 2.19 2.05

Unit: Celsius degree.
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shapes as well as the eigenvalues normalized with respect to the
dimensions and material properties also help to improve the
robustness of the TFR method.

5. Experiment results and illustrative application

The reconstruction of temperature fields has been experimen-
tally evaluated on the a custom-designed duplex lathe-turning
center (DLTC) [13]. As shown in Fig. 8, a Ti-6Al-4V disk-like WP
(with thermal properties given in Table 1, a = 150 mm, h = 5 mm)
was secured on the rotor by three equally spaced clamps at its
outer perimeter. In this study, the DLTC was modified with one
cutting tool being applied (on one side of the WP) and an IR imager
(on the other side of the WP) for clear illustration of experimental
validation. The WP was rotated at a speed of 100 r/min and
machined with 0.5 mm depth of cut by the tool feeding radially
starting from rc = 119 mm towards the WP center at 0.05 mm/s.
To facilitate the IR measurements, a thin thermal-grease layer
(thickness <0.5 mm, emissivity e = 0.95, kt 	 1.5 W/m-K) was
applied on the WP (black surface in Fig. 8), based on which the
emissivity calibration was carried out before the cutting tests
[46]. Specifications of the infrared thermal imager (Fluke Ti400)
are listed Table 5. The reconstruction is performed using the same
configuration as Case 2 in Table 3. Two sets of results are provided,
where the transient temperature field is investigated in the first set
and the steady state is studied in the second one.

The transient response of the WP temperature to the onset of
cutting is demonstrated in Fig. 9. As observed in the thermal image
in Fig. 9(a), the temperatures of the regions (I, II and III) closest to
the clamps along the cutting trajectory are the highest while the
Fig. 8. Experimental setup on the du
regions (IV, V and VI) among the clamps are cooler, where the high-
est and lowest temperatures are denoted in red and blue respec-
tively. This is because the WP dynamics gives rise to the
distributed deformations across theWP, where a smallerWP vibra-
tion displacement results in a larger depth of cut thus a higher tem-
peraturewhen it is closer to the clamps, which is indicated from the
dominant vibration mode shape in Fig. 9(b). In this way, the recon-
structed results along the higher-temperature radii (I, II and III)) are
averaged and compared against the experimental data captured on
the measured surface (z = �h/2); the temperature on the machined
surface (z = h/2) is also reconstructed. The peak temperatures are
estimated as 30.48 �C and 41.27 �C on the measured and machined
surfaces, respectively, in Fig. 9(c). The same procedure is carried out
for the lower-temperature radii (IV, V and VI), and the peak temper-
atures are 27.19 �C and 36.83 �C on the measured and machined
surfaces, respectively, in Fig. 9(d). Revolving the temperature distri-
butions on the WP cross sections, the temperature fields are
obtained on the measured and the machined surfaces as embedded
in Fig. 9(c) and (d). The reconstructed field is validated by compar-
ing Fig. 9(c) with the thermal image in Fig. 9(a), and the tempera-
ture field in the cutting region is predicted with a much larger
gradient (Fig. 9d) than that on the other surface.

As the turning process was stabilized and the temperature dis-
tribution arrived at the steady state, the thermal image is shown in
Fig. 10(a) that the temperatures are homogeneous in the tangential
direction, and the reconstructed results along three radii are
averaged and plotted for both surfaces for the WP where the peak
temperatures are evaluated as 32.61 �C and 44.00 �C. Then the
plex lathe-turning center [13].
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Fig. 9. Reconstruction of transient temperature fields: (a) Thermal image; (b)
Dominant vibration mode shape; (c) Reconstruction along I, II and III; (d)
Reconstruction along IV, V and VI.
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Fig. 10. Reconstruction of steady-state temperature fields: (a) Experimental
measurement and reconstruction along radii; (b) Reconstructed temperature on
the measured surface; (c) Reconstructed temperature on the machined surface.
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reconstructed temperature fields on the measured and machined
surfaces are presented in Fig. 10(b) and (c).
6. Conclusions

A temperature field reconstruction (TFR) method is proposed as
a simple and effective way to investigate the thermal dynamics of a
thin-wall disk-like workpiece (WP) during a turning process. The
WP thermal dynamics is formulated as a boundary value problem
of a circular plate with axisymmetric heating, where the plate sur-
faces are subjected to convection and the perimetric boundary is
insulated. Employing the modal expansion approach, the tempera-
ture field is decoupled into products of the temperature mode
shapes and time-varying coefficients, where the coefficients are
determined from a finite number of nodal measurements without
knowledge of the heat source intensity. Numerical analysis has
been carried out to demonstrate the proposed TFR method in terms
of normalized eigenvalues, mode shapes and modal coefficients,
and provides a guideline in determining the employed modes in
reconstruction. The TFR method is verified with the simulated
measurements using FEA, and the maximum percentage errors
are 1.12% and 6.48% for the aluminum and titanium cases with
computation time of 0.07 and 0.1 s, respectively. An illustrative
application to process state monitoring is presented to investigate
the transient and steady-state temperature fields during a turning
process, where temperature distributions on both the measured
and machined surfaces are reconstructed to justify the ability for
real-time computing and online sensing in manufacturing.
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Appendix A

The closed-form solution to (2) is derived in the Green’s func-
tion approach, where a general initial condition w0ðr; zÞ is applied
to (5):

X1
i¼1

X1
j¼0

qijð0ÞUijðr; hÞ ¼ w0ðr; zÞ ðA1Þ

Multiplying both sides of (A1) by rUi0 j0 ðr; hÞ and integrating over the
plate cross-section

X1
i¼1

X1
j¼0

Z h=2

�h=2

Z a

0
qijð0ÞUijðr0; z0ÞUi0 j0 ðr0; z0Þr0dr0dz0

¼
Z h=2

�h=2

Z a

0
w0ðr0; z0ÞUi0 j0 ðr0; z0Þr0dr0dz0;

produces the expression for qij(0)

qijð0Þ ¼
1
gij

Z h=2

�h=2

Z a

0
w0ðr0; z0ÞUijðr0; z0Þr0dr0dz0: ðA2Þ

where the orthogonality among mode shapes is employedZ h=2

�h=2

Z a

0
Uijðr0; z0ÞUi0j0 ðr0; z0Þr0dr0dz0 ¼

0
gij

if

(
i0 ¼ i; j0 ¼ j

i0–i; j0–j
: ðA3Þ

With Uijðr; zÞ ¼ J0ðdirÞ cos bjz� 1�ð�1Þ j
4 p

h i
, gij can be obtained as

gi0 ¼ b0hþ Sb0h
2b0

a2J20ðdiaÞ
2

; gij ¼
a2hJ20ðdiaÞ

4
ðj ¼ 1;2; . . .Þ: ðA4Þ

The response to the initial condition w0(r, z) is
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winðt; r; zÞ ¼
X1
i¼1

X1
j¼0

e�ak
2
ij tUijðr; zÞ
gij

Z h=2

�h=2

Z a

0
Uijðr0; z0Þw0ðr0; z0Þr0dr0dz0;

at the same time, win(r, z) can also be given from the Green’s func-
tion approach [47]:

winðt; r; zÞ ¼
Z h=2

�h=2

Z a

0
Gðt; r; z; t0; r0; z0Þjt0¼0w0ðr0; z0Þr0dr0dz0

As the above two equations are valid for anyw0(r, z), the Green’s
function can be obtained as

Gðt; r; z; t0; r0; z0Þ ¼
X1
i¼1

X1
j¼0

1
gij

e�ak
2
ijðt�t0ÞUijðr; zÞUijðr0; z0Þ ðA5Þ

Then the closed-form solution to the BVP (2) and (20) is

wðt; r; zÞ ¼ R h=2
�h=2

R a
0 Gðt; r; z; t0; r0; z0Þjt0¼0ðT0 � T1Þr0dr0dz0 þ � � �

a
kt

R t
0

R h=2
�h=2

R a
0 Gðt; r; z; t0; r0; z0Þgðt0; r0; z0Þr0dr0dz0dt0

For a special case when T0 = T1 and g(t; r, z; rc, zc)=1(t)d(r � rc)d
(z � zc),

wðt; r; zÞ ¼
X1
i¼1

X1
j¼0

1� e�ak
2
ij t

ktgijk
2
ij

rcUijðrc; zcÞUijðr; zÞ ðA6Þ

In summary, the solution to the BVP (1) and (10) given by
T = T0 + w can be rewritten as

Tðt; r; zÞ ¼ T0 þ
X1
i¼1

X1
j¼0

qijðtÞUijðr; zÞ ðA7Þ

where the modal coefficients in (A7) and (5) are given as

qi0ðtÞ ¼
b0

b0hþ Sb0h

4rcUijðrc; zcÞ
kta2J

2
0ðdiaÞ

1� e�ak
2
ij t

k2ij
;

qijðtÞ ¼
4rcUijðrc; zcÞ
ktha

2J20ðdiaÞ
1� e�ak

2
ij t

k2ij
ðj ¼ 1;2; . . .Þ: ðA8Þ
Appendix B

It can be obtained from (8f) that

c00
c10

¼
k210
R a
0

R h=2
�h=2 r

0U2
10ðr0; z0Þdr0dz0

k200
R a
0

R h=2
�h=2 r

0U2
00ðr0; z0Þdr0dz0

ðB1Þ

where Ui0ðr0; z0Þ ¼ J0ðdir0Þ cosðb0z0Þ; k2i0 ¼ d2i þ 2kc=ðhktÞ, i = 0 and 1.
Given the identityZ a

0
r0U2

i0ðr0; z0Þdr0 ¼
1
2
a2J20ðadiÞ

(B1) is rewritten as

c00
c10

¼ J20ðad1Þ
J20ðad0Þ

1þ d21ktha
2

2kc

 !
ðB2Þ

or in terms of normalized eigenvalues

c00
c10

¼ J20ð�d1Þ
J20ð�d0Þ

1þ
�d21

2pkc
Vkt

� �
ðB3Þ

where V ¼ pa2h.
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