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Thermal deflection and thermal stresses in a thin circular plate
under an axisymmetric heat source
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and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China; bDepartment of
Production Engineering and Mechanical Design, Tanta University, Tanta, Egypt; cGeorge W. Woodruff School
of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA

ABSTRACT
Motivated by the need to investigate thermal effects on the deflection and
stresses in a thin-wall workpiece during machining, the thermal problem is
modeled with an axisymmetric input to emulate the heat generated at the
tool-workpiece interface in a turning process. Using a compressor disk as
an illustrative example, the boundary value problem is formulated with a
plate model where the perimetric edge is clamped and insulated, and the
upper and lower surfaces are subjected to heat convection. The closed
form solution of temperature distribution is obtained via Green’s function
method, based on which the thermal deflection/stresses are obtained in
serial forms from the plate constitutive relations. The obtained solutions
have been numerically verified with finite-element analysis (FEA), where
simulations have been performed for three different materials with discrep-
ant thermomechanical properties to study the thermal effects on the
induced deflection and stresses. The analytical result is justified by its
good agreement with FEA and its time efficiency in computation offers
advantages in potential real-time application to manufacturing pro-
cess monitoring.
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Introduction

Thin-wall components, featured with low weight and high strength, have been widely employed
in aeronautic and aerospace applications in which extreme service demands require for hard-to-
machine materials. However, their low thermal conductivities often result in concentrated heating
during machining. The non-uniform dynamic heating coupled with the small flexural rigidity
gives rise to complicated deflections and stress distributions. As residual deformations and stresses
would seriously compromise final product qualities, an in-depth understanding of thermal behav-
ior of a thin-wall component under various types of loadings and boundary constraints is of great
practical and theoretical importance [1–6]. As an illustrative example of thin-wall components,
this article investigates thermal deflection and thermal stresses induced in a disk-like workpiece
under turning processes, where the workpiece is modeled as a thin circular plate clamped at its
outer edge and subjected to an axisymmetric heat source due to machining.

The quality of machined workpieces is seriously influenced by the cutting heat, which is fea-
tured with high amplitudes and high gradients especially for those materials with low thermal
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conductivities. This generated heat results in undesirable high temperature gradients, thermal
deflections, and thermal stresses, which may impair the mechanical and metallurgical properties
[7], as well as induce residual stresses [8] and deformation [9] in workpieces. Therefore, thermally
induced stresses must be taken into consideration during design and manufacturing processes of
thin-wall components. This may be achieved by carrying out thermal analysis to determine the
temperature distribution across the workpiece followed by stress analysis based on the calculated
temperatures distribution as well as any mechanical loads or constraints imposed on
the workpiece.

Cases of thermal deflections [10–14], thermal stresses [15,16], or both of them [17–19] have
been investigated on thin circular plates of solid [10–14,17–19] and annular [15,16] shapes under
different inputs and boundary constraints as summarized in Table 1. In most cases, the Dirichlet
condition is assumed to prescribe temperatures for the upper surfaces [10,11,13,17,19], lower sur-
faces [11–14,17,19], and perimetric surfaces [11,13,16,18], which is the simplest to implement in
the mathematical formulation. However, it is an ideal case in practice as it requires a complicated
control scheme to maintain the constant temperature in a dynamic environment; and hence, it is
not suitable for industrial applications such as the machining case under-investigation. Prescribed
heat fluxes on the boundaries are mathematically modeled as the Neumann boundary condition.
Insulated (heat flux¼ 0) [10,12,14–19] and nonhomogeneous (heat flux 6¼ 0) [10,12,17] versions
of the Neumann boundary condition have been considered. Finally, the convection boundary con-
dition has been applied on different plate surfaces [6,15,16]. Analyses involving integral trans-
forms [10–14,17,18], Bessel’s functions [19], and Homotopy [16] have been carried out and
numerical techniques such as the finite difference method [15] have been developed for different
applications. Most studies on the thermoelastic problem of thin-wall plates are analytical in nature
[10–14,16–18]. This is due to the fact that analytical solutions reveal the effect of different param-
eters and material thermomechanical properties on the thermoelastic behaviors of thin-wall plates,
despite the more simplifying assumptions used in obtaining the analytical closed-form solutions
compared with numerical solutions. Moreover, most of these studies considered the plane stress

Table 1. Summary of the previous research works on the thermal stresses of thin circular plates.

Reference

Boundary conditions/input heat source

Method

Results

Upper Lower Perimetric Internal Deflection Stress

[10] T¼ 0 Insulation Time-varying q / Integral
transforms

� �

[11] T¼ 0 T¼ 0 Time-varying T / Integral
transforms

� �

[12] Insulation T¼ 0 Time-varying q Heat
generation

Integral
transforms

� �

[13] Constant T Constant T Constant T Heat
generation

Integral
transforms

� �

[14] Ramp-
type heating

T¼ 0 Insulation / Integral
transforms

� �

[15] Convection Convection Insulation; moving
uniform q

/ Finite differ-
ence
method
(FLUENT)

� �

[16] Convection Convection Constant
T; Insulation

/ Homotopy
analysis

� �

[17] Convection Convection Prescribed q / Integral
transforms

� �
Prescribed T T¼ 0 Insulation /

[18] Insulation Insulation T¼ 0 Heat
generation

Integral
transforms

� �

[19] Prescribed T T¼ 0 Insulation / Bessel’s
functions

� �

Current work Convection Convection Insulation Axisymmetric
heat source

Green’s
function

� �

T: temperature; q: heat flux.
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state rather than the plane strain state as the later showed inappropriate results when compared
with experimental observations [20].

To emulate machining conditions in practice, the convection boundary condition is assumed in the
current study for both upper and lower surfaces of the plate with its outer edge fixed by a lathe chuck
and subjected to an axisymmetric heat source at the cutting region. The analytical method of the
Green’s function is employed with the technique of variable separation [21] to determine the tempera-
ture. Thermal deflection and stresses are also obtained based on the calculated temperature consider-
ing the state of plane stresses. The obtained results provide a basis for analyzing thermal displacement
and stresses in a workpiece for manufacturing applications where delicate sensing techniques, such as
laser, strain-gauges or infrared imaging, are limited under the complicated machining condition.
Furthermore, the obtained results are compared with finite element analysis with COMSOL
Multiphysics under the same conditions [22,23]. The remainder of this article offers the following:

� The governing time-dependent heat conduction with the thermoelastic equation of the thin
circular plate under study is formulated as a boundary value problem.

� The Green’s function method is used to solve the time-dependent heat conduction problem.
� The variable separation technique is used to derive the Green’s function for the problem in

hand under the prescribed BCs.
� Based on the derived temperature distribution, the closed-form solutions of the thermal deflec-

tion and thermal stresses in a thin circular plate are obtained.
� Results have been numerically verified with simulated FEA for three different materials with

discrepant thermomechanical properties to figure out the effects of these properties on the
induced thermal deflection and stresses.

Problem formulation

As shown in Figure 1, a thin-wall workpiece under lathe-machining is modeled as a circular plate
(of radius a and thickness h) whose coordinates are described with 0� r� a, 0 � h� 2p, �h/
2� z� h/2 in the cylindrical coordinate at the center. As the workpiece is rotated with the outer-
edge clamp at X and machined by the tool moving along the horizontal radius, the heat generated
at the tool-workpiece interface can be modeled as an axisymmetric input at (rc, zc ¼ h/2). It is
assumed that the upper and lower surfaces (z ¼ ±h/2) of the plate are subjected to heat convec-
tion while the perimetric surface (r ¼ a) is thermally insulated. As the workpiece is properly fixed
in manufacturing applications, it is assumed that the deflection is dominant by the out-of-plane
displacement w along the z-axis, and linear thermoelastic constitutive relations are employed in
the following formulation.

The thermal deflection of an isotropic thin-wall plate is characterized by the displacement field w(t,
r, z), the Goodier’s thermoelastic potential displacement function fðt; r; zÞ and the temperature distri-
bution T(t, r, z) via the following governing equations derived from references [21,24,25].

r2T þ g
kt

¼ 1
a
@T
@t

(1)

Dr4w ¼ � r2MT

ð1� tÞ (2)

r2f ¼ ð1þ tÞatDT (3)

where kt is the thermal conductivity, the thermal diffusivity is defined as a ¼ kt/qc with q and c
denoting the density and specific heat, respectively. g(t, r, z)¼ g1(t)�d(r–rc)�d (z–zc) represents an
axisymmetric heat source, where g1 is an instantaneous line heat source, and �d is a Dirac delta
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function that characterizes the location of the line heat source at rc and zc. DTð¼ T � T0Þ is the tem-
perature deviation from the initial temperature T0. The Laplace operator in the cylindrical coordinate
is simplified as r2 ¼ @2

@r2 þ 1
r
@
@r þ @2

@z2 since the component @2

r2@h2
vanishes in the axisymmetric case. D is

the flexural rigidity and MT is the thermal moment that are given by

D ¼ Eh3

12ð1� t2Þ ; MT ¼ atE
ðh=2
�h=2

�
Tðr; z; tÞ � T0

�
zdz (4)

where E, t and at are Young’s modulus, Poisson’s ratio and thermal expansion coefficient of the
plate material, respectively, and T1 is the ambient temperature.

The fixed outer edge of the plate is described by

wjr¼a ¼ fjr¼a ¼ 0;
dw
dr

����
r¼a

¼ df
dr

����
r¼a

¼ 0 (5)

and the initial and boundary constraints on the temperature distribution are given as

Tjt¼0 ¼ T0ðr; zÞ (6)

Tjr¼0 <1 (7)

@T
@r

����
r¼a

¼ 0 (8)

�kt
@T
@z

����
z¼h=2

¼ kcðTjz¼h=2 � T1Þ (9)

kt
@T
@z

����
z¼�h=2

¼ kcðTjz¼�h=2 � T1Þ (10)

Figure 1. Thin circular plate with an axisymmetric heat source under turning operation.
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where kc is the heat transfer coefficient. The stresses rrr and rhh are given by

rrr ¼ �2l
1
r
@f
@r

; rhh ¼ �2l
@2f
@r2

(11)

where l is Lam�e constant, while the remaining stresses rzz, rrz, and rhz vanish due to the
assumed plane-stress state, and rrh is zero due to the axial symmetry of the problem.

Determination of temperature field

The Green’s function method is employed to solve the formulated BVP that is modified with the
homogeneous boundary conditions. The temperature field T(t, r, z) is divided into two compo-
nents, T¼T1þw, where the constant ambient component T1 satisfies Eq. (1) with g(t, r, z)¼ 0
and the dynamic component w satisfies the following equation:

@2w
@r2

þ 1
r
@w
@r

þ @2w
@z2

þ g
kt

¼ 1
a
@w
@t

(12)

wjt¼0 ¼ T0 � T1 (13)

wjr¼0 <1 (14)

@w
@r

����
r¼a

¼ 0 (15)

�kt
@w
@z

� kcw

� �����
z¼h

2

¼ 0 (16)

kt
@w
@z

� kcw

� �����
z¼�h

2

¼ 0 (17)

Employing the variable separation technique wðt; r; zÞ ¼ w1ðtÞw2ðrÞw3ðzÞ, the homogeneous form
of Eq. (12) with g(t, r, z)¼ 0 is decoupled into three ordinary differential equations:

dw1

dt
þ ak2w1 ¼ 0 (18)

d2w2

dr2
þ 1

r
dw2

dr
þ d2w2 ¼ 0 (19)

d2w3

dz2
þ b2w3 ¼ 0 (20)

where k, d, and b are the corresponding eigenvalues and they satisfy d2 ¼ k2 – b2. The solutions
are obtained as:

w1ðtÞ ¼ q1e
�ak2t (21)

w2ðrÞ ¼ q2J0ðdrÞ þ q3Y0ðdrÞ (22)

w3ðzÞ ¼ q4cosðbzÞ þ q5sinðbzÞ (23)

where J0 and Y0 are Bessel’s functions of the zeroth order, qi’s (i¼ 1, 2, … , 5) are coefficients to
be determined from the initial and boundary conditions.
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The requirement of a finite temperature at the disk center given by Eq. (14) leads to q3¼ 0;
besides, the boundary condition (15) produces the characteristic equation to determine d:

J1ðdiaÞ ¼ 0 (24)

Both Eqs. (16) and (17) determine q4 and q5 for different b’s satisfying the following relations:

q4 ¼ 0 for tan
bh
2

� �
¼ � ktb

kc
(25)

q5 ¼ 0 for tan
bh
2

� �
¼ kc

ktb
(26)

The general solution to the BVP stated in Eqs. (12)–(17) with g(t, r, z)¼ 0 is obtained as:

wðt; r; zÞ ¼
X1
i¼1

X1
j¼0

J0ðdirÞ
�
qi;2je

�ak2i;2jtCb2jz þ qi;2jþ1e
�ak2i;2jþ1tSb2jþ1z

�
(27)

where Cb2jz ¼ cosðb2jzÞ and Sb2jþ1z ¼ sinðb2jþ1zÞ are employed for simplicity; b2j’s and b2jþ1’s are
determined from Eqs. (26) and (25), respectively, di’s are determined from Eq. (24), and k2ij ¼
d2i þ b2j (i¼ 1, 2, … , j¼ 0, 1, 2, … ). It is noted that q’s in Eqs. (21)–(23) are combined into qi,2j’s
and qi,2jþ1’s which are obtained by substituting Eq. (27) into Eq. (13):

qi;2j ¼ 1
gi;2j

ða
0

ðh=2
�h=2

r0J0ðdir0ÞCb2jz0 ðT0ðr0; z0Þ � T1Þdr0dz0

qi;2jþ1 ¼ 1
gi;2jþ1

ða
0

ðh=2
�h=2

r0J0ðdir0ÞSb2jþ1z0 ðT0ðr0; z0Þ � T1Þdr0dz0

where gi;0 ¼ b0hþSb0h
b0

a2J20 ðdiaÞ
4 ; g0;0 ¼ b0hþSb0h

b0
a2
4 ; gi;2j ¼ gi;2jþ1 ¼ a2hJ20 ðdiaÞ

4 .

From the above, the Green’s function is obtained as

Gðt; r; z; t0; r0; z0Þ ¼
X1
i¼1

X1
j¼0

r0J0ðdir0ÞJ0ðdirÞ e�ak2i;2jðt�t0Þ

gi;2j
Cb2jz0Cb2jz þ

e�ak2i;2jþ1ðt�t0Þ

gi;2jþ1
Sb2jþ1z0Sb2jþ1z

" #
(28)

So, the solution to the boundary value problem defined by Eqs. (1) and (6–10) is

Tðt; r; zÞ ¼ T1 þ
ða
0

ðh=2
�h=2

Gðt; r; z; t0; r0; z0Þjt0¼0ðT0ðr0; z0Þ � T1Þdr0dz0

þ a
kt

ðt
0

ða
0

ðh=2
�h=2

Gðt; r; z; t0; r0; z0Þgðt0; r0; z0Þdr0dz0dt0
(29)

For a special case where T0¼T1 and g(t, r, z)¼ 1(t)d(r–rc)d(z–zc) with 1(t) denoting a unit
step function, the transient temperature field is given as follows

T ¼ T0 þ rc
kt

X1
i¼1

X1
j¼0

J0ðdircÞJ0ðdirÞ 1� e�ak2i;2jt

k2i;2jgi;2j
Cb2jzcCb2jz þ

1� e�ak2i;2jþ1t

k2i;2jþ1gi;2jþ1

Sb2jþ1zcSb2jþ1z

" #
(30)

Distributions of displacement and stresses

Let the solution of Eq. (2) is given in the following form [14]:

wðt; rÞ ¼
X1
i¼1

CiðtÞ
�
J0ðdirÞ � J0ðdiaÞ

�
(31)
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Applying the biharmonic operator to wðrÞ in Eq. (31) and using the following result [26]:

r2J0ðdirÞ ¼ �d2i J0ðdirÞ (32)

It is obtained that:

r4w ¼
X1
i¼1

Cid
4
i J0ðdirÞ (33)

The thermal moment could be obtained by substituting Eq. (30) into Eq. (4):

MT ¼ cM
X1
i¼1

X1
j¼0

jijð1� e�ak2i;2jþ1tÞJ0ðdirÞ (34)

where cM ¼ at rcEðhkcþ2ktÞ
k2t

, jij ¼
J0ðdircÞSb2jþ1zc Sb2jþ1

h
2

k2i;2jþ1b
2
2jþ1gi;2jþ1

�
for zc¼ h/2, jij ¼ J0ðdircÞ

k2i;2jþ1b
2
2jþ1gi;2jþ1

�
Then,

r2MT ¼ �cM
X1
i¼1

X1
j¼0

jijdi
2ð1� e�ak2i;2jþ1tÞJ0ðdirÞ (35)

Substituting Eqs. (35) and (33) into Eq. (2) yields

�Dð1� tÞ
X1
i¼1

Cid
4
i J0ðdirÞ ¼ �cM

X1
i¼1

X1
j¼0

jijdi
2ð1� e�ak2i;2jþ1tÞJ0ðdirÞ (36)

where Ci is obtained as follows:

CiðtÞ ¼ cM
Dð1� tÞ

X1
j¼0

jij
d2i

ð1� e�ak2i;2jþ1tÞ (37)

and the thermal deflection is given as follows:

wðt; rÞ ¼ cM
Dð1� tÞ

X1
i¼1

X1
j¼0

jij
d2i

ð1� e�ak2i;2jþ1tÞ�J0ðdirÞ � J0ðdiaÞ
�

(38)

The temperature in Eq. (30) is represented in the following form:

DT ¼
X1
i¼1

Fðz; tÞJ0ðdirÞ (39)

where

Fðz; tÞ ¼ rc
kt

X1
j¼1

J0ðdircÞ 1� e�ak2i;2jt

k2i;2jgi;2j
Cb2jzcCb2jz þ

1� e�ak2i;2jþ1t

k2i;2jþ1gi;2jþ1

Sb2jþ1zcSb2jþ1z

" #
(40)

Then substituting Eq. (39) into Eq. (3) provides the following:

r2f ¼ ð1þ tÞat
X1
i¼1

Fðz; tÞJ0ðdirÞ (41)

f¼ �ð1þ tÞat
X1
i¼1

Fðz; tÞ
di2

	
J0ðdirÞ � J0ðdiaÞ



(42)

Finally, the stress state in the disk, rrr and rhh, can be obtained by substituting Eq. (42) dir-
ectly into Eq. (11) as follows:
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rrr¼ �2lð1þ tÞat
X1
i¼1

Fðz; tÞ
dir

J1ðdirÞ

rhh¼ �2lð1þ tÞat
X1
i¼1

Fðz; tÞ
2

�
J0ðdirÞ � J2ðdirÞ

�
(43)

Numerical calculations and discussion

The derived expressions for the temperature, deflection, and stress provide important insights into
the role of the thermomechanical material properties in elastic behaviors of the thin circular plates
under axisymmetric heating. The temperature distribution in the plate is only dependent on its
thermal properties such as thermal diffusivity and thermal conductivity. On the other hand, the
plate deflection and stress are dependent on both thermal and mechanical properties, such as
thermal diffusivity, thermal conductivity, coefficient of linear thermal expansion, Young’s modu-
lus, and Poisson’s ratio.

The numerical calculations have been carried out for three different materials (Aluminum
6063-T83, Steel AISI 4340, and Titanium Ti-6Al-4V alloy), which have discrepant mechanical and
thermal properties as illustrated in Table 2. It is assumed that the plate is subjected to a constant
line heat source of g1 ¼ 200 W/m with the initial temperature T0(r, z) ¼ 0. The heat transfer
coefficient between the upper and lower surfaces and their surroundings is also assumed to be
constant with kc ¼ 20 W/m2 K.

Figure 2 shows the temperature, for the three materials under-investigation, along the disk
radius at the upper surface (z ¼ h/2) when the heat source is located at (rc ¼ 120mm and
zc ¼ 0.0025mm) after 3000 s. The obtained results show good agreement with those obtained
from COMSOL Multiphysics for the three materials under study. As shown in Figure 2, the titan-
ium disk has the highest temperature gradient as well as the highest peak temperature at the heat
source location followed by the steel disk and the aluminum disk. This is due to the very low
thermal diffusivity of titanium (2.91� 10�6 m2/s) compared with those of steel (1.19� 10�5 m2/s)
and aluminum (8.27� 10�5m2/s).

Figure 3 shows the temperature for the titanium disk along the disk radius at the lower surface
(z ¼ –h/2) when the heat source is located at rc ¼ 120mm and zc ¼ 0.0025mm at different times
ranged from 20 s to 6000 s. The disk temperature increases with the time as shown in Figure 3;
however, the increasing rate slows down with the time as it approaches the steady-state.

Figure 4 shows the steady-state temperature (for t ¼ 3000 s) along the radius on the lower sur-
face (z ¼ –h/2) of the titanium disk, where the heating source is applied at different rc’s on the
upper surface (z ¼ h/2). In Figure 4(a), the heat source is specified with a constant intensity of
g1¼200 W/m; as the heating location changes with rc, the maximum temperature Tmax stays
around 83 �C for rc¼ 30, 60, and 90mm, and it becomes 95 and 133 �C for rc ¼ 120 and 140mm,
respectively. It can be explained that as the heat source approaches toward the insulated bound-
ary, the heat tends to be accumulated locally rather than being dissipated in all directions as it

Table 2. Material properties.

Materials
Density q
(kg/m3)

Conductivity kt
(W/m-K)

Specific heat Cp
(J/kg-K)

Diffusivity a
(10�6 m2/s)

Coefficient of
linear thermal
expansion at
(10�6 1/K)

Young’s
modulus
E (GPa)

Poisson’s
ratio t

Aluminum 2700 200 900 82.31 23.4 69 0.33
AISI 4340 7850 44.5 475 11.93 12.3 205 0.28
Ti-6Al-4V 4430 6.7 526 2.88 7.06 105 0.33
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does at the median area of the disk. For comparison, the temperature distribution is simulated in
Figure 4(b) with the heat source intensity increased proportionally with rc, that is g1 ¼ 50,
100, 150, 200, and 233W/m for rc ¼ 30, 60, 90, 120, and 140mm, respectively. As shown in
Figure 4(b), Tmax increases monotonically mainly due to the increased input power with rc; and
the rate of change in Tmax increases, because less amount of heat is dissipated as the heat source
approaches closer to the insulated boundary.

Figure 5 shows the effect of the number of the terms used in summation process according to
Eq. (30) on the accuracy of the obtained results. The more terms are included in the summation,
the less error is expected. However, less than 1�C as a maximum error can be achieved using only
20 terms, where the finite number of terms in the summation results in limited computational

Figure 2. A comparison between the proposed analytical method and COMSOL results for the temperature distribution at the
lower surface due to an axisymmetric heat source (rc ¼120mm, zc¼ 0.0025mm, and t¼ 3000 s).

Figure 3. The temperature distribution at the lower surface due to axisymmetric heat source (rc ¼120mm and zc¼ 0.0025mm)
at different times.

JOURNAL OF THERMAL STRESSES 9



Figure 4. The temperature distribution at the lower surface due to axisymmetric heat source (zc¼ 0.0025mm and t¼ 3000 s) at
different radii with (a) constant heat source intensity (g1¼ 200 W/m) and (b) increasing heat source intensity with rc.

Figure 5. The effect of the number of terms used in summation on the results accuracy.

10 A. H. ELSHEIKH ET AL.



costs thus makes the proposed method suitable for online monitoring of a machining process.
The number of terms used in summation process not only affects the error, but also the smooth-
ness of the results. So, for a certain application the sufficient number of terms can be selected to
achieve the target accuracy.

Figure 6 shows the deflection of the mid-plane of the disk (z ¼ 0) for the three materials
under the same conditions used to obtain Figure 2. However, the steel and titanium disks have

Figure 6. The thermal deflection at the mid-plane due to axisymmetric heat source (rc ¼ 120mm, zc ¼ 0.0025mm, and
t ¼ 3000 s).

Figure 7. The radial stresses at the upper surface due to axisymmetric heat source (rc ¼ 120mm, zc ¼ 0.0025mm, and
t ¼ 3000 s).

Figure 8. The tangential stresses at the upper surface due to axisymmetric heat source (rc ¼ 120mm, zc ¼ 0.0025mm, and
t ¼ 3000 s).
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larger Young’s moduli (205 and 105GPa) compared with the aluminum disk (69GPa), so the steel
and titanium disks showed larger deflection than the aluminum disk. It is due to the larger tem-
perature gradients induced in the steel and the titanium disks which results from the lower ther-
mal diffusivity of these materials. This result reveals that the material thermal properties have a
dominant effect on the thermal deflection compared to the mechanical properties. Figures 7 and 8
show the radial and the tangential stress components for the three materials under study. The
steel alloy has the largest stresses followed by the aluminum alloy and finally the titanium alloy
has the smallest stresses. This is due to the smaller modulus of elasticity (105GPa) and coefficient
of linear thermal expansion (7.06� 10�6K�1) of titanium alloy compared with those of steel alloy
(205GPa and 12.3� 10�6K�1, respectively).

Conclusion

This article investigates the thermal deflection and stresses in a thin-wall circular plate fixed at
the outer edge and subjected to an axisymmetric heat source. The upper and lower surfaces are
subjected to thermal convection, while the perimetric surface is thermally insulated. First, the
mathematical model is constructed, and then the closed-form solutions are determined for the
temperature distribution, thermal deflection, and thermal stresses. Numerical calculations have
been performed, and the results are illustrated graphically and compared with finite element ana-
lysis in COMSOL Multiphysics. The results show that thermal properties have a dominant effect
on the thermal deflection of the plate compared to mechanical properties.
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