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ABSTRACT ARTICLE HISTORY
Motivated by the need to investigate thermal effects on the deflection and Received 12 March 2018
stresses in a thin-wall workpiece during machining, the thermal problem is Accepted 28 May 2018
modeled with an axisymmetric input to emulate the heat generated at the
tool-workpiece interface in a turning process. Using a compressor disk as
an illustrative example, the boundary value problem is formulated with a .

. - R - conduction; thermal
plate model where the perimetric edge is clamped and insulated, and the deflection; thermal stresses;
upper and lower surfaces are subjected to heat convection. The closed thin-wall plate
form solution of temperature distribution is obtained via Green's function
method, based on which the thermal deflection/stresses are obtained in
serial forms from the plate constitutive relations. The obtained solutions
have been numerically verified with finite-element analysis (FEA), where
simulations have been performed for three different materials with discrep-
ant thermomechanical properties to study the thermal effects on the
induced deflection and stresses. The analytical result is justified by its
good agreement with FEA and its time efficiency in computation offers
advantages in potential real-time application to manufacturing pro-
cess monitoring.

KEYWORDS
Green's function; heat

Introduction

Thin-wall components, featured with low weight and high strength, have been widely employed
in aeronautic and aerospace applications in which extreme service demands require for hard-to-
machine materials. However, their low thermal conductivities often result in concentrated heating
during machining. The non-uniform dynamic heating coupled with the small flexural rigidity
gives rise to complicated deflections and stress distributions. As residual deformations and stresses
would seriously compromise final product qualities, an in-depth understanding of thermal behav-
ior of a thin-wall component under various types of loadings and boundary constraints is of great
practical and theoretical importance [1-6]. As an illustrative example of thin-wall components,
this article investigates thermal deflection and thermal stresses induced in a disk-like workpiece
under turning processes, where the workpiece is modeled as a thin circular plate clamped at its
outer edge and subjected to an axisymmetric heat source due to machining.

The quality of machined workpieces is seriously influenced by the cutting heat, which is fea-
tured with high amplitudes and high gradients especially for those materials with low thermal
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conductivities. This generated heat results in undesirable high temperature gradients, thermal
deflections, and thermal stresses, which may impair the mechanical and metallurgical properties
[7], as well as induce residual stresses [8] and deformation [9] in workpieces. Therefore, thermally
induced stresses must be taken into consideration during design and manufacturing processes of
thin-wall components. This may be achieved by carrying out thermal analysis to determine the
temperature distribution across the workpiece followed by stress analysis based on the calculated
temperatures distribution as well as any mechanical loads or constraints imposed on
the workpiece.

Cases of thermal deflections [10-14], thermal stresses [15,16], or both of them [17-19] have
been investigated on thin circular plates of solid [10-14,17-19] and annular [15,16] shapes under
different inputs and boundary constraints as summarized in Table 1. In most cases, the Dirichlet
condition is assumed to prescribe temperatures for the upper surfaces [10,11,13,17,19], lower sur-
faces [11-14,17,19], and perimetric surfaces [11,13,16,18], which is the simplest to implement in
the mathematical formulation. However, it is an ideal case in practice as it requires a complicated
control scheme to maintain the constant temperature in a dynamic environment; and hence, it is
not suitable for industrial applications such as the machining case under-investigation. Prescribed
heat fluxes on the boundaries are mathematically modeled as the Neumann boundary condition.
Insulated (heat flux=0) [10,12,14-19] and nonhomogeneous (heat flux # 0) [10,12,17] versions
of the Neumann boundary condition have been considered. Finally, the convection boundary con-
dition has been applied on different plate surfaces [6,15,16]. Analyses involving integral trans-
forms [10-14,17,18], Bessel’s functions [19], and Homotopy [16] have been carried out and
numerical techniques such as the finite difference method [15] have been developed for different
applications. Most studies on the thermoelastic problem of thin-wall plates are analytical in nature
[10-14,16-18]. This is due to the fact that analytical solutions reveal the effect of different param-
eters and material thermomechanical properties on the thermoelastic behaviors of thin-wall plates,
despite the more simplifying assumptions used in obtaining the analytical closed-form solutions
compared with numerical solutions. Moreover, most of these studies considered the plane stress

Table 1. Summary of the previous research works on the thermal stresses of thin circular plates.

Boundary conditions/input heat source Results
Reference Upper Lower Perimetric Internal Method Deflection  Stress
[10] T=0 Insulation  Time-varying q / Integral J X
transforms
[11] T=0 T=0 Time-varying T / Integral N X
transforms
[12] Insulation T=0 Time-varying g Heat Integral J X
generation transforms
[13] Constant T Constant T Constant T Heat Integral J X
generation transforms
[14] Ramp- T=0 Insulation / Integral J X
type heating transforms
[15] Convection Convection Insulation; moving / Finite differ- X N
uniform g ence
method
(FLUENT)
[16] Convection Convection  Constant / Homotopy X N
T: Insulation analysis
[17] Convection Convection  Prescribed g / Integral N N
Prescribed T T=0 Insulation / transforms
[18] Insulation Insulation T=0 Heat Integral V N
generation transforms
[19] Prescribed T T=0 Insulation / Bessel's J N
functions
Current work  Convection Convection  Insulation Axisymmetric Green’s J N
heat source function

T: temperature; g: heat flux.
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state rather than the plane strain state as the later showed inappropriate results when compared
with experimental observations [20].

To emulate machining conditions in practice, the convection boundary condition is assumed in the
current study for both upper and lower surfaces of the plate with its outer edge fixed by a lathe chuck
and subjected to an axisymmetric heat source at the cutting region. The analytical method of the
Green’s function is employed with the technique of variable separation [21] to determine the tempera-
ture. Thermal deflection and stresses are also obtained based on the calculated temperature consider-
ing the state of plane stresses. The obtained results provide a basis for analyzing thermal displacement
and stresses in a workpiece for manufacturing applications where delicate sensing techniques, such as
laser, strain-gauges or infrared imaging, are limited under the complicated machining condition.
Furthermore, the obtained results are compared with finite element analysis with COMSOL
Multiphysics under the same conditions [22,23]. The remainder of this article offers the following:

e The governing time-dependent heat conduction with the thermoelastic equation of the thin
circular plate under study is formulated as a boundary value problem.
The Green’s function method is used to solve the time-dependent heat conduction problem.
The variable separation technique is used to derive the Green’s function for the problem in
hand under the prescribed BCs.

e Based on the derived temperature distribution, the closed-form solutions of the thermal deflec-
tion and thermal stresses in a thin circular plate are obtained.

e Results have been numerically verified with simulated FEA for three different materials with
discrepant thermomechanical properties to figure out the effects of these properties on the
induced thermal deflection and stresses.

Problem formulation

As shown in Figure 1, a thin-wall workpiece under lathe-machining is modeled as a circular plate
(of radius a and thickness h) whose coordinates are described with 0 <r<a, 0 < 0< 2m, —h/
2<z<h/2 in the cylindrical coordinate at the center. As the workpiece is rotated with the outer-
edge clamp at Q and machined by the tool moving along the horizontal radius, the heat generated
at the tool-workpiece interface can be modeled as an axisymmetric input at (r, z. = h/2). It is
assumed that the upper and lower surfaces (z = +h/2) of the plate are subjected to heat convec-
tion while the perimetric surface (r = a) is thermally insulated. As the workpiece is properly fixed
in manufacturing applications, it is assumed that the deflection is dominant by the out-of-plane
displacement w along the z-axis, and linear thermoelastic constitutive relations are employed in
the following formulation.

The thermal deflection of an isotropic thin-wall plate is characterized by the displacement field w(t,
r, z), the Goodier’s thermoelastic potential displacement function ((¢,r,z) and the temperature distri-
bution T(t, r, z) via the following governing equations derived from references [21,24,25].

2p 8 10T
VT ke o Ot W
ViMy
4 e
DViw = =) (2)
V3 = (1+v)uAT 3)

where k; is the thermal conductivity, the thermal diffusivity is defined as o = k/pc with p and ¢
denoting the density and specific heat, respectively. g(t, r, z) =g1(£)0(r-r.)0 (z-z.) represents an
axisymmetric heat source, where g; is an instantaneous line heat source, and ¢ is a Dirac delta
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Figure 1. Thin circular plate with an axisymmetric heat source under turning operation.

function that characterizes the location of the line heat source at . and z.. AT(= T — Ty) is the tem-
perature deviation from the initial temperature T,. The Laplace operator in the cylindrical coordinate
is simplified as V? = g—:z + %% + % since the component ﬂ?}z—ez vanishes in the axisymmetric case. D is

the flexural rigidity and Mr is the thermal moment that are given by

ER3 h/2

D=—"" _
12(1 — v?)

,  Mr= octEJ (T(r, z,t) — To) zdz (4)

—h/2

where E, v and o, are Young’s modulus, Poisson’s ratio and thermal expansion coefficient of the
plate material, respectively, and T, is the ambient temperature.

The fixed outer edge of the plate is described by
dw
dr

_ 4
T dr

r=a

=0 (5)

r=a

W|r:a = C|r:a =0,

and the initial and boundary constraints on the temperature distribution are given as

Tl = To(r,2) ©
T|,g <00 7)
88—7; y =0 (8)
_kt% e k(T — Too) )
ge| =Tl = T (10
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where k. is the heat transfer coefficient. The stresses g, and ggy are given by

190 P
_Z’M;E’ Gog = —2M3 > (11)

where p is Lamé constant, while the remaining stresses ¢, 6,, and oy, vanish due to the
assumed plane-stress state, and g, is zero due to the axial symmetry of the problem.

Determination of temperature field

The Green’s function method is employed to solve the formulated BVP that is modified with the
homogeneous boundary conditions. The temperature field T(¢, r, z) is divided into two compo-
nents, =T, +, where the constant ambient component T, satisfies Eq. (1) with g(t, r, 2) =0
and the dynamic component  satisfies the following equation:

Py 1oy Yy g 10y

e Ttk Taar (12)
Y]—o =To — T (13)
W,y <00 (14)

0
a—lf - =0 (15)
< g‘/’ k¢> =0 (16)
(x2-)| =0 @

Employing the variable separation technique (¢, r,z) = (), (r){5(z), the homogeneous form
of Eq. (12) with g(t, r, z) =0 is decoupled into three ordinary differential equations:

ay,

St i, =0 (18)
Ay, 1dy, o
ot 0N, =0 (19)
Y
dzj + A5 =0 (20)

where /, 6, and f are the corresponding eigenvalues and they satisfy 6> = 4> — % The solutions
are obtained as:

V() = qie (21)

W¥,(r) = q2Jo(0r) + g3 Yo (07) (22)

¥3(2) = qucos(Pz) + gssin(fz) (23)

where J, and Y, are Bessel’s functions of the zeroth order, ¢/s (i=1, 2, ..., 5) are coefficients to

be determined from the initial and boundary conditions.
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The requirement of a finite temperature at the disk center given by Eq. (14) leads to g; =0;
besides, the boundary condition (15) produces the characteristic equation to determine o:

]1(5,‘6!) =0 (24)
Both Egs. (16) and (17) determine q, and g5 for different ’s satisfying the following relations:
ﬁh) ki
=0 for tan( = | = -2 25
qa or an< 5 k. (25)
h k.
gs =0 for tan <ﬂ7> = [y (26)
The general solution to the BVP stated in Eqs. (12)-(17) with g(t, r, z) =0 is obtained as:
lﬂ(t 7, Z ZZIO 5 i (%ze Mlzjtcﬁzj t gigj+1€ W‘Zﬁltsﬁzﬂz) 27)
i=1 j=0

where Cp, . = cos(f,z) and Sy, . = sin(f,;,,z) are employed for simplicity; f/'s and B,;;,’s are
determined from Egs. (26) and (25), respectively, d;’s are determined from Eq. (24), and } =
(32 + ﬁ (1—1 2, ...,j=0,1,2, ...). It is noted that ¢’s in Egs. (21)-(23) are combined into q,ZJ
and qizj+1'8 Wthh are obtained by substituting Eq. (27) into Eq. (13):

12
Qi = J J Jo(0ir")Cp, o (To(r',2') — To)dr'd2’

Ni2jJo J—n/2

1 h/2
dizj+1 = J J r’]o(éir’)S,;ZJ+]Zr(To(r’,z’) — Ty )dr'dZ

Nizjir1Jo J—ny2
Poh+Spyn a?J2(5:a) _ Boh+Spyn g2 _ _ a®hJ¢(8ia)
where 1,5 = B = Moo = B a0 My = Mg =5 -

From the above, the Green’s function is obtained as

00 00 e—oc)tzzj(t t) e—aiizjﬂ(i—t’)
G(t,r,z:t, 7, 2) =Y ) ¥ Io(0ir)o(Sir) |[—————CpeCpye + ——————Sp, 1 #Sp0z|  (28)
i=1 j=0 Ni 2 Ni2j+1
So, the solution to the boundary value problem defined by Eqs. (1) and (6-10) is

a (h/2

T(t,r,z) = T +J J G(t,r,z; ', 7, 2)|,_o(To(r,2) — Tao)dr'de
—h/2
! (29)

5 h/2
+k_J J J G(t,r,z;t' v, 2)g(t' v, 2 )dr'dZ df
t “h/2

For a special case where Ty=T,, and g(t, 1, 2) =1()0(r-r.)0(z-z.) with 1(#) denoting a unit
step function, the transient temperature field is given as follows

re Mizzjt 1— e*“}“iz.zjﬂf
T= TO + Z ZIO 5 i’ ]0 5 7’ )2 CﬁZJZCCﬁZ} + ~7sﬁ2j+1258ﬁ2ﬁ12 (30)
i=1 j=0

12] i,2f /“z 2]+1771 2j+1
Distributions of displacement and stresses

Let the solution of Eq. (2) is given in the following form [14]:

Z C ]0 (S 7’ ]0(5ia)] (31)
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Applying the biharmonic operator to w(r) in Eq. (31) and using the following result [26]:

V2o (dir) = —67Jo(8i7)

It is obtained that:

V4W = Z Cléfj()(élr)

i=1

The thermal moment could be obtained by substituting Eq. (30) into Eq. (4):

Mr=cy Y D k(1 — e ) o(dir)

i=1 j=0
]0(5;&)5/; S I .

oyr E(hk.+2k;) 2417 foi g ( Jo(dire)
where ¢y = =S ki = ———>—— 222 (for z.=h/2, Kjj = 525" —
k? > )'izfﬂﬁ%jﬂniljﬂ ¢ Y “i.2j+1[;§j+1ﬂi.2j+l

Then,
[oe] o0 5
VPMr = —cy E g K07 (1 — e i) o (3ir)

Iy
S

i=1 j

Substituting Eqs. (35) and (33) into Eq. (2) yields

—D(1 =) CiotJo(0ir) = —euy_ > K0 (1= e )o(8ir)
i=1 i=1 j=0

where C; is obtained as follows:
o0
K N
Ci(t) — C—MZ_U (1 _ eial“i2j+lt)

and the thermal deflection is given as follows:

o0 o0

Wt = 5 3D T 0 e o)~ o3

The temperature in Eq. (30) is represented in the following form:
AT = F(z,t)Jo(dir)
i=1

where

2 2
— 0t e odiyzjﬂt

1— e i
F(z,1) "k § Jo(0ire) |—5——Cp,2.Cp, z—s/fzf+12c5ﬁzj+lz
t i 2];71 2j i 2]+1’71 2j+1

Then substituting Eq. (39) into Eq. (3) provides the following:
Vi =(1+ 0)0th F(z,t)]Jo(6ir)
i=1

>~ F(z,t)
—(1+v OCtZ (; ]0 (0;r) ]0(5,~a))
-1 Y

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

Finally, the stress state in the disk, o, and ggg, can be obtained by substituting Eq. (42) dir-

ectly into Eq. (11) as follows:
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Table 2. Material properties.

Coefficient of

linear thermal Young's
Density p Conductivity k, Specific heat C,  Diffusivity « expansion o modulus Poisson’s
Materials (kg/m?) (W/m-K) (J/kg-K) (107% m%/s) (107% 1/K) E (GPa) ratio v
Aluminum 2700 200 900 8231 234 69 033
AISI 4340 7850 44.5 475 11.93 123 205 0.28
Ti-6Al-4V 4430 6.7 526 2.88 7.06 105 0.33
> F
o= —2u(l+v OCzZ ]1 (9;r)
i=1
> F
ooo= —2u(1 utz (]o oir) — Iz(éir)) (43)

i=1

Numerical calculations and discussion

The derived expressions for the temperature, deflection, and stress provide important insights into
the role of the thermomechanical material properties in elastic behaviors of the thin circular plates
under axisymmetric heating. The temperature distribution in the plate is only dependent on its
thermal properties such as thermal diffusivity and thermal conductivity. On the other hand, the
plate deflection and stress are dependent on both thermal and mechanical properties, such as
thermal diffusivity, thermal conductivity, coefficient of linear thermal expansion, Young’s modu-
lus, and Poisson’s ratio.

The numerical calculations have been carried out for three different materials (Aluminum
6063-T83, Steel AISI 4340, and Titanium Ti-6Al-4V alloy), which have discrepant mechanical and
thermal properties as illustrated in Table 2. It is assumed that the plate is subjected to a constant
line heat source of g; = 200 W/m with the initial temperature Ty(r, z) = 0. The heat transfer
coefficient between the upper and lower surfaces and their surroundings is also assumed to be
constant with k, = 20 W/m? K.

Figure 2 shows the temperature, for the three materials under-investigation, along the disk
radius at the upper surface (z = h/2) when the heat source is located at (r. = 120mm and
z, = 0.0025mm) after 3000s. The obtained results show good agreement with those obtained
from COMSOL Multiphysics for the three materials under study. As shown in Figure 2, the titan-
ium disk has the highest temperature gradient as well as the highest peak temperature at the heat
source location followed by the steel disk and the aluminum disk. This is due to the very low
thermal diffusivity of titanium (2.91 x 10~® m?/s) compared with those of steel (1.19 x 10~> m?/s)
and aluminum (8.27 X 10°m?/s).

Figure 3 shows the temperature for the titanium disk along the disk radius at the lower surface
(z = -h/2) when the heat source is located at r. = 120 mm and z., = 0.0025 mm at different times
ranged from 20s to 6000s. The disk temperature increases with the time as shown in Figure 3;
however, the increasing rate slows down with the time as it approaches the steady-state.

Figure 4 shows the steady-state temperature (for t = 3000s) along the radius on the lower sur-
face (z = -h/2) of the titanium disk, where the heating source is applied at different r.’s on the
upper surface (z = h/2). In Figure 4(a), the heat source is specified with a constant intensity of
=200 W/m; as the heating location changes with r., the maximum temperature T, stays
around 83 °C for r.=30, 60, and 90 mm, and it becomes 95 and 133 °C for r. = 120 and 140 mm,
respectively. It can be explained that as the heat source approaches toward the insulated bound-
ary, the heat tends to be accumulated locally rather than being dissipated in all directions as it
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Figure 2. A comparison between the proposed analytical method and COMSOL results for the temperature distribution at the
lower surface due to an axisymmetric heat source (r. =120 mm, z. = 0.0025 mm, and t =30005).
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Figure 3. The temperature distribution at the lower surface due to axisymmetric heat source (r. =120 mm and z. = 0.0025 mm)
at different times.

does at the median area of the disk. For comparison, the temperature distribution is simulated in
Figure 4(b) with the heat source intensity increased proportionally with r, that is g = 50,
100, 150, 200, and 233 W/m for r, = 30, 60, 90, 120, and 140 mm, respectively. As shown in
Figure 4(b), Tp.x increases monotonically mainly due to the increased input power with r; and
the rate of change in Tj,.x increases, because less amount of heat is dissipated as the heat source
approaches closer to the insulated boundary.

Figure 5 shows the effect of the number of the terms used in summation process according to
Eq. (30) on the accuracy of the obtained results. The more terms are included in the summation,
the less error is expected. However, less than 1°C as a maximum error can be achieved using only
20 terms, where the finite number of terms in the summation results in limited computational
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Figure 4. The temperature distribution at the lower surface due to axisymmetric heat source (z. =0.0025 mm and t=30005) at
different radii with (a) constant heat source intensity (g; =200 W/m) and (b) increasing heat source intensity with r..
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Figure 5. The effect of the number of terms used in summation on the results accuracy.
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Figure 7. The radial stresses at the upper surface due to axisymmetric heat source (r.
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Figure 8. The tangential stresses at the upper surface due to axisymmetric heat source (r. = 120mm, z. = 0.0025 mm, and
t =30005).

costs thus makes the proposed method suitable for online monitoring of a machining process.
The number of terms used in summation process not only affects the error, but also the smooth-
ness of the results. So, for a certain application the sufficient number of terms can be selected to
achieve the target accuracy.

Figure 6 shows the deflection of the mid-plane of the disk (z = 0) for the three materials
under the same conditions used to obtain Figure 2. However, the steel and titanium disks have
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larger Young’s moduli (205 and 105 GPa) compared with the aluminum disk (69 GPa), so the steel
and titanium disks showed larger deflection than the aluminum disk. It is due to the larger tem-
perature gradients induced in the steel and the titanium disks which results from the lower ther-
mal diffusivity of these materials. This result reveals that the material thermal properties have a
dominant effect on the thermal deflection compared to the mechanical properties. Figures 7 and 8
show the radial and the tangential stress components for the three materials under study. The
steel alloy has the largest stresses followed by the aluminum alloy and finally the titanium alloy
has the smallest stresses. This is due to the smaller modulus of elasticity (105GPa) and coefficient
of linear thermal expansion (7.06 x 10 °K™') of titanium alloy compared with those of steel alloy
(205 GPa and 12.3 x 10 K™, respectively).

Conclusion

This article investigates the thermal deflection and stresses in a thin-wall circular plate fixed at
the outer edge and subjected to an axisymmetric heat source. The upper and lower surfaces are
subjected to thermal convection, while the perimetric surface is thermally insulated. First, the
mathematical model is constructed, and then the closed-form solutions are determined for the
temperature distribution, thermal deflection, and thermal stresses. Numerical calculations have
been performed, and the results are illustrated graphically and compared with finite element ana-
lysis in COMSOL Multiphysics. The results show that thermal properties have a dominant effect
on the thermal deflection of the plate compared to mechanical properties.
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