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Abstract—This paper presents a new method that combines a
physics-based model and finite-element (FE)-based digital image
correlation (DIC) with an interfacial continuity condition for
simultaneous deformation measurements of strain field and
material mechanical properties. The dual-domain global DIC
method incorporates a model-based kernel that offers useful
physical insights into the complex deformation and constrains the
solutions to the iterative minimization of the DIC criterion, which
leads to a faster convergence. Unlike local subset-based and global
FE-based methods where the DIC is formulated to solve for the
nodal displacements, the model-based DIC that accounts for
complex deformation in the specific region is formulated to
identify system parameters. Both domains, along with their
interface and the continuity condition enforced on the global
displacement field, are discretized and solved simultaneously in a
single calculation. The dual-domain global DIC method has been
investigated by comparing reconstructed strain fields and
estimated parameters against targets simulated wusing the
commercial FEA software COMSOL and published experimental
data. Unlike FE-DIC which is noise sensitive, the model-based
DIC is robust against the Gaussian noise effects.

Index Terms— Deformation measurement, digital image
correlation, parameter identification, field reconstruction

I. INTRODUCTION

s a full-field technique for shape, motion and deformation
measurement [1], digital image correlation (DIC) has been
widely utilized in process monitoring [2], mechanical
response analyze [3], and damage/flaw evolution tracking [4].
DIC analyzes material surface textures or artificial speckle
patterns between two images, typically a reference (previous)
image and a target (current) image, to determine their relative
displacement, thus offering a non-contact and non-intrusive
measurement with high efficiency [5]. Provided that the
deforming material is properly patterned and well imaged, DIC
methods are capable of measuring deformations in
multi-length-scale ranging from meters to nanometers with
different materials such as metal alloys [6], polymers [7] and
more recently, bio-tissues [8].
DIC methods are increasingly used in experimental
mechanics to characterize models as well as to validate FE
analyses. Existing research and applications so far, however,
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primarily focus on developing different correlation criterion
algorithms and displacement descriptions [9] to obtain accurate
strain measurements. Their abilities for simultaneous rapid
measurements of geometric-based variables (such as
displacement and strain) and parameter identification of
material (mechanical) properties are under exploited.

Two most commonly used DIC algorithms are the
subset-based local DIC and the finite-element (FE) based global
DIC. Local DIC allocates separate reference subset centered at
each calculation point and then traces the corresponding
deformed subset in target images by correlating between two
images [10]. Unlike local DIC (without enforcing the
displacement continuity to the displacement field), global DIC
discretizes the whole surface into FEs and traces all the nodal
displacements simultaneously in a single calculation [11]. The
displacement measurements have been theoretically and
experimentally validated for both local and global DIC [12]; and
material properties can be identified by additional numerical
simulations with DIC measurements through an inverse
technique [13]. When encountering applications that involve
complex or large localized deformation, both existing
subset-based local DIC and FE-based global DIC suffer several
drawbacks: the independent calculated solutions in local DIC
fail to satisfy the continuity condition to maintain the global
displacement field. For global DIC, high-order FE shape
functions [14] or adaptive re-mesh strategies [15] for capturing
complex deformation fields are computationally demanding
along with clumsy formulations, but there are tradeoffs between
resolution and accuracy as large elements tend to improve
accuracy but at the expense of resolution [16].

Recent technologically advancing applications (such as
additive-manufacturing that requires quantitative assessments of
the process-induced stress between each built layers [17])
motivates the development of improved DIC methods for
analyzing complex deformation in specific local regions or at
interfaces in images. In [18], mechanically aided equilibrium
condition was introduced as a regularization term in a DIC
algorithm to improve accuracy but the added regularization
process requires extra computation undesirable for real-time
implementation. Physics-based models are commonly coupled
in image processing to obtain high fidelity in applications;
object recognition [19], image segmentation [20], and more
recently nanoscale deformation analysis with high-resolution
transmission electron microscopy images with DIC [21].

With global DIC as a field measurement tool, this paper
presents a dual-domain (model- and FE-based) DIC method for
simultaneous reconstruction of displacement/strain fields and
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identification of material properties. The remainder of this paper

offers the followings:

— The dual-domain global DIC, which combines a physics-
based model and FE-based DIC with an interfacial continuity
condition, is formulated. As will be shown by comparing to
two existing approaches (FE-based DIC and general global
DIC), the model-based DIC that accounts for the physics of
complex deformation through identifying the system
parameters provides an efficient means to constrain the
solutions to the iterative minimization of the DIC criterion
leading to a faster convergence.

— With two examples (rigid-body translation and uniaxial
tensile loading) where solutions are available for validation,
the dual-domain global DIC method utilizing a model-kernel
is numerically illustrated. The effects of FE sizes, intensity
changes and random noise on the measuring accuracy,
computation time and robustness of the DIC are discussed.

— The model-based enhancements are validated by comparing
the DIC-reconstructed displacement/strain fields against FEA
simulation targets. The effectiveness of the verified
dual-domain method is further demonstrated by evaluating
the DIC-reconstructed fields and estimated parameters with
published experimental data.

II. MODEL-BASED DUAL-DOMAIN DIC

Consider a 2D deformation of an interested subset in two
consecutive images as illustrated in Fig. 1 where the parameters
involved in measuring the deformation behavior of the material

are shown. In Fig. 1(a), u(s)=[u v]'is the displacement of
the subset centered at 4 where the set of the points is assumed to
remain as its neighboring points. When the subset is sufficiently
small, each of the points (denoted by its location s; = [x; :]7)
around the subset center 4 in the previous image is mapped to
that in the current image according to the relation
§=s+u+Vu[Ax Ay]' . The objective is to estimate the

displacement field u from the sequential images so that the
Green-Lagrangian strain tensor can be determined.

Current M subsets__ N, pixels
subset oD S
g(%,5,)
A
b y X
» (b)
Ry g(®) '
|
Ax, A
y S; ¢ y)A :Prcvious
L ______ | subset
(@ © b3 x

Fig.1 Schematics illustrating DIC (a) Displacement reference and
deformed subsets. (b) Previous image. (c) Current image.

As shown in Fig. 1(b), the image is discretized into M subsets
(me[LM]) and N,, is the total number of pixels in the m" subset
(nelL,N,]). Let f(s) and g(s5) represent the gray intensity
distribution of the previous and current subsets (Fig. 1c)
respectively. Using a first-order Taylor approximation,

gB@)=~g(s)+u'Vg (1)

In (1), Vg is the gradient with respect to s. In a two-dimension
(2D) DIC analysis, the displacement field u is obtained by
evaluating the similarity degree between the two sequential
images. Equation (2a) describes the least-square correlation
criterion for estimating the global residual:

RW=>[/.)-g,®]

m=1

(2a)

where () = L0 g (5) = 8817 8a (2b.0)

m m

(f,.7.)and (g, , z,) are the ensemble (average, root-sum-
square) of the previous and current subsets, respectively:

7= Niif(sn; T = 2L 6)-TF (3ab)
g, -2 86): B, = S 1e6) -5, T (Ged)

By subtracting the mean value and dividing the root-sum-square
of the subset, the correlation criteria (2a) is insensitive to offset
and scale changes in the intensity of the current image [22] to
provide an accurate and reliable estimation of the displacement.
The displacement field u(s) is commonly described by means
of a global FE method. Fig. 2(a) shows an illustration where
quadrilateral elements with linear shape functions are used:

u(s,) = Zl’,(wq (s)u,) (4)

In (4), y,(s) is a FE shape-function where g=1, 2... [ for an
element of / nodes (where / is a multiple of 4).

yi=A=)1=n); v, =c(=m); wy=¢cn; v, =(1-5)
where Z:le//q =1; £€[0,1]; and 7 €[0,1].

Fig.2 Displacement field formulation. (a) FE domain Qg. (b)
Model-based domain Q.

A. Dual-domain formulation of displacement field

A dual domain formulation is proposed as shown in Fig. 2(b)
to overcome the problems associated with the global FE method
(Fig. 2a) where the displacement field u(s) is divided into FE
based domain Qg as in (4) and a model-based Qy domain:

u(s) = {uM (s,) fors, eQ, (50)
u(s,) fors, eQ
where uy, (s,) = Hy, (s, )a; ug(s,) =H(s,)B ; (5b, ¢)

a(e RM)= [al oy

T
B(eRz/xl):[ulT u; u;J.
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In (5a), the model-kernel H,, (¢ R¥ ) that depends on specific

applications take advantages of prior physical information of the
deformation field; and H (e g»?¥) is defined by (4). The

formulation and its significance are illustrated with an example;
complex deformation under uniaxial tension (Fig. 3).

Example: Complex deformation under uniaxial tension

Fig. 3 shows a thin symmetrical plate (Young’s modulus £
and Poisson ratio v) with a circular through-hole (radius a)
under uniaxial tensile loading 7, where theoretical solutions to
its displacement field in isotropic infinite plate indicate the
trend of the physical deformation. In polar coordinates [23],

u(r,0) _ (@’ —ar’)+]) . d(-D+r’v

C C 6a
Ta/E 277 30 ar ¢ (6a)
32 2,2
w(r,8) _ (@ —ar 3)(U+l) S, + 2a° +r s, (6b)
TalE 2r ar

In (6a, b), C(«)and S denote cos(e) and sin(e) respectively. A
model-based domain Qy is defined to capture the deformation
occurred around the hole. The corresponding displacement
(s, €Q,,)1is given in (5a) where

H, (Ri’ ‘9:) =
c,, 2C,+C Cy,  2C, -C
3913 _ 34, 3’913 +M—R[CH
ZRI ZR’ 2Rz 2Rl ' (73.)
S, 4S8,-S Sy S
36, 76 36 +RS, ;6‘3—&
2R 2R, ' 2R’ 2R,
a=|" | where @, =% o, =14, (7b)
a, ‘BT E
1 _
R =—x'+y’;and 6 = arctan(&j. (7c,d)
a Xi

In (7a), the hole (center s=0 and radius a) can be located using
image processing such as Hough transform method. With (7a),
Hum(R;, @) can be computed for the i pixel in Qu, which
provides the basis to solve (5a) for the unknown o defined in
(7b). The formulation (5a) with estimated u in Qu has the
following significances: 1) The material properties (E, v) can be
obtained from the solution to o for a specified 7. 2)
Alternatively, T can be determined if the (E, v) is known.

Tt AIt 4t

(Tensile |
stress Y

r
Fig. 3 Subdomains (Qg and

loading)
—_— . . 0 P -
Q) and parameters of 0 /X

model-based domain in M| -
uniaxial tension. |

Q:
D A
The displacements (um and ug) in the respective subdomains
(Qm and Q) on the interface I' must satisfy the continuity
condition accounted for by the weak-form formulation in (8a)

where A(c p?) is Lagrange multiplier [24]:
Zr}‘T(“M; —u,)=0 (8a)

In (8a), the interpolation of the Lagrange multiplier is written in

matrix form where H,. € R**" andy e R*"™":
;\'(si) = Hr(si)y .

B. DIC Solutions based on Gauss-Newton approach

(8b)

For the dual-domain displacement formulation (5a), the
objective of the DIC algorithm is to find the displacements (um
and ug) in the respective subdomains (Qv and Qg) along with
A in (8a) that satisfies the continuity condition at the interface to
minimize R, for the whole region [25].

Minimize R (u;)+R_(u,,) subject to (8a) )
To solve (9) for the displacement field, the Lagrange function
defined in (10) is minimized using a Gauss-Newton iteration
scheme (11a) where the subscripts, k£ and k+1, refer to old and

T, . )
new x = [aT B’ yT] in each iteration:

L(x) =R [uy @]+ R [ue(B)]+ 2 A (uy, —u,) (10)
[VVL(x,)]Ax = -VL(x,) (11a)
X =X, +AX (11b)

The gradient VL with respect to each DOF can be derived from
(1), (2a), (5a) and (8a) leading to (12a):

80L au [Rc ((1)]+ZrH’l{/l)“ F,
VL(x)=|0,L | =| 0, [R.(B)]- D, HL |=|F. (12a)
ST [y —e] | L

where 3, =0/ 0(e),Hy (e R"?) =0,uy, Hy (e R2) = 0pu;, ; and
H; (¢ R¥v*2)=0,L" are the coefficient matrices in (5a) and (8a)

respectively. In (12a) where the subscripts “+” and “—" denote
the subdomains (Qwm and Qg) respectively,

F, :g;—zz[fm (5)-2,@]HIVg Y HA (12b)

Thus, VVL is a square matrix (€ n,, +2/+2n.) of the form:

0,(0,L) 0 a,(0,L)

VVL(u) = 0 3, (04L) 9, (04L)
,(0,L) 0,(0,L) 0

With (12a), the Gaussian-Newton iteration (11a) can be written

in compact form (14a~c) for updating the ( n,, +2/+2n.)

(13)

elements in Ax:

K+ 0)7“4 x21 C+ F+
v, Ko —C_ |Ax=-|F (14a)
CI _C—E 02nr><2n]- Fl_
2
where K, = E—2ZHI (Vg)(Vg)' H, ; (14b)
m Qt
and C,=) HIH, (14c)

C. Procedure for calculating strain displacement field

With the reconstructed displacement field w, the
Green-Lagrangian strain tensor can be determined from (15)
where the subscripts (x and y) of the displacements (# and v)
indicate their respective partial derivatives:
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£ &,
€= (15a)
&, &,
uX
£, 24u, 0 v, 0
: u,
where| &, [==| 0 u, 0 2+v, vy (15b)
&, u, 1 1 v ’
. : <y,

To evaluate the (combined elastic and plastic) deformation state
of the material, the Von Mises yield criterion is applied using the
equivalent strain (16):

&y =\J(2/3)¢;8;, L,j=x,y (16)

The flowchart in Fig. 4 illustrates the computation procedure
for calculating the model-based DIC.
Grayscale image pairs f(s) and g(8)
Dual-domains v
I ]

v v

Model-based (5b) in Qy

Finite-element (5¢) in Qg

| ug(si)

upi(si) I *

| Continuity condition (8a) on I' |
|

Initial guess u(s) +
Gauss-Newton iteration (11a) ‘

Optimization step AX

Update DoF (a, B, ) (11b)
No

Displacement field u(s) Yes Model-based unknown o
‘ Strain formulation (15b) ‘ ‘ Parameter extraction (7b) ‘
Strain field & Mechanical property

Fig. 4 Flow-chart illustrating the model-based DIC algorithm.

III. RESULTS AND DISCUSSIONS

The dual-domain method that incorporates a physical-field
model to enhance the DIC with FE formulation for
high-resolution field-measurements is numerically and
experimentally investigated. Table 1 summarizes three most
commonly encountered examples to illustrate the dual-domain
formulation (1~5) and the algorithm (8~16). Other model-kernel
equations can be formulated similarly. Four sets of results are
presented: The 1% numerically analyzes the effects of the
model-kernels on the accuracy and computational time of the
displacement field using simulated images, three different DIC
methods are compared:

FE-DIC: DIC method with global FE meshes.

M-DIC: Model-based DIC method with all pixels.

M-FE-DIC: Dual-domain method that combines the

advantages of the FE-DIC and M-DIC.

Table 1 Model-kernels used in illustration

Example | Application Hy(Eq.) o (Eq.)
1 Rigid Transformation (RT) (18a) (18b)

2 Uniaxial tension (UT) of flat plate (19a) (19b)

3 UT of flat plate (with a circular hole) | (7a) (7b)

Ilustrated with a uniaxial tensile loading application (Fig. 3)
where published experimental results are available for
validation, the 2" is a parametric study on the measurements of

the deformed displacement. The 3™ numerically analyzes the
effects of intensity change and random noise on the
measurement errors of the displacement and strain fields. The 4%
demonstrates the dual-domain method for simultaneously
measuring the displacement field and material mechanical
properties using published experimental results.

The numerical image pairs are generated by (17a, b) [26]:

f(s)=i]p exp[—(s—sp)z/R;] (17a)
2® =1, exp[~(s—s, )’/ R’] (17b)

In (17a, b), s, and I, are the random coordinates and random
intensity of the speckle; the radius R, (=4) and total number S,
(=8000) of speckle were used to generate the pair of images; and
the displacement field u was extracted from numerical
simulation results using FEA software. Written in MATLAB,
the Gauss-Newton iteration in model-based DIC was computed
on a desktop personal computer (Intel Core i7-3770K, 3.5GHz
CPU, 16GB RAM, 64 bits OS). In this study, the grayscale and
image gradient on the subpixel location are interpolated with
MATLAB biquintic B-splines.

A. Rigid transformation and uniaxial tension

For clarity, a flat plate undergoing rigid transformation (RT)
and uniaxial tension (UT) is chosen to illustrate the effects of the
model-kernels on the accuracy and computational time of the
displacement field. Fig. 5 shows a pair of (previous, current)
images generated using (17) from the FEA-simulated UT
loading with the boundary conditions (BCs) shown in Fig. 5(a).
For the RT, the pair of images is related by a subpixel rigid
translation (1¢=0.5, vy=0.2) but the prior information is that only
transformation occurs. The model kernel Hy and unknown a in
u,, =H,,a (5b) for the RT and UT of a flat-plate are given

respectively by (18a, b) and (19a, b):

1 0 u,
RT: H, = 0 1 and a =
Yo

UT H( ) -x, 0 d ol /E
: X, )= and a =
M i yl 0 yi T/E

H(x;, ;) can be determined for the i pixel coordinates in Qu
with respect to the plate center. Equation (19b) are similar to (7b)
except that the stress on the plate is homogeneous (equal to 7)
for UT loading of a flat plate without a circular hole.

T? *,,? ? \t-*. ‘f LS AT
(Tensile "~ s, "1 '75: -
stress) ‘. 7 TN

(18a,b)

(19a,b)

o0

=

Repetitions (thousands)
[\S} £

Horrwtl RS 0 50 100 150 255
(a)* YYYVYY *(b) (©) Grayscale
Fig. 5 Numerical generated images (a) Reference (previous) image. (b)
Loaded (current) image. (c) Image histogram.

The displacement field (1, v) and strains (computed with
T=1GN/pixel, F=100GPa and ©=0.3) using the three DIC
methods (FE-DIC, M-DIC and M-FE-DIC) are compared in Fig.
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6 and in Table 2 where the displacement field accuracy and their
computation times are summarized. As shown in Fig. 6(a), Qg is
meshed by 24 quadrilateral elements with size of 30x30 pixels;
Qum contains 180x120 pixels; and I' is discretized by seven
interfacial nodes for these examples. Equations (18) and (19) are
used in both M-DIC and M-FE-DIC. The iteration of (11a)
begins with an initial guess where the displacements in both Qg
and Qy are assumed zero. The matrices in (12b) and (14b, c) are
computed with the grayscale and gradient values of the images.
The displacement field u is obtained when Ax in (11b) is
smaller than 1075,

Table 2 Accuracy and speed of three DIC methods (Examples 1 and 2).
Methods FE-DIC M-DIC M-FE-DIC
(11.8,3.3) (1.6, 0.9)/ (6.3, 1.4/
o,
% (Max, Ave) Errors | ¢ 54 (19, 1.5) (6.4,1.8)
Number of Iterations 14/18 4/4 5/6
Time per Iteration 85ms/91ms 152ms/243ms 94ms/137ms
Computation time 1.20s/1.64s 0.61s/0.97s 0.47s/0.82s
- ¢ — 21 ‘- - 3 T 102‘
£
2
e
<
g0
210
10°
0 5 10 15 R
(b) Iteration number &y ¥ 107
| 1
0.5
0

© -1
L - ™ g,x107
3.5
| | ]
3
-
(d  FE-DIC Model-DIC Model-FE-DIC 25

Fig. 6 (a) Effects of FE formulaion and model-kernel on DIC. (a)
Subdomains, (b) Number of iterations, (c) Strain in RT, (d) Strain in UT

Some observations can be drawn from the results:

— All three methods are capable of computing the subpixel
displacement field in both situations. The model-kernel
significantly improves convergence, greatly reducing the
global residual between (previous/current) images in the
iteration process (Fig. 6b).

— As compared with FE-DIC in Table 2, the maximum (Max)
and average (Ave) displacement errors are reduced from
(11.8%, 3.3%) to less than (2%, 1%) in M-DIC and (6.3%,
1.4%) in M-FE-DIC with the model kernel (18) in RT. The
continuity of the displacement field is satisfied on I'. The

M-DIC (with fewer DOFs but higher resolution) takes less
iterations to converge but more time for each iteration.
M-FE-DIC offers a means to relax the trade-off between
iteration number and time/iteration, which requires only about
1/3 (in RT) and 1/2 (in UT) of the FE-DIC computation time.

— Because the (whole) image undergoes a rigid-body translation
in RT, the measured strain (partial derivatives of the
displacement) field should be zero; thus, non-zero strains in
Fig. 6(c) are errors in the computed displacement fields and
their derivatives. With the BCs in Fig. 5(a), & is uniformly
equal to the material-related vT / E for the whole surface. The
strain field is uniformly distributed in Qu in RT and UT
because the model-kernel serves as an effective guide; while
the errors in Qg are amplified because the derivatives of u
must be taken in (15) to calculate strains.

B. Parametric effects on DIC computation (uniaxial tension)

A numerical study was conducted to investigate the
parametric effects on the accuracy of estimated displacements
and computation time. In this study, commercial FEA software
COMSOL was used to simulate the displacement field around a
symmetrical (through-circular-hole) of a thin plate. The BCs for
the FEA model are shown in Fig. 7(a) where the upper bound of
the thin plate is subjected to a uniaxial tension loading with the
prescribed velocity (equivalent to 10 pixels/s); and the lower
bound is fixed. The specimen in the simulation was meshed with
2734 free triangular elements. The numerical image sequences
are generated using (17a, b) for time-dependent simulations of
the displacement fields.

(Prescribe velocity)

N N TG
hFD 5 ¥ W
"‘"‘. A RS KA
o RA" R LS
¥: =t N
: 38 2 D g
. Jar [0l =LA
'; ' ‘;\“ k25 e 5N
h .1"."' L] el
o g Z
1\ T -l g e
- ~ 3 N
:—"—i‘ 7 r * ‘r
;}L S Yand -0 0
Fi - ] = N
A | |
s :)L-\“g PV ‘ CRE s I
1‘4.:.._-1'-{!," 1_4..,.»'.1‘{}7, g
3 - " YA - 1
SRR ™. e dis Ahagt
ol o S L0y o e T% p 1"
o S SR N 2 b O P R Y 2
B b 8% A R 52 D
iy r:'.," =" -, ‘.\-‘_-' P ok [y
N Wl 2l - 2 el 2l el
WA YA M WA S B Ml
A5 IR Tl & D AL T T L D
Fixed
(a) g (Fixed) /0 ®) ©

Fig. 7 Schematics illustrating uniaxial tension of a thin plate. (a) FEA
BCs. (b) Single-domain FE-DIC. (c¢) Double-domain M-FE-DIC.

Two different DIC methods (FE-DIC and M-FE-DIC) are
compared in Figs. 7(b) and 7(c) respectively, where (60x60
pixel) quadrilateral elements are used in FE-DIC and in Q.
Additionally, fine elements (25 pixels) are used to model the
quadrilateral boundary around the hole in FE-DIC. The
M-FE-DIC uses a 240x240-pixel Qu to model the deformation
around the hole. The initial guesses are [B] = [0] in Qg, A = 0 on
T, and a = [1 0.3]" for Qy in (7b). The results are summarized in
Figs. 8 to 9 and Table 3.
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Fig. 8 M-FE-DIC estimated tensile stresses for two different materials.

Fig. 8 compares the estimated tensile stress 7" on the upper
edge of the plate from the M-FE-DIC for two different materials
with known properties (E, v); the maximum (Max) and average
(Ave) errors of the estimated 7 are within 7% and 5%
respectively. Fig. 9 graphically illustrates the effect of FE sizes
(1t row) on the estimated u and v displacement fields and their
respective errors (2™ and 3™ rows) defined as

Uerrors Verror) = Wy VIpie = (U V) comsor
Four mesh types (1 row) are used to iteratively compute (11)
for the same Q. The rectangles bound by blacked dash-line in
Figs. 7(b, c¢) were extracted to investigate the effects of element
size for the DIC measurement. The hole radius (a = 52 pixels)
was estimated using Hough transform method. The computation
time are compared in Table 3.
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FE-DIC. (b) Fine FE-DIC (c) Coarse M-FE-DIC and Fine M-FE-DIC.

As simulated in Fig. 9, coarse FE-DIC (1% column) with large
elements cannot capture the complex displacement around the
hole, where maximum errors of both u and v can be observed
near the center-hole region. Fine meshes in FE-DIC (2" column)
lead to a smooth displacement field at the expense of high
computation time (more than 6 minutes), but with low accuracy
for the whole surface because smaller elements contain little
image information for image correlation.

Table 3 Iteration and computation time of different DIC methods.

Methods FE-DIC M-FE-DIC
Mesh Coarse Fine Coarse Fine
No. of unknowns 176 504 116 310
No. of iteration 109 287 24 58
Computation time 114.6s 382.1s 35.9s 94.1s

With the model-kernel (7a) for an infinite plate, the
dual-domain M-FE-DIC (3" and 4% column) offers an effective
means to reconstruct the complex deformation fields around the
hole, while the far-field displacements are adequately captured
by coarse or fine FE formulation which has little effect on the
displacement field in Qum. The continuity condition of the
displacement field is well satisfied on the rectangular interface.
The model-kernel in Qu greatly reduces the number of iterations
and computation time. It is worth noting that since (7a) is
formulated for calculating the displacement around the circular
hole in an infinite plate, errors are expected near the edge
boundary far from the hole. The dual-domain formulation
creatively makes full use of the model-kernel in Qy where (7a)
is valid leaving the un-modeled Qg to FE formulation.

C. Noise effect in simulated uniaxial tension

The robustness against light intensity changes (IC) and
random noise (RN) on the estimated displacement field (Fig. 10)
and strain field (Fig. 11) was investigated numerically. Fig. 10(a)
shows the “current” image with a 10% intensity reduction from
the noise-free “previous” image and its corresponding
v-component of the displacement field reconstructed using
M-FE-DIC. Similarly, the “current” image contaminated by a
zero-mean Gaussian noise and its M-FE-DIC reconstructed
v-component field are shown in Fig. 10(b). The Gaussian noise
contaminated image was simulated with (20) where ¢, is the
random grayscale error associated with the p™ speckle with
displacement u and o (= 0.051)) is a standard deviation:

g(§)=nZi: [1,+¢,(1.0) Jexp| -

2
(s—s,—u)
2
RP

(20)

v (pixel)

Noise free IC RN
FE-DIC g
M-FE-DIC —— @ #*
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180 240 300 360 O 100 200 300 400
° (1] Path s (Pixels)

Fig. 10 Effects of IC and RN contamination on estimated displacement
fields. (a) IC image with 10% intensity reduction and its reconstructed v
field. (b) RN image and its reconstructed v field. (c) Displacement u
along the circular path. (d) Displacement v along the horizontal path s.

For quantitative visualization, the u displacement along a
circle (with a 125-pixel radius) and the v displacement along a
horizontal line (65 pixels below the hole-center), which pass
through both Qv and Qg regions are respectively plotted in Figs.
10(c) and 10(d) where FE-DIC was calculated with coarse
meshes (1% column in Fig. 9). Quantitative effects of the light
changes and random noise on the DIC are compared in Table 4.
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Table 4 Effects of intensity and noise on absolute (Max, Ave) errors.

Image Previous Current image
Noise type Noise-free IC RN
Grayscale (Ave, SD) | (210.1,34.6) | (189.2,31.1) | (207.8,36.9)
|Au| (pix) (0.38, 0.05) (0.41, 0.03) (1.31,0.17)
FE-DIC |Av] (pix) (0.82, 0.06) (0.81, 0.05) (14.5,0.59)
(M;x Ave) [A&] (%) (0.75, 0.09) (1.05, 0.10) (114, 14.4)
’ |Ag| (%) (1.81,0.12) (2.14,0.13) (269, 59.0)
[Agy| (%) (1.20,0.12) (1.64,0.10) (184, 36.7)
|Au| (pix) (0.13, 0.04) (0.14, 0.05) (0.97,0.13)
|Av] (pix) (0.08,0.01) (0.09, 0.02) (1.19,0.12)
?ﬁ:f;{)\}g [A&] (%) (0.66, 0.08) (0.68, 0.08) (1.76,0.27)
|Ag)| (%) (0.82,0.04) (0.87,0.04) (2.10, 0.25)
[Agy| (%) (0.96, 0.06) (0.98, 0.06) (1.89,0.21)

Fig. 11(a) shows the COMSOL-simulated strain fields (5 and
&y) as a basis for numerical verification of the reconstructed

strain fields by using the FE-DIC (Fig. 11b) and M-FE-DIC (Fig.

11c) methods, where the strain tensor was calculated from (15).
To gain insights into the effect of the DIC methods on the
reconstructed strain distributions, Fig. 11(d) compares the (g and
&y) strains along a circular path, which were computed by taking
the derivatives of the displacements in (Fig. 10c). Fig. 11(e)
shows the effects of IC and RN on the strain fields, where the
results from two reconstruction methods are compared.
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Fig. 11 Effects of IC and RN contamination on estimated strain fields:
(a) COMSOL simulations (b) FE-DIC reconstruction. (¢) M-FE-DIC
reconstruction. Reconstructed strain distribution along the circular line:
(d) Noise-free images. (e) Noise-contaminated images.

Some observations can be drawn from Figs. 10 and 11 and
Table 4:
— Both DIC methods are capable of measuring small
deformation (Fig. 10c), but FE-DIC underestimates the large

deformation (Fig. 10d). In the absence of RN, M-FE-DIC
accurately estimates the displacement and strain fields with
maximum errors of less than 0.15-pixel in displacement (Fig.
10c, d) and 1% in strain (Fig. 11d).

— From the comparison between the two columns (noise-free
and IC) in Table 4 where the displacements (|Au| and |Av|) and
strains (JA&] |Agy| |Ag)|) are the absolute differences between
the DIC measurements and their respective simulated targets,
IC have little effects on the reconstructed displacements
because of the normalized correlation criterion (2a).

— As compared with the noise-sensitive FE-DIC which fails in
the presence of random noise (Table 4, column RN), the
model-kernel in M-FE-DIC effectively suppresses the
Gaussian noise effects as demonstrated in Figs. 10(c, d) and
11(e) and in the last column (RN) of Table 4, reducing the
(Max, Ave) absolute discrepancies from (14.5, 0.59) to (1.19,
0.12) pixels in v displacements, and two orders of maximum
errors in strain (to within 2.5%).

— The displacement and strain fields reconstructed by using
M-FE-DIC are smoother than FE-DIC, particularly in the
presence of noise. Discontinuities are observed at the
boundaries across elements in FE-DIC because the 4-node
quadrilateral is a C° continuous element, which can be further
improved by implementing the C! elements in FE
formulation.

D. Uniaxial tension (UT) experiment

With the model-kernel in Qy, the material (E, v) as well as
the displacement and strain fields can be simultaneously can be
determined from experimentally measured tensile force as a
function of the longitudinal change (clamp-displacement in the v
direction) as inputs. For illustrating this practicality,
experimentally obtained published images [27] (consisting of
one “previous” and 10 sequential “current” 420x1040-pixel
images) for similar UT loading were used to validate the
M-FE-DIC method and demonstrate its effectiveness. Since the
material properties and loading tensile force are not recorded in
this database [27], published data (specimen geometry and
loading force) in a similar experiment were used in the
following M-FE-DIC measurement. The specimen was a
22.5mm-width plate made of aluminum-glass laminate (a
common material for the tension specimen) with a
8mm-diameter hole; the length and thickness of the specimen
are 100mm and 3.1mm respectively.

Subdomains and model-based coordinates (with its origin
defined at the hole-center) for the M-FE-DIC are similar in Fig.
7(c). Using Hough transform, the hole-radius was found to be 54
pixels suggesting 6.75pixels/mm for mapping the image into
real physical length. The dual-domain was formulated with 90
rectangle elements (50x50 pixels each) in Qg, and the model
domain Qv (200x300 pixels) around the center-hole. The
Lagrangian multiplier A is discretized by 20 interfacial nodes.
Once (a1, o) are determined from M-FE-DIC, the Poisson ratio
v (that does not depend on the input loading force) of the target
specimen material can be estimated from the ratio ao/ay (7b).
Similarly, the Young’s modulus £ can be identified in terms of
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the measured tensile force (7b) for a given hole-radius a.

The results for the whole deformation process are illustrated
in Fig. 12. Figs. 12(a, b) graph the v-displacement and
equivalent-strain &, (16) computed from the sequences of the
odd-numbered (3, 5, 7, 9, 11) images. As demonstrated in Fig.
12(a, b), the characteristic X-shape strain localization occurred
around the hole can be monitored during the deformation
process. The estimated mechanical properties the (target)
material are compared in Fig. 12(c, d) where the dash-lines are
published experimental measurements; £ = 12.33GPa and v =
0.198 [28]. As seen in Fig. 12(c), a consistent value of v=0.2
was determined, which agrees well with the published data. In
Fig. 12(b), E is reasonably estimated within relative errors of
less than 5% of the published data.
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IV. CONCLUSION

The dual domains (physics-based model and FE-based region)
of the proposed global-DIC method have been formulated, along
with the interfacial and continuity conditions, to solve the global
displacement field and simultaneously estimate the mechanical
properties of the deformed material in a single calculation. The
effectiveness of the dual-domain global DIC method has been
evaluated by  comparing the DIC  reconstructed
displacement/strain fields and estimated parameters against
targets simulated using the commercial FEA software
COMSOL, and with published experimental data.

The proposed method has been numerically illustrated with
two examples; rigid translation and uniaxial tensile loading.
Three methods (FE-DIC, M-DIC and M-FE-DIC) are compared;
results demonstrate that M-FE-DIC is superior in terms of
computational efficiency and accuracy. The dual-domain DIC

provides an effective means to constrain the solutions to the
iterative minimization of the DIC criterion, leading to a faster
convergence and requiring only 1/3 time of the FE-DIC
computation without sacrificing the displacement accuracy.
More importantly, unlike FE-DIC which fails in the presence of
random noise, the model-kernel in M-FE-DIC effectively
suppresses the Gaussian noise effects, which reduces the
absolute errors to 1/5 in displacement and 1/40 in strain field.

While the M-FE-DIC method that combines a physics-based
model and FE-DIC has been illustrated in the context of 2D
in-plane deformation, it can be extended to enhance StereoDIC
(or 3D-DIC) which have seen emerging growth in biomedical
applications [8] when an appropriate 3D model along with
stereo and/or multi-view images for available for reconstruction
of the 3D displacement/strain fields; for example [29].
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