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Abstract—This paper presents a new method that combines a 
physics-based model and finite-element (FE)-based digital image 
correlation (DIC) with an interfacial continuity condition for 
simultaneous deformation measurements of strain field and 
material mechanical properties. The dual-domain global DIC 
method incorporates a model-based kernel that offers useful 
physical insights into the complex deformation and constrains the 
solutions to the iterative minimization of the DIC criterion, which 
leads to a faster convergence. Unlike local subset-based and global 
FE-based methods where the DIC is formulated to solve for the 
nodal displacements, the model-based DIC that accounts for 
complex deformation in the specific region is formulated to 
identify system parameters. Both domains, along with their 
interface and the continuity condition enforced on the global 
displacement field, are discretized and solved simultaneously in a 
single calculation. The dual-domain global DIC method has been 
investigated by comparing reconstructed strain fields and 
estimated parameters against targets simulated using the 
commercial FEA software COMSOL and published experimental 
data.  Unlike FE-DIC which is noise sensitive, the model-based 
DIC is robust against the Gaussian noise effects. 

Index Terms— Deformation measurement, digital image 
correlation, parameter identification, field reconstruction  

I. INTRODUCTION 

s a full-field technique for shape, motion and deformation 
measurement [1], digital image correlation (DIC) has been 
widely utilized in process monitoring [2], mechanical 

response analyze [3], and damage/flaw evolution tracking [4]. 
DIC analyzes material surface textures or artificial speckle 
patterns between two images, typically a reference (previous) 
image and a target (current) image, to determine their relative 
displacement, thus offering a non-contact and non-intrusive 
measurement with high efficiency [5]. Provided that the 
deforming material is properly patterned and well imaged, DIC 
methods are capable of measuring deformations in 
multi-length-scale ranging from meters to nanometers with 
different materials such as metal alloys [6], polymers [7] and 
more recently, bio-tissues [8].   

DIC methods are increasingly used in experimental 
mechanics to characterize models as well as to validate FE 
analyses. Existing research and applications so far, however, 
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primarily focus on developing different correlation criterion 
algorithms and displacement descriptions [9] to obtain accurate 
strain measurements. Their abilities for simultaneous rapid 
measurements of geometric-based variables (such as 
displacement and strain) and parameter identification of 
material (mechanical) properties are under exploited.  

Two most commonly used DIC algorithms are the 
subset-based local DIC and the finite-element (FE) based global 
DIC. Local DIC allocates separate reference subset centered at 
each calculation point and then traces the corresponding 
deformed subset in target images by correlating between two 
images [10]. Unlike local DIC (without enforcing the 
displacement continuity to the displacement field), global DIC 
discretizes the whole surface into FEs and traces all the nodal 
displacements simultaneously in a single calculation [11]. The 
displacement measurements have been theoretically and 
experimentally validated for both local and global DIC [12]; and 
material properties can be identified by additional numerical 
simulations with DIC measurements through an inverse 
technique [13]. When encountering applications that involve 
complex or large localized deformation, both existing 
subset-based local DIC and FE-based global DIC suffer several 
drawbacks: the independent calculated solutions in local DIC 
fail to satisfy the continuity condition to maintain the global 
displacement field. For global DIC, high-order FE shape 
functions [14] or adaptive re-mesh strategies [15] for capturing 
complex deformation fields are computationally demanding 
along with clumsy formulations, but there are tradeoffs between 
resolution and accuracy as large elements tend to improve 
accuracy but at the expense of resolution [16]. 

Recent technologically advancing applications (such as 
additive-manufacturing that requires quantitative assessments of 
the process-induced stress between each built layers [17]) 
motivates the development of improved DIC methods for 
analyzing complex deformation in specific local regions or at 
interfaces in images. In [18], mechanically aided equilibrium 
condition was introduced as a regularization term in a DIC 
algorithm to improve accuracy but the added regularization 
process requires extra computation undesirable for real-time 
implementation. Physics-based models are commonly coupled 
in image processing to obtain high fidelity in applications; 
object recognition [19], image segmentation [20], and more 
recently nanoscale deformation analysis with high-resolution 
transmission electron microscopy images with DIC [21].  

With global DIC as a field measurement tool, this paper 
presents a dual-domain (model- and FE-based) DIC method for 
simultaneous reconstruction of displacement/strain fields and 
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identification of material properties. The remainder of this paper 
offers the followings: 
 The dual-domain global DIC, which combines a physics- 

based model and FE-based DIC with an interfacial continuity 
condition, is formulated. As will be shown by comparing to 
two existing approaches (FE-based DIC and general global 
DIC), the model-based DIC that accounts for the physics of 
complex deformation through identifying the system 
parameters provides an efficient means to constrain the 
solutions to the iterative minimization of the DIC criterion 
leading to a faster convergence. 

 With two examples (rigid-body translation and uniaxial 
tensile loading) where solutions are available for validation, 
the dual-domain global DIC method utilizing a model-kernel 
is numerically illustrated. The effects of FE sizes, intensity 
changes and random noise on the measuring accuracy, 
computation time and robustness of the DIC are discussed.  

 The model-based enhancements are validated by comparing 
the DIC-reconstructed displacement/strain fields against FEA 
simulation targets. The effectiveness of the verified 
dual-domain method is further demonstrated by evaluating 
the DIC-reconstructed fields and estimated parameters with 
published experimental data.  

II. MODEL-BASED DUAL-DOMAIN DIC  

Consider a 2D deformation of an interested subset in two 
consecutive images as illustrated in Fig. 1 where the parameters 
involved in measuring the deformation behavior of the material 

are shown.  In Fig. 1(a), T( ) [ ]s u vu is the displacement of 

the subset centered at A where the set of the points is assumed to 
remain as its neighboring points. When the subset is sufficiently 
small, each of the points (denoted by its location si = [xi yi]T) 
around the subset center A in the previous image is mapped to 
that in the current image according to the relation 

T[ ]    s s u u x y . The objective is to estimate the 

displacement field u from the sequential images so that the 
Green-Lagrangian strain tensor can be determined. 
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Fig.1 Schematics illustrating DIC (a) Displacement reference and 
deformed subsets. (b) Previous image. (c) Current image.  

As shown in Fig. 1(b), the image is discretized into M subsets 
( [1, ]m M ) and Nm is the total number of pixels in the mth subset 

( [1, ]mn N ). Let ( )sf and ( )sg represent the gray intensity 

distribution of the previous and current subsets (Fig. 1c) 
respectively.  Using a first-order Taylor approximation, 

T( ) ( )  s s ug g g  (1)

In (1), g is the gradient with respect to s.  In a two-dimension 
(2D) DIC analysis, the displacement field u is obtained by 
evaluating the similarity degree between the two sequential 
images. Equation (2a) describes the least-square correlation 
criterion for estimating the global residual:  
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By subtracting the mean value and dividing the root-sum-square 
of the subset, the correlation criteria (2a) is insensitive to offset 
and scale changes in the intensity of the current image [22] to 
provide an accurate and reliable estimation of the displacement.   

The displacement field u(s) is commonly described by means 
of a global FE method. Fig. 2(a) shows an illustration where   
quadrilateral elements with linear shape functions are used: 

 
1

( )( ) 


 s uu s
l

q i qi
q

 (4)

In (4), ψq(s) is a FE shape-function where q=1, 2… l for an 
element of l nodes (where l is a multiple of 4).  
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Fig.2 Displacement field formulation. (a) FE domain ΩE. (b) 
Model-based domain ΩM.  

A. Dual-domain formulation of displacement field  

A dual domain formulation is proposed as shown in Fig. 2(b) 
to overcome the problems associated with the global FE method 
(Fig. 2a) where the displacement field u(s) is divided into FE 
based domain ΩE as in (4) and a model-based ΩM domain: 

M M

E E
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M Mwhere ( ) ( )u s H s αi i ; E E( ) ( )i iu s H s β ; (5b, c)
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In (5a), the model-kernel  2
M

H MnR that depends on specific 

applications take advantages of prior physical information of the 

deformation field; and  2 2
E

H lR is defined by (4). The 

formulation and its significance are illustrated with an example; 
complex deformation under uniaxial tension (Fig. 3). 

Example: Complex deformation under uniaxial tension 

Fig. 3 shows a thin symmetrical plate (Young’s modulus E 
and Poisson ratio ) with a circular through-hole (radius a) 
under uniaxial tensile loading T, where theoretical solutions to 
its displacement field in isotropic infinite plate indicate the  
trend of the physical deformation. In polar coordinates [23], 
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In (6a, b), C() and S() denote cos() and sin() respectively.  A 
model-based domain ΩM is defined to capture the deformation 
occurred around the hole. The corresponding displacement 
( Mi s ) is given in (5a) where  
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In (7a), the hole (center s=0 and radius a) can be located using 
image processing such as Hough transform method. With (7a), 
HM(Ri, ) can be computed for the ith pixel in ΩM, which 
provides the basis to solve (5a) for the unknown  defined in 
(7b). The formulation (5a) with estimated u in ΩM has the 
following significances: 1) The material properties (E, ) can be 
obtained from the solution to  for a specified T. 2) 
Alternatively, T can be determined if the (E, ) is known.  

Fig. 3 Subdomains (ΩE and 
ΩM) and parameters of 
model-based domain in 
uniaxial tension. 
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The displacements (uM and uE) in the respective subdomains 
(ΩM and ΩE) on the interface Г must satisfy the continuity 
condition accounted for by the weak-form formulation in (8a) 

where  2 1λ R  is Lagrange multiplier [24]: 

i i

T
M E( ) 0


  λ u u  (8a)

In (8a), the interpolation of the Lagrange multiplier is written in 

matrix form where 2 2nR 
 H  and 2 1 γ nR : 

( ) ( )i iλ s H s γ . (8b)

B. DIC Solutions based on Gauss-Newton approach 

For the dual-domain displacement formulation (5a), the 
objective of the DIC algorithm is to find the displacements (uM 
and uE) in the respective subdomains (ΩM and ΩE) along with 
in (8a) that satisfies the continuity condition at the interface to 
minimize Rc for the whole region [25]. 

c E c MMinimize R ( ) + R ( ) subject to (8a)u u  (9)
To solve (9) for the displacement field, the Lagrange function 
defined in (10) is minimized using a Gauss-Newton iteration  
scheme (11a) where the subscripts, k and k+1, refer to old and 

new
TT T T   x α β γ  in each iteration: 
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1   x x xk k  (11b)
The gradientL with respect to each DOF can be derived from 
(1), (2a), (5a) and (8a) leading to (12a):  
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   γH λnR are the coefficient matrices in (5a) and (8a) 

respectively. In (12a) where the subscripts “+” and “” denote 
the subdomains (ΩM and ΩE) respectively, 
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Thus, L  is a square matrix ( 2 2   Mn l n ) of the form:  
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With (12a), the Gaussian-Newton iteration (11a) can be written 
in compact form (14a~c) for updating the ( 2 2  Mn l n ) 

elements in x: 
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Tand       
C H H  (14c)

C. Procedure for calculating strain displacement field  

With the reconstructed displacement field u, the 
Green-Lagrangian strain tensor can be determined from (15) 
where the subscripts (x and y) of the displacements (u and v) 
indicate their respective partial derivatives:  
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To evaluate the (combined elastic and plastic) deformation state 
of the material, the Von Mises yield criterion is applied using the 
equivalent strain (16):  

(2 / 3) ,   , ,eq ij ij i j x y     (16)

The flowchart in Fig. 4 illustrates the computation procedure 
for calculating the model-based DIC. 

Update DoF () (11b)

Dual-domains 
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Continuity condition (8a) on Γ 
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uE(si)uM(si)

Parameter extraction (7b)Strain formulation (15b)

Strain field 

Model-based unknown 

Mechanical property  
Fig. 4 Flow-chart illustrating the model-based DIC algorithm. 

III. RESULTS AND DISCUSSIONS 

The dual-domain method that incorporates a physical-field 
model to enhance the DIC with FE formulation for 
high-resolution field-measurements is numerically and 
experimentally investigated. Table 1 summarizes three most 
commonly encountered examples to illustrate the dual-domain 
formulation (1~5) and the algorithm (8~16). Other model-kernel 
equations can be formulated similarly.  Four sets of results are 
presented: The 1st numerically analyzes the effects of the 
model-kernels on the accuracy and computational time of the 
displacement field using simulated images, three different DIC 
methods are compared: 

FE-DIC: DIC method with global FE meshes. 
M-DIC: Model-based DIC method with all pixels. 
M-FE-DIC: Dual-domain method that combines the 

advantages of the FE-DIC and M-DIC. 
Table 1 Model-kernels used in illustration  

Example Application HM (Eq.)  (Eq.)

1 Rigid Transformation (RT) (18a) (18b) 
2 Uniaxial tension (UT) of flat plate (19a) (19b) 
3 UT of flat plate (with a circular hole) (7a) (7b) 

Illustrated with a uniaxial tensile loading application (Fig. 3) 
where published experimental results are available for 
validation, the 2nd is a parametric study on the measurements of 

the deformed displacement. The 3rd numerically analyzes the 
effects of intensity change and random noise on the 
measurement errors of the displacement and strain fields. The 4th 
demonstrates the dual-domain method for simultaneously 
measuring the displacement field and material mechanical 
properties using published experimental results. 

The numerical image pairs are generated by (17a, b) [26]: 

2 2
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g I R


     s s s u  (17b)

In (17a, b), sp and Ip are the random coordinates and random 
intensity of the speckle; the radius Rp (=4) and total number Sp 
(=8000) of speckle were used to generate the pair of images; and 
the displacement field u was extracted from numerical 
simulation results using FEA software. Written in MATLAB, 
the Gauss-Newton iteration in model-based DIC was computed 
on a desktop personal computer (Intel Core i7-3770K, 3.5GHz 
CPU, 16GB RAM, 64 bits OS).  In this study, the grayscale and 
image gradient on the subpixel location are interpolated with 
MATLAB biquintic B-splines. 

A. Rigid transformation and uniaxial tension 

For clarity, a flat plate undergoing rigid transformation (RT) 
and uniaxial tension (UT) is chosen to illustrate the effects of the 
model-kernels on the accuracy and computational time of the 
displacement field. Fig. 5 shows a pair of (previous, current) 
images generated using (17) from the FEA-simulated UT 
loading with the boundary conditions (BCs) shown in Fig. 5(a). 
For the RT, the pair of images is related by a subpixel rigid 
translation (u0=0.5, v0=0.2) but the prior information is that only 
transformation occurs. The model kernel HM and unknown  in 

M Mu H α (5b) for the RT and UT of a flat-plate are given 

respectively by (18a, b) and (19a, b):  

RT:      0
M

0

1 0
 and 

0 1

u

v

  
    
   

H α  (18a, b)

UT:      M

0 /
( , ) and 

0 /
i

i i
i

x T E
x y

y T E

   
    

  
H α  (19a,b)

HM(xi, yi) can be determined for the ith pixel coordinates in ΩM 
with respect to the plate center. Equation (19b) are similar to (7b) 
except that the stress on the plate is homogeneous (equal to T) 
for UT loading of a flat plate without a circular hole. 
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Fig. 5 Numerical generated images (a) Reference (previous) image. (b) 
Loaded (current) image. (c) Image histogram. 

The displacement field (u, v) and strains (computed with 
T=1GN/pixel, E=100GPa and =0.3) using the three DIC 
methods (FE-DIC, M-DIC and M-FE-DIC) are compared in Fig. 
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6 and in Table 2 where the displacement field accuracy and their 
computation times are summarized. As shown in Fig. 6(a), ΩE is 
meshed by 24 quadrilateral elements with size of 3030 pixels; 
ΩM contains 180120 pixels; and Г is discretized by seven 
interfacial nodes for these examples. Equations (18) and (19) are 
used in both M-DIC and M-FE-DIC. The iteration of (11a) 
begins with an initial guess where the displacements in both ΩE 
and ΩM are assumed zero.  The matrices in (12b) and (14b, c) are 
computed with the grayscale and gradient values of the images. 
The displacement field u is obtained when x  in (11b) is 
smaller than 105.  

Table 2 Accuracy and speed of three DIC methods (Examples 1 and 2). 
Methods FE-DIC M-DIC M-FE-DIC 

% (Max, Ave) Errors 
(11.8, 3.3)/ 
(18.5, 3.7) 

(1.6, 0.9)/ 
(1.9, 1.5) 

(6.3, 1.4)/ 
(6.4, 1.8) 

Number of Iterations  14 / 18 4 / 4 5 / 6 
Time per Iteration 85ms/91ms 152ms/243ms 94ms/137ms 
Computation time  1.20s/1.64s 0.61s/0.97s 0.47s/0.82s 
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Fig. 6 (a) Effects of FE formulaion and model-kernel on DIC. (a) 
Subdomains, (b) Number of iterations, (c) Strain in RT, (d) Strain in UT 

Some observations can be drawn from the results: 

 All three methods are capable of computing the subpixel 
displacement field in both situations. The model-kernel 
significantly improves convergence, greatly reducing the 
global residual between (previous/current) images in the 
iteration process (Fig. 6b).  

 As compared with FE-DIC in Table 2, the maximum (Max) 
and average (Ave) displacement errors are reduced from 
(11.8%, 3.3%) to less than (2%, 1%) in M-DIC and (6.3%, 
1.4%) in M-FE-DIC with the model kernel (18) in RT.  The 
continuity of the displacement field is satisfied on Г. The 

M-DIC (with fewer DOFs but higher resolution) takes less 
iterations to converge but more time for each iteration. 
M-FE-DIC offers a means to relax the trade-off between 
iteration number and time/iteration, which requires only about 
1/3 (in RT) and 1/2 (in UT) of the FE-DIC computation time. 

 Because the (whole) image undergoes a rigid-body translation 
in RT, the measured strain (partial derivatives of the 
displacement) field should be zero; thus, non-zero strains in 
Fig. 6(c) are errors in the computed displacement fields and 
their derivatives. With the BCs in Fig. 5(a), xx is uniformly 
equal to the material-related /T E for the whole surface. The 
strain field is uniformly distributed in ΩM in RT and UT 
because the model-kernel serves as an effective guide; while 
the errors in ΩE are amplified because the derivatives of u 
must be taken in (15) to calculate strains. 

B. Parametric effects on DIC computation (uniaxial tension) 

A numerical study was conducted to investigate the 
parametric effects on the accuracy of estimated displacements 
and computation time. In this study, commercial FEA software 
COMSOL was used to simulate the displacement field around a 
symmetrical (through-circular-hole) of a thin plate. The BCs for 
the FEA model are shown in Fig. 7(a) where the upper bound of 
the thin plate is subjected to a uniaxial tension loading with the 
prescribed velocity (equivalent to 10 pixels/s); and the lower 
bound is fixed. The specimen in the simulation was meshed with 
2734 free triangular elements. The numerical image sequences 
are generated using (17a, b) for time-dependent simulations of 
the displacement fields. 

(Fixed)

(Prescribe velocity)

(a) (b) (c)  
Fig. 7 Schematics illustrating uniaxial tension of a thin plate. (a) FEA 
BCs. (b) Single-domain FE-DIC. (c) Double-domain M-FE-DIC.  

Two different DIC methods (FE-DIC and M-FE-DIC) are 
compared in Figs. 7(b) and 7(c) respectively, where (6060 
pixel) quadrilateral elements are used in FE-DIC and in ΩM. 
Additionally, fine elements (25 pixels) are used to model the 
quadrilateral boundary around the hole in FE-DIC. The 
M-FE-DIC uses a 240240-pixel ΩM to model the deformation 
around the hole. The initial guesses are [ in ΩE,  = 0 on 
Г, and  = [1 0.3]T for ΩM in (7b). The results are summarized in 
Figs. 8 to 9 and Table 3.  
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Material E (GPa)  
Ti  alloy  113.38 0.342 
Al  68.0 0.36  

Ti alloy
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Fig. 8 M-FE-DIC estimated tensile stresses for two different materials. 

Fig. 8 compares the estimated tensile stress T on the upper 
edge of the plate from the M-FE-DIC for two different materials 
with known properties (E, ); the maximum (Max) and average 
(Ave) errors of the estimated T are within 7% and 5% 
respectively. Fig. 9 graphically illustrates the effect of FE sizes 
(1st row) on the estimated u and v displacement fields and their 
respective errors (2nd and 3rd rows) defined as 

DIC COMSOL( ,  ) ( ,  ) ( ,  ) error erroru v u v u v  

Four mesh types (1st row) are used to iteratively compute (11) 
for the same ΩM.  The rectangles bound by blacked dash-line in 
Figs. 7(b, c) were extracted to investigate the effects of element 
size for the DIC measurement. The hole radius (a = 52 pixels) 
was estimated using Hough transform method. The computation 
time are compared in Table 3. 
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(a) (b) (c) (d) 
Fig. 9 Effect of element sizes on displacement measurement. (a) Coarse 
FE-DIC. (b) Fine FE-DIC (c) Coarse M-FE-DIC and Fine M-FE-DIC. 

As simulated in Fig. 9, coarse FE-DIC (1st column) with large 
elements cannot capture the complex displacement around the 
hole, where maximum errors of both u and v can be observed 
near the center-hole region.  Fine meshes in FE-DIC (2nd column) 
lead to a smooth displacement field at the expense of high 
computation time (more than 6 minutes), but with low accuracy 
for the whole surface because smaller elements contain little 
image information for image correlation. 

Table 3 Iteration and computation time of different DIC methods. 
Methods FE-DIC M-FE-DIC 
Mesh Coarse Fine Coarse Fine 
No. of unknowns 176 504 116 310 
No. of iteration 109 287 24 58 
Computation time 114.6s 382.1s 35.9s 94.1s 

With the model-kernel (7a) for an infinite plate, the 
dual-domain M-FE-DIC (3rd and 4th column) offers an effective 
means to reconstruct the complex deformation fields around the 
hole, while the far-field displacements are adequately captured 
by coarse or fine FE formulation which has little effect on the 
displacement field in ΩM. The continuity condition of the 
displacement field is well satisfied on the rectangular interface. 
The model-kernel in ΩM greatly reduces the number of iterations 
and computation time.  It is worth noting that since (7a) is 
formulated for calculating the displacement around the circular 
hole in an infinite plate, errors are expected near the edge 
boundary far from the hole. The dual-domain formulation 
creatively makes full use of the model-kernel in ΩM where (7a) 
is valid leaving the un-modeled ΩE to FE formulation. 

C. Noise effect in simulated uniaxial tension 
The robustness against light intensity changes (IC) and 

random noise (RN) on the estimated displacement field (Fig. 10) 
and strain field (Fig. 11) was investigated numerically. Fig. 10(a) 
shows the “current” image with a 10% intensity reduction from 
the noise-free “previous” image and its corresponding 
v-component of the displacement field reconstructed using 
M-FE-DIC. Similarly, the “current” image contaminated by a 
zero-mean Gaussian noise and its M-FE-DIC reconstructed 
v-component field are shown in Fig. 10(b). The Gaussian noise 
contaminated image was simulated with (20) where p is the 
random grayscale error associated with the pth speckle with 
displacement u and  (= 0.05Ip) is a standard deviation:  
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Fig. 10 Effects of IC and RN contamination on estimated displacement 
fields. (a) IC image with 10% intensity reduction and its reconstructed v 
field. (b) RN image and its reconstructed v field. (c) Displacement u 
along the circular path. (d) Displacement v along the horizontal path s. 

For quantitative visualization, the u displacement along a 
circle (with a 125-pixel radius) and the v displacement along a 
horizontal line (65 pixels below the hole-center), which pass 
through both ΩM and ΩE regions are respectively plotted in Figs. 
10(c) and 10(d) where FE-DIC was calculated with coarse 
meshes (1st column in Fig. 9). Quantitative effects of the light 
changes and random noise on the DIC are compared in Table 4. 
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Table 4 Effects of intensity and noise on absolute (Max, Ave) errors.   
Image Previous Current image 

Noise type Noise-free IC RN
Grayscale (Ave, SD)  (210.1, 34.6) (189.2, 31.1) (207.8, 36.9)

FE-DIC 
(Max, Ave) 

|Δu| (pix) (0.38, 0.05) (0.41, 0.03) (1.31, 0.17) 

|Δv|  (pix) (0.82, 0.06) (0.81, 0.05) (14.5, 0.59) 

|Δx| (%) (0.75, 0.09) (1.05, 0.10) (114, 14.4) 

|Δy| (%) (1.81, 0.12) (2.14, 0.13) (269, 59.0) 

|Δxy| (%) (1.20, 0.12) (1.64, 0.10) (184, 36.7) 

M-FE-DIC 
(Max. Ave) 

|Δu| (pix) (0.13, 0.04) (0.14, 0.05) (0.97, 0.13) 

|Δv| (pix) (0.08, 0.01) (0.09, 0.02) (1.19, 0.12) 

|Δx| (%) (0.66, 0.08) (0.68, 0.08) (1.76, 0.27) 

|Δy| (%) (0.82, 0.04) (0.87, 0.04) (2.10, 0.25) 

|Δxy| (%) (0.96, 0.06) (0.98, 0.06) (1.89, 0.21) 

Fig. 11(a) shows the COMSOL-simulated strain fields (y and 
xy) as a basis for numerical verification of the reconstructed 
strain fields by using the FE-DIC (Fig. 11b) and M-FE-DIC (Fig. 
11c) methods, where the strain tensor was calculated from (15). 
To gain insights into the effect of the DIC methods on the 
reconstructed strain distributions, Fig. 11(d) compares the (y and 
xy) strains along a circular path, which were computed by taking 
the derivatives of the displacements in (Fig. 10c). Fig. 11(e) 
shows the effects of IC and RN on the strain fields, where the 
results from two reconstruction methods are compared.   
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 Fig. 11 Effects of IC and RN contamination on estimated strain fields: 
(a) COMSOL simulations (b) FE-DIC reconstruction. (c) M-FE-DIC 
reconstruction. Reconstructed strain distribution along the circular line: 
(d) Noise-free images. (e) Noise-contaminated images. 

Some observations can be drawn from Figs. 10 and 11 and 
Table 4: 
 Both DIC methods are capable of measuring small 

deformation (Fig. 10c), but FE-DIC underestimates the large 

deformation (Fig. 10d). In the absence of RN, M-FE-DIC 
accurately estimates the displacement and strain fields with 
maximum errors of less than 0.15-pixel in displacement (Fig. 
10c, d) and 1% in strain (Fig. 11d).  

 From the comparison between the two columns (noise-free 
and IC) in Table 4 where the displacements (|Δu| and |Δv|) and 
strains (|Δx| |Δxy| |Δy|) are the absolute differences between 
the DIC measurements and their respective simulated targets, 
IC have little effects on the reconstructed displacements 
because of the normalized correlation criterion (2a).   

 As compared with the noise-sensitive FE-DIC which fails in 
the presence of random noise (Table 4, column RN), the 
model-kernel in M-FE-DIC effectively suppresses the 
Gaussian noise effects as demonstrated in Figs. 10(c, d) and 
11(e) and in the last column (RN) of Table 4, reducing the 
(Max, Ave) absolute discrepancies from (14.5, 0.59) to (1.19, 
0.12) pixels in v displacements, and two orders of maximum 
errors in strain (to within 2.5%).  

 The displacement and strain fields reconstructed by using 
M-FE-DIC are smoother than FE-DIC, particularly in the 
presence of noise. Discontinuities are observed at the 
boundaries across elements in FE-DIC because the 4-node 
quadrilateral is a C0 continuous element, which can be further 
improved by implementing the C1 elements in FE 
formulation. 

D. Uniaxial tension (UT) experiment  

With the model-kernel in ΩM, the material (E, ) as well as 
the displacement and strain fields can be simultaneously can be 
determined from experimentally measured tensile force  as a 
function of the longitudinal change (clamp-displacement in the v 
direction) as inputs. For illustrating this practicality, 
experimentally obtained published images [27] (consisting of 
one “previous” and 10 sequential “current” 4201040-pixel 
images) for similar UT loading were used to validate the 
M-FE-DIC method and demonstrate its effectiveness. Since the 
material properties and loading tensile force are not recorded in 
this database [27], published data (specimen geometry and 
loading force) in a similar experiment were used in the 
following M-FE-DIC measurement. The specimen was a 
22.5mm-width plate made of aluminum-glass laminate (a 
common material for the tension specimen) with a 
8mm-diameter hole; the length and thickness of the specimen 
are 100mm and 3.1mm respectively.  

Subdomains and model-based coordinates (with its origin 
defined at the hole-center) for the M-FE-DIC are similar in Fig. 
7(c). Using Hough transform, the hole-radius was found to be 54 
pixels suggesting 6.75pixels/mm for mapping the image into 
real physical length. The dual-domain was formulated with 90 
rectangle elements (5050 pixels each) in ΩE, and the model 
domain ΩM (200300 pixels) around the center-hole. The 
Lagrangian multiplier  is discretized by 20 interfacial nodes. 
Once (1, 2) are determined from M-FE-DIC, the Poisson ratio 
 (that does not depend on the input loading force) of the target 
specimen material can be estimated from the ratio 2/1 (7b).  
Similarly, the Young’s modulus E can be identified in terms of 
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the measured tensile force (7b) for a given hole-radius a.   
The results for the whole deformation process are illustrated 

in Fig. 12. Figs. 12(a, b) graph the v-displacement and 
equivalent-strain eq (16) computed from the sequences of the 
odd-numbered (3, 5, 7, 9, 11) images. As demonstrated in Fig. 
12(a, b), the characteristic X-shape strain localization occurred 
around the hole can be monitored during the deformation 
process. The estimated mechanical properties the (target) 
material are compared in Fig. 12(c, d) where the dash-lines are 
published experimental measurements; E = 12.33GPa and  = 
0.198 [28]. As seen in Fig. 12(c), a consistent value of =0.2 
was determined, which agrees well with the published data.  In 
Fig. 12(b), E is reasonably estimated within relative errors of 
less than 5% of the published data.  
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Fig. 12 Simultaneous measurements in tensile test. (a) Displacement. (b) 
Equivalent strain field. (c) Poisson ratio. (d) Young’s mudulus. 

IV. CONCLUSION 

The dual domains (physics-based model and FE-based region) 
of the proposed global-DIC method have been formulated, along 
with the interfacial and continuity conditions, to solve the global 
displacement field and simultaneously estimate the mechanical 
properties of the deformed material in a single calculation.  The 
effectiveness of the dual-domain global DIC method has been 
evaluated by comparing the DIC reconstructed 
displacement/strain fields and estimated parameters against 
targets simulated using the commercial FEA software 
COMSOL, and with published experimental data.  

The proposed method has been numerically illustrated with 
two examples; rigid translation and uniaxial tensile loading. 
Three methods (FE-DIC, M-DIC and M-FE-DIC) are compared; 
results demonstrate that M-FE-DIC is superior in terms of 
computational efficiency and accuracy. The dual-domain DIC 

provides an effective means to constrain the solutions to the 
iterative minimization of the DIC criterion, leading to a faster 
convergence and requiring only 1/3 time of the FE-DIC 
computation without sacrificing the displacement accuracy. 
More importantly, unlike FE-DIC which fails in the presence of 
random noise, the model-kernel in M-FE-DIC effectively 
suppresses the Gaussian noise effects, which reduces the 
absolute errors to 1/5 in displacement and 1/40 in strain field. 

While the M-FE-DIC method that combines a physics-based 
model and FE-DIC has been illustrated in the context of 2D 
in-plane deformation, it can be extended to enhance StereoDIC 
(or 3D-DIC) which have seen emerging growth in biomedical 
applications [8] when an appropriate 3D model along with 
stereo and/or multi-view images for available for reconstruction 
of the 3D displacement/strain fields; for example [29]. 
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