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Abstract—Modular multiphase (MMP) PM motors have the
ability to work continuously under a faulty mode. However,
ripples in the spin torque of the motor and unbalanced forces
incur rotor vibrations in post-fault operations, which seriously
degrade the performance of the PM motors. This paper presents a
computationally efficient method to derive harmonic models for
characterizing the pulsating torque and unbalanced forces of a
MMP-PM motor under an open-circuit fault, and the
corresponding optimal solutions to its inverse current model to
remedy the fault. The model formulation, current harmonic
identification and remedial strategy for suppressing torque
ripples and unbalanced forces are illustrated with a MMP-PM
motor under an open-circuit fault; both odd and even number of
phases are considered. The effectiveness of the harmonic models
and remedy strategies are numerically validated with two typical
(5- and 6-phase) MMP-PM motors under a one-phase/open-
circuit fault, and evaluated experimentally on a custom-designed
6-phase duplex motor.

Index Terms—Harmonics, Inverse Model, Open-circuit, PM
motor, Torque ripple, Unbalanced forces.

NOMENCLATURE
Capitalized symbols
A Motor system matrix (linearly linking Q with x).
B, B, B. (r, @, Z) components of net MFD

Nc, Ng Number of (EMs/phase, EMs)
Ny Number of force/torque harmonic components

Ng, Ny Number of (groups, current harmonic components)
Np, Ny Number of (PM pole-pairs, phases)
Q, Q (Actual, desired) output vector of force f* and torque

Q. The g" component of Q under the 1P-OC fault.
7,7, Position-independent coefficient matrix and its g™ element
Lowercase symbols

A, A, Age Force/torque gain vectors of the (m" phase, ¢ EM, g™ group)
L Harmonic vector of the g™ group current
i, i, Position-independent current vector and its g" element
q- Position-independent force/torque reference vector
X Current vector
Greek symbols
i The £™ current harmonic phase angle of the g" group.
Bes b Position of the ¢ stator-EM winding and the m™ phase
rc) Rotation matrix
Open-circuit fault indicator matrix
T Desired ripple-free torque
& Sign indicator of the harmonic interactions
0,0 Angular position in XYZ frame and rotor angular position
¢ Copper loss ratio
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I. INTRODUCTION

MP-PM motors are PM motors with modular windings

[1~6] designed to achieve electrical, magnetic,

thermal and physical isolation among phases. Due to
their high power-density, inherent fault-tolerant ability and
independent controllability, they have been widely used in a
wide variety of applications ranging from more-electric aircraft
[2] to [4], metal-removal machining [5] to robotics [6]. Special
attentions must be paid to the fault-tolerant design and/or
control [2] [7] of the MMP-PM motors so that safety-critical
systems driven by these motors will continue working and
sustain acceptable performance under various faulty modes.
The most probable fault is the loss of 1-phase due to an
open-circuit fault [8]. The open-circuit fault of a phase can be
easily detected by monitoring the load currents [9]. However,
large spin-torque ripples (or variations about the average
spin-torque) and unbalanced magnetic forces acting on the
rotor exist in the post-fault operations, which incur serious
vibrations and degraded performance of the PM motors. To
sustain acceptable post-fault performance, a method to identify
the current harmonic components for compensating the
pulsating torque and unbalanced forces, and compute the
corresponding optimal currents in real-time to remedy its
open-circuit fault is required.

MMP-PM motors are custom-designed [10] [11] to eliminate
unbalanced radial forces under healthy modes, which often take
advantages of the diametrically symmetrical electromagnetic
(EM) windings; for examples, [2] to [5]. A 6-phase PM motor
as a dual 3-phase PM motor was designed in [4] [12] to simplify
the control algorithm under a faulty mode. However, the loss of
any phase will lead to diametrically asymmetrical windings [13]
and/or asymmetrical input currents [10] [11] resulting in
reduced average torque with large ripples and unbalanced radial
forces [4] [8], even if a PM motor was initially designed for low
torque ripple and balanced radial forces.

Under a healthy mode, torque ripples (caused by the
interactions between the harmonics of the back electromotive
force and that of the input currents) can be compensated using
the solutions to a harmonic model as demonstrated in [14],
which can be extended to torque control of a MMP-PM motor
under faulty modes. Considering only the harmonics of the
fundamental and third currents, Bianchi et.al [15][16]
analytically derived the currents minimizing the torque-ripple
for post-fault operations of a modular 5-phase motor although
the average torque decreases under faulty modes. Parsa et.al
[17] proposed a unified fault-tolerant current-control approach
to increase the average output torque while minimizing torque
ripples and copper losses for a 5-phase PM motor under various
faulty modes. Similar works considering only the fundamental
current component to develop a specified torque were also
reported in [8]. Based on the reduced-order Park-Clark
transformation, the optimal currents remedying the open-circuit
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fault was derived in the field-orientated control scheme

utilizing fundamental current [18][19] or 3™ harmonic current

injection method [20]. Different from the harmonic-based
methods, Wang et.al [10] [11] [21] designed a time-domain

optimal torque controller under voltage constraints for a

modular 5-phase PM motor to ensure a ripple-free torque

output with minimum copper loss under healthy and faulty
modes. It is found that the derived optimal currents are

dominated by the fundamental and 3™ harmonic with a small 5%

harmonic component [21].

Previous research efforts on torque control of MMP-PM
motors generally do not consider suppressing the unbalanced
forces under an open-circuit fault, although mentioned in [12]
[22]. To sustain the torque output capacity, the currents of the
remaining healthy phases need to be properly amplified, which
may lead to larger unbalanced forces in post-fault operations.
Due to the lack of computationally efficient harmonic models,
the harmonic components accounted for in the remedy currents
are limited to the fundamental and 3™ components in existing
techniques [8, 15-20]. While in the time-domain methods [21],
the harmonics orders of the derived currents cannot be
pre-determined [23]. To overcome the above challenges, this
paper presents a computationally efficient method to derive
harmonic models and their inverse solutions for analyzing and
suppressing torque ripples and unbalanced forces of a
MMP-PM motor under an open-circuit fault; for clarity in
illustration, a 1-phase open-circuit (1P-OC) fault is used as an
example. The remainder of this paper offers the following:
—Section II begins with the force/torque equation of a

MMP-PM motor and its time-based inverse solutions. To
overcome their limitations, a model that characterizes the
harmonic components of pulsating torque and unbalanced
forces of a motor is derived to identify the required current
harmonics and compute an optimal set of currents in real-time
to ensure a ripple-free torque. As will be analytically
illustrated, the harmonic method leads to a unified inverse
model for suppressing torque ripples and unbalanced forces in
a MMP-PM motor under a 1P-OC-fault, while allowing for
different remedy strategies characterized by an odd or even
number of phases.

—In Section III, the harmonic models are numerically
illustrated and validated with two typical (5- and 6-phase)
motors. The effectiveness of the fault remedial strategy for
suppressing torque ripples and unbalanced radial forces has
been evaluated experimentally on a custom-designed 6-phase
PM motor operated under a 1P-OC fault.

II. FAULT REMEDY OF MMP-PM MOTORS

Consider a single-axis MMP-PM motor with Np PM
pole-pairs (surface-mounted on the rotor) and Ng stator EMs.
Figures 1(a, b) show two common PM-motor design structures,
axial-flux and radial-flux [5], where XYZ and xyz are the stator
(reference) and rotor (moving) coordinate frames respectively;
and Z and z are on a common axis about which the rotor
displacement @ is measured from the X-axis. In the event of
open-circuit fault, the unbalanced forces (along the X- and Y-
axes) and large ripples in the reduced average torque would
seriously degrade the MMP-PM motor performance. To sustain
an acceptable performance of the motor during the post-fault

2

operations, an inverse model is incorporated in the speed
control system as shown in Fig. 1(c) to compute the remedy
currents required to generate the specified torque z; while
eliminating the unbalanced forces (f;, f;). As will be shown, the
computation of the remedy currents for real-time
implementation is divided into two parts as illustrated in Fig.
1(d); a position-independent inverse model which can be
calculated offline, and a harmonic-based kernel vector which
updates the desired remedy currents in real-time.
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motor
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Controller i “4)
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A Formulated Z A
f
@ Computed Offline I@

Fig. 1 MMP-PM motor and speed-control system for 1P-OC fault
remedy. (a) Axial-flux type. (b) Radial-flux type. (c) Time-based
Inverse Model. (d) Harmonic-based remedy strategy.

The following assumptions are made in the derivation:

1) The spatially distributed PM remanences are symmetric
about its center.
2) The Ng= NcN,y stator EM-windings are evenly grouped into

N, phases; each with Nc EM windings.

3) The eddy-currents and end-fringing have negligible effects
on the magnetic field in the stator/rotor air-gap.

To ensure safe operation in the event of an open-circuit
fault, the PM motor is designed such that its input current
vector x (with element i,, where m=1, 2... N,;) has a higher
dimension than its output force/torque vector Q, where Q and x
are defined in terms of the rotor position 6:

x(0)=[i1(0) i,(0) iy, (9)]T (1a)
Q(0)=[1.(0) £.(8) z(8)] (1b)

The unbalanced forces (fi, f;) and pulsating torque z(0) are
described in the (forward) torque model (2a) that determines Q
in terms of x for analyzing and controlling a PM motor:

Q(9) =[A@)r]x+(Ky)x* +Q,(0) (2a)
where A(RSXN”” ) = |:a1 ()] a, (0) ay, (9)] (2b)
andK(eR™™ )=k, .. k, .. ky |. (20)

In (2a), x’ =[i12 l;:'T . Formulated in terms of the rotor

position 6, (2a) is referred to here as the time-based forward
model of the MMP-PM motor. For a specified 6, the 1% term
(linear with x) in Q is contributed by the Lorentz force between
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the current-carrying conductors and PMs; the 2™ term
(quadratic with x) and Qp correspond to the forces/torque
between the (EMs, PMs) and the iron-cores respectively. In (2a),
the diagonal matrix y (with binary elements y,, where m=1...N,)
acts as a fault indicator to account for different operating modes.
The element y, normally takes the value of 1; a value of 0
indicates that the m™ phase is physically open-circuit or fail.
Thus, y does not depend on rotor displacement, and A(9) is
independent of the operating mode. In (2b), the vector a,
depends on the layout of Nc stator-EM windings in the m™
phase, and can be derived from the vector a=[axc ayc a..]" for
the ™" stator-EM winding at angular position . where (axc, ayc)
are the force/current gains along (X, Y) axes and a is the
torque/current gain:
Za 0 ﬂ

m 0 ¢m
22m=1) d =+

N ph
In (3b, ¢), ¢1 and B are the angular positions of the 1% phase and
stator-EM respectively; and ¢,, is the m™ phase position.

In (2¢), ke R* (m=1... N,) is the m" column vector of K.
For iron surface-mounted MMP-PM motors (non-salient rotor
and even slot number), K that contributes only force (and no
torque) production is negligibly small due to the relatively large
effective air-gap height [22], while Qp has only the torque
component [13] (cogging torque) that can be reduced by design
techniques. For an ironless PM motor, K=Qp=0 and Q=A(0)x
can be computed directly using the Lorentz force equation [5]
[24]. Hence, K and Qp are ignored in the inverse model.

In the event of an open-circuit fault, it is highly desired that

Q behaves like Q.~=[0, 0, 74]T (or /i=,=0) where the ripple-free
(position-independent) torque t; is calculated by a speed
controller to compensate for the error Aw between the reference
speed w, and measured speed w as shown in Fig. 1(c). In the
case of torque control, 7; is directly specified as a torque
reference. For a current-controlled ironless motor with more
number of active current phases than the dimension of Qg an
optimal x that minimizes the copper loss and satisfies Q. can be
directly computed from the pseudo-inverse of matrix A(6) [5]:
x(0)=v"A" (O A(O)n'A"(9)] Q, @)

where 7y is incorporated into (4) to account for the open-circuit
fault. Equation (4) is referred to here as the time-based inverse
model of the MMP-PM motor. However, the optimal x derived
from (4) depends on the rotor displacement 6, and the matrix
inversion involved in (4) must determine A(f) from a
pre-computed look-up table of single input and multiple
outputs, which is computationally inefficient as it generally

requires a relatively large memory and time [23] especially for
a MMP-PM motor with large N,.

A. Harmonic-based Fault Remedy

(3a)
ﬂ'(C—l)

N,

E

where ¢, =4, + (3b,c)

For a specified position-independent Q. and y that acts as a
fault indicator in the first term of (2a), x(¢) derived from (4)
only depends on A(6) that is independent of the operating mode
and repeats as the rotor spins 2nt/Np. Hence, (A, x) are periodic
(period 2m/Np) and can be formulated in harmonic forms [25]
even in the event of open-circuit fault. As derived in Appendix
for both axial- and radial-flux MMP-PM motors, a. in (3) can
be described in terms of (radial, tangential) force/current gains

3

(@re, ape) and ay, which are expressed in harmonic forms in (5b)
with (a,, a), ay) being the /" harmonic amplitudes of (e, dyc,
ar) respectively:

a, a,
o (4.0)=| 0" {r(gﬂc) 0} . (53)

a, 1x2 a

a, .o la, COS]N )
where a, |= Z a,,sin jN,(0-p,) (5b)

a, | 7a, s1n]N B.)

cos() —sin

and I'(«) = Liné')) cos(() } (5¢)

Equations (3) and (5) provide a basis to identify the harmonic
components (=1, 3, 5 ...) of the force/torque vector in (2b).

A.1 Phase regrouped under a 1P-OC fault

In the event of a 1P-OC fault, the operating healthy phases are
reorganized into Ng strategic groups for fault remedy, which
depends on the odd or even number of phases, N As
illustrated in Fig. 2(a, b) where Phase 1 at ¢, is assumed to have
an open-circuit fault, a new Cartesian system OX;Y; with its
Xi-axis aligned with the open-circuit phase is assigned:

(a 4r (b)
Fig. 2 MMP-PM motors with odd and even Npi. (a) Npn=5, (b) Npn=6

For odd Ny, the (N,»—1) healthy phases are regrouped into
NG=(Npi—1)/2 symmetrical groups about the Xj-axis. As an
example, the 5-phase motor (Fig. 2a) will have Ng=2 groups;
Phases (2, 5) at ¢+ and Phases (3, 4) at ¢ correspond to g=1
and g=2 groups respectively. The Ng groups can be
characterized by their angular positions, @g:=+21g/Np.

For even N, (Nyi—2) of the healthy phases are regrouped
into Ng=(N,—2)/2 groups characterized by their angular
positions, ¢g=2ng/N,;—n/2(1 F 1), so that the advantage of the
diametrical symmetry can be kept. As illustrated in Fig. 2(b),
the 6-phase motor will have Ng=2 groups; Phases (2, 5) at ¢+
and Phases (3, 6) at ¢+ correspond to g=1 and g=2 groups
respectively. In this scheme, Phase 4 is sacrificed so that no
additional current is needed to compensate unbalanced forces
[5] caused by the loss of symmetry due to the failed Phase 1.

A.2 Inverse model for a 1P-OC fault remedy

Under the 1P-OC fault, the current flowing through the g™
group (where g=1, 2... Ng) at @q+ or ¢ is denoted as ig+ Or ig-
respectively. The regrouped current ig:(6), which characterizes
the identified current harmonics, is decoupled into a position-
independent column vector i and a position-dependent kernel
vector gg+(0) that depends on odd or even N, to be discussed in
Sections /I.B and II.C. For practical implementation, finite N
harmonic components of the i-(d) in the N groups are
considered. Consequently, a position-independent vector i
accounting for all the currents in the Ng groups and hence x(6)
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in (2a) can be described as (6a~d) where ig: corresponds to the
k™ current harmonics of the g™ group current i,:

i’ :[ilT... il lva(J (6a)

i,.(0)=g,.(0)i,wherei} =[... i}, ..]. (6b,c)

s [0 l:1+”' l:gy" 0 :"il,] Odd N, )
|:0 i, lg+.” By lg_...:| Even Nph

The force/torque vector Q in (2a) is essentially the sum of
the (g =1...Ng) individual force/torque vectors Q,, and consists

of a steady-state component Q and Nyripple harmonics Qn :

Q(9)=3."Q,(6) =Q+."Q,(9) (7a)
where Q,(8) = a, (H)g& (0)i, +a, (0)g, (0)i, (7b)
and agi (0) = [axgi a)'gi argi :|T (70)

In (7¢), (Gxgz, aye:) are the force/current gains along the (X, Y)
axes, and ag. is the torque/current gain of the g™ group.
Mathematically, the objectives are

Q=Q,=[0 0 7] andQ,=0,, (7d,e)
By arranging the Q(=Q,) and Q, in the increasing order of the

harmonics, (7d, e) can be compactly expressed as a
position-independent reference (column) vector q,:

qr c RS(H—Nf )x1 — [QZ 0 0:|T (8)

With (6a), (7a,b) and (8), an alternative position-independent
forward model is formulated in (9a, b) where the submatrix Z,
in the coefficient matrix Z is contributed by the g™ group:

Zi=q, whereZ:[Zl... zZ, -~-ZNG:|

(9a,b)

By comparing the given ag(0)g.:(0) terms in (7b) with the
position-independent sub-matrix Z, of (9a, b), the harmonic
components of Qg can be identified for formulating Z,. The
corresponding position-independent pseudo-inverse model that
derives an optimal i minimizing the copper loss [14] for a
reference vector q, in a MMP-PM motor under the 1P-OC fault
(Fig. 1d) is given by

i=2'[z2'] q, (10)

As shown in Fig. 1(d), the inverse harmonic model consists of
(6a~d) and (10) where the position-independent Z can be
computed offline for an optimal i for updating the optimal x
that requires a simple multiplication once the harmonic-based
kernel vector (6b) is available. Thus, the optimal currents can
be calculated in real-time to remedy the 1P-OC fault, which
eliminate the unbalanced forces (f;, f;) and generate a desired
ripple-free torque z,. The proposed inverse harmonic model for
fault remedy in Fig. 1(d) accomplishes the tasks undertaken by
the time-based inverse model (4) while overcoming its
limitations. Depending on odd or even N,;, the relationships
between a,+(0) and a,(6), and that g,.(d) and g,-(0) may differ.
For clarity, the 1P-OC remedy strategy for a MMP-PM motor
with an odd N,, and that with an even N, are separately
formulated in Sections II.B and II.C respectively.

B. Odd-phase Remedy Strategy (ORS)
Without loss of generality, we assume Ng=N,; and Sc=¢n

4

with c=m=1... N, for clarity in illustrating the formulation of a
remedy strategy for MMP-PM motors with an odd N, [10] [11],
in other words, each phase consists of one stator-EM winding
and unbalanced forces result in the event of the 1P-OC fault.
Based on the assumptions above, the following discussions can
also account for the simple cases where pairs of diametrically
symmetric EM windings are grouped into one phase and there
is no need to consider the unbalanced forces. Under the 1P-OC
fault, the corresponding relationship between ag+ and a,— of the
g™ group can be derived from (5a) in the OX;Y frame:

axg+ (¢g+’9 ) axg— (¢g—’_9 )
Aygs (¢g+"9 ) =| T (¢g*’_0 ) (11)
gy (¢g+"9 ) Tl (¢g*’_0 )

The last row in (11) suggests that the currents 7. should take
the form (12) such that igi(@g+, ) =—iz-(Ps-, —6) to recover the
original torque under the 1P-OC fault:

Ny
Iy =k; U sin(kNPé’gt :Fagk) where 0,, =0-¢,, (12)

As in (6b, c), (12) where (ig, agq) are the k" current
harmonic (amplitude, angle from 0,.) of the g™ group is
rewritten in the OXY frame:

i;k = igkh'(agk)
g, (e R 2N ) :|: :Fh(:FkNP (Hgi —¢1)) :|

h(e)=[5. C.]and W(e)=[C, S, ] (13c,d)
In (13c~d), Cs) and S denote the cosine and sine of the angle
(e) respectively for simplicity in the following discussions.
With (12) along with the force/torque-current gains (5a~c),
the resulting Qu=[fse, ;s> Tc]" in (7b) for the ORS is given by

(13a)
(13b)

* Z
— g(j=k) |s
Qg - ; k:Zm [Hg(j—k) Hg(j+k):||:zg(j+k):|lgk (143)
where H ., = diag(Sgt G, G, ) ; (14b)
HiZ(jik)N}ﬁ; (l4c)
Zg(/ik)(¢g+)
te,a,Cy Cy £6.0,,5, 8, £.4,5, C, —£.4,C, S, (14d)
= Fa,8,. S, Fa,,C, Cy a,,C,. S, —a,S, Cy
Fa,C,, a.;S,
¢.=(jtk)N,¢,, and &, =sgn(j£k). (14e,9)

In (14a), Hgn(f) accounts for the (j + k)" harmonic
components of the Lorentz force due to the interactions
between a,.(0) and i,.(0) for a given Np. The coefficient matrix
Z.1) depends on (ay, ay, ay, e+, ¢=) where e in (14f) is used to
negate 0- when j<k.

Noting that f;, vanishes in the steady-state component
Q~[0, frg, )T for j=k (Sp-=0) which can be derived from
(14a,b); and Q" reduces to [f» 7a)T. Based on (14c~f), the
corresponding q, in (8) and Z, in (9b) for the ORS can be
expressed as (15a~c) where Zy(.) can be derived from (14d) for
J=k(S, =S, =0,C, =C, =1and &=0).

q,T (e R]X(2+3N/)) = [O 7, 04 ] (15a)
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Z,., | ()

VA (243N, 2N, ) =
(er ) Z Zyjey o
(j£1)=2 [j£k=h
a,C -a_.S
[ 77 g .
and zg(k_k)(¢g+):{ q’; ’0 }when] =k (15¢)
7j

In (15b) that defines the forces/torque contributed by the g
group for the given position-independent i, / ([jtk| =2, 4,...)
indicates the force/torque harmonics order to be eliminated.

C. Even-phase Remedy Strategy (ERS)

For an even N, motor [4][8], the diametrically symmetric (c,
cEtNg/2) EM-windings belong to the (m, m*N,/2) phases
respectively. From (5a), ag+ and a,- are related by

axg+(0g+ ) N _axg*(gg* )
a,. (0. )|=(-1)"] -a,. (6, ) (16)
arg+(9!s’+ ) arg’(ggf )

The corresponding currents 7z: and g,+(6) are given in (17a, b)
with ig defined in (13a):

Ny
los = Z Lyt Sin(kNpggt _agk>

k=13...

ggi=[--~ ~h (KN, (6,. - 4,)) J

Different from the forces (fig, f,c) produced by the g™ group
consisting of ‘mirror-symmetric’ phases in Fig. 2(a), (fig, fie)
are self-balanced (and vanished) for the given currents (17a)
due to the diametrically symmetric phases in Fig. 2(b). Hence,
the corresponding Q for the case of even N, reduces to [0, 0,
7,]"; and the torque 7, contributed by all the stator-EMs in the g™
group can be calculated from (17a) and (5):

(17a)

(17b)

o Z
= > [w(e) W),V i (182)
Jik=1.3... Zg(j+k)
+C,, Sy,
Zg(jik) :Nmarj |:$€+S¢* _giC¢ :| (18b)

where (0, ¢, ¢+) are defined as in (14c, e, f), Ny, is the effective
number of the EM windings per phase (that contribute the
torque production) and determined from (3a). Similar to Hg(:x)
in (14b), h'(0.) in (18a) indicates the (j+k)" torque harmonic
components due to the interactions of a.:(0) and i..(0). The
matrix Zgg- (18b) depends only on (ay, &=, ¢-).

When j=k (Sp-=0, Cy-=1), a ripple-free component of [0, 0,
7,]T can be obtained in (18a); thus, the corresponding q, and Z
for the ERS can be derived from (18) where q,is given by (19a)
and Z, takes the form in (15b) with Zg-4) defined in (19b):

@ R 0, 0] (192)
2y (8.)=[a, 0] withj=k (19b)

D. Formulation and Computation Procedure

Given a MMP-PM motor with known (N, Ne, Np, Ng) and
specified stator-EM winding layout characterized by . (where
¢=1... Ng), the (a,, a,), a;) values (5b) along with the angular

5

position ¢; (3b) that provide a basis for the inverse model
formulation can be obtained from a. in (5a). The vector a. can
be expressed in terms of Qp and k., (20a), where k. indicates the
forces (along X- and Y-axes) and torque due to the interaction
between the ¢ stator-EM and the rotor iron-core. It can be
numerically (A.1) or experimentally obtained by exciting only
the ¢ EM-windings with a constant current /:

a, =(Q-Q,—k.I’)/I (20a)

To account for the iron effects, Qp(6) and k. are described in
(20b) and (20c¢) respectively. In (20b), the cogging torque zp ()
is computed with all the phase open-circuit:

Q,=[0 0 7,(0)]

The forces contributed by k. point along the Z-axis and radial
direction for axial-flux and radial-flux MMP-PM motors
respectively, and hence k. is characterized in (20c) where the
constant K, is calculated from the armature reaction field:

3x1

0
k":{K{,[cﬁ‘ s, 0]

With the values of a. obtained from (20a) at different &, the
components (dr, aye, dz) can be computed with inverse of (5a);
and the coefficients (a,, a,, a;) in (5b) can be found by
curve-fitting the values of (arc, dyc, az) at different 6. Hence,
the vector a. can be explicitly expressed from (5a, b); and ¢;
can be derived from (3a).

(20b)

axial-flux

radial-flux (20c)

The inverse harmonic model (Fig. 1d) is formulated for a
1P-OC fault remedy using a four-step procedure, and illustrated
with the 5- and 6-Phase motors in Figs. 2(a, b) for clarity:

Step 1 reorganizes the operating healthy phases into Ng
groups (Subsection II.A.1). To gain intuitive insights, the
harmonics of Qg (where g=1,...,N¢) for j=1, 3 and k=1, 3, 5,
7 are tabulated in Table I where the numbers indicates the
([f*l, [j+k|); and the bold zeros correspond to j=k. For the 5-
and 6-Phase examples in Figs. 2(a, b), N¢ = 2 under the
1P-OC fault.

TABLE I
HARMONICS INTERACTIONS
k=1 =3 k=5 k=7
=1 0,2) 2.4 (4,6) (6,8)
J=3 2.4 (0, 6) 2.8 (410

Step 2 determines the order number £ of the current harmonics
for the vector ig (6¢), given the specified Ny Different from
the time-based inverse model, Ny and thus N; are design
parameters. To ensure the existence of the solutions to (10),
the number N, of current harmonic components should be
selected such that the unknown parameters number 2NgN; in
the vector i (6a) is larger than the dimension of the reference
vector q, (15a) for the ORS, and (19a) for the ERS:

{(2 +3N,)/2N, ORS
N, :

21
(1+2N,)/2N, ERS 2D

According to (21), if a large Ny for the force/torque harmonic
components is considered in the inverse model, an increased
Ny especially for a small Ng will result. Once N is selected,
the smallest N that satisfies (21) is determined. The specific
order number & can be identified from Table 1 to compensate
for the corresponding force/torque harmonic components.
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Assuming that (=1) and (=1, 3) for the examples in Figs. 2(a)
and 2(b), Ny=3 and Ny=4 are chosen for the 5- and 6-Phase
motors, respectively. Based on (21), Nx > 3. From Table I, the
minimum N;=3 (for k=1, 3, 5) is selected for ig (for g=1, 2) in
(6¢) to eliminate the force/torque harmonics in Qg (14a) or 7,

(18a) with
2,4,6  5-Phase motor(N, =3)
ljtk|=h=
2,4,6,8 6-Phase motor(N, =4)
With 7 determined, the position-independent force/torque

reference vector q, formulated in (15a) for ORS and (19a) for
ERS is expressed by:

T
q = [0 L UNPR U les]
' [z, 0., 0, 0, O, ]T 6-Phase motor

5-Phase motor

Step 3 formulates (ig, Zg) according to (6¢) and (15b) with the
identified current harmonics k. Consequently, (i, Z) can be
formulated from (6a) and (9b).

For the examples in Fig. 2,
=i i i (22)
With # (=2, 4, 6) for the 5-phase motor, the position-

independent submatrix Z is derived in (23) where Zg(«) and
Zy(k—) are defined in (14d) and (15c¢) respectively:

Zgy  0s 0,
Z 4 z 03><2
Z (e R]lxé) _ | Teli+n) 2(1-3) ’;
¢ 03><2 Zg(l+3) Zg(lfs) ( )
03><2 03><2 Zg(HS)

Similarly, Z, for the 6-phase motor with 7% (=2, 4, 6, 8) is
given by (24) where Zg(:1) and zg;—) are defined in (18b) and

(19b) respectively:
Zy ey O
Ly Loy Loy Zyss
Z(eR™)=| Zgn Ly Ly (24)
0,., Zg(3+3) Zg(1+5)
0, 0,,, 7.5

With the matrix Z, defined in (23) or (24), the coefficient
matrix Z accounting all the groups can be formulated
accordingly.

Step 4 solves the optimal i for the position-independent inverse
model (10), computes the g™ group current i,+(6) from (6b)
with gg.(6) defined in (13b) for the ORS and (17b) for the
ERS, and then rearranges them to accommodate with the
desired x according to (6d).

With the derived Z and q, i and i, are computed off-line from
(10), and the desired x can then be obtained in real-time as
(25a) with ig: (g=1, 2) given in (25b):

. [0 i, &, i i_] 5-Phasemotor
X = L . (25a)
[0 i, L, 0 i_ 127] 6-Phase motor
where
. z ¥h(ﬂFkNP(9l(2)i—¢]))i](2)k 5-Phase motor (25b)
Iy, =
R —h(—kNP(Hlmi—¢l))il(2)k 6-Phase motor

In (25b), 012):=0—¢12)= and ¢1()= is illustrated in Fig. 2(a)
for the 5-Phase motor and Fig. 2(b) for the 6-Phase motor.
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III. RESULTS AND DISCUSSIONS

The inverse harmonic model (Fig. 1d) and the strategies to
remedy a 1P-OC fault have been investigated numerically and
experimentally; both the odd and even phase configurations
characterized by different (Z, g..) formulations are considered.
Specifically, the unified inverse model (10), which is
applicable to remedy a 1P-OC fault of MMP-PM motors, is
numerically illustrated and verified in Section III.A.1 (for a
S-phase radial-flux type motor with iron-cores) and in Section
IIILA.2 (for a duplex 6-phase axial-flux type ironless motor),
where the remedy performances are evaluated against the
conventional time-based inverse model (4). Experiments
validating the inverse harmonic model and demonstrating the
real-time implementation and effectiveness of the remedy
algorithms on a custom-designed 6-phase motor are presented
in Section III.B. As in Section II, the investigations assume
Phase 1 is open-circuit.

A. Numerical Investigation of ORS and ERS

The effectiveness of the harmonic-based remedy strategy has
been numerically investigated on a 5-phase and a duplex
6-phase MMP-PM motors (each with a 1P-OC fault) as shown
in Table II where the parametric values used in the numerical
investigations are given. In Table Il, the (@, a,, ar) values of
the 5-phase motor were computed from the magnetic flux
density (MFD) fields of a finite element analysis (FEA); and
that of the duplex 6-phase motor were published data in [5][26].
The 6-phase motor [5] was custom-designed to pre-climinate
any undesired forces along the Z-axis; the stator EM
distribution in each phase is shown in Table II (bottom-left).

A.1 ORS for the 5-phase configuration

To provide a basis for evaluating the performance of the
harmonic-based ORS, four different currents derived from the
time- and harmonics-based inverse models without/with
accounting for unbalanced forces are compared:

Without: TW (Time-based), HW (Harmonic-based).
With: TI (Time-based), HI (Harmonic-based).

When unbalanced forces and thus the two rows of Zg ) in
(14d) are ignored, Zg;:y and q,. in (15a,b) reduce to
a, [:FC,,,t S,,J and [z4 0, ..., 0]" respectively. Similarly, TW

can be computed from (4) by replacing A and Q. with its last
row a. and 7, respectively. The results are summarized in Fig. 3,
Fig. 4 and Table III where the copper loss ratio {[27] is the total
copper loss in one period relative to that under healthy mode.

The following observations from the results can be made:

Parameter identification: As shown in the FEA results in Fig.
3(a), a. can be characterized by its fundamental (j/=1) harmonic
components (axi, ayi, a;1) within £1% error relative to the
values computed with the FEA software. With the (ay, a,, ay)
values listed in Table II, (22), (23) and (25) are used to derive
the HI and HW remedy strategies.

Under healthy mode: As compared in Figs. 3(b, ), the cogging
torque 7p is within £0.03Nm, which is less than 0.3% of the
output torque of 12Nm when the amplitude of the sinusoidal
current input is maintained at 20.42A, and the corresponding
unbalanced forces (f;, f;) are negligibly small (within £2N) .
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Under a 1P-OC fault (No remedy): As shown in Fig. 3(d), the
resulting torque reduces to 9.6 Nm from that under healthy
mode, and is highly oscillatory (with +2.4Nm ripple). On the
other hand, the unbalanced forces drastically increase to over
100N (with fundamental harmonic period equal to n/N,) from
less than 2N under healthy mode.

Effect of unbalanced forces in the event of a 1P-OC fault:

— Without considering unbalanced forces, Qq reduces to a
scalar 7;. Both HW and TW remedy strategies yield almost
identical (current) solutions and copper loss ratio (=1.29 as
compared in Table III and Fig. 4(a, b). Superimposed with zp
(Fig. 3b), an average torque (12Nm) can be maintained (Fig.
4c) but larger unbalance forces, f,=[-120N, 120N] and
/,=[-220N, ON], than that in Fig. 3(d) result. This is because
HW (that does not account for unbalanced forces) yields
larger currents than the original sinusoidal current inputs in
order to sustain the healthy-mode torque. This finding
suggests that the formulation can be effectively applied to a
PM motor where diametrically symmetric pairs of EMs are
grouped into a phase to pre-eliminate unbalanced forces.

— With the unbalanced forces accounted in the inverse model,
HI contributes larger current amplitudes ig (A=3, 5) than
those of HW (Table III) suppressing the unbalanced forces to
less than £18N while maintaining the torque at 12Nm (Fig. 4d)
with copper loss ratio {(=1.76. The residue forces may be due
to the effects of the neglected K (2a) in the inverse model.

Validation and effectiveness of inverse harmonic model: As

compared in Table III and Fig. 4(a, b), the HI (g=1, 2)

group-currents are closely similar to the TI group currents. HI,

characterized by three (k=1, 3, 5) harmonic components or two
less than that characterized by five (k=1, 3, 5, 7, 9) harmonic
components, has a slightly larger { than that of TI ({=1.65).

Unlike the position-dependent TI where the harmonic

components cannot be pre-determined, the number of HI

harmonic components of the position independent
current-vector i is a design parameter.

TABLE I
MAIN PARAMETRIC VALUES OF THE 5- AND 6-PHASE MOTOR

5-Phase motor

Stator EM: N;=N,, =5, Nc =1
r,~33.3mm, /,=162mm

Phase 1 position:¢,=0°

Rotor PM: Ny =4, r=31.8mm
PM arcs: ¢,=36.8°

X thickness: /,=7mm
Magnetizing: Radial
Computed Values:

5 a,1:9.55,a¢,1:*6.51,

Mesh: 36,630 triangle elements a,=-0.235, K,=0.013

7
Error (%)
< 10 ~. Error -—- o 5| é
e N T
~ 0
S
- ERAYAY, \ e
g 10 Error --- o -1 %
% 0 ay) - “a" .’i.. N
-10
Error (%) I © 2
i: \/ V\/\/ W\j (| /é\ o o
Foasp Fror— Zi5| %
~ =12 /
§° \ o™, 5
30 60
(a) Rotor Posmon H ©) (d) Rotor Position 6 (°)

Fig. 3 5-phase motor model. () dxc, Qyc, Gz, (b) TP, (c) forces/torque
under healthy mode, (d) forces/torque under 1P-OC fault.

0 an aon

N0 30 60 90
(c) Rotor Position 8 (°)

(d
Fig. 4 5-phase motor inverse model validation: (a) Group 1 currents, (b)
Group 2 currents, (¢) Forces/torque with currents from HW, (d)
Forces/torque with currents from HI.

6-Phase duplex motor [5][26]

PM—ID ! HEM
- 5

Stator EM (Single Side): N,;, =6,
Ng =48, Nc=N,, =16; $,=78.75°
Rotor PM: Np =32, r=255mm,
7,=295mm, PM thickness: /,=6mm,
arcs:$,=5.625°, magnetizing: Z-axis.
Computed Value: a,1~a,3~0;
ay1=—6.44, a,;=0.36;

-1.77, a;z=0.099.

01 02 03 04 @5 @6

an=

TABLE III
COMPARISON OF THE 5-PHASE MOTOR INVERSE MODELS
Group currents (iy in Amperes, ag in degrees)
klg W HW TI HI
| 1 (=237, 47)| (=23.7, 4.8)| (=279, 7.6)| (=279, 2.0)
2 (=27.6,-6.1) | (=27.6,-6.6) | (-24.1,15.0)| (=25.3,23.7)
3 1 (-3.0,-31.4)| (-3.0,-31.2)| (-6.5, 6.0)| (~10.6,-10.6)
2 (3.5,-78.3) (3.5,-78.7) | (15.2,—49.0) (16.1,-49.7)
5 1 | (-0.40,-68.2) | (—0.35,-61.6) (-5.6,50) | (-2.96,-18)
2 (0.44, 33.2) (0.48, 23.6) (6.1, 59) (4.78, 54)
7 1 (0, 0) -- 1.9,-97) | --
2 (0,0) -- (29,-13) | --
9 1 (0, 0) -- (1.4,33.6) | --
2 (0, 0) -- (-2.1,-85) | --
’ 1.29 1.29 1.65 1.76

A.2 ERS on Six Phase Configuration

To numerically investigate the effectiveness of the inverse
harmonic model (Fig. 1d) and ERS, the responses for the
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following operation modes were simulated on the duplex
6-phase motor (Table II):

Mode 0 (Healthy mode or no fault operation)

Mode 1 (1P-OC fault with no remedy).

Mode 2 (Conventional method): Operated as a 3-phase motor
(m = 2, 4, 6) but with phase-current double the amplitude
normally operated at no-fault.

Mode 3 (Remedy with ERS): Operated as a 4-phase motor (m =
2,3, 5, 6) with currents computed from the time-based and
inverse harmonic models.

Mode 4 (Remedy with time-based model): Operated with the
rest 5 phases (m =2, 3, 4, 5, 6) with currents computed from
the time-based inverse model.

The simulated currents, pulsating torque and unbalanced
forces (f+, f;) are presented in Fig. 5. For comparison, the copper
loss ratio ¢ and the peak-to-peak variations of (f, fy) are
summarized in Table IV, where the computational times for the
remedy operations in Mode 3 (inverse harmonic model) and
Mode 4 (time-based inverse model) were compared in Table

0.5 40 10
U RN . A S=4=0 =
< ~< “ , £ 0 Z
~ , N N / 35 e
= 'Ne N Mo’ & o
b’ S . © T L
= =T S 30 >

Sy DT 7T 3Tl
(a) 0.5 (b) 20
0.5 50

L -« S P e 20

—_ ~ ~. . ~ = . ' N, ~
<. 3 g .

3 RS 11=0/\ Z %
= o < - < <
S e 02

iy =57 iy --igo iy —

0 5 00 5
(i) Rotor Position § (°) ()] Rotor Position 6 (°)

Fig. 5 6-phase motor performance under different operating modes. (a,
b) Mode 0, (c, d) Mode 1, (e, f) Mode 2, (g, h) Mode 3, (i, j) Mode 4.
Some observations are drawn from the results:

Mode 0 (Fig. 5a, b): The phase-currents (m=1, 2, 3) are
identical to that (m=4, 5, 6) resulting in ripple-free torque
(30Nm) and zero unbalanced forces.

Mode 1 (Fig. 5c, d) leads to pulsating torque with reduced
average value and unbalanced forces with a fundamental
frequency at 53Hz (2Npx50rpm/60).

Mode 2 (Fig. Se, f): The torque is recovered at the cost of the
unbalanced forces and doubled copper loss ((=2) which are the
largest among all the considered operation Modes.

10

Mode 3 (Fig. 5g, h): The torque ripples and unbalanced forces
are eliminated with reduced copper loss ((=1.66 in Table IV)
compared with Mode 2. As a comparison, the currents were

8

also computed using time-based inverse model; and both the
time-based and harmonics-based inverse models yield nearly
identical group-currents. The computational time (2us) for the
inverse harmonic model suggests that it is highly
computationally efficient, and can be used for real-time control.

Mode 4 (Fig. 5i, j): Accounting for unbalanced forces, the
current of Phase 4 is insignificant relative to that of
non-identical diametrically symmetric phases (m=2, 3, 5, 6),
since that a larger i4 contributes to increased unbalanced forces,
which have to be compensated by the currents of the other four
phases. The torque ripples and unbalanced forces are
eliminated, and the resulting copper loss ({=1.56) is only
slightly smaller than that under Mode 3. The computational
time for the harmonics-based method is less than 0.2% of that
required by the time-based method (which involves complex
matrix inversion).

TABLE IV
PEFORMANCE COMPARISON OF OPERATION MODES
Modes | 0 1 2 3 4
¢ 1 0.83 2 1.66 1.56
fe 0 [0,20.2] [-34.5, 28.0] 0 0
A 0 [-4.0, 0] [-33.7,29.6] 0 0

Cohlputation Time (2.5GHz CPU and 16G memory):  2us 1150ps

B. Experimental Validation

With the formulations of (Z, g,:) numerically validated in
Subsection I1I.4, the unified inverse harmonic model (Fig. 1d)
accounting for MMP-PM motors with odd and even phase
configurations has been experimentally validated on a duplex
face-turning spindle motor [5][26] developed for machining
disk-like work-pieces as shown in Fig. 6. Designed as an open
platform, two sets of 48 independently controllable stator
EM-windings are supplied with linear current amplifiers, which
were reconfigured as a 6-phase motor in this experiment; and
the winding arrangement as well as the motor parameters are
illustrated in Table II. A PI-controller for the closed-loop speed
control (Fig. 1c) and the current remedy algorithms were
implemented on a NI Crio platform which provides an effective
setup to evaluate the performances of the remedy operation.

1, Bl g — 5
PM tator: EX
EM
Axial
Bearing

Radial
Bearing

Clamp

Workpiece

Controller: NI-CrioDriver [5]
Closed-loop linear current amplifiers (maximum +4A each channel).

Fig. 6 Duplex PM motor [5].

A microphone (GRAS Array) installed close to the bearings
(Fig. 6) on an adjustable frame was used to measure the bearing
sound; and a three-axis accelerometer (PCB 356A16) was fixed
on the stator surface (Fig. 6) to record the accelerations along
X- and Y-axis under differ operating modes. Because of the
relatively large rotational inertia (>1.9kg.m?) and PM
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pole-pair number (Np=32), the torque ripples with angular
frequencies (j=k)Np in the experiments have little impact on the
speed fluctuations and induced sound. As will be demonstrated,
the measured bearing sound and vibrations due to unbalanced
forces are reasonable indicators of the operation condition of
the motor under 1P-OC fault.

During experiments where the motor performances under
faulty and different remedy operations were compared, the
motor was tested under four different operation modes (Mode
0~3 as described in Subsection III.A.2) at two speeds (50rpm
and 85rpm) without and with cutting. To validate the
effectiveness of the remedy strategies for different loading
conditions, the motor was subjected to the following cutting
operations of a titanium-alloy disk: 0.05mm depth-of-cutting
and 0.25mm/s feed-rate at a cutting radius of 85~90mm.
Experimental results are organized into four groups in Figs. 7
and 8, where the Fast Fourier Transform (FFT) of the measured
sound pressures and accelerations are presented:

50rpm: Results comparing the magnitudes at the dominant
frequency between without cutting (Fig. 7a) and
with cutting (Fig. 7¢) are given in Fig. 8(a)

85rpm: Results comparing between without cutting (Fig. 7b)
and with cutting (Fig. 7d) are given in Fig. 8(b).
0.25 ‘ 0.4 T
53Hz 1 ——Mode 0 190.3Hz
= | --=Mode 1 | = i
0.125 i "TtMode2 | & ) i"‘
A # Mode 3 | ¢
v .5 I~ lg" ] ;}‘t‘ .
0 s ‘ — 0 e - K ; RN -
300 40710 |
) ¢ = H
> it > H
g 15 & 5 20 H
< ik < i
AR A

Frequency (Hz)

?E 90.3Hz

S.P. (Pa)

Acc. X (g)

Acc. Y (2)

(© Frequency (Hz) (d)
Fig. 7 FFT of bearing sound pressure and motor accelerations for four
operation modes. (a) 50rpm, without cutting, (b) 85rpm, without
cutting, (c) 50rpm, with cutting, (d) 85rpm, with cutting.

Frequency (Hz)
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Some observations can be drawn based on Figs. 7 and 8:

— As shown in Fig. 7, the dominant frequencies (53Hz and
90.3Hz) correspond to the rotational speeds 50rpm and
85rpm, respectively. As compared between without and
with cutting, the cutting sound (usually at a much higher
frequency) has negligible effects on the bearing sound at the
dominant frequencies. The apparent changes of the sound
pressure and accelerations from the normal Mode 0 to faulty
Mode 1 in Fig. 8 confirm that the bearing sounds and motor
vibrations are reliable indicators of the motor conditions.

— As compared between Modes 0 and 1 in Fig. 8, the
unbalanced forces induce large bearing sound and motor
vibrations under a 1P-OC fault. The conventional remedy
method (Mode 2) doubles the currents in order to maintain
the spin torque, leading to aggregated unbalanced force;
The (with and without cutting) comparison in Fig. 8 shows
that the condition became worsen with increased loads. On
the contrary, the proposed remedy method consistently
reduces the unbalanced forces at different speeds and loads.

— As compared in Figs. 7 and 8, which account for all the
considered operating speeds and loads of the 6-phase motor,
Mode 3 and Mode 0 exhibit nearly identical sound pressure
and acceleration spectrums, implying that the 1P-OC fault
was remedied. The strong correlations between the
numerical calculations (Fig. 5) and consistent experimental
results (Figs. 7 and 8) validate the inverse harmonic model,
and confirm the effectiveness and reliability of the proposed
harmonic-based fault-remedy strategy for real-time
implementation on a MMP-PM motor under a 1P-OC fault.

0.4 0.4
= M2 = ml B
[ — [
= 02r Ml ‘ M3 = 02
%] Mo ‘ %]
. J.i a Al . - -
0.04 0.04 —
® 3 M
< <
o 0.02 o 0.02
Q Q
< <
0 U] NN [ ol
0.03 1 0.03
C C m B
= 0.02 | = 0.02
> > 00
) 8
ool Z 001
L. el R o B
(a) No cutting Cutting (b) No cutting Cutting

Fig. 8 Comparison of magnitudes of bearing sound pressure and
accelerations of four operation modes/speeds. (a) 50rpm, (b) 85rpm.

IV. CONCLUSION

The method to derive a harmonic model to characterize the
pulsating torque and unbalanced forces of a MMP-PM motor
under an open-circuit fault and its solutions are presented.
Based upon the inverse harmonic model, the remedy strategy is
not only capable of recovering the motor spin torque but also
effectively suppressing unbalanced forces that cause vibrations
and damages on the rotor. By formulating the optimal fault-
remedy currents as a combination of a position-independent
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inverse model (can be computed offline) and a harmonic-based  r a, (B, = Byin, )(Buy + Byyy )+ (B + By, )(Boy — By )
kernel vector, the inverse harmonic model significantly reduces Tl 7( _B )( B +B ) +( B 4B )( B _B )
the time requires to compute the remedial current (from 1150us al | A, e e R e e
using a conventional time-based method to 2pus). The fault -~ 4}”(8‘”5""3””’ = Bren Bon )
remedy methods have been numerically validated on a 5-phase ~ For axial flux configuration,
and 6-phase motors, and experimentally evaluated on a Mo r( B, B,y +B,, B, —B,, B, -B., M)
custom-designed 6-phase MMP-PM motor, which demonstrate a” _ T i . ( B B +B. B -B. B —-B. B ) dr
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