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 

Abstract—Modular multiphase (MMP) PM motors have the 
ability to work continuously under a faulty mode. However, 
ripples in the spin torque of the motor and unbalanced forces 
incur rotor vibrations in post-fault operations, which seriously 
degrade the performance of the PM motors. This paper presents a 
computationally efficient method to derive harmonic models for 
characterizing the pulsating torque and unbalanced forces of a 
MMP-PM motor under an open-circuit fault, and the 
corresponding optimal solutions to its inverse current model to 
remedy the fault. The model formulation, current harmonic 
identification and remedial strategy for suppressing torque 
ripples and unbalanced forces are illustrated with a MMP-PM 
motor under an open-circuit fault; both odd and even number of 
phases are considered. The effectiveness of the harmonic models 
and remedy strategies are numerically validated with two typical 
(5- and 6-phase) MMP-PM motors under a one-phase/open- 
circuit fault, and evaluated experimentally on a custom-designed 
6-phase duplex motor. 

Index Terms—Harmonics, Inverse Model, Open-circuit, PM 
motor, Torque ripple, Unbalanced forces. 

NOMENCLATURE 
Capitalized symbols 
A Motor system matrix (linearly linking Q with x).  
Br, Bφ, Bz (r, , Z) components of net MFD 
NC, NE  Number of (EMs/phase, EMs) 
Nf Number of force/torque harmonic components 
NG, Nk Number of (groups, current harmonic components)  
NP, Nph Number of (PM pole-pairs, phases) 
Q, Qd  (Actual, desired) output vector of force f  and torque  
Qg The gth component of Q under the 1P-OC fault. 
Z, Zg  Position-independent coefficient matrix and its gth element  
Lowercase symbols 
am, ac, ag± Force/torque gain vectors of the (mth phase, cth EM, gth group) 
gg± Harmonic vector of the gth  group current 
i, ig Position-independent current vector and its gth element 
qr Position-independent force/torque reference vector 
x  Current vector  
Greek symbols 
αgk The kth current harmonic phase angle of the gth group.  
βc, ϕm Position of the cth stator-EM winding and the mth phase 
Γ(·) Rotation matrix 
 Open-circuit fault indicator matrix 
τd Desired ripple-free torque 
ε± Sign indicator of the harmonic interactions 
φ, θ Angular position in XYZ frame and rotor angular position 
ζ Copper loss ratio 
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I. INTRODUCTION 

MP-PM motors are PM motors with modular windings 
[1~6] designed to achieve electrical, magnetic, 
thermal and physical isolation among phases. Due to 

their high power-density, inherent fault-tolerant ability and 
independent controllability, they have been widely used in a 
wide variety of applications ranging from more-electric aircraft 
[2] to [4], metal-removal machining [5] to robotics [6]. Special 
attentions must be paid to the fault-tolerant design and/or 
control [2] [7] of the MMP-PM motors so that safety-critical 
systems driven by these motors will continue working and 
sustain acceptable performance under various faulty modes. 
The most probable fault is the loss of 1-phase due to an 
open-circuit fault [8]. The open-circuit fault of a phase can be 
easily detected by monitoring the load currents [9]. However, 
large spin-torque ripples (or variations about the average 
spin-torque) and unbalanced magnetic forces acting on the 
rotor exist in the post-fault operations, which incur serious 
vibrations and degraded performance of the PM motors. To 
sustain acceptable post-fault performance, a method to identify 
the current harmonic components for compensating the 
pulsating torque and unbalanced forces, and compute the 
corresponding optimal currents in real-time to remedy its 
open-circuit fault is required.  

MMP-PM motors are custom-designed [10] [11] to eliminate 
unbalanced radial forces under healthy modes, which often take 
advantages of the diametrically symmetrical electromagnetic 
(EM) windings; for examples, [2] to [5]. A 6-phase PM motor 
as a dual 3-phase PM motor was designed in [4] [12] to simplify 
the control algorithm under a faulty mode. However, the loss of 
any phase will lead to diametrically asymmetrical windings [13] 
and/or asymmetrical input currents [10] [11] resulting in 
reduced average torque with large ripples and unbalanced radial 
forces [4] [8], even if a PM motor was initially designed for low 
torque ripple and balanced radial forces.  

Under a healthy mode, torque ripples (caused by the 
interactions between the harmonics of the back electromotive 
force and that of the input currents) can be compensated using 
the solutions to a harmonic model as demonstrated in [14], 
which can be extended to torque control of a MMP-PM motor 
under faulty modes. Considering only the harmonics of the 
fundamental and third currents, Bianchi et.al [15][16] 
analytically derived the currents minimizing the torque-ripple 
for post-fault operations of a modular 5-phase motor although 
the average torque decreases under faulty modes. Parsa et.al 
[17]  proposed a unified fault-tolerant current-control approach 
to increase the average output torque while minimizing torque 
ripples and copper losses for a 5-phase PM motor under various 
faulty modes. Similar works considering only the fundamental 
current component to develop a specified torque were also 
reported in [8]. Based on the reduced-order Park-Clark 
transformation, the optimal currents remedying the open-circuit 
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fault was derived in the field-orientated control scheme 
utilizing fundamental current [18][19] or 3rd harmonic current 
injection method [20]. Different from the harmonic-based 
methods, Wang et.al [10] [11] [21] designed a time-domain 
optimal torque controller under voltage constraints for a 
modular 5-phase PM motor to ensure a ripple-free torque 
output with minimum copper loss under healthy and faulty 
modes. It is found that the derived optimal currents are 
dominated by the fundamental and 3rd harmonic with a small 5th 
harmonic component [21]. 

Previous research efforts on torque control of MMP-PM 
motors generally do not consider suppressing the unbalanced 
forces under an open-circuit fault, although mentioned in [12] 
[22]. To sustain the torque output capacity, the currents of the 
remaining healthy phases need to be properly amplified, which 
may lead to larger unbalanced forces in post-fault operations. 
Due to the lack of computationally efficient harmonic models, 
the harmonic components accounted for in the remedy currents 
are limited to the fundamental and 3rd components in existing 
techniques [8, 15-20]. While in the time-domain methods [21], 
the harmonics orders of the derived currents cannot be 
pre-determined [23]. To overcome the above challenges, this 
paper presents a computationally efficient method to derive 
harmonic models and their inverse solutions for analyzing and 
suppressing torque ripples and unbalanced forces of a 
MMP-PM motor under an open-circuit fault; for clarity in 
illustration, a 1-phase open-circuit (1P-OC) fault is used as an 
example. The remainder of this paper offers the following: 
 Section II begins with the force/torque equation of a 

MMP-PM motor and its time-based inverse solutions. To 
overcome their limitations, a model that characterizes the 
harmonic components of pulsating torque and unbalanced 
forces of a motor is derived to identify the required current 
harmonics and compute an optimal set of currents in real-time 
to ensure a ripple-free torque. As will be analytically 
illustrated, the harmonic method leads to a unified inverse 
model for suppressing torque ripples and unbalanced forces in 
a MMP-PM motor under a 1P-OC-fault, while allowing for 
different remedy strategies characterized by an odd or even 
number of phases. 

 In Section III, the harmonic models are numerically 
illustrated and validated with two typical (5- and 6-phase) 
motors. The effectiveness of the fault remedial strategy for 
suppressing torque ripples and unbalanced radial forces has 
been evaluated experimentally on a custom-designed 6-phase 
PM motor operated under a 1P-OC fault. 

II. FAULT REMEDY OF MMP-PM MOTORS 

Consider a single-axis MMP-PM motor with NP PM 
pole-pairs (surface-mounted on the rotor) and NE stator EMs. 
Figures 1(a, b) show two common PM-motor design structures, 
axial-flux and radial-flux [5], where XYZ and xyz are the stator 
(reference) and rotor (moving) coordinate frames respectively; 
and Z and z are on a common axis about which the rotor 
displacement  is measured from the X-axis. In the event of 
open-circuit fault, the unbalanced forces (along the X- and Y- 
axes) and large ripples in the reduced average torque would 
seriously degrade the MMP-PM motor performance. To sustain 
an acceptable performance of the motor during the post-fault 

operations, an inverse model is incorporated in the speed 
control system as shown in Fig. 1(c) to compute the remedy 
currents required to generate the specified torque d while 
eliminating the unbalanced forces (fx, fy). As will be shown, the 
computation of the remedy currents for real-time 
implementation is divided into two parts as illustrated in Fig. 
1(d); a position-independent inverse model which can be 
calculated offline, and a harmonic-based kernel vector which  
updates the desired remedy currents in real-time.  
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Fig. 1 MMP-PM motor and speed-control system for 1P-OC fault 
remedy. (a) Axial-flux type. (b) Radial-flux type. (c) Time-based 
Inverse Model. (d) Harmonic-based remedy strategy. 

The following assumptions are made in the derivation:  
1) The spatially distributed PM remanences are symmetric 

about its center. 
2) The NE= NCNph stator EM-windings are evenly grouped into 

Nph phases; each with NC EM windings. 
3) The eddy-currents and end-fringing have negligible effects 

on the magnetic field in the stator/rotor air-gap.  
To ensure safe operation in the event of an open-circuit 

fault, the PM motor is designed such that its input current 
vector x (with element im where m=1, 2… Nph) has a higher 
dimension than its output force/torque vector Q, where Q and x 
are defined in terms of the rotor position θ: 

       
T

1 phm Ni i i      x    (1a) 

        T

x yf f       Q  (1b) 

The unbalanced forces (fx, fy) and pulsating torque τ(θ) are 
described in the (forward) torque model (2a) that determines Q 
in terms of x for analyzing and controlling a PM motor: 

      2( ) . ( )P    Q A γ x Kγ x Q  (2a) 

 3

1where ( ) ... ( ) ... ( )ph

ph

N

m N      A a a a  (2b)

 3

1and ... ...ph

ph

N

m N

     K k k k . (2c) 

In (2a),
T2 2 2

1. ... ...mi i   x . Formulated in terms of the rotor 

position θ, (2a) is referred to here as the time-based forward 
model of the MMP-PM motor. For a specified , the 1st term 
(linear with x) in Q is contributed by the Lorentz force between 
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the current-carrying conductors and PMs; the 2nd term 
(quadratic with x) and QP correspond to the forces/torque 
between the (EMs, PMs) and the iron-cores respectively. In (2a), 
the diagonal matrix γ (with binary elements γm where m=1…Nph) 
acts as a fault indicator to account for different operating modes. 
The element γm normally takes the value of 1; a value of 0 
indicates that the mth phase is physically open-circuit or fail. 
Thus, γ does not depend on rotor displacement, and A(θ) is 
independent of the operating mode.  In (2b), the vector am 

depends on the layout of NC stator-EM windings in the mth 
phase, and can be derived from the vector ac=[axc ayc aτc]T for 
the cth stator-EM winding at angular position βc where (axc, ayc) 
are the force/current gains along (X,  Y) axes and aτc is the 
torque/current gain: 

   c,  ,  m m c   a a  (3a) 

   
1 1

2 1
where  and 

2 1
 m

ph
c

E

m

N

c

N


 


 


 


  (3b,c) 

In (3b, c), ϕ1 and β1 are the angular positions of the 1st phase and 
stator-EM respectively; and ϕm is the mth phase position.  

In (2c), km
3 1  (m=1… Nph) is the mth column vector of K. 

For iron surface-mounted MMP-PM motors (non-salient rotor 
and even slot number), K that contributes only force (and no 
torque) production is negligibly small due to the relatively large 
effective air-gap height [22], while QP has only the torque 
component [13] (cogging torque) that can be reduced by design 
techniques. For an ironless PM motor, K=QP=0 and Q=A(θ)x 
can be computed directly using the Lorentz force equation [5] 
[24]. Hence, K and QP are ignored in the inverse model.  
      In the event of an open-circuit fault, it is highly desired that 
Q behaves like Qd=[0, 0, τd]T (or fx=fy=0) where the ripple-free 
(position-independent) torque τd is calculated by a speed 
controller to compensate for the error ∆ω between the reference 
speed ωr and measured speed ω as shown in Fig. 1(c). In the 
case of torque control, τd is directly specified as a torque 
reference. For a current-controlled ironless motor with more 
number of active current phases than the dimension of Qd, an 
optimal x that minimizes the copper loss and satisfies Qd can be 
directly computed from the pseudo-inverse of matrix A(θ) [5]: 

        1T T T T
d   


   x γ A A γγ A Q  (4) 

where γ is incorporated into (4) to account for the open-circuit 
fault. Equation (4) is referred to here as the time-based inverse 
model of the MMP-PM motor. However, the optimal x derived 
from (4) depends on the rotor displacement θ, and the matrix 
inversion involved in (4) must determine A(θ) from a 
pre-computed look-up table of single input and multiple 
outputs, which is computationally inefficient as it generally 
requires a relatively large memory and time [23] especially for 
a MMP-PM motor with large Nph.   

A.  Harmonic-based Fault Remedy  

For a specified position-independent Qd and γ that acts as a 
fault indicator in the first term of (2a), x(θ) derived from (4) 
only depends on A(θ) that is independent of the operating mode 
and repeats as the rotor spins 2π/NP. Hence, (A, x) are periodic 
(period 2π/NP) and can be formulated in harmonic forms [25] 
even in the event of open-circuit fault. As derived in Appendix 
for both axial- and radial-flux MMP-PM motors, ac in (3) can 
be described in terms of (radial, tangential) force/current gains 

(arc, aφc) and aτc, which are expressed in harmonic forms in (5b) 
with (arj, aφj, aτj) being the jth harmonic amplitudes of (arc, aφc, 
aτc) respectively:    

    2 1
c

1 2

,
1

xc rc
c

c yc c

cc

a a
a a

aa




  



                  

Γ 0
a

0
 (5a) 

 
 
 1,3,5...

cos

where sin
sin

rj p crc

j p cc
j

c j p c

a jNa

a jNa
a a jN



 

 
 
 





  
      

    

  (5b) 

     
   

cos sin
and .

sin cos

  
  
 

Γ
 


 

 (5c) 

Equations (3) and (5) provide a basis to identify the harmonic 
components (j=1, 3, 5 …) of the force/torque vector in (2b). 

A.1 Phase regrouped under a 1P-OC fault      

In the event of a 1P-OC fault, the operating healthy phases are 
reorganized into NG strategic groups for fault remedy, which 
depends on the odd or even number of phases, Nph. As 
illustrated in Fig. 2(a, b) where Phase 1 at ϕ1 is assumed to have 
an open-circuit fault, a new Cartesian system OX1Y1 with its 
X1-axis aligned with the open-circuit phase is assigned:   
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Fig. 2 MMP-PM motors with odd and even Nph. (a) Nph=5, (b) Nph=6. 

For odd Nph, the (Nph−1) healthy phases are regrouped into 
NG=(Nph−1)/2 symmetrical groups about the X1-axis. As an 
example, the 5-phase motor (Fig. 2a) will have NG=2 groups; 
Phases (2, 5) at 1 and Phases (3, 4) at 2 correspond to g=1 
and g=2 groups respectively. The NG groups can be 
characterized by their angular positions, ϕg±=±2πg/Nph. 

For even Nph, (Nph−2) of the healthy phases are regrouped 
into NG=(Nph−2)/2 groups characterized by their angular 
positions, ϕg±=2πg/Nph−π/2(1 1), so that the advantage of the 
diametrical symmetry can be kept. As illustrated in Fig. 2(b), 
the 6-phase motor will have NG=2 groups; Phases (2, 5) at 1± 
and Phases (3, 6) at 2± correspond to g=1 and g=2 groups 
respectively. In this scheme, Phase 4 is sacrificed so that no 
additional current is needed to compensate unbalanced forces 
[5] caused by the loss of symmetry due to the failed Phase 1.  

A.2 Inverse model for a 1P-OC fault remedy   

Under the 1P-OC fault, the current flowing through the gth 
group (where g=1, 2… NG) at ϕg+ or ϕg is denoted as ig+ or ig 
respectively. The regrouped current ig±(θ), which characterizes 
the identified current harmonics, is decoupled into a position-  
independent column vector ig and a position-dependent kernel 
vector gg±(θ) that depends on odd or even Nph to be discussed in 
Sections II.B and II.C. For practical implementation, finite Nk 
harmonic components of the ig±(θ) in the NG groups are 
considered. Consequently, a position-independent vector i 
accounting for all the currents in the NG groups and hence x(θ) 
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in (2a) can be described as (6a~d) where igk corresponds to the 
kth current harmonics of the gth group current ig: 

T T T T
1 Gg N

   i i i i    (6a) 

    T Twhere [... ...]g g g g gki    g i i i .  (6b,c) 

1 1T

1 1

0 Odd  

0 Even 
g g ph

g g ph

i i i i N

i i i i N
   

   

     
x

   

   
 (6d) 

The force/torque vector Q in (2a) is essentially the sum of 
the (g = 1…NG) individual force/torque vectors Qg, and consists 

of a steady-state component Q and Nf ripple harmonics ˆ
nQ :  

     
1 1

ˆ G fN N

g ng n
  

 
   Q Q Q Q  (7a) 

         where g g g g g g g    
   

Q = a g i a g i  (7b) 

  T
and    xg yg gg a a a       a  (7c) 

In (7c), (axg±, ayg±) are the force/current gains along the (X, Y) 
axes, and aτg± is the torque/current gain of the gth group.  
Mathematically, the objectives are 

 T

3 1
ˆ0 0  and d d n    0QQ Q  (7d,e) 

By arranging the ( )dQ Q and ˆ
nQ in the increasing order of the 

harmonics, (7d, e) can be compactly expressed as a 
position-independent reference (column) vector qr: 

T3(1 ) 1 TfN

r d

      q Q 0 0   (8) 

With (6a), (7a,b) and (8), an alternative position-independent 
forward model is formulated in (9a, b) where the submatrix Zg 
in the coefficient matrix Z is contributed by the gth group:    

1 where ... ...
Gr g N

    Zi q Z Z Z Z  (9a,b) 

By comparing the given ag±(θ)gg±(θ) terms in (7b) with the 
position-independent sub-matrix Zg of (9a, b), the harmonic 
components of Qg can be identified for formulating Zg. The 
corresponding position-independent pseudo-inverse model that 
derives an optimal i minimizing the copper loss [14] for a 
reference vector qr in a MMP-PM motor under the 1P-OC fault 
(Fig. 1d) is given by 

1T T
r


   i Z ZZ q  (10) 

As shown in Fig. 1(d), the inverse harmonic model consists of 
(6a~d) and (10) where the position-independent Z can be 
computed offline for an optimal i for updating the optimal x 
that requires a simple multiplication once the harmonic-based 
kernel vector (6b) is available. Thus, the optimal currents can 
be calculated in real-time to remedy the 1P-OC fault, which 
eliminate the unbalanced forces (fx, fy) and generate a desired 
ripple-free torque τd. The proposed inverse harmonic model for 
fault remedy in Fig. 1(d) accomplishes the tasks undertaken by 
the time-based inverse model (4) while overcoming its 
limitations. Depending on odd or even Nph, the relationships 
between ag+(θ) and ag−(θ), and that gg+(θ) and gg−(θ) may differ. 
For clarity, the 1P-OC remedy strategy for a MMP-PM motor 
with an odd Nph and that with an even Nph are separately 
formulated in Sections II.B and II.C respectively.  

B. Odd-phase Remedy Strategy (ORS) 
Without loss of generality, we assume NE=Nph and βc=ϕm 

with c=m=1… Nph for clarity in illustrating the formulation of a 
remedy strategy for MMP-PM motors with an odd Nph [10] [11], 
in other words, each phase consists of one stator-EM winding 
and unbalanced forces result in the event of the 1P-OC fault.  
Based on the assumptions above, the following discussions can 
also account for the simple cases where pairs of diametrically 
symmetric EM windings are grouped into one phase and there 
is no need to consider the unbalanced forces. Under the 1P-OC 
fault, the corresponding relationship between ag+ and ag− of the 
gth group can be derived from (5a) in the OX1Y1 frame: 

 
 
 

 
 
 

,  ,  

,  ,  

,  ,  

xg g xg g

yg g yg g

g g g g

a a

a a

a a 

   

   

   

   

   

   

   
   

     
          

 (11) 

The last row in (11) suggests that the currents ig± should take 
the form (12) such that ig+(ϕg+, θ) =−ig−(ϕg−, −θ) to recover the 
original torque under the 1P-OC fault:   

 
1,3...

sin  where 
kN

g gk P g gk g g
k

i i kN        


    (12) 

As in (6b, c), (12) where (igk, αgk) are the kth current 
harmonic (amplitude, angle from θg±) of the gth group is 
rewritten in the OXY frame:   

 T gk gk gki i h   (13a) 

    1 2
1

kN
g P gkN  
 

    g h     (13b) 

            and  S C C S   
         h h  (13c,d) 

In (13c~d), C() and S() denote the cosine and sine of the angle 
() respectively for simplicity in the following discussions.  

With (12) along with the force/torque-current gains (5a~c), 
the resulting Qg=[fxg, fyg, τg]T

 in (7b) for the ORS is given by 

   
 

 , 1,3...

g j k

g gkg j k g j k
g j kj k




 


 
    

 


Z
Q H H i

Z
 (14a) 

   where g j k
S C Cdiag      H ；  (14b) 

  Pj k N    ; (14c) 

   
g g g g

g g g g

gg j k

rj j j rj

rj j j rj

j j

a C C a S S a S C a C S

a S S a C C a C S a S C

a C a S

         

         

   



   
       

       

 



      
   
  

Z

 


(14d) 

  and sgn( )P gj k N j k        . (14e,f)

In (14a), Hg(j±k)(θ) accounts for the (j ± k)th harmonic 
components of the Lorentz force due to the interactions 
between ag±(θ) and ig±(θ) for a given NP. The coefficient matrix 
Zg(j±k) depends on (aφj, arj, aτj, ε±, ϕ±) where ε± in (14f) is used to 
negate θ− when j<k.  

Noting that fxg vanishes in the steady-state component 
Qg=[0, fyg, τg]T for j=k (Sθ−=0) which can be derived from 
(14a,b); and TQ reduces to [fy, τd]T.  Based on (14c~f), the 
corresponding qr in (8) and Zg in (9b) for the ORS can be 
expressed as (15a~c) where zg(k-k) can be derived from (14d) for 
j=k ( 0S S  

  , 1C C  
  and −=0): 

    T 1 2 3
1 30 ...fN

r d 
q 0  (15a) 



1083-4435 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMECH.2019.2906850, IEEE/ASME
Transactions on Mechatronics

IEEE/ASME TRANS. ON MECHATRONICS  
 

5

  

   

 
 

 

1 1

2 3 2

1
1 2

f k

g g k k

N N
g

g j g j k
j j k

 

 

 
   

 
 
 

  
 
 
  

 

z z

Ζ Z Z


 

  
  

  

 (15b) 

   and when 
0

g gj rj

gg k k
j

a C a S
j k

a

  



  



 
  
  

z 	 (15c) 

In (15b) that defines the forces/torque contributed by the gth 

group for the given position-independent ig, ћ (|jk| =2, 4,...) 
indicates the force/torque harmonics order to be eliminated. 

C. Even-phase Remedy Strategy (ERS) 

For an even Nph motor [4][8], the diametrically symmetric (c, 
cNE/2) EM-windings belong to the (m, mNph/2) phases 
respectively.  From (5a), ag+ and ag− are related by 

 
 
 

 
 
 
 

  

 1  

  

P

xg g xg g
N

yg g yg g

g g g g

a a

a a

a a 

 

 

 

   

   

   

   
   

     
   
      

 (16) 

The corresponding currents ig± and gg±(θ) are given in (17a, b) 
with  igk defined in (13a): 

 
1,3...

sin
kN

g gk P g gk
k

i i kN   


   (17a) 

  1g P gkN   
     g h   (17b) 

Different from the forces (fxg, fyg) produced by the gth group 
consisting of ‘mirror-symmetric’ phases in Fig. 2(a), (fxg, fyg) 
are self-balanced (and vanished) for the given currents (17a) 
due to the diametrically symmetric phases in Fig. 2(b).  Hence, 
the corresponding Qg for the case of even Nph reduces to [0, 0, 
τg]T; and the torque τg contributed by all the stator-EMs in the gth 
group can be calculated from (17a) and (5): 

     

 , 1,.3...

g j k

g gk
g j kj k

  



 



 
      

 


Z
h h i

Z
 (18a) 

  m jg j k

C S
N a

S C
 


  
 

 


 

 
   

Z

  (18b) 

where (θ±, ϕ±, ε±) are defined as in (14c, e, f), Nm is the effective 
number of the EM windings per phase (that contribute the 
torque production) and determined from (3a). Similar to Hg(j±k) 
in (14b), h'(θ±) in (18a) indicates the (j±k)th torque harmonic 
components due to the interactions of aτg±(θ) and ig±(θ). The 
matrix Zg(j±k) (18b) depends only on (aτj, ε±, ϕ±). 
  When  j=k (Sθ−=0, Cθ−=1), a ripple-free component of [0, 0, 
τg]T can be obtained in (18a); thus, the corresponding  qr and Z 
for the ERS can be derived from (18) where qr is given by (19a) 
and Zg takes the form in (15b) with zg(k-k) defined in (19b):  

   1 1 2T
1 2 1 2...fN

r d
 

  q 0 0  (19a) 

    0  with g jg k k a j k     z 	 (19b) 

D. Formulation and Computation Procedure 

Given a MMP-PM motor with known (Nph, NC, NP, NE) and 
specified stator-EM winding layout characterized by βc (where 
c=1… NE), the (arj, aφj, aτj) values (5b) along with the angular 

position ϕ1 (3b) that provide a basis for the inverse model 
formulation can be obtained from ac in (5a). The vector ac can 
be expressed in terms of QP and kc, (20a), where kc indicates the 
forces (along X- and Y-axes) and torque due to the interaction 
between the cth stator-EM and the rotor iron-core. It can be 
numerically (A.1) or experimentally obtained by exciting only 
the cth EM-windings with a constant current I:  

 2 /c P c I I  a Q Q k  (20a)

To account for the iron effects, QP (θ) and kc are described in 
(20b) and (20c) respectively.  In (20b), the cogging torque τP (θ) 
is computed with all the phase open-circuit: 

  T
= 0 0P P   Q  (20b) 

The forces contributed by kc point along the Z-axis and radial 
direction for axial-flux and radial-flux MMP-PM motors 
respectively, and hence kc is characterized in (20c) where the 
constant Ko is calculated from the armature reaction field: 

3 1
T

axial-flux

0 radial-flux
c c

c
oK C S 

     

0
k  (20c) 

With the values of ac obtained from (20a) at different θ, the 
components (arc, aφc, aτc) can be computed with inverse of (5a); 
and the coefficients (arj, aφj, aτj) in (5b) can be found by 
curve-fitting the values of (arc, aφc, aτc) at different θ.  Hence, 
the vector ac can be explicitly expressed from (5a, b); and ϕ1 
can be derived from (3a).  

The inverse harmonic model (Fig. 1d) is formulated for a 
1P-OC fault remedy using a four-step procedure, and illustrated 
with the 5- and 6-Phase motors in Figs. 2(a, b) for clarity: 

Step 1 reorganizes the operating healthy phases into NG    
groups (Subsection II.A.1). To gain intuitive insights, the 
harmonics of Qg (where g=1,…,NG) for j=1, 3 and k=1, 3, 5, 
7 are tabulated in Table I where the numbers indicates the 
(|jk|, |j+k|); and the bold zeros correspond to j=k.  For the 5- 
and 6-Phase examples in Figs. 2(a, b), NG = 2 under the 
1P-OC fault. 

TABLE I 
HARMONICS INTERACTIONS 

 k=1 k=3 k=5 k=7 

j=1  (0, 2) (2, 4) (4, 6)   (6, 8) 
j=3  (2, 4) (0, 6) (2, 8)    (4, 10) 

Step 2 determines the order number k of the current harmonics 
for the vector igk (6c), given the specified Nf. Different from 
the time-based inverse model, Nf and thus Nk are design 
parameters. To ensure the existence of the solutions to (10), 
the number Nk of current harmonic components should be 
selected such that the unknown parameters number 2NGNk in 
the vector i (6a) is larger than the dimension of the reference 
vector qr (15a) for the ORS, and (19a) for the ERS: 

(2 3 ) / 2 ORS
(1 2 ) / 2 ERS

f G
k

f G

N N
N

N N


  
 (21) 

According to (21), if a large Nf for the force/torque harmonic 
components is considered in the inverse model, an increased 
Nk especially for a small NG will result. Once Nf is selected, 
the smallest Nk that satisfies (21) is determined. The specific 
order number k can be identified from Table 1 to compensate 
for the corresponding force/torque harmonic components. 
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Assuming that (j=1) and (j=1, 3) for the examples in Figs. 2(a) 
and 2(b), Nf =3 and Nf =4 are chosen for the 5- and 6-Phase 
motors, respectively. Based on (21), Nk  3. From Table I, the 
minimum Nk=3 (for k =1, 3, 5) is selected for igk (for g=1, 2) in 
(6c) to eliminate the force/torque harmonics in Qg (14a) or τg 
(18a) with 

 
 

32, 4, 6    5-Phase motor

42, 4, 6,  8 6-Phase motor
f

f

N
ћj k

N

   
 

With ћ determined, the position-independent force/torque 
reference vector qr formulated in (15a) for ORS and (19a) for 
ERS is expressed by:  

 
 

T

1 3 1 3 1 3
T

1 2 1 2 1 2 1 2

0    5-Phase motor

6-Phase motor
d

r

d




  

   

 


0 0 0
q

0 0 0 0
 

Step 3 formulates (ig, Zg) according to (6c) and (15b) with the 
identified current harmonics k.  Consequently, (i, Z) can be 
formulated from (6a) and (9b).  

For the examples in Fig. 2,  
T T T T

1 3 5g g g g   i i i i  (22)

With ћ (=2, 4, 6) for the 5-phase motor, the position- 
independent submatrix Zg is derived in (23) where Zg(j±k) and 
zg(k−k) are defined in (14d) and (15c) respectively: 

 

 

   

   

 

3 2 3 21 1

3 21 1 1 311 6

3 2 1 3 1 5

3 2 3 2 1 5

g

g g
g

g g

g

 

 

  

  

 
 
   
 
  

z 0 0

Z Z 0
Z

0 Z Z

0 0 Z

  (23) 

Similarly, Zg for the 6-phase motor with ћ (=2, 4, 6, 8) is 
given by (24) where Zg(j±k) and zg(k−k) are defined in (18b) and 
(19b) respectively: 

 

   

       

     

   

 

2 21 1 3 3

1 1 3 1 1 3 3 5

14 6
3+1 1 3 1 5

2 2 3 3 1 5

2 2 2 2 3 5

+
g g

g g g g

g g gg

g g

g

 

   


 

  

  

 
 
 
 
 
 
  

z z 0

Z Z Z Z

Z Z ZZ
0 Z Z

0 0 Z

  (24) 

With the matrix Zg defined in (23) or (24), the coefficient 
matrix Z accounting all the groups can be formulated 
accordingly. 

Step 4 solves the optimal i for the position-independent inverse 
model (10), computes the gth group current ig±(θ) from (6b) 
with gg±(θ) defined in (13b) for the ORS and (17b) for the 
ERS, and then rearranges them to accommodate with  the 
desired x according to (6d).  

With the derived Z and qr, i and ig are computed off-line from 
(10), and the desired x can then be obtained in real-time as 
(25a) with ig± (g=1, 2) given in (25b): 

 
 

T 1 2 2 1

1 2 1 2

0 5-Phase motor

0 0 6-Phase motor

i i i i

i i i i
   

   


 


x  (25a)

where 

  
  

1(2) 1 1(2)

1(2)
1,3,5 1(2) 1 1(2)

5-Phase motor

6-Phase motor

P k

k P k

kN
i

kN

 

 



 

  
  


h i

h i

 
(25b)

In (25b), θ1(2)±=θ‒ϕ1(2)± and ϕ1(2)± is illustrated in Fig. 2(a) 
for the 5-Phase motor and Fig. 2(b) for the 6-Phase motor.  

  

III. RESULTS AND DISCUSSIONS 

The inverse harmonic model (Fig. 1d) and the strategies to 
remedy a 1P-OC fault have been investigated numerically and 
experimentally; both the odd and even phase configurations 
characterized by different (Z, gg±) formulations are considered. 
Specifically, the unified inverse model (10), which is 
applicable to remedy a 1P-OC fault of MMP-PM motors, is 
numerically illustrated and verified in Section III.A.1 (for a 
5-phase radial-flux type motor with iron-cores) and in Section 
III.A.2 (for a duplex 6-phase axial-flux type ironless motor), 
where the remedy performances are evaluated against the 
conventional time-based inverse model (4). Experiments 
validating the inverse harmonic model and demonstrating the 
real-time implementation and effectiveness of the remedy 
algorithms on a custom-designed 6-phase motor are presented 
in Section III.B. As in Section II, the investigations assume 
Phase 1 is open-circuit.  

A. Numerical Investigation of ORS and ERS 

The effectiveness of the harmonic-based remedy strategy has 
been numerically investigated on a 5-phase and a duplex 
6-phase MMP-PM motors (each with a 1P-OC fault) as shown 
in Table II where the parametric values used in the numerical 
investigations are given.  In Table II, the (arj, aφj, aτj) values of 
the 5-phase motor were computed from the magnetic flux 
density (MFD) fields of a finite element analysis (FEA); and 
that of the duplex 6-phase motor were published data in [5][26]. 
The 6-phase motor [5] was custom-designed to pre-eliminate 
any undesired forces along the Z-axis; the stator EM 
distribution in each phase is shown in Table II (bottom-left). 

A.1 ORS for the 5-phase configuration 

To provide a basis for evaluating the performance of the 
harmonic-based ORS, four different currents derived from the 
time- and harmonics-based inverse models without/with 
accounting for unbalanced forces are compared: 

Without: TW (Time-based), HW (Harmonic-based). 

With: TI (Time-based), HI (Harmonic-based). 

When unbalanced forces and thus the two rows of Zg(j±k) in 
(14d) are ignored, Zg(j±k) and qr in (15a,b) reduce to 

ja C S   
    and [τd, 0, …, 0]T respectively. Similarly, TW 

can be computed from (4) by replacing A and Qd with its last 
row aτ and τd respectively. The results are summarized in Fig. 3, 
Fig. 4 and Table III where the copper loss ratio ζ [27] is the total 
copper loss in one period relative to that under healthy mode. 

The following observations from the results can be made: 

Parameter identification: As shown in the FEA results in Fig. 
3(a), ac can be characterized by its fundamental (j=1) harmonic 
components (ax1, ay1, aτ1) within ±1% error relative to the 
values computed with the FEA software. With the (arj, aφj, aτj) 
values listed in Table II, (22), (23) and (25) are used to derive 
the HI and HW remedy strategies. 
Under healthy mode: As compared in Figs. 3(b, c), the cogging 
torque τP is within 0.03Nm, which is less than 0.3% of the 
output torque of 12Nm when the amplitude of the sinusoidal 
current input is maintained at 20.42A, and the corresponding 
unbalanced forces (fx, fy) are negligibly small (within ±2N) . 
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Under a 1P-OC fault (No remedy): As shown in Fig. 3(d), the 
resulting torque reduces to 9.6 Nm from that under healthy 
mode, and is highly oscillatory (with ±2.4Nm ripple). On the 
other hand, the unbalanced forces drastically increase to over 
100N (with fundamental harmonic period equal to /Np) from 
less than 2N under healthy mode. 

Effect of unbalanced forces in the event of a 1P-OC fault: 

 Without considering unbalanced forces, Qd reduces to a 
scalar d. Both HW and TW remedy strategies yield almost 
identical (current) solutions and copper loss ratio ζ=1.29 as 
compared in Table III and Fig. 4(a, b). Superimposed with τP 
(Fig. 3b), an average torque (12Nm) can be maintained (Fig. 
4c) but larger unbalance forces, fx=[‒120N, 120N] and 
fy=[‒220N, 0N], than that in Fig. 3(d) result. This is because 
HW (that does not account for unbalanced forces) yields 
larger currents than the original sinusoidal current inputs in 
order to sustain the healthy-mode torque. This finding 
suggests that the formulation can be effectively applied to a 
PM motor where diametrically symmetric pairs of EMs are 
grouped into a phase to pre-eliminate unbalanced forces.   

 With the unbalanced forces accounted in the inverse model, 
HI contributes larger current amplitudes igk (k=3, 5) than 
those of HW (Table III) suppressing the unbalanced forces to 
less than ±18N while maintaining the torque at 12Nm (Fig. 4d) 
with copper loss ratio ζ=1.76. The residue forces may be due 
to the effects of the neglected K (2a) in the inverse model.   

Validation and effectiveness of inverse harmonic model: As 
compared in Table III and Fig. 4(a, b), the HI (g=1, 2) 
group-currents are closely similar to the TI group currents. HI, 
characterized by three (k=1, 3, 5) harmonic components or two 
less than that characterized by five (k=1, 3, 5, 7, 9) harmonic 
components, has a slightly larger ζ than that of TI (ζ=1.65). 
Unlike the position-dependent TI where the harmonic 
components cannot be pre-determined, the number of HI 
harmonic components of the position independent 
current-vector i is a design parameter. 

TABLE II 
MAIN PARAMETRIC VALUES OF THE 5- AND 6-PHASE MOTOR 

5-Phase motor 
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Mesh: 36,630   triangle elements 

Stator EM: NE=Nph = 5, NC =1 
 ro=33.3mm, le=162mm 
Phase 1 position:ϕ1=0º 
Rotor PM: NP =4, ri=31.8mm 
PM arcs: ϕp=36.8° 
thickness: lm=7mm 
Magnetizing: Radial 
Computed Values: 
ar1 = 9.55, aφ1 = −6.51, 

aτ1 = −0.235, Ko=0.013 

6-Phase duplex motor [5][26] 
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ro=295mm, PM thickness: lm=6mm, 
arcs:ϕp=5.625°, magnetizing: Z-axis.
Computed Value：ar1≈ ar3≈ 0;
aφ1=−6.44, aφ3=−0.36; 
aτ1= −1.77, aτ3=−0.099.
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Fig. 3  5-phase motor model. (a) axc, ayc, aτc, (b) τP, (c) forces/torque 
under healthy mode, (d) forces/torque under 1P-OC fault. 
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Fig. 4 5-phase motor inverse model validation: (a) Group 1 currents, (b) 
Group 2 currents, (c) Forces/torque with currents from HW, (d) 
Forces/torque with currents from HI. 

TABLE III 

COMPARISON OF THE 5-PHASE MOTOR INVERSE MODELS 

 Group currents  (igk in Amperes, αgk in degrees)  

k g TW HW TI HI 

1 
1 (−23.7,   4.7) (−23.7,   4.8) (−27.9,   7.6) (−27.9,   2.0)
2 (−27.6, −6.1) (−27.6, −6.6) (−24.1, 15.0) (−25.3, 23.7)

3 
1 (−3.0, −31.4) (−3.0, −31.2) (−6.5,     6.0) (−10.6,−10.6)
2 (3.5, −78.3) (3.5, −78.7) (15.2, −49.0) (16.1,−49.7)

5 
1 (−0.40,−68.2) (−0.35,−61.6) (−5.6, 50) (−2.96, −18)
2  (0.44,  33.2) (0.48,  23.6) (6.1, 59) (4.78,   54)

7 
1 (0, 0) -- (1.9, −97) -- 
2 (0, 0) -- (2.9, −13) -- 

9 
1 (0, 0) -- (1.4, 33.6) -- 
2 (0, 0) -- (−2.1, −85) -- 

ζ 1.29 1.29 1.65 1.76 

A.2 ERS on Six Phase Configuration 

 To numerically investigate the effectiveness of the inverse 
harmonic model (Fig. 1d) and ERS, the responses for the 
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following operation modes were simulated on the duplex 
6-phase motor (Table II): 

Mode 0 (Healthy mode or no fault operation) 
Mode 1 (1P-OC fault with no remedy). 
Mode 2 (Conventional method): Operated as a 3-phase motor 

(m = 2, 4, 6) but with phase-current double the amplitude 
normally operated at no-fault. 

Mode 3 (Remedy with ERS): Operated as a 4-phase motor (m = 
2, 3, 5, 6) with currents computed from the time-based and 
inverse harmonic models. 

Mode 4 (Remedy with time-based model): Operated with the 
rest 5 phases (m = 2, 3, 4, 5, 6) with currents computed from 
the time-based inverse model. 

The simulated currents, pulsating torque and unbalanced 
forces (fx, fy) are presented in Fig. 5. For comparison, the copper 
loss ratio ζ and the peak-to-peak variations of (fx, fy) are 
summarized in Table IV, where the computational times for the 
remedy operations in Mode 3 (inverse harmonic model) and 
Mode 4 (time-based inverse model) were compared in Table 
IV.  
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Fig. 5 6-phase motor performance under different operating modes. (a, 
b) Mode 0, (c, d) Mode 1, (e, f) Mode 2, (g, h) Mode 3, (i, j) Mode 4. 

Some observations are drawn from the results: 
Mode 0 (Fig. 5a, b): The phase-currents (m=1, 2, 3) are 
identical to that (m=4, 5, 6) resulting in ripple-free torque 
(30Nm) and zero unbalanced forces. 
Mode 1 (Fig. 5c, d) leads to pulsating torque with reduced 
average value and unbalanced forces with a fundamental 
frequency at 53Hz (2NP50rpm/60).  
Mode 2 (Fig. 5e, f): The torque is recovered at the cost of the 
unbalanced forces and doubled copper loss (ζ=2) which are the 
largest among all the considered operation Modes.  

Mode 3 (Fig. 5g, h): The torque ripples and unbalanced forces 
are eliminated with reduced copper loss (ζ=1.66 in Table IV) 
compared with Mode 2. As a comparison, the currents were 

also computed using time-based inverse model; and both the 
time-based and harmonics-based inverse models yield nearly 
identical group-currents. The computational time (2μs) for the 
inverse harmonic model suggests that it is highly 
computationally efficient, and can be used for real-time control.  

Mode 4 (Fig. 5i, j): Accounting for unbalanced forces, the 
current of Phase 4 is insignificant relative to that of 
non-identical diametrically symmetric phases (m=2, 3, 5, 6), 
since that a larger i4 contributes to increased unbalanced forces, 
which have to be compensated by the currents of the other four 
phases. The torque ripples and unbalanced forces are 
eliminated, and the resulting copper loss (ζ=1.56) is only 
slightly smaller than that under Mode 3. The computational 
time for the harmonics-based method is less than 0.2% of that 
required by the time-based method (which involves complex 
matrix inversion). 

TABLE IV 
PEFORMANCE COMPARISON OF OPERATION MODES 

Modes 0 1 2 3  4  
ζ 1 0.83 2 1.66 1.56 
fx 0 [0, 20.2] [34.5, 28.0] 0 0 
fy 0 [4.0, 0] [33.7, 29.6] 0 0

Computation Time (2.5GHz CPU and 16G memory): 2μs 1150μs 

B. Experimental Validation 

 With the formulations of (Z, gg±) numerically validated in 
Subsection III.A, the unified inverse harmonic model (Fig. 1d) 
accounting for MMP-PM motors with odd and even phase 
configurations has been experimentally validated on a duplex 
face-turning spindle motor [5][26] developed for machining 
disk-like work-pieces as shown in Fig. 6. Designed as an open 
platform, two sets of 48 independently controllable stator 
EM-windings are supplied with linear current amplifiers, which 
were reconfigured as a 6-phase motor in this experiment; and 
the winding arrangement as well as the motor parameters are 
illustrated in Table II.  A PI-controller for the closed-loop speed 
control (Fig. 1c) and the current remedy algorithms were 
implemented on a NI Crio platform which provides an effective 
setup to evaluate the performances of the remedy operation.  

(a)

Rotor

Stator

Clamp

Workpiece

Z

Y

PM

EM
Axial 
Bearing 

Controller: NI-CrioDriver [5] 
Closed-loop linear current amplifiers (maximum ±4A each channel).

Radial 
Bearing 

Encoder

Micro-phone

Accelerometer

Cutters

 
Fig. 6 Duplex PM motor [5].  

A microphone (GRAS Array) installed close to the bearings 
(Fig. 6) on an adjustable frame was used to measure the bearing 
sound; and a three-axis accelerometer (PCB 356A16) was fixed 
on the stator surface (Fig. 6) to record the accelerations along 
X- and Y-axis under differ operating modes. Because of the 
relatively large rotational inertia (>1.9kg.m−2) and PM 
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pole-pair number (NP=32), the torque ripples with angular 
frequencies (j±k)NP in the experiments have little impact on the 
speed fluctuations and induced sound. As will be demonstrated, 
the measured bearing sound and vibrations due to unbalanced 
forces are reasonable indicators of the operation condition of 
the motor under 1P-OC fault.  

During experiments where the motor performances under 
faulty and different remedy operations were compared, the 
motor was tested under four different operation modes (Mode 
0~3 as described in Subsection III.A.2) at two speeds (50rpm 
and 85rpm) without and with cutting. To validate the 
effectiveness of the remedy strategies for different loading 
conditions, the motor was subjected to the following cutting 
operations of a titanium-alloy disk: 0.05mm depth-of-cutting 
and 0.25mm/s feed-rate at a cutting radius of 85~90mm. 
Experimental results are organized into four groups in Figs. 7 
and 8, where the Fast Fourier Transform (FFT) of the measured 
sound pressures and accelerations are presented: 

50rpm:  Results comparing the magnitudes at the dominant 
frequency between without cutting (Fig. 7a) and 
with cutting (Fig. 7c) are given in Fig. 8(a)  

85rpm:  Results comparing between without cutting (Fig. 7b) 
and with cutting (Fig. 7d) are given in Fig. 8(b). 
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Fig. 7 FFT of bearing sound pressure and motor accelerations for four 
operation modes. (a) 50rpm, without cutting, (b) 85rpm, without 
cutting, (c) 50rpm, with cutting, (d) 85rpm, with cutting.   

Some observations can be drawn based on Figs. 7 and 8: 
  As shown in Fig. 7, the dominant frequencies (53Hz and 

90.3Hz) correspond to the rotational speeds 50rpm and 
85rpm, respectively. As compared between without and 
with cutting, the cutting sound (usually at a much higher 
frequency) has negligible effects on the bearing sound at the 
dominant frequencies. The apparent changes of the sound 
pressure and accelerations from the normal Mode 0 to faulty 
Mode 1 in Fig. 8 confirm that the bearing sounds and motor 
vibrations are reliable indicators of the motor conditions.  

   As compared between Modes 0 and 1 in Fig. 8, the 
unbalanced forces induce large bearing sound and motor 
vibrations under a 1P-OC fault.  The conventional remedy 
method (Mode 2) doubles the currents in order to maintain 
the spin torque, leading to aggregated unbalanced force; 
The (with and without cutting) comparison in Fig. 8 shows 
that the condition became worsen with increased loads. On 
the contrary, the proposed remedy method consistently 
reduces the unbalanced forces at different speeds and loads. 

 As compared in Figs. 7 and 8, which account for all the 
considered operating speeds and loads of the 6-phase motor, 
Mode 3 and Mode 0 exhibit nearly identical sound pressure 
and acceleration spectrums, implying that the 1P-OC fault 
was remedied. The strong correlations between the 
numerical calculations (Fig. 5) and consistent experimental 
results (Figs. 7 and 8) validate the inverse harmonic model, 
and confirm the effectiveness and reliability of the proposed 
harmonic-based fault-remedy strategy for real-time 
implementation on a MMP-PM motor under a 1P-OC fault. 
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Fig. 8 Comparison of magnitudes of bearing sound pressure and 
accelerations of four operation modes/speeds. (a) 50rpm, (b) 85rpm. 

IV. CONCLUSION 

The method to derive a harmonic model to characterize the 
pulsating torque and unbalanced forces of a MMP-PM motor 
under an open-circuit fault and its solutions are presented.  
Based upon the inverse harmonic model, the remedy strategy is 
not only capable of recovering the motor spin torque but also 
effectively suppressing unbalanced forces that cause vibrations 
and damages on the rotor. By formulating the optimal fault- 
remedy currents as a combination of a position-independent 
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inverse model (can be computed offline) and a harmonic-based 
kernel vector, the inverse harmonic model significantly reduces 
the time requires to compute the remedial current (from 1150μs 
using a conventional time-based method to 2μs). The fault 
remedy methods have been numerically validated on a 5-phase 
and 6-phase motors, and experimentally evaluated on a 
custom-designed 6-phase MMP-PM motor, which  demonstrate 
the effectiveness of the harmonic models and the remedy 
strategy to sustain the performance of a MMP-PM motor under 
a 1P-OC fault. Although illustrated with 1P-OC fault, the 
formulation provides physically intuitive insights into remedy 
operations of a MMP-PM motor under other kinds of 
open-circuit faults.   

APPENDIX 

HARMONICS-BASED FORCE/TORQUE VECTOR. 

Neglecting the end-fringing effects, the force/torque vector Q 
can be derived from the Maxwell stress tensor method [22] [28]in 
terms of MFD B=[Br, Bφ, Bz]T in cylindrical coordinates (r, φ, z) 
within the air-gap (enclosed between the rotor and stator): 
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where ri and ro are the inner and outer radii of the air-gap 
respectively, le is the effective length of the air-gap for radial-flux 
PM motor, μ0 is the permeability of free space.  

The net MFD of the PMs and cth EM (denoted by the subscript 
‘P’ and ‘Ec’ respectively) are expressed in harmonic forms: 
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In (A.2) where s=r or z, (BsPj , BφPj) are the jth harmonic 
amplitude of (BsP , BφP) that depend on the shape and magnetization 
of the PMs; and (BsEn, BφEn) is the nth harmonic amplitude of (BsEc, 
BφEc). Using the trigonometric properties in Table A, the solutions 
to the integrals in the left column (where θc=θ−βc) are given in the 
last column for n=jNP±1 (otherwise, the integrals equal to zero). 
The integrals (A.1) can be simplified to solve for [arc aφc aτc]T in (5) 
for radial- and axial-flux PM motors.  

The MFD terms can be derived from (A.2) leading to  
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Solving (A.1) with the above results leads to 
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where [arj, aφj aτj]T are given below for radial- and axial-flux 
configurations respectively with 0 1 and =P PnN Nn j j   : 
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For axial flux configuration,  
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