
Asymptotic Miss Ratio of LRU Caching with
Consistent Hashing

Kaiyi Ji, Guocong Quan, Jian Tan
Department of Electrical and Computer Engineering

The Ohio State University, Columbus, 43210
Email: {ji.367, quan.72, tan.252}@osu.edu

Abstract—To efficiently scale data caching infrastructure to
support emerging big data applications, many caching systems
rely on consistent hashing to group a large number of servers to
form a cooperative cluster. These servers are organized together
according to a random hash function. They jointly provide a
unified but distributed hash table to serve swift and voluminous
data item requests. Different from the single least-recently-
used (LRU) server that has already been extensively studied,
theoretically characterizing a cluster that consists of multiple
LRU servers remains yet to be explored. These servers are
not simply added together; the random hashing complicates the
behavior. To this end, we derive the asymptotic miss ratio of
data item requests on a LRU cluster with consistent hashing. We
show that these individual cache spaces on different servers can
be effectively viewed as if they could be pooled together to form a
single virtual LRU cache space parametrized by an appropriate
cache size. This equivalence can be established rigorously under
the condition that the cache sizes of the individual servers are
large. For typical data caching systems this condition is common.
Our theoretical framework provides a convenient abstraction that
can directly apply the results from the simpler single LRU cache
to the more complex LRU cluster with consistent hashing.

I. INTRODUCTION

With the advent of cloud computing and emergence of big
data, scale-out data caching systems are widely deployed and
their horizontal scalability [1] becomes increasingly important.
As an effective solution, consistent hashing [2] has been com-
monly used by key-value caching systems, e.g., Dynamo [3],
Aerospike [4], Memcached [5], Redis [6]. Using consistent
hashing, a large number of servers are organized together to
form a cooperative cluster. These servers jointly provide a
unified but distributed hash table to serve swift and voluminous
data item requests. Once a data item is hashed to one of
the hosting servers, most key-value caching systems use the
least-recently-used (LRU) caching algorithm, or its variations,
e.g., LRU Clock [7], to decide which data items should be
kept in its own individual cache space. These data caching
systems play a critical role in optimizing the way information
is delivered in Web services.

With consistent hashing, the total amount of cache spaces
in the cluster can be easily expanded (scaled horizontally)
through the addition of new cache servers. However, these
individual cache spaces on different servers are not simply

This work was supported by the National Science Foundation under Grant
No. 1717060.

added together to achieve an overall request miss ratio. Al-
though LRU caching on a single server has already been
extensively studied, theoretically characterizing the miss ratio
of a LRU cluster organized by consistent hashing still remains
an unexplored problem. One difficulty in analysis is that the
data item requests are shuffled to a large number of servers
according to a random hash function. This random hashing
complicates the system behavior. Due to the fundamental
role and predominant usage in practice, LRU caching with
consistent hashing merits a deep investigation.

Characterizing the cache miss behavior of a cluster in such
a complex setting not only helps resource planning but also
improves the way a cache cluster is organized. To this end,
we derive the asymptotic miss ratio of a LRU caching clus-
ter with consistent hashing under the independent reference
model (IRM) [8]. Interestingly, these individual cache spaces
on different servers, though isolated physically but logically
connected through a hash function, can be effectively viewed
as if they could be pooled together to form a single virtual
LRU cache space. Interestingly, this virtual LRU cache has
a equivalent cache size determined by the distribution of the
random hash function. This equivalence can be established
when the cache sizes of the individual servers are large. Our
result provides a convenient abstraction that can rigorously
relate the more complex LRU caching with consistent hashing
to the relatively simpler single LRU cache. Based on this
abstraction, many known results on a single LRU cache can be
directly translated to a LRU cluster with consistent hashing.
Specifically, we prove a characteristic time approximation,
previously established for a single LRU cache, for a LRU
cluster. Notably, the characteristic time approximation has
the same form for almost all of the random hash functions.
This result is not straightforward in view that the miss ratio
of each of the server is a random variable conditional on
the random hash function. However, the overall conditional
asymptotic miss ratio of the cluster is always the same almost
surely, depending on the probability distribution of the random
hash function. Due to this equivalence, we comment that the
engineering implications discussed in [9] for a single LRU
cache can also be extended to a LRU cluster.

A. Background

To put the analysis on a concrete basis, we first summarize
the important features of consistent hashing and LRU caching.

1) Consistent hashing: Data items are usually organized
in a key value pair, and the entire data are stored in the
whole cluster as a distributed hash table according to keys. To

Fig. 1: Illustration of consistent hashing

scale out the system horizontally, each server is maintained
independent, e.g., by using consistent hashing [2] to select a
unique server for each key. The basic idea is to first hash
the data items to a large number of partitions at random.
These partitions form a ring, as illustrated in Fig. 1. The
physical servers, with a total number that is much smaller than
the number of partitions, are also hashed to a subset of the
partitions. A data item, after being hashed to a partition, will be
stored on the server that is closest in the clockwise direction
to its associated partition. For example, partitions A, B and
C are all stored on server S1 in Fig.1. Therefore, when the
server locations are fixed, each server hosts a certain number
of partitions that are determined by the hash function.

2) LRU caching: Each data item is hashed to one of the
hosting servers. A cache replacement algorithm is needed to
manage the cache space on an individual server. Due to the
low cost of tracking access history, LRU caching algorithm
has been widely used, e.g., for Memcached [5], [10]. A data
item is added to the cache after a client has requested it and
failed. When the cache is full, the LRU caching algorithm
evicts a data item that has not been used for the longest time
in order to accommodate the newly requested one.

B. Contributions of this paper

(I) For a family H of hash functions under the Simple
Uniform Hashing Assumption (SUHA) [11], we characterize
the asymptotic miss ratio of data item requests on a cluster
with consistent hashing. This asymptotic result, expressed as
a conditional probability, holds almost surely for all random
hash functions in H. It provides a new analytical framework
to study LRU caching with consistent hashing by conditioning
on the random hash function, which is an interesting feature
that most existing asymptotic results do not have.
(II) We rigorously establish a one-to-one equivalence between
a cluster with consistent hashing and a single virtual LRU
cache space with a proper size parametrized by the distribution
of the random hash function. Conveniently, this equivalence
translates the analytic results from the well-studied single
server to the complex cluster with consistent hashing. Based
on this equivalence, we prove the characteristic time approxi-
mation for a cluster to characterize the miss probability.
(III) Extensive simulations show that our asymptotic results
match with the empirical results accurately even for relatively
small cache sizes.

C. Related work

Consistent hashing has gained much popularity in recent
years due to the increasing demand of processing large data
sets on a scale-out infrastructure. It has been successfully used
in a number of real-world applications, e.g., web caches [12],
[13], peer-to-peer networks [14] and distributed storage sys-
tems [15]. Most theoretical studies on consistent hashing focus
on characterizing the randomized partitioning algorithms to
balance data allocation [16], memory sharing [17] and perfect
hashing [18]. These algorithms are usually analyzed under
SUHA. Some works circumvent this assumption using realistic
hash functions through simulations [19], [20]. However, none
of these works investigate the miss probabilities of a cluster
with consistent hashing.

There is a large body of work on the miss ratio of a
single LRU server. Different methods have been proposed,
e.g., approximation by iterative algorithms [21], mean field
analysis [22] and the characteristic time approximation [23],
[24]. To obtain insights, asymptotic results for Zipf’s popular-
ity distributions have been derived [25], [26], [27]. The charac-
teristic time approximation is also a common approach, which
has been shown to be accurate in practical applications [28],
[29]. Its success has been supported by the analysis [30], [31].
Nevertheless, these results cannot be directly extended to a
cluster with consistent hashing.

Although single LRU caches have been studied in depth,
characterizing the miss behavior of cache networks with
general topologies remains difficult. Instead, some existing
works, e.g., [32], [33], focus on offline optimization problems
(e.g., content placement) in cache networks. Some specially
structured cache networks (e.g., tree or line networks) have
been studied [34], [35] using a TTL-based eviction scheme.
With consistent hashing, the cache network can be viewed as
a one-hop network, which is the focus of this paper.

II. MODEL DESCRIPTION

Consider a cluster C with N servers {S1, S2, · · · , SN}
organized by consistent hashing. Assume that the data item
requests hosted on C can access an infinite number of distinct
data items of unit size that are represented by a sequence
(d◦i , i = 1, 2, 3, · · ·). The notation H(d◦i) = m represents that
a data item d◦i , together with all requests that ask for d◦i ,
are hashed to server m by the hash function H(·). Thus, a
subsequence of data items, denoted by (d

(m)
i , i = 1, 2, · · ·),

are hashed to server Sm, selected from (d◦i , i = 1, 2, · · ·).
To characterize the hash function H , we assume the Simple

Uniform Hashing Assumption (SUHA) to facilitate the analy-
sis. In practice, the ideal SUHA property is not feasible, and
people resort to a (strongly) universal hash family [36] or a
k-independent hash family [37] as approximations. Actually,
it has been shown that 2-independent hash functions under
mild conditions approximate truly random functions [38].
Specifically, we consider a family of hash functions H =
{hw(·), w = 1, 2, · · · }. Assume that, with H chosen from
H uniformly at random, each data item d◦i , i = 1, 2, · · · is
dispatched also uniformly at random to one of the partitions.

Note that although H(·) is random, it becomes one of the
deterministic hash function hw(·) once the random selection
is completed. Using consistent hashing, the involved servers
store the data items from mutually exclusive subsets of the
partitions, as shown in Fig. 1. Since the number of partitions
assigned to each of the servers could be different, we can
equivalently assume that each data item d◦i is independently
hashed to server Sm, 1 ≤ m ≤ N with probability µm by
H(·). In other words, we have the following assumption.

Assumption 1. (SUHA) H(d◦i), i = 1, 2, · · · are independent
random variables with P[H(d◦i) = m] = µm, 1 ≤ m ≤ N .

Assume that the arrivals of the data item requests occur at
time points {τn,−∞ < n < +∞}. Let Jn be the index of
the server for the request at time τn. The event {Jn = m}
represents that the request at time τn is processed on server
Sm. Denote by Rn the requested data item at time τn. Thus,
the event {Jn = m,Rn = d

(m)
i } means that the request at

time τn is to fetch data item d
(m)
i on server Sm. In order to

compute the miss ratio when the system reaches stationarity,
we consider the request at time τ0. It has been shown [26]
that the miss ratio is equal to the probability that the data
item requested by R0 is not in the cache. For cluster C, define

P
[
R0 = d

(m)
i

∣∣J0 = m,H
]

= q
(m)
i , i = 1, 2, 3, · · · (1)

P
[
R0 = d◦i

]
= q◦i , i = 1, 2, 3, · · · (2)

Note that
(
q
(m)
i , i ≥ 1

)
is a random sequence determined by

the random hash function H . We assume that the data items
(d◦i , i ≥ 1) are sorted such that the sequence (q◦i , i ≥ 1) is
non-increasing with respect to i. Since

(
d
(m)
i , i ≥ 1

)
is a

random subsequence of (d◦i , i ≥ 1),
(
q
(m)
i , i ≥ 1

)
is also non-

increasing by this ordering. Let
(
d◦mi , i ≥ 1

)
≡
(
d
(m)
i , i ≥ 1

)
,

which represents the subsequence of (d◦i , i ≥ 1) that is hashed
to server Sm by H . Therefore, P[J0 = m

∣∣H] =
∑∞
i=1 q

◦
mi .

For notational convenience in our proofs, we define Wm =

1/P[J0 = m
∣∣H]. On server Sm, we have q(m)

i = Wmq
◦
mi , i =

1, 2 · · · . We emphasize that Wm is a random variable de-
termined by the random hash function H , which normalizes
Qm =

(
q◦mi , i ≥ 1

)
to be a legitimate distribution.

The data item popularity is assumed to follow a Zipf’s
distribution q◦i ∼ c◦/i

α◦ . This is a typical distribution that
has been empirically observed in web pages [39], content-
centric network [40], and video systems [41]. To simplify the
analysis, this paper only considers a Zipf’s distribution with
α◦ > 1. For α◦ < 1, we can conduct a similar analysis based
on existing results [42], [43], [44].

LRU is equivalent to the move-to-front (MTF) policy [26],
[45], which sorts the data items in an increasing order of their
last access time. When a data item is requested under MTF, it
is moved to the first position of the list and all the other data
items that were in front of this one increase their positions by
one. Define Cn to be the position of the data item requested by
Rn in the sorted list under MTF on the server that processes

the request Rn. Then, the miss probability of the requests on
server Sm with a cache size xm is given by P[C0 > xm

∣∣J0 =
m,H], which is conditional on the random hash function H
and the event that R0 occurs on server Sm, i.e., J0 = m.
Combining the miss ratios of the servers, we obtain the overall
miss probability of the cluster C, conditional on H ∈ H,

P C,Hmiss =
N∑
m=1

P
[
C0 > xm

∣∣J0 = m,H
]
P
[
J0 = m

∣∣H] . (3)

In the analysis, we assume xm = bmx, 1 ≤ m ≤ N for x > 0.

III. MAIN RESULTS

In this section, we first derive the miss ratio for each
of the servers of the LRU cluster with consistent hashing
conditional on the random hash function. Then, we show that
these individual cache servers can be regarded as a single
virtual LRU server with a proper cache size. This connection
also proves the characteristic time approximation for a cluster.

A. Asymptotic miss ratio under random hashing

We derive the miss probabilities for the servers of the cluster
by conditioning on the random hash function H . Note that H
uniquely determines Wm, 1 ≤ m ≤ N . The gamma function is
given by Γ(α+1) =

∫∞
0
yαe−ydy. The notation f(x) ∼ g(x)

means limx→∞ f(x)/g(x) = 1.

Theorem 1. Under the assumptions in Section II, we obtain,
for all 1 ≤ m ≤ N , almost surely for all H , as xm →∞,

P
[
C0 > xm

∣∣J0 = m,H
]
∼ (µmΓ(1− 1/α◦))

α◦ c◦Wm

α◦x
α◦−1
m

, (4)

which implies, almost surely for all H ,

P C,Hmiss ∼
N∑
m=1

µα◦
m Γ(1− 1/α◦)

α◦c◦

α◦x
α◦−1
m

. (5)

Proof. The proof is presented in Section VI-A.

This asymptotic result in (4) involves random variables
Wm, 1 ≤ m ≤ N that are determined by H . Interestingly,
the overall asymptotic miss ratio of the whole cluster in (5)
is independent of H since Wm = 1/P[J0 = m

∣∣H]. These
asymptotic results hold a.s. for all H . See Experiments in
Section IV. If there is only one server in the cluster C, i.e.,
N = 1, Theorem 1 reproduces the results in [25], [26] for a
Zipf’s distribution, e.g., Theorem 3 of [26] on an asymptotic
miss probability of a single LRU server. However, extending
this result from a single server to a cluster is complicated. We
discuss two main issues that cause the difficulty: 1) Theorem 3
of [26] assumes a deterministic popularity distribution on
a server. This condition is not satisfied in our model due
to the random hash function; 2) the proofs of [25], [26]
cannot be used to prove the characteristic time approximation
for a cluster. Because of these reasons, we use a different
approach to derive the miss probability of a LRU cluster with
consistent hashing, which also proves the characteristic time
approximation for a cluster.

Now, suppose that we have a single virtual LRU cache
server of size x̄ that serves the entire data item requests {Rn},
which at the same time are also served on the cluster C. Based
on Theorem 1, we establish an equivalence between the cluster
C and the virtual LRU cache. Denote by P [C0 > x̄] the miss
probability of the virtual LRU cache conditional on H . Recall
that the server Sm has a cache capacity xm = bmx.

Theorem 2. Under the assumptions in Section II, we obtain,
almost surely for all H ,

P C,Hmiss ∼ P [C0 > x̄] , as x→∞, (6)

where

x̄ = x
(N∑
m=1

µα◦
m b1−α◦

m

)−1/(α◦−1)
. (7)

Proof. The proof is presented in Section VI-B.

This theorem shows that the miss probability on the cluster
C is asymptotically equal to the miss ratio of a LRU server
with the cache size given by (7). Interestingly, as illustrated
in Experiment 2, this asymptotic equivalence is accurate even
when the cache size of each individual server of cluster C
is relatively small. Using this connection, existing results and
insights that have been established for a single server seem to
be also true for a LRU cluster with consistent hashing. This
could be useful for resource planning and cluster optimization.

B. Characteristic time approximation with consistent hashing

The characteristic time approximation [24] has been widely
used in estimating the miss ratio of a LRU server. Based on
Theorem 2, we derive the characteristic time approximation
for a cluster.

Theorem 1 shows that, although the miss ratio of each server
is random, determined by H , the overall asymptotic miss ratio
of the cluster is independent of H . This interesting result
motivates us to define the characteristic time approximation
for the cluster C as

PCT [C0 > x̄] =
∞∑
i=1

q◦i e
−q◦i tC , (8)

where x̄ is given by (7) and tC is the unique solution of the
equation

∑∞
i=1(1− e−q◦i tC) = x̄.

Theorem 3. Under the assumptions of Theorem 2, we have,
almost surely for all H ,

PCT [C0 > x̄] ∼ P C,Hmiss, as x̄→∞. (9)

Proof. The proof is presented in Section VI-C.

IV. SIMULATIONS

In this section, we conduct extensive simulations using C++
to verify the main results in Section III. Notably, all simu-
lations match with our theoretical results even for relatively
small cache sizes.

Experiment 1. This experiment verifies Theorem 1. Consider
a cluster of 100 heterogeneous servers {S1, S2, · · · , S100}

that have distinct cache sizes and different hashing proba-
bilities. The server Sm, 1 ≤ m ≤ 100 has a cache ca-
pacity xm = (1 + 0.1zm)x with zm selected uniformly at
random from [−0.5, 0.5]. Thus, x is the average cache size
across all of the servers. Recall that µm is the probabil-
ity that a data item is hashed to server Sm. Let µm =

40 60 80 100 120 140 160 180 200

Average cache size across all servers: x

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

M
is
s
p
ro
b
a
b
il
it
y

S11 theoretical

S11 empirical

S30 theoretical

S30 empirical

S61 theoretical

S61 empirical

S71 theoretical

S71 empirical

S96 theoretical

S96 empirical

Fig. 2: Miss probabilities of five selected servers

(0.1 + 0.05b(m− 1)/20c) /20 for 1 ≤ m ≤ 100. Conditional
on H , we obtain random variables Wm, 1 ≤ m ≤ 100 with
Wm = 1/

∑∞
i=1 q

◦
mi . Set the total number of data items

M = 107, and the popularity distribution q◦i = c◦/i
α◦ , 1 ≤

i ≤ M with α◦ = 1.55, c◦ = 1/(
∑M
i=1 i

−α◦) = 0.4109.
For each x ∈ {40, 60, 80, 100, 120, 140, 160, 180, 200}, we
first simulate 108 requests to ensure that the entire system
reaches stationary, and then 109 more requests to compute the
empirical miss probabilities of the cluster C and the individual
servers. To verify (4), we need to show that it holds for all
1 ≤ m ≤ 100. To visualize the results, we only plot the
miss probabilities of five servers {S11, S30, S61, S71, S96} in
Fig. 2. The empirical results match well with the the theoretical
results by (4) and (5) even when x is small.

Experiment 2. This experiment verifies the equivalence
between the cluster C and a virtual LRU cache described in
Theorem 2, by using the same setting as in Experiment 1. We

40 80 120 160 200
0.004

0.006

0.008

0.010

0.012

0.014

M
is

s
p
ro

b
ab

il
it

y

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

Fig. 3: [Left] Miss ratios of the cluster C, a virtual LRU
cache and the characteristic time approximation. [Right] The
probability to hash a request to server Sm conditional on H

demonstrate the accuracy of the characteristic time approxi-
mationin, which also verifies Theorem 3. By computing (7),
we obtain the equivalent size of the virtual LRU caching space
x̄ = 91.1784x. For the characteristic time approximation of
the cluster C, we use a binary search to find the solution tC of

the equation
∑∞
i=1(1−e−q◦i tC) = 91.1784x and then calculate

the miss probability by (8). It can be shown from the left
figure in Fig. 3 that the empirical results match well with the
theoretical results for the miss probabilities of the virtual LRU
caching server and the cluster C even for x = 40. In addition,
the characteristic time approximation (8) provides an accurate
estimation of the miss ratio of the cluster C.

Experiment 3. This experiment moves beyond the assump-
tions of this paper and considers a realistic setting. Thus, we
cannot explicitly compute the equivalent virtual cache size
by Theorem 2. However, we still demonstrate an equivalence
between the cluster C and a virtual cache. We set α◦ = 0.8
and use a 2-independent hash function [38]. For a cluster of
100 servers {S1, S2, · · · , S100} described in Experiment 1,
we hash each server to one of 2000 partitions using the 2-
independent hash function ha,b(Si) = Ni = ((a × i + b)
mod p) mod 2000, where a, b are chosen from {1, 2, · · · , p}
uniformly at random with a large prime p = 15881. Using
the same hash function, each data item d◦i is hashed to one
of these partitions. The data items from partition k are stored
on the server that has an index arg mini{Ni : Ni ≥ k} if
the set {i : Ni ≥ k} 6= ∅ and arg mini{Ni} otherwise.
We set the total number of data items M = 104, and the

10 20 30 40 50 60 70 80 90 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
is

s
p

ro
b

ab
il

it
y

Fig. 4: Miss ratios of the cluster C and a virtual LRU cache

popularity distribution q◦i = c◦/i
0.8, 1 ≤ i ≤ M with

c◦ = 1/(
∑M
i=1 i

−0.8) = 0.0369. For the virtual LRU caching
space, we find the equivalent size x̄ = 70.0212x. It can
be shown from Fig. 4 that the empirical miss ratios of the
cluster C and the virtual LRU cache match very well.

V. CONCLUSION

Driven by the trend to scale out caching systems for
processing big data, LRU caching with consistent hashing has
been widely deployed. We develop a theoretical framework
to investigate the miss ratio of a LRU cluster for a family
of hash functions satisfying the Simple Uniform Hashing
Assumption (SUHA). We derive a close-form asymptotic miss
probability that holds almost surely for all of the random hash
functions from this family. This result also establishs a one-
to-one equivalence between a LRU cluster and a single virtual
LRU server. It provides a convenient abstraction to understand
the complex LRU cluster using the insights obtained from
a LRU server. Based on this connection, we also prove the

characteristic time approximation for a cluster with consistent
hashing.

VI. PROOFS

This section contains the proofs of our main theorems.

A. Proof of Theorem 1

We rely on the following Lemma 1 to prove Theorem 1. To
this end, we use Lemmas 5, 6 and 7 to study the three quan-
tities in Lemma 1, i.e., qi/qi+1, Φ(·) and T (x). Specifically,
we first note that the variables

(
I
(m)
k , k ≥ 1

)
can be regarded

as the indices of data items on server Sm and show that 1 ≤
q
(m)

I
(m)
k

/q
(m)

I
(m)
k +1

≤ 1 + ε holds with high probability 1− c1/n2

in Lemma 5. Then, we prove that the functional relationship

Φ̃m(z) between
(∑∞

i=I
(m)
k +1

q
(m)
i

)−1
and

(
q
(m)

I
(m)
k

)−1
satisfies

Φ̃m(z) ∼ azβ with high probability 1 − c2/n2 in Lemma 6.
Last, we show Tm(z) ∼ bzα with high probability 1− c3/n2

in Lemma 7. Using
∑∞
n=1(c1 + c2 + c3)/n2 <∞ and Borel-

Cantelli lemma, we prove that Theorem 1 holds almost surely
for all H ∈ H.

Lemma 1 is a direct consequence of Theorem 1 in [9]. Let
the data item popularity distribution on a server be (qi, i ≥ 1).
Consider the following functional relationship(∞∑

i=y

qi

)−1
∼ Φ

(
q−1y

)
, y →∞. (10)

Define an increasing function T (x) =
∑∞
i=1

(
1 −

(
1 − qi

)x)
with an inverse T←(x). We say that f(x) . g(x) as x→∞
if lim supx→∞ f(x)/g(x) ≤ 1; f(x) & g(x) has a comple-
mentary definition.

Lemma 1. If 1 ≤ limi→∞ qi/qi+1 < 1+ε, T (z) ∼ c1zα, α >
0 and Φ(z) ∼ c2zβ , β > 0, then, as x→∞,

Γ(1 + β)(1 + ε)−1

Φ(T←(x))
. P[C0 > x] .

Γ(1 + β)(1 + ε)

Φ(T←(x))
. (11)

Proof. The proof is based on Theorem 1 in [9]; see the
technical report [46] for the details.

We introduce some necessary definitions. Define mutually
independent Bernoulli random variables {X(m)

i }. Let X(m)
i =

1 indicate that the data item d◦i is hashed to server Sm
and X

(m)
i = 0 otherwise. We have P[X

(m)
i = 1] = µm.

Define I(m)
k ,

∑k
i=1X

(m)
i , which represents the number of

data items hashed to server Sm from (d◦i , 1 ≤ i ≤ k). Let
Z

(m)
i , q◦iX

(m)
i and Y

(m)
n ,

∑∞
i=n Z

(m)
i . We quote the

Bernstein’s inequality in Lemma 2, and establish the following
Lemma 3 to estimate Y (m)

k , which will be used to estimate∑∞
i=I

(m)
k +1

q
(m)
i in (29).

Lemma 2 (Theorem 2.8 in [47]). For independent random
variables Xi ≤ M, 1 ≤ i ≤ n with X =

∑n
i=1Xi, we

obtain, ∀ ε > 0,

P [X − E[X] > ε] ≤ exp

(
− ε2

2
∑n
i=1 E[X2

i] + 2Mε
3

)
. (12)

Lemma 3. There exist n0 ∈ N+ and c0 > 0 such that for
∀n > n0,

P

⋂
k≥n

{∣∣Y (m)
k − E[Y

(m)
k]

∣∣ < 1/kα◦− 2
3

} > 1− c0
n2
. (13)

Proof. Define events Ak , {|Y (m)
k − E[Y

(m)
k]| <

1/kα◦− 2
3 }, k ≥ 1. Recalling q◦i is non-increasing with respect

to i, we have, for all i ≥ n

Z
(m)
i ≤ q◦i ≤ q◦n . c◦/n

α◦ . (14)

Noting that E[(Z
(m)
i)2] = µm(q◦i)2 ∼ µmc2◦/i2α◦ , we have

∞∑
i=n

E[(Z
(m)
i)2] ∼

∫ ∞
n

µmc
2
◦

x2α◦
dx =

µmc
2
◦

(2α◦ − 1)n2α◦−1
. (15)

Applying (12) for the random variable Y (m)
n =

∑∞
i=n Z

(m)
i

and using (14) and (15), we have, there exist ni1 ∈ N+ and
v > 0 such that for ∀n > ni1 ,

P
[
Y (m)
n − E[Y (m)

n] >
1

nα◦−2/3

]
< exp(−n1/3v). (16)

In the meanwhile, applying (12) for −Y (m)
n =

∑∞
i=n(−Z(m)

i)

and using −Z(m)
i < 0 and (15), we have, for ∀n > ni1 ,

P
[
Y (m)
n − E[Y (m)

n] < − 1

nα◦−2/3

]
< exp(−n1/3v), (17)

which, in conjunction with (16), implies, for n > ni1

P
[∣∣∣Y (m)

n − E[Y (m)
n]

∣∣∣ ≥ 1

nα◦−2/3

]
< 2 exp(−n 1

3 v). (18)

Using (18) and a union bound, we obtain, for ∀n > ni1

P [{∩k≥nAk}c] = P
[
∪k≥n

{∣∣Y (m)
k − E[Y

(m)
k]

∣∣ ≥ 1/kα◦−2/3
}]

≤
∞∑
k=n

P
[∣∣Y (m)

k − E[Y
(m)
k]

∣∣ ≥ 1/kα◦−2/3
]

<

∞∑
k=n

2e−k
1/3v <

∫ ∞
n

exp(−x1/3v)dx. (19)

There exist ni2 and c0 > 0 such that
∫∞
n

exp(−x1/3v)dx <

c0/n
2 holds for n > ni2 . Using (19) and letting n0 ,

max{ni1 , ni2}, we finish the proof.

We establish the following lemma 4 to estimate q(m)

I
(m)
k

, which

is used to estimate Φ̃m(z) and the ratio q(m)

I
(m)
k

/q
(m)

I
(m)
k +1

.

Lemma 4. There exist n1 ∈ N+ and c1 > 0 such that for
∀n > n1,

P

⋂
k≥n

{
Wmq

◦
k ≤ q

(m)

I
(m)
k

< Wmq
◦
k−dk1/2e+1

} < 1− c1
n2
. (20)

Proof. Define events Bk , {q(m)

I
(m)
k

≥ Wmq
◦
k−dk1/2e+1

}. Let

Ck ,
{
H(d◦i) 6= Sm, k − dk1/2e+ 1 ≤ i ≤ k

}
be the event

that none of data items d◦i , k−dk1/2e+ 1 ≤ i ≤ k are hashed
to Sm. Next, we will show that Bk and Ck are equivalent.

Since both q(m)
i and q◦i are non-increasing with respect to i,

the event Bk implies,

d
(m)
i /∈

{
d◦j , k − dk1/2e+ 1 ≤ j ≤ k

}
, 1 ≤ i ≤ I(m)

k . (21)

Moreover, based on the definition of I(m)
k , we have, {d(m)

i , i ≥
I
(m)
k + 1} ⊆ {d◦i , i ≥ k + 1}, which implies,

d
(m)
i /∈

{
d◦j , k − dk1/2e+ 1 ≤ j ≤ k

}
, i ≥ I(m)

k + 1. (22)

Combining (21) and (22) yields Bk ⊆ Ck. On the other side,
the event Ck implies q(m)

i ≥ Wmq
◦
k−dk1/2e+1

for all 1 ≤ i ≤
I
(m)
k , yieding Ck ⊆ Bk. Thus, we have Bk is equivalent to
Ck. Under Assumption 1, we have P [Bk] = P [Ck] = (1 −
µm)dk

1/2e. Noting the complement Bck =
{
Wmq

◦
k−dk1/2e+1

>

q
(m)

I
(m)
k

≥Wmq
◦
k

}
and using a union bound, we obtain,

P [∩k≥nBck] = 1− P [∪k≥nBk] ≥ 1−
∑
k≥n

(1− µm)dk
1/2e

≥ 1−
∑
k≥n

(1− µm)k
1/2

≥ 1−
∫ ∞
n−1

(1− µm)x
1/2

dx (23)

There exist a large integer n1 and a constant c1 > 0 such
that for all n ≥ n1,

∫∞
n−1(1− µm)x

1/2

dx < c1/n
2, which, in

conjunction with (23), completes the proof.

We use the following Lemma 5 to estimate q(m)

I
(m)
k

/q
(m)

I
(m)
k +1

.
The proof is straightforward by using Lemma 4.

Lemma 5. For any εq > 0, there exists n2 > n1 such that,
for all n > n2

P
[⋂
k≥n

{
1 ≤ q(m)

I
(m)
k

/q
(m)

I
(m)
k +1

< 1 + εq

}]
> 1− 2c1

n2
(24)

where the constant c1 is the same as in Lemma 4.

Proof. Define an event Dk ,
{
q
(m)

I
(m)
k +1

< Wmq
◦
k+dk1/2e

}
.

Noting that {d(m)
i , i ≥ I

(m)
k + 1} ⊆ {d◦i , i ≥ k + 1},

we have q
(m)

I
(m)
k +1

< Wmq
◦
k, and hence the complement

Dc
k =

{
Wmq

◦
k+dk1/2e < q

(m)

I
(m)
k +1

< Wmq
◦
k

}
. Using a similar

approach to Lemma 4, we obtain P [Dk] = (1−µm)dk
1/2e and

for all n > n1

P [∩k≥nDck] = 1− P [∪k≥nDk] ≥ 1−
∑
k≥n

P [Dk] ≥ 1− c1
n2
.

which, togehter with (23), we obtain

P
[⋂
k≥n

{
Wmq

◦
k > q

(m)

I
(m)
k +1

> Wmq
◦
k+dk1/2e,

Wmq
◦
k−dk1/2e+1 > q

(m)

I
(m)
k

> Wmq
◦
k

}]
> 1− 2c1

n2
,

which implies

P
[⋂
k≥n

{
1 ≤

q
(m)

I
(m)
k

q
(m)

I
(m)
k +1

<
q◦
k−dk1/2e+1

q◦
k+dk1/2e

}]
> 1− 2c1

n2
.

Using q◦
k−dk1/2e+1

/q◦
k+dk1/2e → 1, we finish the proof.

Next, we establish the following lemma to estimate the

functional relationship between
(∑∞

i=I
(m)
k +1

q
(m)
i

)−1
and(

q
(m)

I
(m)
k

)−1
based on Lemma 3 and Lemma 4.

Lemma 6. For εp > 0, there exists n3 > max{n0, n1} and
c2 > 0 such that, for all n > n3,

P

[⋂
k≥n

{
(1− εp)

(∞∑
i=I

(m)
k +1

q
(m)
i

)−1
< Φ̃m

((
q
(m)

I
(m)
k

)−1)

< (1 + εp)

(∞∑
i=I

(m)
k +1

q
(m)
i

)−1}]
> 1− c2

n2
, (25)

where

Φ̃m(x) = (Wmc◦)
−1/α◦µ−1m x1−1/α◦(α◦ − 1), α◦ > 1. (26)

Proof. Since q◦k ∼ c◦/kα◦ , there exist constants εk > 0, k ≥ 1
satisfying limk→∞ εk →∞ such that

q◦k >
(1− εk)c◦

kα◦
, q◦k−dk1/2e+1 <

(1 + εk)c◦
(k − dk1/2e+ 1)α◦

. (27)

Combining (20) and (27), we obtain, for n > n1

P

[⋂
k≥n

{(
k − dk1/2e+ 1

)α◦

(1 + εk)Wmc◦
<

(
q
(m)

I
(m)
k

)−1

<
kα◦

(1− εk)Wmc◦

}]
≥ 1− c1

n2
. (28)

Noting that {d(m)
i , i ≤ I

(m)
k } ⊆ {d◦i , i ≤ k} and {d(m)

i , i ≥
I
(m)
k + 1} ⊆ {d◦i , i ≥ k + 1}, we have

WmY
(m)
n+1 =

∞∑
i=n+1

Wmq
◦
iX

(m)
i =

∞∑
i=I

(m)
n +1

q
(m)
i . (29)

Combining (29) and Lemma 3, we obtain, for n > n0,

P

[⋂
k≥n

{(
Wm

(
E
[
Y

(m)
k+1

]
+ 1/kα◦− 2

3

))−1

<

(
∞∑

i=I
(m)
k

+1

q
(m)
i

)−1

<
(
Wm

(
E
[
Y

(m)
k+1

]
− 1/kα◦− 2

3

))−1
}]
≥ 1− c0

n2
. (30)

Since E
[
Y

(m)
k+1

]
= µm

∑∞
i=k+1 q

◦
i ∼ µmc◦(α◦ − 1)−1(k +

1)1−α◦ , there exist constants ε1,k > 0 with limk→∞ ε1,k = 0
such that

(1− ε1,k)µmc◦
(α◦ − 1)(k + 1)α◦−1

< E[Y
(m)
k+1] <

(1 + ε1,k)µmc◦
(α◦ − 1)(k + 1)α◦−1

. (31)

Combining (30) and (31), we have, there exist constants τ1,k,
τ2,k satisfying limk→∞ τ1,k, τ2,k → 1 such that, for n > n0,

P

[⋂
k≥n

{
(α◦ − 1)kα◦−1

µmWmc◦
τ1,k <

(∞∑
i=I

(m)
k +1

q
(m)
i

)−1

<
(α◦ − 1)kα◦−1

µmWmc◦
τ2,k

}]
> 1− c0

n2
, (32)

Combining (26) and (28) implies, for n > max{n0, n1},

P

[⋂
k≥n

{
(α◦ − 1)kα◦−1

µmWmc◦
δ1,k < Φ̃m

((
q
(m)

I
(m)
k

)−1)

<
(α◦ − 1)kα◦−1

µmWmc◦
δ2,k

}]
> 1− c1

n2
(33)

where constants δ1,k, δ2,k → 1 as k → ∞. Using a union
bound to (32) and (33), we obtain, for n > max{n0, n1},

P

[⋂
k≥n

{
δ1,k
τ2,k

(∞∑
i=I

(m)
k +1

q
(m)
i

)−1
< Φ̃m

((
q
(m)

I
(m)
k

)−1)

<
δ2,k
τ1,k

(∞∑
i=I

(m)
k +1

q
(m)
i

)−1}]
> 1− c0 + c1

n2
(34)

Since δ1,k/τ2,k, δ2,k/τ1,k → 1 as k → ∞, for any εp > 0,
there exists n3 > max{n0, n1} such that, for any n > n3, 1−
εp < δ1,k/τ2,k, δ2,k/τ1,k < 1 + εp, which, together with (34),
completes the proof.

To use Lemma 1, we define Tm(x) =
∑∞
i=1

(
1 −

(
1 −

q
(m)
i

)x)
, which is equivalent to

Tm(x) =
∞∑
i=1

(1− (1−Wmq
◦
i)x)X

(m)
i . (35)

We now derive an approximation of Tm(·) using Lemma 7.
On the proof, we first rewrite random variable 1/Wm =

Wm1
+ Wm2

, where Wm1
=
∑n
i=1 q

◦
iX

(m)
i and Wm2

=∑∞
i=n+1 q

◦
iX

(m)
i . For Wm1

, using Lemma 4, we show that
for n large enough, Wm2

≈ c(n)1−α◦ with high probability.
For Wm1 , note that, conditional on {H(d◦i), 1 ≤ i ≤ n},
Wm1 is deterministic. Combining these two results, we have,
for n large enough, conditional on {H(d◦i), 1 ≤ i ≤ n},
Wm is deterministic. Based on this fact and conditional on
{H(d◦i), 1 ≤ i ≤ n}, we apply the Bernstein’s inequality (12)
for (35) and obtain the estimation (41). By noting that the
bound in (41) is independent of the hashing function H ,
unconditional on {H(d◦i), 1 ≤ i ≤ n}, we finish the proof.

Lemma 7. For any ε2 > 0, there exists x0 > 0, such that for
all x ≥ x0,

P
[{

(1− ε2)µmΓ(1− 1/α◦) (c◦Wmx)
1
α◦ < Tm(x)

<(1 + ε2)µmΓ(1− 1/α◦) (c◦Wmx)
1
α◦

}]
> 1− c3

x2
, (36)

where c3 is a positive constant.

Proof. For nx = bxσc with σ < α−10 , we define Wm1 =∑nx
i=1 q

◦
iX

(m)
i and Wm2

=
∑∞
i=nx+1 q

◦
iX

(m)
i . Recalling the

definition of Y (m)
n , we have Wm2

= Y
(m)
nx+1, which, together

with (18) and (31), we obtain, for ε > 0, there exists a large
x1 > 0 such that for all x > x1

P
[
(1− ε)K(nx) < Wm2

< (1 + ε)K(nx)

]
> 1− 2 exp(−n1/3x v), (37)

where K(nx) , µmc◦(α◦ − 1)−1(nx + 1)1−α◦ and ν is the
same constant as in (18). Noting Wm = 1/(Wm1

+Wm2
) and

using (35) and (37), we have

P
[
I1 + I2 < Tm(x) < I1 + I3

]
> 1− 2 exp(−n

1
3
x v). (38)

where I1 =
∑nx
i=1 (1− (1−Wmq

◦
i)
x
)X

(m)
i ,

I3 =

∞∑
i=nx+1

(
1−

(
1− q◦i

Wm1 + (1− ε)K(nx)

)x)
X

(m)
i . (39)

and I2 is defined by replacing (1− ε) in I3 with (1 + ε).
Let Mnx , {H(d◦i) = Smi , 1 ≤ i ≤ nx} be an event that

the first nx data items are hashed to servers Sm1 , . . . , Smnx .
Let pi = q◦i /(Wm1 + (1 − ε)K(nx)). From (35), we have
0 < Wmq

◦
i < 1 if X(m)

i = 1 and (1−(1−Wmq
◦
i)x)X

(m)
i = 0

otherwise. Thus, without changing the expression of Tm(x),
we assume 0 < Wmq

◦
i < 1 for all i ≥ 1. Note that

pi → Wmq
◦
i as nx → ∞. Then, for nx large enough and

conditional on Mnx , we have pi ∼ c1/i
α◦ and 0 < pi < 1,

where the constant c1 = c◦/(Wm1
+ (1 − ε)K(nx)). Sim-

ilar to the derivation of Lemma 3, applying Lemma 2 to
I3x
−1/α◦ =

∑∞
i=nx+1 (1− (1− pi)x)x−1/α◦X

(m)
i and using

Lemma 1 in [9], we obtain, for ∀ ε1 > 0, there exists a large
x2 such that for all x > x2,

P
[
(1− ε1)µmΓ(1− 1/α◦)

(
c◦x

W1−ε

) 1
α◦

< I3 < (1 + ε1)µm

Γ(1− 1/α◦)

(
c◦x

W1−ε

) 1
α◦
∣∣∣∣Mnx

]
> 1− c4

x2
, (40)

where W1−ε = Wm1
+ (1 − ε)K(nx) and c4 is a positive

constant. A similar result holds for I2 by replacing (1 − ε)
and c4 in (40) with (1 + ε) and c5, respectively. Recalling the
definition (35) and conditional on the event Mnx , we have
I1 ≤ nx, which, in conjunction with nx < xσ and σ < 1/α◦,
implies that limx→∞ I1/x

1
α◦ = 0. Then, conditional on Mnx ,

we have for ∀ ε2 > ε1, there exists a sufficiently large x3 such
that for all x > x3,

0 < I1 < (ε2 − ε1)µmΓ(1− 1/α◦) (c◦x/W1−ε)
1
α◦ ,

which, using (38) and (40) and a union bound, implies that
for all x > x4 , max{x1, x2, x3},

P
[
(1− ε2)µmΓ(1− 1/α◦)

(
c◦x

W1+ε

) 1
α◦

< Tm(x) < (1 + ε2)

µmΓ(1− 1/α◦)

(
c◦x

W1−ε

) 1
α◦
∣∣∣∣Mnx

]
> 1− c3

x2
, (41)

where W1+ε = Wm1
+ (1 + ε)K(nx) and c3 is a positive

constant related to c4, c5 and ν. Note that 1−c3/n2 on the right
side of (41) is independent of Mnx and W1+ε, W1−ε →Wm

as x → ∞. Thus, for x large enough, unconditional on Mnx

and passing ε1, ε→ 0, we obtain (36).

Now, we use Lemmas 1, 5, 6 and 7 to prove Theorem 1 by
applying the Borel-Cantelli lemma.

Proof of Theorem 1. For the two bounds proved in Lemma 5
and Lemma 6, it is easy to verify that

∑∞
n=1 (2c1 + c2) /n2 <

∞, which, by the Borel-Cantelli lemma, implies that, almost
surely for each H ∈ H, there exists a finite nH , such that
for all n > nH , we have 1 ≤ q

(m)

I
(m)
n

/q
(m)

I
(m)
n +1

< 1 + εq and

(1 − εp)
(∑∞

i=I
(m)
k +1

q
(m)
i

)−1
< Φ̃m

((
q
(m)

I
(m)
k

)−1)
< (1 +

εp)
(∑∞

i=I
(m)
k +1

q
(m)
i

)−1
, where Φ̃m is defined in Lemma 6.

Now, note that x in Lemma 7 represents the cache size,
which also takes integer values. For the bound in Lemma 7,
we have

∑∞
x=1 c3/x

2 <∞, which, by Borel-Cantelli lemma,
implies that, almost surely for each H ∈ H, there exists
a finite xH , such that for all x > xH , we have (1 −
ε2)µmΓ(1−1/α◦) (c◦Wmx)

1
α◦ < Tm(x) < (1+ ε2)µmΓ(1−

1/α◦) (c◦Wmx)
1
α◦ .

These two facts, using Lemma 1 and passing εq, εp, ε2 → 0,
implies that, almost surely for all H ,

P
[
C0 > xm

∣∣J0 = m,H
]
∼ (µmΓ(1− 1/α◦))

α◦ c◦Wm

α◦x
α◦−1
m

,

which finishes the proof of Theorem 1.

B. Proof of Theorem 2
Proof. By Theorem 1, the miss ratio of cluster C satisfies

P C,Hmiss =

N∑
m=1

P
[
C0 > xm

∣∣J0 = m,H
]
P
[
J0 = m

∣∣H]
∼

N∑
i=1

(µmΓ(1− 1/α◦))
α◦ c◦

α◦b
α◦−1
m xα◦−1

,

which holds almost surely for all H . Noting that q◦i ∼ c◦/iα◦

and using Theorem 3 of [26], we can obtain P[C0 > x̄] ∼
c◦(Γ(1−α−1◦))α◦/(α◦x̄

α◦−1), which, in conjunction with (7),
yields (6).

C. Proof of Theorem 3
We first show that if q◦i ∼ c◦/iα◦ , then, as x̄→∞,

PCT [C0 > x̄] ∼ P [C0 > x̄] . (42)

The proof is presented in the technical report [46]. Combining
(42) and Theorem 2 yields Theorem 3.

REFERENCES

[1] D. Singh and C. K. Reddy, “A survey on platforms for big data
analytics,” Journal of Big Data, vol. 2, no. 1, p. 8, 2015.

[2] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in Proceedings
of the Twenty-ninth Annual ACM Symposium on Theory of Computing,
ser. STOC ’97, 1997, pp. 654–663.

[3] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in Proceedings of Twenty-
first ACM SIGOPS Symposium on Operating Systems Principles, ser.
SOSP ’07. ACM, 2007, pp. 205–220.

[4] “Aerospike,” http://www.aerospike.com/.
[5] “Memcached,” http://memcached.org/.
[6] “Redis,” http://redis.io/.
[7] A. S. Tanenbaum, Modern Operating Systems, 2nd ed. Upper Saddle

River, NJ, USA: Prentice Hall Press, 2001.
[8] S. Vanichpun and A. M. Makowski, “The output of a cache under the

independent reference model: where did the locality of reference go?”
in ACM SIGMETRICS Performance Evaluation Review, vol. 32, no. 1.
ACM, 2004, pp. 295–306.

[9] J. Tan, G. Quan, K. Ji, and N. Shroff, “On resource pooling and separa-
tion for LRU caching,” in Proceedings of the 2018 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Science. ACM, 2018.

[10] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling Memcache at Facebook,” in Presented as
part of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13). Lombard, IL: USENIX, 2013, pp. 385–398.

[11] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms, 2nd ed. McGraw-Hill Higher Education, 2001.

[12] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina,
K. Iwamoto, B. Kim, L. Matkins, and Y. Yerushalmi, “Web caching
with consistent hashing,” in Proceedings of the Eighth International
Conference on World Wide Web, ser. WWW ’99, 1999, pp. 1203–1213.

[13] J. Wang, “A survey of web caching schemes for the Internet,” SIGCOMM
Computer Communication Review, vol. 29, no. 5, pp. 36–46, Oct. 1999.

[14] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for Internet applications,” IEEE/ACM Transactions on Network-
ing (TON), vol. 11, no. 1, pp. 17–32, 2003.

[15] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS Operating Systems Review, vol. 44, no. 2,
pp. 35–40, 2010.

[16] T. Schickinger and A. Steger, “Simplified witness tree arguments,”
Lecture notes in computer science, pp. 71–87, 2000.

[17] S. Novakovic, P. Faraboschi, K. Keeton, R. Schreiber, E. Bugnion, and
B. Falsafi, “Never mind networking: Using shared non-volatile memory
in scale-out software,” in presentation, 2nd Int’l Workshop Rack-Scale
Computing (WRSC 15), 2015.

[18] S. Edelkamp, “Planning with pattern databases,” in Sixth European
Conference on Planning, 2014.

[19] M. Dietzfelbinger and M. Rink, “Applications of a splitting trick,”
Automata, Languages and Programming, pp. 354–365, 2009.

[20] A. Pagh and R. Pagh, “Uniform hashing in constant time and optimal
space,” SIAM Journal on Computing, vol. 38, no. 1, pp. 85–96, 2008.

[21] Z. Drudi, N. J. Harvey, S. Ingram, A. Warfield, and J. Wires, “Approx-
imating hit rate curves using streaming algorithms,” in LIPIcs-Leibniz
International Proceedings in Informatics, vol. 40. Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2015.

[22] N. Gast and B. Van Houdt, “Transient and steady-state regime of a
family of list-based cache replacement algorithms,” ACM SIGMETRICS
Performance Evaluation Review, vol. 43, no. 1, pp. 123–136, 2015.

[23] R. Fagin, “Asymptotic miss ratios over independent references,” Journal
of Computer and System Sciences, vol. 14, no. 2, pp. 222–250, 1977.

[24] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
modeling, design and experimental results,” IEEE Journal on Selected
Areas in Communications, vol. 20, no. 7, pp. 1305–1314, Sep 2002.

[25] P. R. Jelenković and A. Radovanović, “Least-recently-used caching with
dependent requests,” Theoretical Computer Science, vol. 326, no. 1-3,
pp. 293–327, Oct. 2004.

[26] P. R. Jelenković, “Asymptotic approximation of the move-to-front search
cost distribution and least-recently-used caching fault probabilities,” The
Annals of Applied Probability, no. 2, pp. 430–464, 1999.

[27] T. Osogami, “A fluid limit for a cache algorithm with general request
processes,” Advances in Applied Probability, vol. 42, no. 3, pp. 816–833,
2010.

[28] D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact analysis of TTL
cache networks,” in 32nd International symposium on Computer Perfor-
mance, modeling, measurements, and evaluation (IFIP Performance’14),
Turin, Italy, October 2014, pp. 2–23.

[29] M. Garetto, E. Leonardi, and V. Martina, “A unified approach to
the performance analysis of caching systems,” ACM Transactions on
Modeling and Performance Evaluation of Computing Systems, vol. 1,
no. 3, p. 12, 2016.

[30] C. Fricker, P. Robert, and J. Roberts, “A versatile and accurate ap-
proximation for LRU cache performance,” in Proceedings of the 24th
International Teletraffic Congress, ser. ITC ’12, 2012, pp. 8:1–8:8.

[31] J. Roberts and N. Sbihi, “Exploring the memory-bandwidth tradeoff
in an information-centric network,” in Teletraffic Congress (ITC), 2013
25th International. IEEE, 2013, pp. 1–9.

[32] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed
caching helpers,” IEEE Transactions on Information Theory, vol. 59,
no. 12, pp. 8402–8413, 2013.

[33] S. Ioannidis and E. Yeh, “Adaptive caching networks with optimality
guarantees,” in Proceedings of the 2016 ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Science.
ACM, 2016, pp. 113–124.

[34] D. S. Berger, P. Gland, S. Singla, and F. Ciucu, “Exact analysis of TTL
cache networks,” Performance Evaluation, vol. 79, pp. 2–23, 2014.

[35] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley, “Performance evalu-
ation of hierarchical TTL-based cache networks,” Computer Networks,
vol. 65, pp. 212 – 231, 2014.

[36] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
in Proceedings of the Ninth Annual ACM Symposium on Theory of
Computing, ser. STOC ’77. New York, NY, USA: ACM, 1977, pp.
106–112.

[37] M. N. Wegman and J. L. Carter, “New classes and applications of hash
functions,” in 20th Annual Symposium on Foundations of Computer
Science (sfcs 1979), Oct 1979, pp. 175–182.

[38] M. Mitzenmacher and S. Vadhan, “Why simple hash functions work: Ex-
ploiting the entropy in a data stream,” in Proceedings of the Nineteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’08.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2008, pp. 746–755.

[39] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: evidence and implications,” in Proceedings
of the 18th Conference on Information Communications, 1999.

[40] C. Fricker, P. Robert, J. Roberts, and N. Sbihi, “Impact of traffic mix on
caching performance in a content-centric network,” in Computer Com-
munications Workshops (INFOCOM WKSHPS), 2012 IEEE Conference
on. IEEE, 2012, pp. 310–315.

[41] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I tube,
you tube, everybody tubes: analyzing the world’s largest user generated
content video system,” in Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement. ACM, 2007, pp. 1–14.

[42] P. R. Jelenković and X. Kang, “LRU caching with moderately heavy
request distributions,” in 2007 Proceedings of the Fourth Workshop on
Analytic Algorithmics and Combinatorics (ANALCO). SIAM, 2007,
pp. 212–222.

[43] G. Quan, K. Ji, and J. Tan, “LRU caching with dependent competing
requests,” in 2018 IEEE Conference on Computer Communications
(INFOCOM), Honolulu, HI, April 2018.

[44] C. Berthet, “Approximation of LRU caches miss rate: Application to
power-law popularities,” arXiv preprint arXiv:1705.10738, 2017.

[45] J. Fill, “An exact formula for the move-to-front rule for self-organizing
lists,” Journal of Theoretical Probability, vol. 9, no. 1, pp. 113–160,
1996.

[46] K. Ji, G. Quan, and J. Tan, “Asymptotic miss ratio of LRU caching with
consistent hashing,” arXiv preprint arXiv:1801.02436, 2018.

[47] F. R. Chung and L. Lu, Complex graphs and networks. American
mathematical society Providence, 2006, vol. 107.

