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ABSTRACT
Parallel and distributed computing systems are foundational to

the success of cloud computing and big data analytics. Fork-Join

Queueing Networks with Blocking (FJQN/Bs) are natural models for

such systems. While engineering solutions have long been made

to build and scale such systems, it is challenging to rigorously

characterize the throughput performance of ever-growing systems,

especially in the presence of heavy-tailed delays. In this paper, we

utilize an infinite sequence of FJQN/Bs to study the throughput

limit and focus on regularly varying service times with index α > 1.

We introduce two novel geometric concepts - scaling dimension and

extended metric dimension - and show that an infinite sequence of

FJQN/Bs is throughput scalable if the extended metric dimension

< α − 1 and only if the scaling dimension ≤ α − 1. These results

provide new insights on the scalability of a rich class of FJQN/Bs.
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1 INTRODUCTION
Parallel and distributed computing systems are foundational to

the success of cloud computing and big data analytics. Numerous

large-scale analytics have been developed over distributed servers

to achieve high performance. Parallel and distributed computing

also exhibits itself in wireless sensor networks, in composite web

services, in distributed stream computing, in distributed file systems,

in MapReduce frameworks, in end-system multicast, etc.
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As the sizes of various parallel and distributed computing sys-

tems continue to grow, their throughput performance could degrade

due to synchronization delays, processing time variations, or data

storage, I/O, and bandwidth constraints. The problem has been well

recognized in all kinds of distributed computing environments but

the analysis is non-trivial. What further complicates the investiga-

tion is the presence of heavy-tailed processing times that have been

widely documented therein. These heavy-tailed processing times

can cause extremal delays that directly impact the synchroniza-

tion and bring down the throughput. One critical issue concerns

throughput scalability: can we properly design a parallel and dis-

tributed processing system in massive scale under heavy-tailed

delays so that the throughput performance can be sustained? While

practical engineering solutions have long been made to build and

scale such systems, the mathematical foundations toward under-

standing the throughput performance of ever-growing systems

remain rudimentary.

2 MODEL
The above parallel and distributed computing systems can be natu-

rally modeled as fork-and-join queueing networks with blocking

(FJQN/Bs). A FJQN/B, denoted by N = (V ,E), consists of a set of
nodesV representing servers and a set of directed arcs E represent-

ing routing of jobs. Associated with each arc, there is a buffer of

finite capacity for job storage between services.

Each node models a single server that adopts the First Come

First Serve policy. Services are conducted in a fork-join manner:

each service consumes exactly one job from every upstream buffer

and generates exactly one job to every downstream buffer. A server

is starved (blocked) if one of the upstream (downstream) buffers

is empty (full). An idle server can schedule a service only when it

is neither blocked nor starved. During the service, jobs remain in

the upstream buffers. For simplicity, we consider a homogeneous

setting where all buffers are of constant size b < ∞ and all service

times are i.i.d. of distribution Fσ . In particular, we focus on the

cases where Fσ is regularly varying with index α > 1.

For a given FJQN/B, the throughput at node v ∈ V is defined as

the average number of service completions in a unit time in the

long run. Under i.i.d. service times, the throughput is identical at

every node, which is referred to as the network throughout and

can be expressed as

θ (N ) =

(
lim

m→∞

E
[
Tm,v (N )

]
m

)−1
, (1)

whereTm,v (N ) denotes them-th service completion time at nodev .
To investigate the throughput limit, we utilize an infinite se-

quence of FJQN/Bs N = {N1,N2, . . . ,Ni , . . . } to characterize the
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way the system grows. Each Ni = (Vi ,Ei ) is a finite-sized FJQN/B.

This sequence N is said to be throughput scalable if the limit infi-

mum of the network throughput is strictly positive.

3 PRELIMINARIES
Previous studies on scalability of FJQN/Bs either focus on spe-

cial network structures or assume light-tailed service times. [4]

discusses the throughput limit of an infinite tandem queueing net-

work with blocking. [5] shows the linear growth of the maximum

weighted path on a lattice. The work is extended by [3] to address

the scalability of pattern grid, which applies to FJQN/Bs of lat-

tice structures. [1] shows the scalability of a multicast tree under

light-tailed service times and bounded degree of the tree. For gen-

erally structured networks, [6] presents necessary conditions for

scalability when service times are either light-tailed or of Pareto

distributions. In particular, [7] shows that

lim sup

i→∞

Di < ∞ and lim sup

i→∞

L∗i < ∞ (2)

is a necessary and sufficient condition for throughput scalability of

FJQN/Bs under light-tailed service times, whereDi and L
∗
i represent

respectively the network degree and the minimum level of Ni .

However, the question remains on how to guarantee throughput

scalability of arbitrarily structured FJQN/Bs under heavy-tailed

service times. As illustrated by the following examples, when ser-

vice times are regularly varying, Condition (2) is not enough to

guarantee scalability. This observation motivates us to propose the

concepts of network dimensions in Section 4 so as to determine

scalability of FJQN/Bs with heavy tails.

Tandem Network: Consider a sequence of FJQN/BsN = {Ni }
∞
i=1

where Ni is a tandem network with a single source and i down-
stream nodes as shown in Table 1(a). It is easily verified that Condi-

tion (2) holds and hence the system is scalable under light-tailed

service times. However, in heavy-tailed scenarios, if the service

times are regularly varying with index α < 2, then the sequence will

not be throughput scalable. The argument is based on last-passage

percolation model and extreme value theory. In fact, the existence

of the second moment of the service time distribution is known

necessary for scalability of tandem networks [4].

Binary Tree Network: In comparison, consider a sequence N =

{Ni }
∞
i=1 where Ni is a binary tree network with a root and i layers

(see Table 1(j)). For such system, Condition (2) is again satisfied,

which is enough to guarantee scalability if the service times are

light-tailed. However, under regularly varying service times with

any index α ∈ Z+, the throughput is not scalable. This is mainly

due to the exponential growth of the network size which imposes

an exponential decay on the throughput. Similar discussions appear

in [2].

Lattice Network: Consider a sequence N = {Ni }
∞
i=1 where Ni

is a d-dimensional lattice network with i nodes on each side (see

Table 1(e)(f)). For this system, any α <d+1 will make the sequence

not scalable. Meanwhile, we can show that anyα >d+1will make the

sequence scalable. This sufficient condition is based on bounding

the throughput by the growth of lattice animals and the results

in [5].

From the above examples, we observe that in addition to the

network degree and the minimum level, the throughput limit under

heavy-tailed service times depends on complicated characteriza-

tions of how the network scales. This motivates the propositions

of network dimensions in Section 4.

4 CHARACTERIZATION OF SCALING
The following common topological concepts are needed to charac-

terize network topology. LetG= (V ,E) be the undirected counter-

part of N = (V ,E). The distance of two nodes u,v in G, denoted as

dis(u,v), is the minimum number of edges among all undirected

paths connecting u and v . The diameter of a graph G, denoted
as ∆(G), is the maximum of the distance of any pair of nodes in

the graph, i.e. ∆(G) = max{dis(u,v)
��∀u,v ∈ V }. The diameter of a

network N is the diameter of its undirected counterpart G.
In the rest of this section, we introduce the scaling dimension

as a way to characterize the growth of the most critical part of

the sequence by a function of network size and diameter, and we

introduce the extended metric dimension as a way to map networks

onto lattices.

4.1 Scaling Dimension
Consider an infinite sequence of FJQN/Bs N = {Ni }

∞
i=1 under Con-

dition (2). Let Ω
(
¯I, ¯N

)
be the collection of

(
¯I, ¯N

)
satisfying the

following:

1)
¯I= {in }

∞
n=1 is a sequence of strictly increasing natural num-

bers;

2)
¯N = {N̄in }

∞
n=1, where N̄in = (V̄in , Ēin ) is a connected subnet-

work of Nin with V̄n ⊆ Vin and Ēn ⊆ Ein ;
3) ∆(N̄in ) → ∞ as n → ∞.

The scaling dimension of the sequence N is defined as

dimS (N) = sup

( ¯I, ¯N)∈Ω( ¯I, ¯N)

{
lim sup

n→∞

log |V̄in |

log∆(N̄in )

}
. (3)

Briefly speaking, the scaling dimension is given by the ratio of

log network size over log diameter as the network expands. One

can interpret the scaling dimension as a metric to measure how

fast network grows as a function of network size and diameter.

In particular, if N converges to a connected infinite graph that

is locally-finite, then the scaling dimension is in analog with the

growth degree in geometric group theory or the upper internal

scaling dimension in Physics. If N converges to a fractal, then the

scaling dimension is in analog with the box counting dimension or

the Hausdorff dimension.

4.2 Extended Metric Dimension
Let W = {W1,W2, . . . ,Wk } be an ordered set of subsets of nodes

in a graph G = (V ,E) withWt ⊆ V , t = 1, 2, . . . ,k . The extended
metric representation of a node v with respect to W is given by

r̄ (v |W) =
(
dis(v,W1),dis(v,W2), . . . ,dis(v,Wk )

)
, (4)

where dis(v,Wt ) is the shortest distance between v and any node

inWt , t = 1, 2, . . . ,k . A set W = {W1,W2, . . . ,Wk } of subsets of

V is a Λ-extended resolving set for G, if for all v ∈ V , the number

of nodes u ∈ V with r̄ (u |W) = r̄ (v |W) is bounded above by a

constant Λ > 0.
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Consider an infinite sequence of FJQN/Bs N = {Ni }
∞
i=1. The

extended metric dimension of N , denoted as dimEM (N), is the

minimum integer k such that, ∀i ∈ Z+, the undirected counter-

part of Ni has a Λ-extended resolving set Wi with cardinality ≤ k ,
where Λ > 0 is a constant independent of i .

The concept derives from a graph’s metric dimension: the mini-

mum cardinality of a basis that uniquely identifies every node by its

distance to the basis. Briefly speaking, the extended metric dimen-

sion is given by the minimum cardinality of a basis that identifies

nodes up to a constant level as network expands. One can interpret

the extended metric dimension as the least number of coordinates

needed to describe the network viewed far away as it expands.

4.3 Relationship Between Dimensions
With respect to the relationship between the two dimensions, we

show that the scaling dimension is bounded above by the extended

metric dimension. In most common networks with integer scaling

dimensions, the two dimensions coincide.

5 SCALABILITY CONDITIONS
We show that, under regularly varying service times, the through-

put scalability of FJQN/Bs is determined by the relationship among

the network dimensions and the service time tails. Our main result

is given as follows, which includes a necessary condition and a

sufficient condition on throughput scalability of FJQN/Bs under

regularly varying service times. See detailed proofs in [8].

Theorem 1. Consider an infinite sequence of FJQN/BsN = {Ni }
∞
i=1,

where Ni = (Vi ,Ei ) is a finite-sized FJQN/B with |Vi | < ∞, ∀i ∈ Z+,
and lim supi→∞ |Vi | = ∞. The service times are i.i.d. regularly vary-
ing with index α >1. Under condition (2), the sequence N is through-
put scalable if the extended metric dimension dimEM (N) satisfies

dimEM (N) < α − 1 (5)

and only if the scaling dimension dimS (N) satisfies
dimS (N) ≤ α − 1. (6)

Theorem 1 reveals that Condition (2) is not enough to address

throughput scalability in heavy-tailed cases. We need additional

conditions on network dimension to ensure that the growth de-

gree of the networks is bounded by the heavy tail index of the

service time distribution. This result provides new insights on the

scalability of a rich class of FJQN/Bs under various structures, in-

cluding tandem, lattice, hexagon, pyramid, tree, and fractals. Table

1 provides a list of network examples with scalability conditions in

addition to Condition (2).

6 CONCLUSION
This paper investigates throughput scalability of fork-join queueing

networks with blocking under heavy-tailed service times. In partic-

ular, we focus on cases where service times are regularly varying

with index α . We introduce two novel geometrical concepts for

generally structured FJQN/Bs: scaling dimension and extended met-

ric dimension. We show that a sequence of FJQN/Bs is throughput

scalable if its extended metric dimension < α − 1 and only if its

scaling dimension ≤ α − 1. The results apply to a list of FJQN/Bs

including tandem, lattice, hexagon, tetrahedron pyramid networks,

and even fractals. The results can be useful for designing parallel

Table 1: Examples with Scalability Conditions

Name Structure

Scalability Conditions

Necessary Sufficient

Tandem α ≥ 2 α > 2

Tandem-

alike

α ≥ 2 α > 2

d-D
Lattice

α ≥ d + 1 α > d + 1

Hexagon α ≥ 3 α > 3

Tetrahe-

dron

Pyramid

α ≥ 4 α > 4

Sierpinski

Triangle
α ≥ 1+log

2
3 α > 3

Binary

Tree

light-tailed light-tailed

and distributed computing systems in heavy-tailed environments

as well as for analysis of other scaling networks or fractals such as

social networks, electrical grid, Internet of Things, etc.
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