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ABSTRACT

Parallel and distributed computing systems are foundational to
the success of cloud computing and big data analytics. Fork-Join
Queueing Networks with Blocking (FJQN/Bs) are natural models for
such systems. While engineering solutions have long been made
to build and scale such systems, it is challenging to rigorously
characterize the throughput performance of ever-growing systems,
especially in the presence of heavy-tailed delays. In this paper, we
utilize an infinite sequence of FJQN/Bs to study the throughput
limit and focus on regularly varying service times with index a > 1.
We introduce two novel geometric concepts - scaling dimension and
extended metric dimension - and show that an infinite sequence of
FJQN/Bs is throughput scalable if the extended metric dimension
< a — 1 and only if the scaling dimension < & — 1. These results
provide new insights on the scalability of a rich class of FJQN/Bs.
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1 INTRODUCTION

Parallel and distributed computing systems are foundational to
the success of cloud computing and big data analytics. Numerous
large-scale analytics have been developed over distributed servers
to achieve high performance. Parallel and distributed computing
also exhibits itself in wireless sensor networks, in composite web
services, in distributed stream computing, in distributed file systems,
in MapReduce frameworks, in end-system multicast, etc.
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As the sizes of various parallel and distributed computing sys-
tems continue to grow, their throughput performance could degrade
due to synchronization delays, processing time variations, or data
storage, I/0, and bandwidth constraints. The problem has been well
recognized in all kinds of distributed computing environments but
the analysis is non-trivial. What further complicates the investiga-
tion is the presence of heavy-tailed processing times that have been
widely documented therein. These heavy-tailed processing times
can cause extremal delays that directly impact the synchroniza-
tion and bring down the throughput. One critical issue concerns
throughput scalability: can we properly design a parallel and dis-
tributed processing system in massive scale under heavy-tailed
delays so that the throughput performance can be sustained? While
practical engineering solutions have long been made to build and
scale such systems, the mathematical foundations toward under-
standing the throughput performance of ever-growing systems
remain rudimentary.

2 MODEL

The above parallel and distributed computing systems can be natu-
rally modeled as fork-and-join queueing networks with blocking
(FJON/Bs). A FJQN/B, denoted by N = (V, E), consists of a set of
nodes V representing servers and a set of directed arcs E represent-
ing routing of jobs. Associated with each arc, there is a buffer of
finite capacity for job storage between services.

Each node models a single server that adopts the First Come
First Serve policy. Services are conducted in a fork-join manner:
each service consumes exactly one job from every upstream buffer
and generates exactly one job to every downstream buffer. A server
is starved (blocked) if one of the upstream (downstream) buffers
is empty (full). An idle server can schedule a service only when it
is neither blocked nor starved. During the service, jobs remain in
the upstream buffers. For simplicity, we consider a homogeneous
setting where all buffers are of constant size b < co and all service
times are i.i.d. of distribution Fs. In particular, we focus on the
cases where Fy; is regularly varying with index a > 1.

For a given FJQN/B, the throughput at node v € V is defined as
the average number of service completions in a unit time in the
long run. Under i.i.d. service times, the throughput is identical at
every node, which is referred to as the network throughout and
can be expressed as

O(N) = (1)

-1
( B [Tno(N)] )
lim ————| ,
m—oo m
where T, o (N) denotes the m-th service completion time at node .
To investigate the throughput limit, we utilize an infinite se-
quence of FJON/Bs N = {N1,Na,...,Nj, ...} to characterize the
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way the system grows. Each N; = (V;, E;) is a finite-sized FJQN/B.
This sequence N is said to be throughput scalable if the limit infi-
mum of the network throughput is strictly positive.

3 PRELIMINARIES

Previous studies on scalability of FJON/Bs either focus on spe-
cial network structures or assume light-tailed service times. [4]
discusses the throughput limit of an infinite tandem queueing net-
work with blocking. [5] shows the linear growth of the maximum
weighted path on a lattice. The work is extended by [3] to address
the scalability of pattern grid, which applies to FJQN/Bs of lat-
tice structures. [1] shows the scalability of a multicast tree under
light-tailed service times and bounded degree of the tree. For gen-
erally structured networks, [6] presents necessary conditions for
scalability when service times are either light-tailed or of Pareto
distributions. In particular, [7] shows that
limsup D; < oo and limsup L} < oo (2)
>0 1—00

is a necessary and sufficient condition for throughput scalability of
FJON/Bs under light-tailed service times, where D; and L’; represent
respectively the network degree and the minimum level of Nj.

However, the question remains on how to guarantee throughput
scalability of arbitrarily structured FJQN/Bs under heavy-tailed
service times. As illustrated by the following examples, when ser-
vice times are regularly varying, Condition (2) is not enough to
guarantee scalability. This observation motivates us to propose the
concepts of network dimensions in Section 4 so as to determine
scalability of FJQN/Bs with heavy tails.

Tandem Network: Consider a sequence of FJQN/Bs N = {N;};2,
where N; is a tandem network with a single source and i down-
stream nodes as shown in Table 1(a). It is easily verified that Condi-
tion (2) holds and hence the system is scalable under light-tailed
service times. However, in heavy-tailed scenarios, if the service
times are regularly varying with index @ < 2, then the sequence will
not be throughput scalable. The argument is based on last-passage
percolation model and extreme value theory. In fact, the existence
of the second moment of the service time distribution is known
necessary for scalability of tandem networks [4].

Binary Tree Network: In comparison, consider a sequence N =
{N;}{2, where N; is a binary tree network with a root and i layers
(see Table 1(j)). For such system, Condition (2) is again satisfied,
which is enough to guarantee scalability if the service times are
light-tailed. However, under regularly varying service times with
any index a € Z*, the throughput is not scalable. This is mainly
due to the exponential growth of the network size which imposes
an exponential decay on the throughput. Similar discussions appear
in [2].

Lattice Network: Consider a sequence N' = {N;};2; where N;
is a d-dimensional lattice network with i nodes on each side (see
Table 1(e)(f)). For this system, any & <d+1 will make the sequence
not scalable. Meanwhile, we can show that any a > d+1 will make the
sequence scalable. This sufficient condition is based on bounding
the throughput by the growth of lattice animals and the results
in [5].
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From the above examples, we observe that in addition to the
network degree and the minimum level, the throughput limit under
heavy-tailed service times depends on complicated characteriza-
tions of how the network scales. This motivates the propositions
of network dimensions in Section 4.

4 CHARACTERIZATION OF SCALING

The following common topological concepts are needed to charac-
terize network topology. Let G=(V, E) be the undirected counter-
part of N=(V, E). The distance of two nodes u, v in G, denoted as
dis(u, v), is the minimum number of edges among all undirected
paths connecting u and v. The diameter of a graph G, denoted
as A(G), is the maximum of the distance of any pair of nodes in
the graph, i.e. A(G) = max{dis(u, v)l\v’u, v € V}. The diameter of a
network N is the diameter of its undirected counterpart G.

In the rest of this section, we introduce the scaling dimension
as a way to characterize the growth of the most critical part of
the sequence by a function of network size and diameter, and we
introduce the extended metric dimension as a way to map networks
onto lattices.

4.1 Scaling Dimension

Consider an infinite sequence of FJQN/Bs N'={N;}{2; under Con-
dition (2). Let Q (7, N) be the collection of (I, N) satisfying the
following:

Ni= {in};.; is a sequence of strictly increasing natural num-
bers;

2) N={N;, }oe s Where N;, =(V;,.E;,) is a connected subnet-
work of N, with V,, € V;, and E,, C E;, ;

3) A(Nj,) — coasn — oo,
The scaling dimension of the sequence N is defined as

{ . log |V, | }
sup limsup ———=——.
(7.N)e(Z. &) | n—e log A(NG,)

Briefly speaking, the scaling dimension is given by the ratio of
log network size over log diameter as the network expands. One
can interpret the scaling dimension as a metric to measure how
fast network grows as a function of network size and diameter.
In particular, if N converges to a connected infinite graph that
is locally-finite, then the scaling dimension is in analog with the
growth degree in geometric group theory or the upper internal
scaling dimension in Physics. If N converges to a fractal, then the
scaling dimension is in analog with the box counting dimension or
the Hausdorff dimension.

dimg(N) = ®)

4.2 Extended Metric Dimension
Let W = {W;,Wa, ..., Wi} be an ordered set of subsets of nodes
inagraph G = (V,E) with W; C V,t = 1,2,...,k. The extended
metric representation of a node v with respect to “W is given by
F(o|W) = (dis(v, Wr), dis(v, Wa), . . ., dis(v, Wy)), (4)
where dis(v, W;) is the shortest distance between v and any node
in Wy, t =1,2,...,k. Aset W = {Wj,Ws, ..., W} of subsets of
V is a A-extended resolving set for G, if for all v € V, the number
of nodes u € V with r(u|'W) = r(v|W) is bounded above by a
constant A > 0.
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Consider an infinite sequence of FJON/Bs N' = {N;}{2,. The
extended metric dimension of N, denoted as dimgp(N), is the
minimum integer k such that, Vi € Z*, the undirected counter-
part of N; has a A-extended resolving set ‘W; with cardinality < k,
where A > 0 is a constant independent of i.

The concept derives from a graph’s metric dimension: the mini-
mum cardinality of a basis that uniquely identifies every node by its
distance to the basis. Briefly speaking, the extended metric dimen-
sion is given by the minimum cardinality of a basis that identifies
nodes up to a constant level as network expands. One can interpret
the extended metric dimension as the least number of coordinates
needed to describe the network viewed far away as it expands.

4.3 Relationship Between Dimensions

With respect to the relationship between the two dimensions, we
show that the scaling dimension is bounded above by the extended
metric dimension. In most common networks with integer scaling
dimensions, the two dimensions coincide.

5 SCALABILITY CONDITIONS

We show that, under regularly varying service times, the through-
put scalability of FJQON/Bs is determined by the relationship among
the network dimensions and the service time tails. Our main result
is given as follows, which includes a necessary condition and a
sufficient condition on throughput scalability of FJQN/Bs under
regularly varying service times. See detailed proofs in [8].

THEOREM 1. Consider an infinite sequence of FJON/Bs N = {N;};2,,
where N; = (V;, E;) is a finite-sized FJQN/B with |V;| < o0, Vi € Z7,
and lim sup;_, ., |Vi| = co. The service times are i.i.d. regularly vary-
ing with index a > 1. Under condition (2), the sequence N is through-
put scalable if the extended metric dimension dimgp(N) satisfies

dimgpy(N) <a -1 (5)
and only if the scaling dimension dimgs(N') satisfies
dims(N) < a — 1. (6)

Theorem 1 reveals that Condition (2) is not enough to address
throughput scalability in heavy-tailed cases. We need additional
conditions on network dimension to ensure that the growth de-
gree of the networks is bounded by the heavy tail index of the
service time distribution. This result provides new insights on the
scalability of a rich class of FJQN/Bs under various structures, in-
cluding tandem, lattice, hexagon, pyramid, tree, and fractals. Table
1 provides a list of network examples with scalability conditions in
addition to Condition (2).

6 CONCLUSION

This paper investigates throughput scalability of fork-join queueing
networks with blocking under heavy-tailed service times. In partic-
ular, we focus on cases where service times are regularly varying
with index a. We introduce two novel geometrical concepts for
generally structured FJQN/Bs: scaling dimension and extended met-
ric dimension. We show that a sequence of FJQN/Bs is throughput
scalable if its extended metric dimension < « — 1 and only if its
scaling dimension < & — 1. The results apply to a list of FJQN/Bs
including tandem, lattice, hexagon, tetrahedron pyramid networks,
and even fractals. The results can be useful for designing parallel
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Table 1: Examples with Scalability Conditions

Scalability Conditions
Name Structure -
Necessary Sufficient
Tandem (a) o—o—e—o—0—.. a>2 a>2
B e
Tandem- (c)@wm a>2 a>2
alike
©2D
d-D a>d+1 a>d+1
Lattice
() 3-D
Hexagon | © 106860 a >3 a >3
Tetrahe-
dron a >4 a >4
Pyramid
Sierpinski
Triangle @) a>1+log, 3 a>3
Binary o light-tailed light-tailed
Tree

and distributed computing systems in heavy-tailed environments
as well as for analysis of other scaling networks or fractals such as
social networks, electrical grid, Internet of Things, etc.
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