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a b s t r a c t

We develop a classified mixed logistic model prediction (CMLMP) method for clustered
binary data by extending a method proposed by Jiang et al. (2018) for continuous outcome
data. By identifying a class, or cluster, that the new observations belong to, we are able to
improve the prediction accuracy of a probabilistic mixed effect associated with a future
observation over the traditional method of logistic regression and mixed model prediction
without matching the class. Furthermore, we develop a new strategy for identifying
the class for the new observations by utilizing covariates information, which improves
accuracy of the class identification. In addition, we develop a method of obtaining second-
order unbiased estimators of the mean squared prediction errors (MSPEs) for CMLMP,
which are used to provide measures of uncertainty. We prove consistency of CMLMP,
and demonstrate finite-sample performance of CMLMP via simulation studies. Our results
show that the proposed CMLMP method outperforms the traditional methods in terms of
predictive performance. An application to medical data is discussed.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Many practical problems are related to prediction of characteristics of interest at subject (e.g., precisionmedicine) or sub-
population (e.g., precision public health) level. In such cases, it is possible to make substantial gains in prediction accuracy
by identifying a class that a new subject belongs to. This was recently demonstrated by Jiang et al. [6], who proposed a
method called classified mixed model prediction (CMMP). The idea is to create a ‘‘match’’ between the classes, or clusters,
of the training data and the potential class of the new data. Once such a class is identified, a mixed model prediction (MMP)
technique can be used to improve prediction accuracy; see, e.g., Section 2.3 in [3].

The CMMP method developed in [6] applies only to linear models for continuous responses. However, clustered binary
data frequently occur in practice. For example, Thromboembolic or hemorrhagic complications [2] occur in as many as
60% of patients who underwent extracorporeal membrane oxygenation (ECMO), an invasive technology used to support
children during periods of reversible heart or lung failure [7]. Over half of pediatric patients on ECMO are currently receiving
antithrombin (AT) to maximize heparin sensitivity. In a retrospective, multi-center, cohort study of children (≤ 18 years of
age) who underwent ECMO between 2003 and 2012, 8601 subjects participated in 42 free-standing children’s hospitals
across 27 US states and the District of Columbia known as Pediatric Health Information System (PHIS). Data were de-
identified prior to inclusion in the study dataset; however, encrypted medical record numbers allowed for tracking of
individuals across multiple hospitalizations. Many of the outcome variables were binary, such as the bleed_binary variable,
which is a main outcome variable indicating hemorrhage complication of the treatment; and the DischargeMortalit1Flag
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variable, which is associated with mortality. Here the treatment refers to AT. Prediction of characteristics of interest
associated with the binary outcomes, such as probabilities of hemorrhage complication or those of mortality for specific
patients are of considerable interest. Note that the data are also potentially clustered, with the clusters corresponding to the
children’s hospitals. In addition to the treatment indicator, there were 20 other covariate variables, for which information
were available. More details about the data will be provided in Section 5.

For clustered binary data, such as in the ECMO example, Jiang and Lahiri [4] proposed an empirical best prediction
approach for predicting a mixed effect, such as the probability of hemorrhage complication in the ECMO example. Also see
Section 3.6.2 in [3]. The method is based on a mixed logistic model, which assumes that, given the subject-specific random
effects, α1, . . . , αm, binary responses yij with i ∈ {1, . . . ,m} and j ∈ {1, . . . , ni} are conditionally independent with the
conditional probability satisfying

Pr(yij = 1|α) = pij with logit(pij) = x⊤

ij β + αi, (1)

where logit(p) = ln{p/(1−p)}. Here i is the index for subject (e.g., patient, or group of patients), j is the index for observation
within the subject (e.g., observation collected at the jth time point, or observation collected from the j patient in the subject
group); xij is a vector of observed covariates, and β is a vector of unknown fixed effects. Furthermore, α1, . . . , αm are random
effects, assumed to be independent and distributed as N (0, σ 2), where σ 2 is an unknown variance. For any known vector
x and function g , the best predictor (BP) of the mixed effect, θ = g(x⊤β + αi), in the sense of minimum mean squared
prediction error (MSPE), is given by

θ̃ = E(θ |y) =
E[g(x⊤β + σξ ) exp{yi·σξ −

∑ni
j=1 ln(1 + ex

⊤
ij β+σξ )}]

E[exp{yi·σξ −
∑ni

j=1 ln(1 + ex
⊤
ij β+σξ )}]

, (2)

where yi· = yi1 + · · · + yini , and the expectations are taken with respect to ξ ∼ N (0, 1). Two special cases of Eq. (2) are the
following:

(a) If the covariates are at the cluster level, i.e., xij = xi, and g(u) = logit−1(u) = eu/(1 + eu), then, (2) reduces to

p̃ =
E[logit−1(x⊤β + σξ ) exp{yi·σξ − ni ln(1 + ex

⊤
i β+σξ )}]

E[exp{yi·σξ − ni ln(1 + ex
⊤
i β+σξ )}]

, (3)

which is the BP of p = logit−1(x⊤β + αi). Note that, in this case, the mixed effect is a subject-specific (conditional)
probability, such as the probability of hemorrhage complication of the AT treatment in the ECMO problem discussed
above, for a specific patient.

(b) If x = 0, and g(u) = u, Eq. (2) reduces to

α̃i = σ
E[ξ exp{yi·σξ −

∑ni
j=1 ln(1 + ex

⊤
ij β+σξ )}]

E[exp{yi·σξ −
∑ni

j=1 ln(1 + ex
⊤
ij β+σξ )}]

, (4)

which is the BP of αi, the subject-specific (e.g., hospital) random effect. The special cases (3) and (4) will be used in
the sequel.

In Eqs. (2), (3), or (4), β and σ are understood as the true parameters, which are typically unknown in practice. It is then
customary to replace β, σ by their consistent estimators. The results are called empirical BP, or EBP. In this paper, we assume
that the sample size for the ‘‘training data’’ is sufficiently large that the EBP is approximately equal to the BP [4]. Hereafter,
by training data we refer to the data {yij : 1 ≤ i ≤ m, 1 ≤ j ≤ ni} described above that satisfy the assumed mixed logistic
model.

Our main interest is to predict a mixed effect that is associated with a set of new observations. More specifically, let the
new, binary observations be yn,1, . . . , yn,nnew , and the corresponding covariates be xn,1, . . . , xn,nnew such that, conditional on
a random effect αI that has the same N (0, σ 2) distribution, yn,1, . . . , yn,nnew are mutually independent with

Pr(yn,k = 1|αI ) = pn,k and logit(pn,k) = x⊤

n,kβ + αI , (5)

where β is the same as in Eq. (1). Typically, the sample size, nnew, for the new observations is limited. If one relies only on
the new observations to estimate the mixed effect, say, pn,k for a given k, the available information is limited. Luckily, one
has muchmore than just the new observations. It would be beneficial if one could ‘‘borrow strength’’ from the training data,
which are much larger in size. For example, if one knows that I = i, then, there is a much larger cluster in the training
data, namely, yi1, . . . , yini , corresponding to the same cluster-specific random effect, αI . This cluster in the training data is
much larger because, quite often, ni is much larger than nnew. One can also utilize the training data to estimate the unknown
parameters, β and σ , which would be much more accurate than using only the new observations. As noted, with accurate
estimation of the parameters, the EBP will closely approximate the BP [4]. Thus, potentially one has a lot more information
that can be used to estimate the mixed effect of interest associated with αI . The difficulty is, however, that I is unknown. In
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fact, at this point, one does not know the answer to any of the following questions: (a) Is there a ‘‘match’’ between I and one
i ∈ {1, . . . ,m} corresponding to the training data clusters? and (b) If there is, which one?

In Section 2, we develop a method that gives answer to question (b). As in [6], it turns out that the answer to question
(a) does not matter much, so far as prediction of the mixed effect is concerned. In other words, even if the actual match
does not exist, a CMMP procedure based on the false match still helps in improving prediction accuracy of the mixed effects.
Once the matching class is identified, the EBP can be utilized, as noted above, to make more accurate prediction about the
mixed effect of interest. We call this procedure classified mixed logistic model prediction (CMLMP) by an obvious analogy
with CMMP. Consistency of CMLMP is established under both the matched and unmatched scenarios, and demonstrated
empirically via simulation studies. Furthermore, in Section 3, we propose a newmatching strategy that utilizes cluster-level
covariates, when such information is available, and show that it improves accuracy of the mixed effect prediction. This is
something not considered by [6], and a new contribution of the current paper. In particular, our simulation studies show
that the new CMLMP strategy outperforms the standard logistic regression prediction (SLRP) as well as mixed logistic model
prediction (MLMP)withoutmatching the class, inwhich case the class of the new observations is assumed to be independent
with the classes of the training data. In Section 4 we developmeasures of uncertainty by proposing a second-order unbiased
estimator of the MSPE of CMLMP. In Section 5, we revisit the ECMO data mentioned above and carry out a real-data analysis
to further demonstrate empirical performance of CMLMP. Some concluding remarks are offered in Section 6. Proofs of the
theoretical results are deferred to an Online Supplement.

2. Classified mixed logistic model prediction

In this section, we develop an extension of CMMP to binary data under themixed logistic model described in the previous
section, known as CMLMP. We begin by first considering a special case, in which the covariates are at the cluster level.
Extension to the general case, in which the covariates are at the unit level, will be considered next.

2.1. A special case: Cluster-level covariates

By cluster-level covariates, it means that xij = xi for all i, j. Similarly, the covariates for the new observations are also at
the cluster level, i.e., xn,k = xn.

2.1.1. The matched case
First assume that there is a match between I , the index for the random effect associated with the new observations, and

one of the indexes, i ∈ {1, . . . ,m}, associated with the training-data random effects. However, this match is unknown to
us. Thus, as a first step, we need to identify the match, i.e., an index Î ∈ {1, . . . ,m} computed from the data, which may be
viewed as an estimator of I .

Suppose that I = i. Then, by Eq. (3), the BP of pn = Pr(yn,k = 1|αI ) = logit−1(x⊤
n β + αI ) = logit−1(x⊤

n β + αi) is

p̃n,i =
E[logit−1(x⊤

n β + σξ ) exp{yi·σξ − ni ln(1 + ex
⊤
i β+σξ )}]

E[exp{yi·σξ − ni ln(1 + ex
⊤
i β+σξ )}]

. (6)

In (6), the parameters β, σ are understood as the true parameters, which are unknown in practice. If we replace these
parameters by their consistent estimators, such as the maximum likelihood (ML) or GEE estimators (see, e.g., Section 4.2
in [3]) based on the training data, we obtain the EBP of pn, denoted by p̂n,i. Furthermore, an ‘‘observed’’ pn is the sample
proportion, ȳn = (yn,1 + · · · + yn,nnew )/nnew. Our idea is to identify I as the index i ∈ {1, . . . ,m} that minimizes the distance
between p̂n,i and ȳn, i.e.,

Î = argmin
i∈{1,...,m}

|p̂n,i − ȳn|. (7)

Given Î , the classified mixed logistic model predictor (CMLMP) of pn is p̂n,Î .
The following theorem establishes consistency of CMLMP under suitable conditions. The proof is given in the Online

Supplement.

Theorem 1. Suppose that, in addition to the assumptions about the training data and the new observations, |x1|, . . . , |xm| are
bounded. If β̂, σ̂ are consistent estimators of β, σ , respectively, then p̂n,Î − pn

Pr
−→ 0 as m,min(n1, . . ., nm), and nnew → ∞. In

other words, the CMLMP of pn is consistent.

2.1.2. Matched-or-unmatched case
In practice, one may not be sure whether there is a match between the random effect corresponding to the new

observations and one of the random effects associated with the training data. This is what we call matched-or-unmatched
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(M/UM) case.When there is nomatch, the index I is understood as an integer larger thanm. This implies, in particular, thatαI
and the new observations are independent with α1, . . . , αm and the training data. Following [6], we can extend the CMLMP
method developed in the previous subsection to the M/UM case. Note that, if there is no match, by independence, the BP of
pn, defined by (6), can be shown to be the same as

E(pn) =

∫
logit−1(x⊤

n β + σξ )φ(ξ )dξ, (8)

where φ is the pdf of N (0, 1). In view of (8), an empirical predictor of pn, in this situation, is (8) with β, σ replaced by β̂, σ̂ ,
respectively. Denote the latter predictor by p̂n,e (where the subscript e standards for ‘‘empirical’’). Thus, in the M/UM case,
we compute both p̂n,Î [see (7)] and p̂n,e. We then compare |p̂n,Î − ȳn| with |p̂n,e − ȳn|. If the former is smaller, the CMLMP of
pn is p̂n,Î ; otherwise, it is p̂n,e. Denote the CMLMP defined this way by p̂n. The following theorem shows that, even if there
does not exist a true match between the random effect associated with the new observations and one of the random effects
associatedwith the training data, the CMLMP is still consistent in estimating, or predicting, pn. Note that here the consistency
is in terms of estimating pn, not in terms of estimating the index I; in fact, Î is not a consistent estimator of I , even in the
matched case. This is similar to the finding of [6]. The proof is given in the Online Supplement.

Theorem 2. Under the conditions of Theorem 1, we have p̂n − pn
Pr

−→ 0, as m,min(n1, . . ., nm), and nnew → ∞. In other words,
the CMLMP is consistent.

2.2. General case: Unit-level covariates

We now consider a general case in which xij may depend on both i and j. We call this case unit-level covariates. Following
the notation in Section 1, we propose the following strategy for matching the index I to one of the indexes i ∈ {1, . . . ,m},
regardless ofwhether or not there is an actualmatch.Write p̄n = (pn,1+· · ·+pn,new)/nnew, andXi = (x⊤

ij )1≤j≤ni , yi = (yij)1≤j≤ni .
Define

ψ(Xi, yi, β, αi) =

ni∑
j=1

{αiyij − ln(1 + ex
⊤
ij β+αi )} = αiyi· −

ni∑
j=1

ln(1 + ex
⊤
ij β+αi ).

If I = i, then, it can be shown that the BP of p̄n is given by

˜̄pn,i =
1

nnew

nnew∑
k=1

∫
logit−1(x⊤

n,kβ + σξ ) exp{ψ(Xi, yi, β, σξ )}φ(ξ )dξ∫
exp{ψ(Xi, yi, β, σξ )}φ(ξ )dξ

, (9)

where, again, φ denotes the pdf of N (0, 1). The EBP of p̄n, denoted by ˆ̄pn,i, is obtained by (9) with β, σ replaced by β̂, σ̂ ,
respectively. We then identify I by

Î = argmin
i∈{1,...,m}

| ˆ̄pn,i − ȳn|, (10)

where ȳn is defined the same as before.
Once Î is obtained, the CMLMP of pn,k, for any k ∈ {1, . . . , nnew}, is obtained as

p̂n,k =

∫
logit−1(x⊤

n,kβ̂ + σ̂ ξ ) exp{ψ(Xi, yi, β̂, σ̂ ξ )}φ(ξ )dξ∫
exp{ψ(Xi, yi, β̂, σ̂ ξ )}φ(ξ )dξ

⏐⏐⏐⏐⏐
i=Î

. (11)

Alternatively, the mixed effect pn,k can be predicted as

p̌n,k = logit−1(x⊤

n,kβ̂ + α̂Î ), (12)

where α̂i is the EBP of αi given by (4) with β, σ replaced by β̂, σ̂ , respectively.
Similar to Theorems 1 and 2, consistency of the CMLMP defined by (11) or (12) can be established. Due to similarity of

the results, and also to avoid making the paper too theoretical, the details are omitted. See the next subsection for empirical
performance.

2.3. Empirical demonstration

To demonstrate the theoretical results established in the previous section and also to study empirical performance of
CMLMP, we carry out a number of simulation studies. We first consider a ‘‘matched case’’, in which there is a match between
I , the group number for the new observations, and one of the indexes i ∈ {1, . . . ,m} in the training data; an ‘‘unmatched
case’’, in which such a match does not exist, will be considered next. Throughout this section, the expectations in (3) and (4)
are evaluated via Monte Carlo method.
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Table 1
Simulated MSPEs of CMLMP and SLRP.

m 10 50 100 500 1000

CMLMP 0.0206 0.0162 0.0155 0.0196 0.0198
SLRP 0.0245 0.0231 0.0242 0.0238 0.0230
% Improve 19.17% 42.78% 56.25% 21.48% 16.19%

Table 2
Simulated MSPEs of CMLMP and SLRP.

nnew 1 5 10 100 1000

CMLMP 0.0361 0.0175 0.0130 0.0061 0.0041
SLRP 0.0225 0.0228 0.0247 0.0247 0.0232
% Improve –37.72% 30.26% 89.22% 304.99% 465.93%

Table 3
Simulated MSPEs of CMLMP and SLRP.

σ 0.25 0.5 1 2 3

CMLMP 0.0038 0.0087 0.0158 0.0186 0.0171
SLRP 0.0025 0.0074 0.0232 0.0622 0.1038
% Improve −34.39% −15.44% 46.66% 234.89% 507.22%

2.3.1. The matched case
We consider a case where the covariates are at the cluster level. The training data are generated under a mixed logistic

model defined, for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , ni}, by

logit(pi) = logit{Pr(yij = 1|αi)} = 1 + 2xi + αi, (13)

The covariates, xi, are generated from theN (0, 1) distribution. The randomeffects,αi, are then generated independently from
theN (0, σ 2) distribution. The true index, I , is equal to 1 so that αI = α1. The xn for the new observations, yn,1, . . . , yn,nnew , is
also generated from N (0, 1); the new observations are then generated under a similar model as (13) with xi, αi replaced by
xn, αI , respectively.

The results, based on 500 simulation runs, are reported in Tables 1–3. As a comparison, we also include the results of SLRP
(see the last paragraph of Section 1). The results are for n1 = · · · = nm = 5. Table 1 reports the results with σ = 1, nnew = 5,
and changingm, the number of groups, or clusters, in the training data. Table 2 reports the results with σ = 1,m = 50, and
changing nnew. Table 3 reports the resultswithm = 50, nnew = 5, and changing σ . Reported are simulatedMSPEs (i.e., MSPEs
based on the simulations) with the % Improve defined as

% Improve =

(
MSPE of SLRP − MSPE of CMLMP

MSPE of CMLMP

)
× 100%.

It is seen that, as long as σ 2 and nnew are not too small, CMLMP improves over SLRP, but the improvement patterns are
different as m, nnew, or σ increase. As nnew increases, so is the amount of improvement. This is because, as nnew increases,
so is the accuracy of the class identification, which can be seen from (7); namely, ȳn converges to pn = logit−1(x⊤

n β + αI ),
which is the truemixed effect of interest. In contrast, asm increases, the amount of improvement of CMLMP does not always
increase; in fact, the best improvement appears to take place when m = 100. One interpretation is that, as m increases,
it is getting harder to correctly identify the class (because there are more choices to choose from). Although Theorem 2
shows consistency of CMLMP in spite of misidentification of the class (i.e., in the unmatched case), the result holds under
the condition that ni → ∞ for every i. In the case of our simulation, ni = 5 for all i. Finally, as σ increases, so does the
relative improvement of CMLMP over SLRP. This makes sense because the larger σ , the more SLRP is missing by not taking
into account the clustering in the population when making the prediction.

2.3.2. Comparing matched and unmatched cases
Following [6], we consider a situation where there is no match between the group of the new observations and a group

among the training data, and compare this case with the case where there is a match. Specifically, we consider the following
two scenarios. Scenario I (matched case): αI = α1. Scenario II (unmatched case): αI is generated independently with
α1, . . . , αm. The results, again based on 500 simulation runs, are reported in Tables 4–6, with the same set-ups as Tables 1–3.
One thing that is new here is % Match, which is the percentage of times that the CMLMP procedure thinks that there is a
match. Recall that, in Section 2.1.2, one compares |p̂n,Î − ȳn| with |p̂n,e − ȳn|; if the former is smaller, CMLMP thinks that
there is a match, and therefore uses p̂n,Î as the predictor; otherwise, CMLMP thinks that there is no match, thus uses p̂n,e as
the predictor.
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Table 4
Simulated MSPEs of CMLMP and SLRP.

Scenario m 10 50 100 500 1000

I CMLMP 0.0231 0.0167 0.0158 0.0187 0.0197
I SLRP 0.0318 0.0247 0.0245 0.0233 0.0211
I % Match 99.00% 99.80% 99.60% 99.80% 100.00%

II CMLMP 0.0255 0.0181 0.0161 0.0177 0.0190
II SLRP 0.0332 0.0216 0.0260 0.0249 0.0207
II % Match 98.40% 99.40% 99.40% 100.00% 100.00%

Table 5
Simulated MSPEs of CMLMP and SLRP.

Scenario nnew 1 5 10 100 1000

I CMLMP 0.0330 0.0178 0.0109 0.0062 0.0050
I SLRP 0.0249 0.0256 0.0232 0.0266 0.0218
I % Match 100.00% 99.60% 99.20% 99.20% 99.00%

II CMLMP 0.0375 0.0182 0.0104 0.0055 0.0047
II SLRP 0.0244 0.0291 0.0237 0.0255 0.0219
II % Match 100.00% 100.00% 99.20% 99.00% 99.00%

Table 6
Simulated MSPEs of CMLMP and SLRP.

Scenario σ 0.25 0.5 1 2 3

I CMLMP 0.0038 0.0085 0.0168 0.0176 0.0216
I SLRP 0.0027 0.0079 0.0238 0.0673 0.1037
I % Match 99.80% 99.80% 99.40% 99.60% 99.00%

II CMLMP 0.0043 0.0101 0.0176 0.0209 0.0193
II SLRP 0.0028 0.0091 0.0257 0.0658 0.1119
II % Match 99.80% 99.60% 99.40% 98.20% 98.40%

It is seen that, regardless of the true matching status, CMLMP matches anyway, with % Match close to 100% under both
scenarios. But, in spite of the mismatches under Scenario II (because there is supposed to be no match in this case), the
performance of CMLMP is very similar under the two scenarios. In particular, CMLMP continues to improve over SLRP in
spite of mismatching the class. This pattern is very similar to the finding of [6]. An interpretation is that, even if CMLMP does
not match the exact class number, it matches a class that is very close to the true class in terms of prediction of the mixed
effect of interest, which is all that matters. Furthermore, as long as m is reasonably large, there is always a random effect
corresponding to the training data that almost matches the random effect corresponding to the new observations, even if
there is no match; see the proof of Theorem 2 in the Online Supplement.

2.3.3. Unit-level covariate
Wenowconsider a case that the covariate is at unit level. The data-generatingmodel is the same as (13) except replacing xi

by xij, which are also generated from theN (0, 1) distribution.We consider the casewithm = 50, ni = 5, nnew = 100, σ = 1.
An unmatched case is considered. The method of Section 2.2 is used to obtain the CMLMP, which is compared with SLRP.
Instead of reporting the results in tables, we present the simulated MSPEs in Fig. 1. The results are based on 200 simulation
runs. It is seen that CMLMP performs uniformly better for predicting the mixed effect associated with every one of the 100
new observations.

3. CMLMP incorporating cluster-level covariates

So far, our strategy for class identification is similar to [6] in that no information from the covariates of the new
observations is used in identifying the class. This can be seen from (10), which only uses ȳn from the new observations.
In practice, covariate information can often help in identifying the class. This is particularly the case when there are
covariates at the cluster level. Much effort has been made in trying to model the functional relationship between the
mean response and the covariates, for example, linear regression, polynomial regression, splines, nonparametric regression.
Alternatively, random effects are often introduced to ‘‘capture the uncaptured’’, i.e., variation that cannot be explained by
the assumed functional relationship with the covariates. In such a case, it is reasonable to assume that there is some kind of
correspondence between the cluster-level covariates and the cluster-specific random effects, α1, . . . , αm. This is something
not considered by Jiang et al. [6] and a new contribution of the current paper.

Let wi denote a vector of cluster-level covariates. Our idea is to consider the difference, wi − wn, where wn is the
corresponding vector of covariates associated with the new observations. The motivation is that, ideally, wn = wi implies
I = i; therefore, the difference between wn and wi should be taken into account in identifying the class. The question
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Fig. 1. Simulated MSPEs for prediction of mixed effects for 100 new observations.

is: How? Consider a cluster-specific linear predictor defined as ℓi = w⊤

i b + αi, where b is the vector of fixed effects
corresponding to wi. Similarly, we have ℓn = w⊤

n b + αI for the new observations. Note that ℓi is part of the linear
predictor on the right side of (1) that is cluster-specific; similarly, ℓn is part of the linear predictor on the right side of (5)
corresponding to the new observations. However, in order tomatch the clusters, the parts ℓi and ℓn are all we need.We have
ℓi − ℓn = (wi − wn)⊤b + αi − αI . Therefore, we have

E(ℓi − ℓn)2 = {(wi − wn)⊤b}2 + E(αi − αI )2 = E[{(wi − wn)⊤b}2 + (αi − αI )2].

Thus, using the CMMP idea [6], to minimize E(ℓi − ℓn)2 we need to minimize

{(wi − wn)⊤b}2 + (αi − αI )2. (14)

Three things are unknown in (14): b, αi, and αI . Naturally, we replace b by b̃, the subvector of β̃ , the consistent estimator of
β based on the training data. It is also natural to replace αi, αI by their EBPs, α̃i, α̃n. The former is given by (4) with β and σ
replaced β̃ and σ̃ , the consistent estimator of σ . Similarly, the BP of αI based on the new observations is

α̃n = σ
E[ξ exp{yn,·σξ −

∑nnew
j=1 ln(1 + ex

⊤
n,jβ+σξ )}]

E[exp{yn,·σξ −
∑nnew

j=1 ln(1 + ex
⊤
n,jβ+σξ )}]

. (15)

The EBP α̃n is obtained by replacing β, σ in (15) by β̃, σ̃ , respectively. Our new criterion of class identification is, therefore,
given by

Î = argmin
i∈{1,...,m}

[{(wi − wn)⊤b̃}2 + (α̃i − α̃n)2]. (16)

Under regularity conditions, theoretical results similar to Theorems 1 and 2 can be established for CMLMP based on
the new criterion. The detail is omitted. Below we present the results of a simulation study, in which we compare the
performance of the new CMLMP procedure with SLRP and EBP without matching the class. In the latter case, the random
effect αI is assumed to be independent with α1, . . . , αm; thus, the EBP is obtained by (3) with yi·, xi, ni replaced by yn· =∑nnew

k=1 yn,k, xn, nnew, respectively, and β, σ replaced by β̂, σ̂ , the consistent estimator of β, σ based on combination of the
training data and new observations.

The simulation is under the samemodel, (13), considered in the previous section, with the cluster-level covariatewi = xi
except that the random effect is generated differently. Here, the random effect, αi, is introduced to capture the uncaptured,
as discussed at the beginning of this section. Specifically, αi = g(wi) + vi, where g(wi) corresponds to the uncaptured, an
unknown function of the covariate, and vi is a small noise, generated independently from the N (0,D) distribution. Two
different functions are considered: g(wi) = w3

i ; and g(wi) = w2
i − 1. We consider a matched case with I = 1. The results,

based on 500 simulation runs, are reported in Tables 7 and 8. Table 7 is for m = 50, nnew = 10,D = 10−4 and changing ni;
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Table 7
Simulated MSPEs of CMLMP, SLRP, EBP: m = 50, nnew = 10,D = 10−4 .

ni 10 20 50 100 200

g(wi) = w3
i CMLMP .00150 .00122 .00086 .00066 .00063

SLRP .00149 .00125 .00096 .00080 .00085
EBP .00151 .00129 .00097 .00090 .00135

g(wi) = w2
i − 1 CMLMP .01074 .00836 .00821 .00525 .00585

SLRP .02113 .02087 .02289 .01692 .02492
EBP .01035 .00998 .01083 .01034 .00980

Table 8
Simulated MSPEs of CMLMP, SLRP, EBP: m = 50, nnew = 10, ni = 50.

D 10−6 10−5 10−4 10−3 10−2

g(wi) = w3
i CMLMP .00089 .00085 .00092 .00094 .00105

SLRP .00095 .00091 .00096 .00097 .00111
EBP .00109 .00101 .00106 .00105 .00112

g(wi) = w2
i − 1 CMLMP .00735 .00640 .00781 .00661 .00681

SLRP .01840 .01772 .02403 .01702 .01669
EBP .01028 .00859 .00973 .01003 .00913

Fig. 2. Simulated MSPEs for g(wi) = w3
i : (a) changing ni; (b) changing D; within each group of bar charts: blue (left)—CMLMP; red (middle)—SLRP; green

(right)—EBP.

Fig. 3. Simulated MSPEs for g(wi) = w2
i − 1: (a) changing ni; (b) changing D; within each group of bar charts: blue (left)—CMLMP; red (middle)—SLRP;

green (right)—EBP.

Table 8 is form = 50, nnew = 10, ni = 50 and changing D. The corresponding bar charts [grouped according to different gs]
are presented in Figs. 2 and 3.

It is seen that, as long as ni is not too small (i.e., ni > 10), CMLMP outperforms both SLRP and EBP. As for the degree of
improvement, the relative improvement is much more significant for g(wi) = w2

i − 1 than for g(wi) = w3
i . This can be seen

clearly from Figs. 2 and 3. The advantage of CMLMP over SLRP and EBP increases as ni increases; see part (a) of those figures.
In contrast, the advantage of CMLMP over the other methods does not seem to change with D, ranging from 10−6 to 10−2.
Also, for g(wi) = w2

i − 1, both CMLMP and EBP outperform SLRP; while for g(wi) = w3
i , only CMLMP outperforms SLRP

(except for one case with ni = 10).
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4. Measures of uncertainty

In this section, we develop a procedure that produces a second-order unbiased estimator of the MSPE of CMLMP in the
sense that

E(M̂SPE) = MSPE + o(m−1), (17)

where M̂SPE denotes the estimator of MSPE. Let θ denote themixed effect of interest, for example, θ = logit−1(x⊤

new,kβ+αI ),
for a fixed k ∈ {1, . . . , nnew}; see above Eq. (5). Let θ̂ denote the CMLMP of θ . Also, let ψ = (β, σ 2, I), where I is the true
group index for the new observations. The MSPE of θ̂ can be expressed as

MSPE = E(θ̂ − θ )2 = E[E{(θ̂ − θ )2|Y }], (18)

where Y = (y, ynew), y denotes the training data, and ynew the new observations. The conditional expectation inside the
outer expectation on the right side of (18) is a function of Y and ψ , i.e.,

a(Y , ψ) = E{(θ̂ − θ )2|Y } = θ̂2 − 2θ̂E(θ |Y ) + E(θ2|Y ) = θ̂2 − 2θ̂a1(Y , ψ) + a2(Y , ψ), (19)

where as(Y , ψ) = E(θ s|Y ) for each s ∈ {1, 2}. If we replace the ψ in (19) by ψ̂ , a consistent estimator of ψ , the result is a
first-order unbiased estimator, i.e.,

E{a(Y , ψ̂) − a(Y , ψ)} = O(m−1). (20)

Furthermore, both MSPE = E{a(Y , ψ)} [by (18), (19)] and E{a(Y , ψ̂)} are functions of ψ . Let b(ψ) = E{a(Y , ψ)}, c(ψ) =

E{a(Y , ψ̂)}, and d(ψ) = b(ψ) − c(ψ). Then, (20) implies that d(ψ) = O(m−1); thus, if we replace, again, ψ by ψ̂ in d(ψ), the
difference is a lower-order term, viz.

d(ψ̂) − d(ψ) = o(m−1) (21)

(in a suitable sense; e.g., in probability). Now consider the estimator

M̂SPE = a(Y , ψ̂) + b(ψ̂) − c(ψ̂). (22)

We have, by combining (18)–(22), that

E(M̂SPE) = E{a(Y , ψ)} + E{a(Y , ψ̂) − a(Y , ψ)} + E{d(ψ̂)} = MSPE + E{d(ψ̂) − d(ψ)} = MSPE + o(m−1),

which is (17). Essentially, this simple, heuristic derivation shows the second-order unbiasedness of the proposed MSPE
estimator, (22), which can be made rigorous by imposing regularity conditions; see [5].

Note that, in (22), a(Y , ψ̂) is the leading termwhich is typically O(1); the remaining term, d(ψ̂) = b(ψ̂)−c(ψ̂) is typically
O(m−1). However, the remaining term is usually much more difficult to evaluate than the leading term. Thus, we propose to
evaluate this term via a Monte Carlo method.

Let Pψ denote the distribution of Y with ψ being the true parameter vector. Given ψ , one can generate Y under Pψ . For
each k ∈ {1, . . . , K }, let Y[k] denote Y generated under the kth Monte Carlo sample. Then, we have

b(ψ) − c(ψ) ≈
1
K

K∑
k=1

{
a(Y[k], ψ) − a(Y[k], ψ̂[k])

}
, (23)

where ψ̂[k] denotes ψ̂ based on Y[k]. If K is sufficiently large, which one has control over during the Monte Carlo simulation,
the difference between the two sides of (23) is o(m−1). Thus, we can replace the term b(ψ̂) − c(ψ̂) in (22) by the right side
of (23) with ψ replaced by ψ̂ , leading to a Monte Carlo assisted (McA) MSPE estimator given by

M̂SPEK = a(Y , ψ̂) +
1
K

K∑
k=1

{
a(Y[k], ψ̂) − a(Y[k], ψ̂[k])

}
, (24)

where Y[1], . . . , Y[K ] are generated as above with ψ = ψ̂ , and ψ̂[k] is the estimator of ψ based on Y[k]. As in [5], it can be
shown that the McA MSPE estimator, (24), is second-order unbiased provided thatm/K → 0.

In order to apply the McA estimator to our case, we need to specify the function a(Y , ψ), which, by (19), depends on
as(Y , ψ) with s ∈ {1, 2}. Consider amatched case. Note that, given I ∈ {1, . . . ,m}, we can combine the cluster in the training
data corresponding to I with the new data, which are also associated with αI . Let yIk with k ∈ {nI + 1, . . . , nI + nnew} denote
the expanded responses for the Ith cluster with yIk = ynew,k−nI for all k ∈ {nI +1, . . . , nI +nnew}. Similarly, let xIk = xnew,k−nI
for all k ∈ {nI + 1, . . . , nI + nnew}. Then, similar to Eq. (2), we have, for s ∈ {1, 2},

as(Y , ψ) =

∫
{h(x⊤

new,jβ + αI )}sfβ (YI·, XI , αI )fσ2 (αI )dαI∫
fβ (YI·, XI , αI )fσ2 (αI )dαI

, (25)
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for each j ∈ {1, . . . , nnew}, where h(u) = logit−1(u), fσ2 denotes the pdf of N (0, σ 2), and

fβ (YI·, XI , αI ) = exp

{
YI·αI −

nI+nnew∑
k=1

ln(1 + ex
⊤
Ikβ+αI )

}
with YI· =

∑nI+nnew
k=1 yIk and XI = (x⊤

Ik)1≤k≤nI+nnew . Expression (25) is evaluated by numerical integration [e.g., using the
integrate function in R] or a Monte Carlo method.

Once M̂SPEK is obtained, we can use its square root as a measure of uncertainty for the CMLMP, and we do this for every
mixed effect of interest. The method will be illustrated in the next section when we revisit the ECMO data.

5. Application: ECMO data revisited

We focus on the two outcomes of interest, bleed_binary variable and DischargeMortalit1Flag variable, that were
mentioned in Section 1. The data includes 8601 patients data from42hospitals. The numbers of patients in different hospitals
range from 3 to 487. We first use a forward–backward (F–B) BIC procedure to build a mixed logistic model; see, e.g., [1].
Namely, we use a forward selection based on logistic regression to add covariate variables, one by one, until 50% of the
variables have been added; we then carry out a backward elimination to drop the variables that have been added, one
by one, until all of the variables are dropped. This F–B process generates a sequence of (nested) models, to which the BIC
procedure [8] is applied to select the optimal model.

The F–B BIC procedure leads to a subset of 12 patient-level covariates out of a total of more than 20 covariates.
The same 12 covariates were selected for both outcome variables. Specifically, in the selected model, the probability of
hemorrhage complication (or mortality) is associated with number of days during hospitalization (LengthOfStay), major
surgery during hospitalization (MajSurgduringHosp_binary; Yes/No), whether the patient is no more than 30 days old
(age_ind1), whether the patient has had at least one of the following: 747—Other congenital anomalies of circulatory
system; 746—Other congenital anomalies of heart, excluding endocardial fibroelastosis; 745—Bulbus cordis anomalies
and anomalies of cardiac septal closure; 770—Other respiratory conditions of fetus and newborn; 756—Other congenital
musculoskeletal anomalies, excluding congenitalmyotonic chondrodystrophy (Top5PrincDx), whether the patient is flagged
for cardiovascular (flag_CV; Yes/No), hematologic/immunology (flag_hemimm; Yes/No), metabolic (flag_metab; Yes/No),
neuromuscular (flag_neuromusc; Yes/No), other congenital/genetic (flag_congengen; Yes/No), or respiratory (flag_resp;
Yes/No), number of days under ECMO during hospitalization (ALLecmodays), and whether the patient has received the AT
treatment (AT; Yes/No).

Out of the 12 patient-level covariates, two are continuous corresponding to number of days during hospitalization and
the number of days under ECMO during hospitalization; the rest are binary. In addition to the patient-level covariates, there
are two hospital-level covariates, namely, the total number of patients during the 10 year study who did receive AT (yesat)
and total number of patients that were included in the 10-year study (total). Both hospital-level covariates are continuous.
It should be noted that the four continuous covariates need to be standardized before carrying out the CMLMP analysis.

The proposed mixed logistic model includes the above 12 patient-level covariates as well as the two hospital-level
covariates, plus a hospital-specific random effect that captures the ‘‘uncaptured’’ as well as between-hospital variation.

The mixed effects of interest are probabilities of hemorrhage complication corresponding to bleed_binary, and mortality
probabilities associated with DischargeMortalit1Flag, for new observations. Note that, because most of the covariates
are at the patient-level, these probabilities are patient-specific. However, the responses are clustered with the clusters
corresponding to the hospitals, and there are 42 random effects associated with the hospitals under the mixed logistic
model. In order to test the CMLMPmethod, we randomly select five patients from a given hospital and treat these as the new
observations. The rest of the hospitals, and rest of the patients from the same hospital (if any), correspond to the training
data. We then use the matching strategy of Section 3, with yesat and total as the cluster-level covariates that are used to
identify the group for the new observations, then compute the CMLMP for each of the five selected patients. In addition, we
compute the McA MSPE estimator of Section 4, given by (24) with K = 100, for each CMLMP, and use ±2{M̂SPEK }

1/2 as the
margin of error. This analysis applies to all but one hospital (Hospital #2033), for which only three patients are available. For
this hospital all three patients are selected for the new observations, and the CMLMP and margin of error are obtained for
all three patients. Therefore, for 41 out 42 of these analyses, there is a match between the new observations’ group and one
of the training data groups; and for one analysis there is no such a match. Overall, the analysis yields a total of 208 predicted
probabilities with the corresponding margins of errors. The results are presented in Fig. 4 (bleed_binary) and Fig. A1 of the
Online Supplement (DischargeMortalit1Flag). Note that, for DischargeMortalit1Flag, some of the predicted are close to zero;
as a result, the lowermargin is negative, and therefore truncated at 0. In contrast, all of the predicted probabilities are clearly
above zero for the bleed_binary outcome; therefore, there is no need for truncation in terms of the margin of errors.

6. Concluding remarks

The main goal of CMLMP is prediction of subject-level mixed effects for new observations. The subject may correspond
to a patient (such as in precision medicine), or a group of patients such as in the ECMO example. A key idea of CMLMP is
matching the group. Although, in practice, the groups in the training data may be known, those for the new observations
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Fig. 4. Predicted probabilities of hemorrhage complication (bleed_binary) with margins of errors: Dash lines indicate margins of errors.

may be unknown. For example, if one wishes to use the ECMO data, which came from PHIS (see the middle of the second
paragraph of Section 1), to predict the probability of hemorrhage complication for a new patient outside the PHIS, the
group member for the new patient is unknown. One may argue, of course, that the new patient does not have a ‘‘group’’
corresponding to the training data, but the point is to make use of the rich source of information from the training data to
improve prediction accuracy, and for that we need tomatch the new patient to an existing group in the training data in order
to ‘‘borrow strength’’. Our theoretical and empirical results have shown that, even if there is no exact match between the
new observation group and a group in the training data, CMLMP can still improve prediction accuracy. In fact, three of the
208 new observations in the above ECMO example do not have a match in the training data.

It should be noted that there are other situations, in practice, in which group memberships are hidden due to confiden-
tiality concerns. For example, again in the ECMO example, the data were de-identified prior to inclusion in the study dataset
(see the middle of the second paragraph of Section 1); luckily, encrypted medical records allowed tracking the patient’s
hospital identity. For a new patient who may wish to keep stringent confidentiality, even the hospital identity may not be
known. This would create another situation that the group member of the new patient is unknown.

Although the group identification plays a key role in CMLMP, our main goal is prediction of the mixed effects, not
identification of the groupmemberships. Our theoretical results have shown consistency in terms of prediction of themixed
effects, but not in terms of identifying the correct group membership. In fact, as m (the number of groups in the training
data) increases, which is a key condition for consistency of the CMLMP of the mixed effect, the probability of identifying the
correct groupmembership goes to 0 (rather than going to 1). But, in spite of that, our CMLMP of themixed effect is consistent
which is all that matters.
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