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a b s t r a c t

A criterion of optimality in prediction is proposed that requires the predictor to assume
the same type of values as the random variable it is predicting. In the case of categorical
responses, the method leads to the Bayesian classifier with a uniform prior. However, the
method extends to other cases, such as zero-inflated observations, as well. The method,
called best look-alike prediction (BLAP), justifies an ‘‘usual practice’’ from a theoretical
standpoint. Application of BLAP to small area estimation is considered. A real-data example
is discussed.
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1. Introduction

Many practical problems are related to prediction, where the main interest is at subject (e.g., precision medicine) or
sub-population (e.g., small area estimation) level. The traditional concept of best prediction (BP) is in terms of mean squared
prediction error (MSPE). Under such a framework, the best predictor (BP) is known as the conditional expectation of the
random variable to be predicted, say, α, given the observed data, say, Y , that is, E(α|Y ). Based on the BP, a number of more
specialized predictionmethods have been developed, such as best linear prediction (BLP) and best linear unbiased prediction
(BLUP). See, for example, sec. 2.3 of Jiang (2007). In particular, mixed model prediction, that is, prediction based on mixed
effects models, has a fairly long history starting with Henderson’s early work in animal breeding (Henderson, 1948). See, for
example, Robinson (1991), Jiang and Lahiri (2006), Jiang (2007, sec. 2.3), and Rao and Molina (2015).

In spite of its dominance in prediction theory, and overwhelming impact in practice, the BP can have a very different look
than the random variable it is trying to predict. This is particularly the casewhen the random variable is discrete, categorical,
or has some features related to a discrete or categorical random variable. For example, if α is a binary random variable taking
the values 1 or 0, its BP, E(α|Y ), is typically not equal to 1 or 0; instead, the value of E(α|Y ) usually lies strictly between 0 and
1. Such a feature of the BP is sometimes unpleasant, or inconvenient, for a practitioner because the values 1 and 0 correspond
directly to outcomes of scientific, social, or economic interest; there is no such an outcome that corresponds to, say, 0.35, or
at least not directly.

Let α be an unobserved, possibly vector-valued random variable for which we wish to predict. The prediction will be
based on the observed data, denoted by Y . A predictor, say α̃, is said to be look-alike with respect to α if it has the same set
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of possible values as α. We derive the best predictor under this framework and a suitable criterion of optimality, which is
different than the BP. We refer the method as best look-alike prediction, or BLAP.

It should be noted that, in the case of predicting categorical outcomes, BLAP leads to the same solution as what is known
as the Bayesian classifier under a uniform prior (e.g., Nurty and Devi, 2011). However, under our framework there is no
prior; instead, the unknown parameters involved in BLAP are estimated from the data, leading to the empirical BLAP, or
EBLAP. Furthermore, the BLAP method applies to other situations, such as zero-inflated observations, for which there is no
Bayesian classifier.

The derivation of BLAP is given in Section 2 for the case of prediction of a discrete or categorical random variables. In
Section 3, we derive BLAP for zero-inflated random variables. In Section 4 we consider an application of BLAP to small area
estimation (e.g., Rao and Molina, 2015) with zero-inflated random effects. Some real-data applications are discussed in
Section 5. Further details and results can be found in an online supplement.

2. BLAP for discrete/categorical random variable

Let α denote a discrete or categorical random variable (r.v.) that we wish to predict. Without loss of generality, we can
assume that α is a discrete r.v. whose values are nonnegative integers. Let S denote the set of possible values of α. Let α̃ be
a predictor of α based on the observed data, Y . α̃, is look-alike (with respect to α) if it also has S as its set of possible values.
The performance of α̃ is measured by the probability of mismatch:

p(α̃ ̸= α) =

∑
k∈S

P(α̃ = k, α ̸= k). (1)

α̃ is said to be the best look-alike predictor, or BLAP, if it minimizes the probability of mismatch, (1). The following theorem
defines a BLAP.

Theorem 1. A BLAP of α is given by

α̃∗
= min

{
i ∈ S : P(α = i|Y ) = max

k∈S
P(α = k|Y )

}
, (2)

provided that the right side of (2) is computable.

Note. In the context of BP, it is well known that the expression of BP is very similar to the Bayesian posterior mean.
Similarly, the expression of BLAP in this case, that is, (2), resembles that of the Bayesian classifier under a uniform prior
(e.g., Nurty and Devi, 2011). Of course, there is no prior distribution in our consideration.

Proof of Theorem 1. Note that the right side of (1) can be expressed as∑
k∈S

E
{
1(α̃=k)P(α ̸= k|Y )

}
=

∑
k∈S

E
[
1(α̃=k){1 − P(α = k|Y )}

]
≥

∑
k∈S

E
[
1(α̃=k)

{
1 − max

k∈S
P(α = k|Y )

}]
=

∑
k∈S

E
[
1(α̃∗=k){1 − P(α = k|Y )}

]
= P(α̃∗

̸= α). (3)

The second-to-last equation in (3) is because, when α̃∗
= k, one has, by the definition, P(α = k|Y ) = maxk∈SP(α = k|Y ); the

last equation in (3) is, again, due to (1) and the first equation in (3). This completes the proof.

A special case of Theorem 1 is the binary case, which we state as a corollary.

Corollary 1. Suppose that δ is a binary r.v. taking the values 1 and 0. Then, the BLAP of δ is given by δ̃∗
= 1{P(δ=1|Y )≥1/2}, provided

that P(δ = 1|Y ) is computable.

Typically, the conditional probability, P(α = k|Y ), depends on some unknown parameters, say, θ . It is customary to
replace the θ by θ̂ , a consistent estimator of θ , on the right side of (2). The result is called an empirical BLAP, or EBLAP,
denoted by α̂∗.

3. BLAP of a zero-inflated random variable

A zero-inflated randomvariable,α, has amixture distributionwith onemixture component being 0 and the othermixture
component being an a.s. nonzero random variable. Suppose that α = δξ , where δ is a binary random variable such that



H. Sun et al. / Statistics and Probability Letters 143 (2018) 37–42 39

P(δ = 1) = p = 1 − P(δ = 0); ξ is a random variable such that P(ξ ̸= 0) = 1, and δ, ξ are independent. Then, α is a
zero-inflated random variable with the nonzero component being ξ . A predictor, α̃, is look-alike (with respect to α) if it is
also zero-inflated.

To find the BLAP of α, note that the latter has two components: a binary component and a continuous one. Let us first
focus on the binary component. Ideally, α̃ should be zero whenever α is zero, and nonzero whenever α is nonzero. Denote
A = {α̃ = 0}, B = {α = 0}. Then, similar to the proof of Theorem 1, we have

P(A△B) = P(A ∩ Bc) + P(Ac
∩ B)

= P(α̃ = 0, α ̸= 0) + P(α̃ ̸= 0, α = 0)
= E{1(α̃=0)P(δ = 1|Y )} + E{1(α̃ ̸=0)P(δ = 0|Y )}
= E[P(δ = 1|Y ) + {P(δ = 0|Y ) − P(δ = 1|Y )}1(α̃ ̸=0)]

= P(δ = 1) + E[{P(δ = 0|Y ) − P(δ = 1|Y )}1(α̃ ̸=0)]. (4)

where Y denotes the observed data. The last expression in (4) shows that to minimize P(A△B) it suffices to allow α̃ ̸= 0
whenever P(δ = 0|Y ) − P(δ = 1|Y ) ≤ 0, that is,

α̃ ̸= 0 iff P(δ = 1|Y ) ≥
1
2
. (5)

It follows that any optimal α̃ must have the expression

α̃ = 1{P(δ=1|Y )≥1/2}ξ̃ . (6)

Recall that α = δξ and, according to Corollary 1, the indicator function in (6) is the BLAP of δ. Therefore, ξ̃ corresponds to a
predictor of ξ .

Now let us consider the continuous component, ξ . The following theorem states that the optimal ξ̃ in (6) is the BP of (not
ξ but) α.

Theorem 2. The optimal ξ̃ , in the sense of minimizing the MSPE among all predictors satisfying (6), is ξ̃ ∗
= E(α|Y ); therefore,

the BLAP of α is given by

α̃∗
= 1{P(δ=1|Y )≥1/2}E(α|Y ), (7)

provided that the right side of (7) is computable.

Note. There is an interesting interpretation of (7): The BLAP of α is a product of the BLAP of δ, 1{P(δ=1|Y )≥1/2}, and the BP
of α, E(α|Y ).

Proof of Theorem 2. We have, by (6),

E(α̃ − α)2 = E
[
(ξ̃ − α)21{P(δ=1|Y )≥1/2} + α21{P(δ=1|Y )<1/2}

]
= E

[
1{P(δ=1|Y )≥1/2}E{(ξ̃ − α)2|Y }

]
+ E[α21{P(δ=1|Y )<1/2}].

Note that E{(ξ̃ −α)2|Y } = ξ̃ 2
− 2ξ̃E(α|Y )+ E(α2

|Y ) = {ξ̃ − E(α|Y )}2 + var(α|Y ) ≥ var(α|Y ) with the equality holding if and
only if ξ̃ = E(α|Y ). Thus, we have

E(α̃ − α)2 ≥ E[1{P(δ=1|Y )≥1/2}var(α|Y )] + E[α21{P(δ=1|Y )<1/2}], (8)

and the equality in (8) holds when ξ̃ = E(α|Y ). Therefore, in conclusion, the BLAP of α is given by (7). This completes the
proof.

We can extend the result of Theorem 2 to zero-inflated vector-valued random variable. This is defined as δξ , where δ is
the same as before but ξ is a random vector such that P(ξ = 0) = 0, where the 0 inside the probability means the zero
vector. A BLAP of α is defined as a predictor, α̃, such that (i) it is zero-inflated vector-valued; (ii) it minimizes P(A△B) of (4),
where the 0 means zero vector; and (iii) it minimizes the MSPE, E(|α̃ − α|

2), among all predictors satisfying (i) and (ii). By a
similar argument, the following can be proved.

Theorem3. The BLAP of a zero-inflated vector-valuedα is given by (7), where E(α|Y ) is the vector-valued conditional expectation,
assumed computable.

As in Section 2, if the right side of (7) involves a vector of unknown parameters, θ , an EBLAP is obtained by replacing θ by
θ̂ , a consistent estimator of θ .

The BLAP developed in this section has potential applications in many fields. For example, Jiang et al. (2016) considered
misspecified mixed model analysis for genome-wide association study, in which the majority of the random effects are
identical to zero. Another application of BLAP is considered in the next section.
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4. Small area estimation with zero-inflated random effects

Datta et al. (2011) considered a Fay–Herriot model (Fay and Herriot, 1979) for small area estimation (e.g., Datta, 2009,
Rao andMolina, 2015), in which the variance of the area-specific random effects is potentially zero. This is equivalent to that
the random effects themselves are zero. Datta andMandal (2015) further considered a Fay–Herriot model with zero-inflated
random effects. This is different from Datta et al. (2011) in that some of the random effects may be zero, while the others are
not. A slightly modified version of the Datta–Mandal model can be expressed as

Yi = x′

iβ + αi + ϵi, i = 1, . . . ,m, (9)

where xi is a vector of known covariates, β is a vector of unknown parameters, αi is an area-specific random effect, and ϵi
is a sampling error. It is assumed that αi = δivi such that the following hold: (i) δi, vi, ϵi, i = 1, . . . ,m are independent; (ii)
δi is binary such that P(δi = 1) = ρ = 1 − P(δi = 0), ρ ∈ [0, 1] being an unknown probability; and (iii) vi ∼ N(0, A), A
being an unknown variance; and (iv) ϵi ∼ N(0,Di), Di being a known sampling variance. Let θ = (β ′, A, ρ) denote the vector
of unknown parameters. The BLAP developed in the previous section can be applied to prediction of the random effects, αi.
Detailed derivations can be found in the online supplement.

To use the BLAP in practice, we need to replace θ by a consistent estimator. Here we consider using the maximum
likelihood estimator (MLE). Write fi(Yi|θ ) = (1 − ρ)φ(Yi − x′

iβ,Di) + ρφ(Yi − x′

iβ, A + Di), where φ(·, σ 2) denotes the
pdf of N(0, σ 2). The following theorem states that, under some regularity conditions, the MLE is consistent. Note that this
result does not come as a consequence of the standard asymptotic theory for LMM (e.g., Jiang, 2007, sec. 1.8.3).

Theorem 4. Suppose that (i) A > 0,Di > 0, 1 ≤ i ≤ m; (ii)

lim inf
m→∞

λmin

[
1
m

m∑
i=1

E

{
∂2

∂θ∂θ ′
log f (Yi|θ )

⏐⏐⏐⏐
θ0

}]
> 0,

where λmin denotes the smallest eigenvalue, and θ0 the true θ ; (iii) define σi,st (θ ) = (∂2/∂θs∂θt ) log f (Yi|θ ), 1 ≤ s, t ≤ r =

dim(θ ), then limm→∞m−2∑m
i=1E{σ

2
i,st (θ0)} = 0 for all s, t; and (iv) m−1∑m

i=1[σi,st (θ ) − E{σi,st (θ )}] converges uniformly to zero
in a neighborhood of θ0 for all s, t. Then, with probability tending to one, there is θ̂ which is a solution to the likelihood equation,
(∂/∂θ ) log f (Y |θ ) = 0, such that θ̂

P
−→ θ0 as m → ∞.

The proof of Theorem 4 follows by verifying the conditions of Theorem 2 of Foutz (1977). The detail is omitted. In the
next section we consider an application of BLAP to a small area estimation problem.

5. Real-data examples

Our first real-data example is regarding thromboembolic or hemorrhagic complications (e.g., Glass et al., 1997), which
occur in as many as 60% of patients who underwent extracorporeal membrane oxygenation (ECMO), an invasive technology
used to support children during periods of reversible heart or lung failure (e.g., Muntean, 2002). Over half of pediatric
patients on ECMOare currently receiving antithrombin (AT) tomaximize heparin sensitivity. In a retrospective,multi-center,
cohort study of children (≤ 18 years of age) who underwent ECMO between 2003 and 2012, 8601 subjects participated in 42
free-standing children’s hospitals across 27 U.S. states and the District of Columbia known as Pediatric Health Information
System (PHIS). Many of the outcome variables were binary, such as the bleed_binary variable (BB), which is a main outcome
variable indicating hemorrhage complication of the treatment; and the DischargeMortalit1Flag variable (DM1F), which
is associated with mortality. Here the treatment refers to AT. The data are also potentially clustered, with the clusters
corresponding to the children’s hospitals.

In addition to the treatment indicator, there were 20 other covariate variables, for which information were available.
A step-wise variable selection procedure for logistic regression was applied that reduced the total number of covariate
variables to 12, including 2 continuous variables and 10 dummy variables. The details about the variables are omitted due
to space limit. The 12 variables were used as predictors for future outcomes associated with the two outcome variables, BB
and DM1F, mentioned above, under a mixed logistic model for each outcome variable (see Example 1 in the Supplementary
Material.). We compare BLAP with the standard logistic regression prediction (SLRP), which predicts the binary outcome
using a similar decision rule as the BLAP, except without incorporating the random effects associated with the clusters, that
is, hospitals. More specifically, the SLRP predicts the outcome as 1 is the estimated probability for the outcome equal to
1 is ≥ 1/2; otherwise, the outcome is predicted as 0. The performance of BLAP and SLRP are compared using a delete-1
cross validation. Namely, we take out one subject each time, and use the rest of the data to make predictions of the deleted
outcomes, using both BLAP and SLRP.

We obtained empirical probability of correct prediction (EPCP) by SLRP and BLAP for the 42 hospitals for both the BB
outcome and the DM1F outcome. It is seen that BLAP performs better, overall, for both outcome variables. More specifically,
not counting the ties, BLAP has higher EPCP for 25 out of 35 hospitals, or 71.4%, while SLRP has higher EPCP for 10 out of
the 35 hospitals, or 28.6%, for the BB outcome. As for the DM1F outcome, not counting the ties, BLAP has higher EPCP for
24 out of 36 hospitals, or 66.7%, while SLRP has higher EPCP for 12 out of the 36 hospitals, or 33.3%. The empirical results
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are consistent with what the theory (Corollary 1) predicts regarding the superiority of the BLAP. The detailed results can be
found in the online supplement.

Our second real-data example is regarding small area estimation. Datta et al. (2002) considered a data set regarding
median income of four-person families for the fifty states of U.S. and the District of Columbia using cross-sectional and
time series modeling. The primary source of data is the annual supplement to the March Sample of the Current Population
Survey (CPS), which provides individual annual income data categorized into intervals of $2500. The direct survey estimates
were obtained from the CPS using linear interpolation. Two secondary sources of data were also available. The first is the
U.S. decennial censuses (Census) which produce median incomes for the 50 states and D.C. based on the ‘‘long form’’ filled
out by approximately one-sixth of the U.S. population. These census median income estimates are believed to be free of
sampling errors. The second is per-capita income estimates produced by the Bureau of Economic Analysis (BEA) division of
the U.S. Department of Commerce. Since the per-capita income estimates are not based on any sampling techniques, they
do not have any sampling errors associated with them. From the Census and BEA data, an adjusted census median income
(adjusted Census) is obtained by multiplying the preceding census median income by the ratio of BEA per-capita income for
the current year to that of the preceding census year.

As an illustration, we consider data collected in the year of 1982. Here, yi, i = 1, . . . , 51 are the CPS data. Two covariates
are considered. The first is adjusted Census, denoted by x1i; the second is Census, denoted by x2i. The CPS sampling variances,
Di, are available from the data. We adjust the scales by dividing yi, x1i, x2i by 104, and Di by 108. A Fay–Herriot model with
zero-inflated random effects can be expressed as yi = β0 + β1x1i + β2x2i + αi + ei, i = 1, . . . , 51, where αi, ei satisfy
the assumptions in Section 4 [below (9)]. Using the EBLAP method in Section 4, we obtain the MLE of the model parameters,
θ = (β0, β1, β2, A, ρ), and the EBLAPs of the random effects. From the latter, we obtain the EBLAPs of the small area means,
µi = β0 + β1x1i + β2x2i + αi, as µ̂i = β̂0 + β̂1x1i + β̂2x2i + α̂i, where β̂j is the MLE of βj, j = 0, 1, 2, and α̂i is the EBLAP of
αi. As a comparison, we also computed the corresponding values of the standard empirical best linear unbiased predictors
(EBLUPs; e.g., (Rao and Molina, 2015)) of the random effects and small area means, denoted by α̂∗

i and µ̂∗

i , respectively. The
EBLUPs are based on the Prasad–Rao estimate of A (Prasad and Rao, 1990).

It is seen that the EBLAPs of 25 out of the 51 state-specific random effects are exactly zero; in contrast, none of the EBLUPs
of the random effects is exactly zero. It is also observed that, when both EBLAP and EBLUP are nonzero, the former tends to
be larger in absolute value than the latter; and, when EBLAP is zero, the corresponding value of EBLUP tends to be small in
absolute value. An interpretation is that, because EBLUP assumes that all of the random effects are nonzero, it has to ‘‘split’’
the random effect more ‘‘evenly’’ in order to match the overall for EBLAP. This can also be seen from the estimates of A
under the two different models. In fact, the estimates of

√
A under the Fay–Herriot model with zero-inflated random effects

(corresponding to EBLAP) and under the Fay–Herriot model (corresponding to the EBLUP) are 0.925 and 0.155, respectively.
The detailed results can be found in the online supplement.

Concluding remark. Random effects models are often used in practice to overcome limitations of regression or
generalized linear models, or other fully-specified parametric models. The idea is to use the unspecified random effects
to ‘‘capture’’ variations in the response that are not captured by the covariates through the parametric model. In fact,
random effects models, or mixed effects models, have offered an alternative to nonparametric modeling. In this regard,
the EBLAP method is useful in addressing problems of complex data structure by providing an intuitive and conceptually
simple approach.
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