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ABSTRACT
A procedure is developed for power analysis and sample size calculation for a class of complex
testing problems regarding the largest binomial probability under a combination of treatments.
It is shown that the asymptotic null distribution of the likelihood-ratio statistic is not parameter-
free, but χ2

1 is a conservative asymptotic null distribution. A nonlinear Gauss-Seidel algorithm is
proposed to uniquely determine the alternative for the power and sample size calculation given
the baseline binomial probability. An example from an animal clinical trial is discussed.
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1. Introduction

In biological and medical research, it is often neces-
sary to perform power analysis, or determine the sam-
ple size required for binomial trials involving multiple
treatments. For example, such an analysis/calculation
is required by the National Institutes of Health (NIH)
for research grant applications. One particular type of
questions that need to be answered is regarding the
largest binomail probability under these treatments.
Suppose that there are r treatments, denoted by 1, . . . , r.
Here the ‘treatment’ can be a real treatment (e.g., drug),
or a factor that has two levels (e.g., male/female). Let
xq be the indicator for the qth treatment (0 or 1),
1 ≤ q ≤ r. Suppose that n independent trials are run
under each combination of the treatments, x1, . . . , xr,
resulting a binary outcome for each trial (1 – suc-
cess, 0 – failure). Let N(x1, . . . , xr) be the total num-
ber of successes under x1, . . . , xr. It is assumed that
N(x1, . . . , xr) has a Binomia{n, p(x1, . . . , xr)} distribu-
tion, where p(x1, . . . , xr) is the probability of success
in a single trial under x1, . . . , xr. It is believed that
all the treatments have at least nonnegative effects, so
p(0, . . . , 0) is the smallest probability and p(1, . . . , 1) is
the largest. The question is to determine the sample size,
n, so that one has at least the power 1 − γ to prove the
case that p(1, . . . , 1) is higher than the rest of the prob-
abilities, if it is indeed higher by at least as much as δ. In
some cases, the researcher has a target sample size (e.g.,
the maximum under the budget constraint). The ques-
tion then is to perform the power analysis for the given
sample size. We illustrate with an example.

Example 1.1: Researchers at the Oregon Health & Sci-
ence University (OHSU) were preparing to meet the
deadline of a grant submission. One of the research
aims of the grant proposal had to do with compara-
tive transplantations via animal clinical trials (i.e.,mice)
to determine the best overall protocol, which can then
be further optimised. Successful liver repopulation is
defined as greater than 70% cell replacement and suc-
cessful blood reconstitution is defined as greater than
50% human cells in the bone marrow. From previous
studies, it was known that these levels of liver repop-
ulation could be achieved in 20–80% of transplanted
mice with a good hepatocyte donor, the average being
50–60%. For cord blood transplants into neonates,
about 75% of the mice reach the desired human repop-
ulation levels, again with a range of 50–90% between
experiments. Using these numbers from the single
cell type transplants, we made the assumption that
a successful protocol would yield about 30% success
in double-repopulation. Here the protocol involved a
treatment high and low dose levels, and a control fac-
tor of youth and grown-up mice. In other words, there
are two treatments, x1 = 1 for high dose and x1 = 0 for
low dose; x2 = 1 for youth mice and x2 = 0 for grown-
up one. The trials were to be carried out independently
on n different mice, resulting a binomial proportion,
under each protocol. It was determined that n should
be no more than 30 due to the budget constraint. An
initial request was made to perform a power analysis in
order to detect a 10% difference that separates the suc-
cess rates of the ‘optimal’ protocol (i.e., with high dose
and youth mice) and the rest.
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A naive approach to the power analysis/sample size
calculation would be to compare p(1, . . . , 1) with each
of the other probabilities (actually, only those with
exactly one of the treatment indicators equal to zero),
and perform a two-sample t-test for the difference in
proportions. However, this approach is low power, and
often results in a sample size that the researcher can-
not afford. The inefficiency of the naive approach is not
surprising, because only a (small) portion of the data
are involved in the two-sample t-test (for each compar-
ison). One can do better by utilising the entire data in
the analysis. To do so we need to assume a model for
the binomial probability. Suppose that

p(x1, . . . , xr) = h(β0 + β1x1 + · · · + βrxr), (1)

where h(·) satisfies 0 < h(x) < 1 and is strictly increas-
ing. A well-known example of h is the logistic func-
tion, h(x) = ex/(1 + ex). Under the assumed model,
the problem of interest can be expressed more precisely
as testing the hypothesis

H0 : at least one of the βj, 1 ≤ j ≤ r, is ≤ 0 (2)

versus H1 : βj > 0, 1 ≤ j ≤ r. Natually, the likelihood-
ratio test is considered. The latter is based on the test
statistic

L = 2(l̂ − l̂0), (3)

where l̂ is themaximised log-likelihood and l̂0 themax-
imised log-likelihood under H0. A first step for the
likelihood-ratio test (LRT) would be to determine the
critical value, cα , corresponding to the given level of
significance α, such that

sup
β∈H0

Pβ(L > cα) ≤ α, (4)

whereβ = (β0, . . . ,βr)
′ andPβ is the probability distri-

bution given that β is the true vector of parameters. If
the log-likelihood function is log-concave, which is the
case, for example, for the logistic regression, the event
inside the probability of (4) implies that the maximum
for l̂0 must take place on the boundary of H0, provided
that cα > 0. Therefore, the critical value is computed by
considering the boundary of H0, which is a subset of

H̃0 : βj = 0 for some 1 ≤ j ≤ r. (5)

Unfortunately, even with the latest simplification,
the asymptotic null distribution of the LRT is not
parameter-free. This is shown in the next section. On
the other hand, the arguments also show that a conser-
vative asymptotic null distribution (CAND) for the LRT
is χ2

1 , which is parameter-free. Here the CAND is in the
sense that

sup
β∈H̃0

lim sup
n→∞

Pβ(L > χ2
1,α) = α. (6)

The main objective of the current paper is to deter-
mine the sample size, n, for the LRT so that the test will

have the designated power, or to obtain the power of
the LRT, under a given sample size. Although standard
power and sample size problems in logistic regression
arewell studied (e.g., Alam,Rao,&Cheng, 2010; Boren-
stein, Rothstein, & Cohen, 2001; Demidenko, 2007;
Hsieh, Bloch, & Larsen, 1998; Novikov, Fund, & Freed-
man, 2010; Whittemore, 1981), to the best of our
knowledge, the kind of problems that we are dealing
with have not been addressed. Clearly, the power of the
test depends on the alternative, and there are infinitely
many possible alternatives to (2), that is, in H1. On the
other hand, a practitioner would prefer a ‘short answer’,
as opposed to something that is case-by-case. This issue
is addressed in Section 3, where a unique alternative,
based on a reasonable argument, is determined. A sim-
pleGauss-Seidel type algorithm is proposed to compute
the alternative. A Monte Carlo procedure is then pro-
posed to compute the power or sample size. A real-life
application is considered in Section 4. Technical details
are deferred to Appendix.

2. Asymptotic null distribution

In the standard situation, the LRT is known to have
an asymptotic χ2 distribution, under the null hypoth-
esis, with a certain degrees of freedom that does not
depend on the parameter under the null. For example,
if, instead of (2), one were to test

Hj
0 : βj = 0 (7)

versus Hj
1 : βj �= 0 for a fixed 1 ≤ j ≤ r, then the

asymptotic distribution of the LRT is χ2
1 , regardless of

the value of the true βk, k �= j, as long as the true βj is
zero. In other words, the asymptotic null distribution
is parameter-free. However, this is not the case for test-
ing (2). We show this for the case of logistic regression
with r=2.

Write the log-likelihood function as l(β0,β1,β2).
Let (β̂0, β̂1, β̂2)

′, (β̂
[2]
0 , β̂[2]

1 , 0)′, and (β̂
[1]
0 , 0, β̂[1]

2 )′ be
the maximiser of l without constraint, over H2

0 =
{(β0,β1, 0) : β0,β1 ∈ R}, and over H1

0 = {(β0, 0,β2) :
β0,β2 ∈ R}, respectively. Suppose that the true param-
eter vector is (β0,β1, 0) ∈ H2

0, where β1 �= 0. By the

standard asymptotic theory, we have β̂
[2]
j

P−→ βj, j =
0, 1, as n → ∞. On the other hand, byWhite (1982), we
have β̂

[1]
j

P−→ β
[1]
j , j = 0, 2, as n → ∞ for some β

[1]
0

and β
[1]
2 . Thus, by the Taylor expansion, we have

l(β̂[2]
0 , β̂[2]

1 , 0)
n

= l(β0,β1, 0)
n

+ 1
n

∑
j=0,1

{
∂ l
∂βj

∣∣∣∣
β̃(2)

}(
β̂
[2]
j − βj

)
, (8)

l(β̂[1]
0 , 0, β̂[1]

2 )

n
= l(β[1]

0 , 0,β[1]
2 )

n
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+ 1
n

∑
j=0,2

{
∂ l
∂βj

∣∣∣∣
β̃(1)

}(
β̂
[1]
j − β

[1]
j

)
, (9)

for some β̃(j), j = 1, 2. It is easy to show that the partial
derivatives are uniformly bounded when divided by n,
so the second terms on the right sides of (8) and (9) are
oP(1). As for the first terms, it is easy to show that, for
any β , we have

l(β) = c +
∑

x1,x2=0,1

{N(x1, x2)(β0 + β1x1 + β2x2)

−n log(1 + eβ0+β1x1+β2x2)
}
,

where c does not depend on the parameter. Thus, we
have

l(β0,β1, 0) − l(β[1]
0 , 0,β[1]

2 )

n

=
∑

x1,x2=0,1

[
N(x1, x2)

n
{(β0 + β1x1) − (β

[1]
0

+β
[1]
2 x2)} − log

(
1 + eβ0+β1x1

1 + eβ
1
0+β1

2x2

)]
.

By theweak law of large numbers, we have n−1N(x1, x2)
P−→ p(x1, x2) = h(β0 + β1x1), with h(x) = ex/

(1 + ex), x1, x2 = 0, 1. Thus, we have

l(β0,β1, 0) − l(β[1]
0 , 0,β[1]

2 )

n
P−→

∑
x1,x2=0,1

[
eβ0+β1x1

1 + eβ0+β1x1
{(β0 + β1x1)

−(β
[1]
0 + β

[1]
2 x2)} − log

(
1 + eβ0+β1x1

1 + eβ
[1]
0 +β

[1]
2 x2

)]
.

(10)

For fixed x1, x2 ∈ {0, 1}, write p0 = h(β0 + β1x1) and
p1 = h

(
β
[1]
0 + β

[1]
2 x2

)
. Then, by the inequality in

Appendix A.1, we have

eβ0+β1x1

1 + eβ0+β1x1
{(β0 + β1x1) − (β

[1]
0 + β

[1]
2 x2)}

− log

(
1 + eβ0+β1x1

1 + eβ
[1]
0 +β

[1]
2 x2

)

= p0 log
(
p0
p1

)
+ (1 − p0) log

(
1 − p0
1 − p1

)
≥ 0,

with the equality holding if and only if p0 = p1. It fol-
lows that the right side of (10) is positive unless p0 = p1
for all x1, x2 = 0, 1. Because the latter implies β1 = 0,
a contradiction, the right side of (10) must be posi-
tive. Therefore, in conclusion, we have with probabil-
ity tending to one that l(β̂[2]

0 , β̂[2]
1 , 0) > l(β̂[1]

0 , 0, β̂[1]
2 ),

henceL = 2{l(β̂0, β̂1, β̂2) − l(β̂[2]
0 , β̂[2]

1 , 0)} d−→ χ2
1 , by

the standard asymptotic result [see the note below (7)].
Now suppose that the true parameter vector is

(β0, 0, 0). Then, it can be shown (seeAppendixA.2) that

L d−→ η − η1 ∨ η2, as n → ∞, where

η =
⎛
⎝ξ0

ξ1
ξ2

⎞
⎠

′ ⎛
⎝4 2 2
2 2 1
2 1 2

⎞
⎠

−1⎛
⎝ξ0

ξ1
ξ2

⎞
⎠ ,

⎛
⎝ξ0

ξ1
ξ2

⎞
⎠ ∼ N

⎡
⎣
⎛
⎝0
0
0

⎞
⎠ ,

⎛
⎝4 2 2
2 2 1
2 1 2

⎞
⎠
⎤
⎦ ,

ηj =
(

ξ0
ξj

)′ (4 2
2 2

)−1 (
ξ0
ξj

)
, j = 1, 2.

Note that η − η1 ∨ η2 is not distributed as χ2
1 . To see

this, note that η1 < η2 if and only if (ξ1 − ξ0/2)2 <

(ξ2 − ξ0/2)2. Because the pdf of ξ is positive every-
where, there is a positive probability that η1 < η2,
hence η1 ∨ η2 > η1. On the other hand, one always has
η1 ∨ η2 ≥ η1. It follows that E(η1 ∨ η2) > E(η1), hence
E(η − η1 ∨ η2) < E(η) − E(η1) = 3 − 2 = 1.

The results so far in this section have shown that the
asymptotic null distribution of L depends on the val-
ues of the true parameters, namely, if β = (β0,β1, 0),
where β1 �= 0 [or β = (β0, 0,β2), where β2 �= 0, by a
similar argument], the asymptotic null distribution is
χ2
1 ; if β = (β0, 0, 0), the asymptotic null distribution is

not χ2
1 . Thus, the asymptotic null distribution is not

parameter-free.
Nevertheless, χ2

1 is, in general (not restricted to
logistic and r=2), a CAND in the sense of (6), pro-
vided that the log-likelihood is log-concave. This can be
shownwith a simple argument. For any β ∈ H̃0, there is
a 1 ≤ j ≤ r such that βj = 0. Due to the log-concavity,
the event L > χ2

1,α is the same as the event 2(l̂ −
l̃0) > χ2

1,α , where l̃0 is the maximised log-likelihood
over H̃0 [see the note above (5)]. On the other hand,
we have 2(l̂ − l̃0) ≤ 2(l̂ − l̂0j), where l̂0j is the max-
imised log-likelihood over H̃0j = {β : βj = 0}. There-
fore, we have Pβ(L > χ2

1,α) = Pβ{2(l̂ − l̃0) > χ2
1,α} ≤

Pβ{2(l̂ − l̂0j) > χ2
1,α} → α, by the standard asymp-

totic result. Therefore, we have lim supn→∞ Pβ(L >

χ2
1,α) ≤ α.
On the other hand, if β ∈ H̃0 such that βj = 0 while

βk �= 0, k �= j, by a similar argument as the above for
the special case of logistic regression with r=2, it can
be shown that, with Pβ tending to one, we have L =
2(l̂ − l̂0j)

d−→ χ2
1 , hence limn→∞ Pβ(L > χ2

1,α) = α.
Because limn→∞ Pβ(L > χ2

1,α) achieves its supremum
at βj = 0 while βk �= 0, k �= j, (6) must hold. Note that,
by the definition of H̃0, which has j ≥ 1, all the indexes
j,kmentioned in this paragraph are assumed to be ≥ 1;
in other words, β0 is not involved.
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3. Power and sample size calculation

By the results of the previous section, we can use χ2
1,α as

the critical value of the LRT. As for the power calcula-
tion, although there are infinitelymany alternatives that
influence the power, it is often reasonable to assume, in
practice, that the baseline probability is known. In other
words, h(β0) is known according to (1); therefore, β0 is
known.

In addition, the minimum probabilistic increase of
the largest probability over the other probabilities, δ, is
given. In other words, we consider all the alternatives
such that

p(1, . . . , 1) ≥ p(x1, . . . , xr) + δ (11)

for all (x1, . . . , xr) �= (1, . . . , 1). It follows, under (1),
that all of the βj, 1 ≤ j ≤ r must be positive, and
that (11) is equivalent to

h

⎛
⎝β0 +

r∑
j=1

βj

⎞
⎠ ≥ h

⎛
⎝β0 +

∑
1≤j≤r,j�=k

βj

⎞
⎠ + δ,

1 ≤ k ≤ r. (12)

The minimum amount of increase of the left sides
of (12) over the right sides takes place when the equal-
ities hold in all of the inequalities, that is, when

h

⎛
⎝β0 +

r∑
j=1

βj

⎞
⎠ = h

⎛
⎝β0 +

∑
1≤j≤r,j�=k

βj

⎞
⎠ + δ,

1 ≤ k ≤ r. (13)

This results in r equations, fromwhich we can uniquely
determine the alternative. Note that (13) is a nonlin-
ear equation system; however, it can be solved conve-
niently by utilising a Gauss-Seidel type algorithm (e.g.,
Jiang, 2000). Namely, from (13) we have

βk = h−1

⎧⎨
⎩h

⎛
⎝β0 +

∑
1≤j≤r,j�=k

βj

⎞
⎠ + δ

⎫⎬
⎭

− β0 −
∑

1≤j≤r,j�=k

βj

= g

⎛
⎝β0 +

∑
1≤j≤r,j�=k

βj

⎞
⎠ , (14)

where g(x) = h−1{h(x) + δ} − x (the inverse of h exists
because h is assumed to be strictly increasing). Thus,
given the initial values β

(0)
j , 1 ≤ j ≤ r − 1 (e.g., all

zero), we have

β
(l)
k = g

⎧⎨
⎩β0 +

k−1∑
j=1

β
(l−1)
j +

r∑
j=k+1

β
(l)
j

⎫⎬
⎭ ,

k = r, . . . , 1 (15)

Table 1. Convergence of Gauss-Seidel algorithm.

Initial value: β1 = 0 Initial value: β1 = 1

Iteration β1 β2 β1 β2

0–1 0.0000000 0.4418328 1.0000000 0.4144315
1–2 0.4054651 0.4070466 0.4066332 0.4069919
2–3 0.4069726 0.4069760 0.4069751 0.4069759
3–4 0.4069759 0.4069759 0.4069759 0.4069759
4–5 0.4069759 0.4069759 0.4069759 0.4069759

for l = 1, 2, . . .. The convergence is guaranteed, and
fast. We illustrate with an example.

Example 3.1 (continued): In the animal clinical trial
example, the researchers suggested a baseline prob-
ability of 0.3. Using the logistic regression, we have
β0 = logit(0.3) = −0.8472979. Furthermore, the min-
imum probability increase was set (again by the
researchers) as δ = 0.1. Recall that r=2 in this case.
The Gauss-Seidel algorithm converged within three
iterations. Table 1 shows the R outputs of the first five
iterations.

Given the target sample size, the power of the LRT
at the alternative can be computed by a Monte Carlo
method. Consider, for example, the case of logistic
regression. Under the alternative β = (β0,β1, . . . ,βr)

′,
one can simulate data,N(x1, . . . , xr), x1, . . . , xr ∈ {0, 1},
under the logistic regression. For each simulated data
set, r+1 logistic regressions are fit. The first one is under
the full model, the next one under the model without
x1, . . . , and the last one under the model without xr.
Let l̂, l̂01, . . . , l̂0r denote the maximised log-likelihoods
as results of these logistic regressions. We compute
L = 2(l̂ − max1≤j≤r l̂0j) for the simulated data set. This
is repeated B times, resulting L(b), b = 1, . . . ,B. The
power of the LRT is then approximated by B−1#{1 ≤
b ≤ B : L(b) > χ2

1,α}.
If, instead, the goal is to determine the sample size

so that the LRT has a designated power, say, γ , we can
use the following bisection procedure to speed up the
search for the minimum sample size. First pick a cou-
ple of initial sample sizes, n0 and n1, and compute the
power under n0 and n1 using the above procedure. Sup-
pose that the power under n0 is less than γ , and the
power under n1 is greater than γ . We then let n2 =
(n0 + n1)/2 (take the integer part, if necessary), and
compute the power under n2 using the above proce-
dure. If the power under n2 is greater than γ , let n3 =
(n0 + n2)/2; otherwise, let n3 = (n2 + n1)/2, and so
on. The procedure should converge quickly to a single
integer, n∗, so that either n∗ or n∗ + 1 is the minimum
sample size to have the power greater than or equal to γ .

4. Animal clinical trial revisited

Let us go back to Example 1.1 of Section 1. Recall the
initial request was to make a power analysis based on
the sample size n=30 for detecting a 10% difference



STATISTICAL THEORY AND RELATED FIELDS 5

between p(1, 1) and the rest of the binomial proba-
bilities, and the baseline probability was set as 30%.
We considered a logistic regression with r=2 for this
case. Here p0 = 0.3 and δ = 0.1. The alternative was
computed by the Gauss-Seidel algorithm [see Exam-
ple 1.1 (continued) in Section 3] as β0 = −0.8472979
and β1 = β2 = 0.4069759. The corresponding proba-
bilities are p(0, 0) = 0.3, p(0, 1) = p(1, 0) = 0.3916643,
and p(1, 1) = 0.4916643. As we can see, the minimum
difference between p(1, 1) and the rest of the p’s is
0.1. For this alternative, the power of the LRT at 5%
level of significance was computed, using the Monte-
Carlo method described in Section 3 with B=1000, as
approximately 88%.

As the 80% power was considered satisfactory by
the researchers, it appeared that the sample size might
be reduced a little. However, when the same proce-
dure was applied to n=20, the power was computed
as approximately 78%. In communicating with the
lead researcher, the researcher suggested that he would
rather sacrifice a little regarding the minimum prob-
abilistic difference in exchange for a reduced sample
size (i.e., n=20). Thus, the new δ was set as 0.15.
The new alternative was computed by the Gauss-Seidel
algorithm (which, again, converged in three iterations)
as β0 = −0.8472979 and β1 = β2 = 0.6051085. The
corresponding probabilities are p(0, 0) = 0.3, p(0, 1) =
p(1, 0) = 0.4397469, and p(1, 1) = 0.5897469. As we
can see, the minimum probabilistic increase of p(1, 1)
over the rest of the p’s is 0.15. For the new alternative,
the power of the LRT at 5% level of significance was
computed, again using the Monte-Carlo method with
B=1000, as approximately 86%. The researcher was
satisfied with the result.
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Appendix

A.1 An inequality

Consider the function g(p) = pp0(1 − p)1−p0 and
h(p) = log{g(p)}, 0 < p < 1. We have h′(p) = {p(1 − p)}−1

(p0 − p). Thus, h′(p) > 0, = 0, or < 0 depending on p < p0,
p = p0, or p > p0. It follows that h(·), hence g(·), has a unique
maximum at p = p0, and g(p) < g(p0) for any p �= p0. Thus,
for any 0 < p1 < 1, p1 �= p0, we have(

p0
p1

)p0 (1 − p0
1 − p1

)1−p0
= g(p0)

g(p1)
> 1.

A.2 Some derivation in Section 2

We show that L d−→ η − η1 ∨ η2 as n → ∞, where the η’s
are defined in Section 2, if (β0, 0, 0) is the true parameter vec-
tor.With the notation introduced in Section 2, we have, by the
Taylor expansion,

l(β0, 0, 0) = l(β̂[2]
0 , β̂[2]

1 , 0)

+ 1
2

(
β0 − β̂

[2]
0

−β̂
[2]
1

)′

×
(

∂2l/∂β2
0 ∂2l/∂β0∂β1

∂2l/∂β1∂β0 ∂2l/∂β2
1

)∣∣∣∣
(β̂

[2]
0 ,β̂[2]

1 ,0)

×
(

β0 − β̂
[2]
0

−β̂
[2]
1

)

+oP(1), implying

l(β̂[2]
0 , β̂[2]

1 , 0) = l(β0, 0, 0)

− 1
2

(
β̂
[2]
0 − β0

β̂
[2]
1

)′
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E

{(
∂2l/∂β2

0 ∂2l/∂β0∂β1
∂2l/∂β1∂β0 ∂2l/∂β2

1

)∣∣∣∣
(β0,0,0)

}(
β̂
[2]
0 − β0

β̂
[2]
1

)

+oP(1). Also, by the standard asymptotic expansion (e.g.,
Jiang, 2010, Ch. 4), we have(

β̂
[2]
0 − β0

β̂
[2]
1

)
=
[
E

{(
∂2l/∂β2

0 ∂2l/∂β0∂β1
∂2l/∂β1∂β0 ∂2l/∂β2

1

)∣∣∣∣
(β0,0,0)

}]−1

×
(

∂ l/∂β0
∂ l/∂β1

)∣∣∣∣
(β0,0,0)

+ OP(n−1).

It follows that

l(β̂[2]
0 , β̂[2]

1 , 0) = l(β0, 0, 0)

− 1
2

(
∂ l/∂β0
∂ l/∂β1

)∣∣∣∣
′

(β0,0,0)[
E

{(
∂2l/∂β2

0 ∂2l/∂β0∂β1
∂2l/∂β1∂β0 ∂2l/∂β2

1

)∣∣∣∣
(β0,0,0)

}]−1

×
(

∂ l/∂β0
∂ l/∂β1

)∣∣∣∣
(β0,0,0)

+ oP(1).

Similarly, we have

l(β̂[1]
0 , 0, β̂[1]

2 ) = l(β0, 0, 0)

− 1
2

(
∂ l/∂β0
∂ l/∂β2

)∣∣∣∣
′

(β0,0,0)[
E

{(
∂2l/∂β2

0 ∂2l/∂β0∂β2
∂2l/∂β2∂β0 ∂2l/∂β2

2

)∣∣∣∣
(β0,0,0)

}]−1

×
(

∂ l/∂β0
∂ l/∂β2

)∣∣∣∣
(β0,0,0)

+ oP(1),

and

l(β̂0, β̂1, β̂2) = l(β0, 0, 0)

− 1
2

∂ l
∂β

∣∣∣∣
′

(β0,0,0)

{
E

(
∂2l

∂β∂β ′

∣∣∣∣
(β0,0,0)

)}−1
∂ l
∂β

∣∣∣∣
(β0,0,0)

+ oP(1).

Furthermore, we have

E

(
∂2l

∂β∂β ′

∣∣∣∣
(β0,0,0)

)
= −nh′(β0)

⎛
⎝4 2 2
2 2 1
2 1 2

⎞
⎠ , (A1)

and, by the standard asymptotic result,

1√
n

∂ l
∂β

∣∣∣∣
(β0,0,0)

d−→ N

⎡
⎣
⎛
⎝0
0
0

⎞
⎠ , h′(β0)

⎛
⎝4 2 2
2 2 1
2 1 2

⎞
⎠
⎤
⎦ ,

(A2)
Let ξn = (ξn,0, ξn,1, ξn,2)′ denote the left side of (A2) divided
by

√
h′(β0), and A denote the 3 × 3 matrix in (A1). For a =

(a0, a1, a2)′ andA = (ast)s,t=0,1,2, let a[0, j] andA[0, j] denote
the subvector (a0, aj)′ and submatrix (ast)s,t=0,j, respectively,
j= 1,2. Then, by the above expressions, it is easy to show that

L = ξ ′
nA

−1ξn − max
j=1,2

{ξn[0, j]′A[0, j]−1ξn[0, j]} + oP(1).

Because ξn
d−→ ξ = (ξ0, ξ1, ξ2)′ ∼ N(0,A), as n → ∞, by

the continuous mapping theorem (e.g., Jiang, 2010, p.30),

we have L d−→ η − η1 ∨ η2, where η = ξ ′Aξ and ηj =
ξ [0, j]′A[0, j]−1ξ [0, j], j = 1, 2.
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