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Professor Bayarri and coauthors’ paper (hereafter,
PBIC) offers a stimulating and welcomed addition to
the already extensive and yet still rapid expanding lit-
erature on model selection and related topics. In a 2013
review on model selection in linear mixed models by
Müller, Scealy, and Welsh (2013), the authors classi-
fied main approaches in mixed model selection into
three categories, the information criteria, the shrinkage
methods and the fence methods. The current paper is
not specifically regarding mixed model selection prob-
lems; however, as one shall see, there is a connection in
various ways.

The paper focuses on a special case of the informa-
tion criteria, namely, the Bayesian information criterion
(BIC) and its extensions. In this regard, two other ref-
erences may be mentioned, in addition to those cited
by the authors. One is the δ-BIC method of Broman
and Speed (2002), in which a tuning constant, δ, is
multiplied to the logarithm penalty to improve finite-
sample performance; the other is an extended BIC pro-
posed by Chen and Chen (2008), which allows the
number of covariates to increase with the sample size.

The current paper has noted a number of problems
with general use of BIC. Some similar notes were made
regarding not just BIC but the information criteria in
general by Jiang, Rao, Gu, and Nguyen (2008) in the
context ofmixedmodel selection. Among the problems
mentioned in both papers is the so-called effective sam-
ple size (ESS). The issue was naturally raised in Jiang
et al. (2008) because the latter authors were concerned
with correlated observations. Intuitively, when the data
are correlated, the ESS is smaller than the total num-
ber of observations due to the ‘redundancy’ in the data
that each data point does not bring as much new infor-
mation as an independent data point. Take a look at an
extreme case where n data points are so correlated that
they are identical; obviously, in this case the ESS should
be 1, rather than n. Another example, given in Jiang
et al. (2008) (also see Jiang & Nguyen, 2015), is a linear
mixedmodel, whichmay be viewed as a two-way exten-
sion of the group mean model discussed extensively
in PBIC. In the linear mixed model, the observations,

yij, satisfy yij = x′
ijβ + ui + vj + eij, i = 1, . . . ,m1, j =

1, . . . ,m2, where xij is a vector of known covariates, β
is a vector of unknown regression coefficients (the fixed
effects), ui, vj are random effects, and eij is an additional
error. It is assumed that ui’s, vj’s and eij’s are inde-
pendent such that ui ∼ N(0, σ 2

u ), vj ∼ N(0, σ 2
v ), eij ∼

N(0, σ 2
e ). It is well-known (e.g., Hartley & Rao, 1967;

Harville, 1977; Miller, 1977) that, in this case, the ESS
for estimating σ 2

u and σ 2
v is not the total sample size,

n = m1m2, but m1 and m2, respectively. Now suppose
that one wishes to select the fixed covariates, which are
components of xij, under the assumed model structure
using BIC. It is not clear what should be in place of
n in the log(n) penalty (it does not make sense to let
n = m1m2).Note that them1,m2 as the ESS for estimat-
ing σ 2

u , σ 2
v , respectively, can be interpreted intuitively –

they are the numbers of appearance of the uis and vjs,
respectively, in the model. In general, the ESS for cor-
related data is somewhere between 1 and n, the sample
size (this is also noted in PBIC), but exact quantification
of ESS is difficult. In PBIC, the authors consider inde-
pendent, rather than dependent data; still, they show
that the ESS issue arises, when it comes to estimating
different parameters. More importantly, the authors are
able to quantify the ESS, in a certain way. I wonder if
the quantification has some general, intuitive explana-
tion, as in the special examples discussed above. By the
way, the notation nei , used to denote the ESS for esti-
mating the ith group mean in the group mean model,
might cause some confusion as being the eth power of
ni; perhaps, ne,i is a better notation?

Another problem, noted both in PBIC and in Jiang
et al. (2008), is how to reasonably count the number
of (free) parameters, or the degrees of freedom asso-
ciated with the parameters. In this regard, Ye (1998)
introduced the generalised degrees of freedom, which,
in particular, is not necessarily an integer. This is similar
to ESS, which can also be a non-integer.

As noted, there is an extensive literature in model
selection, even if one focuses attention on BIC
extensions. Furthermore, even though most of these
extensions are proven to be consistent, finite-sample
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performance can differ substantially. For example, the
δ-BIC (Broman&Speed, 2002) corresponds to a class of
criteria with different values of δ, and the finite-sample
performance of the criterion depends heavily on the
choice of δ. A question about which BIC extension is
the best is a difficult one to answer, if it can be answered
at all. An alternative is to let the data speak (assuming
that the data know the answer but not how to speak
without help). A natural way of doing this is via the
fence methods (e.g., Jiang & Nguyen, 2015). The idea
consists of constructing a statistical fence to carefully
isolate a subset of candidate models, known as the cor-
rect models. Once the fence is built, the optimal model
can be selected from those within the fence based on
a criterion of optimality that can incorporate practi-
cal considerations. A standard criterion of optimality is
parsimony, that is, choosing the model within the fence
that is the simplest, e.g., in terms of dimensionality. In
a mathematical expression, the fence is constructed via
the inequality

Q(M) − Q(M∗) ≤ c, (1)

where M denotes a candidate model, Q(·) is a mea-
sure of lack-of-fit, M∗ is a candidate model that has
the minimum Q [so that Q(M∗) is the basedline mea-
sure], and c is a tuning constant. Note that, essentially,
all of themodel selection strategies, including the infor-
mation criteria, amount to balancing model fitting and
model complexity. The fitting part is controlled by the
fence inequality, (1); the complexity part is controlled
by the parsimony criterion, if the latter is used to select
the optimal model within the fence. Thus, for example,
the penalty for model complexity, which corresponds
to the expressions other than −2l(θ̂ ) in PBIC or PBIC∗
[−2l(θ̂ ) is the Q in this case], or δ log(n) in δ-BIC,
are not needed. The final question comes down to the
choice of c in (1), which may be viewed as a cut-off.
This is where the data have something to say. Typi-
cally, a lack-of-fit and complexity measures go opposite
directions in a way much like the Type-I and Type-II
errors in hypothesis testing. Thus, (1) might be viewed
as the standard strategy of controlling the probability
of Type-I error, but there is a major difference. Instead
of using a given cut-off, such as α = 0.05 in hypothesis
testing, the c in (1) is chosen in a data-drivenmanner by
maximising the ‘posterior’ probability that a candidate

model is selected, leading to the adaptive fence (e.g.,
Jiang & Nguyen, 2015, ch. 3).

Finally, consistency in model selection has been
widely used as the standard asymptotic property in
model selection, but, it is not very useful in comparing
different model selection criteria that are all consistent.
Although there has been further asymptotic properties,
such as the oracle property (Fan & Li, 2001), much of
the issue still exists, that is, virtually every new model
selection procedure that is proposed is consistent, and
has the oracle property. What is really needed, when
it comes to asymptotic comparison of different model
selection procedures, is a similar property to efficiency
in parameter estimation. So far, such a property has not
been established, and widely accepted.
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