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ABSTRACT

Pattern counting in graphs is fundamental to several network sci-
ence tasks, and there is an abundance of scalable methods for esti-
mating counts of small patterns, often called motifs, in large graphs.
However, modern graph datasets now contain richer structure, and
incorporating temporal information in particular has become a key
part of network analysis. Consequently, temporal motifs, which are
generalizations of small subgraph patterns that incorporate tempo-
ral ordering on edges, are an emerging part of the network analysis
toolbox. However, there are no algorithms for fast estimation of
temporal motifs counts; moreover, we show that even counting
simple temporal star motifs is NP-complete. Thus, there is a need
for fast and approximate algorithms. Here, we present the first fre-
quency estimation algorithms for counting temporal motifs. More
specifically, we develop a sampling framework that sits as a layer
on top of existing exact counting algorithms and enables fast and
accurate memory-efficient estimates of temporal motif counts. Our
results show that we can achieve one to two orders of magnitude
speedups over existing algorithms with minimal and controllable
loss in accuracy on a number of datasets.
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1 SCALABLE PATTERN COUNTING IN
TEMPORAL NETWORK DATA

Pattern counting is one of the fundamental problems in data min-
ing [8, 18]. A particularly important case is counting patterns in
graph data, which is used within a variety of network analysis
tasks such as anomaly detection [42, 57], role discovery [19, 50],
and clustering [6, 49, 59]. These methods typically make use of fea-
tures derived from the frequencies of small graph patterns—usually
called motifs [41] or graphlets [47] (we adopt the “motif” termi-
nology in this paper)—and are used across a range of disciplines,
including social network analysis [32, 60], neuroscience [5, 22], and
computational biology [37, 46]. Furthermore, the counts of motifs
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have also been used to automatically uncover fundamental design
principles in complex systems [37, 40, 41].

The scale of graph datasets has led to a number of algorithms
for estimating the frequency of motif counts [2, 7, 12, 24, 63]. For
example, just the task of estimating the number of triangles in a
graph has garnered a substantial amount of attention [4, 11, 35, 52,
56, 58]. Many of these algorithms are based on sampling procedures
amenable to streaming models of graph data [14, 38]. At this point,
there is a reasonably mature set of algorithmic and statistical tools
available for approximately counting motifs in large graph datasets.

While graphs have become large enough to warrant frequency
estimation algorithms, graph datasets have, at the same time, be-
come richer in structure. A particularly important type of rich
information is time [13, 15, 21, 27, 51]. Specifically, in this paper,
we consider datasets where edges are accompanied by a timestamp,
such as the time a transaction was made with a cryptocurrency, the
time an email was sent between colleagues, or the time a packet
was forwarded from one IP address to another by a router. Ac-
cordingly, motifs have been generalized to incorporate temporal
information [29, 45, 66] and have already been used in a variety
of applications [30, 31, 39, 53]. However, we do not yet have algo-
rithmic tools for estimating frequencies of temporal motifs in these
large temporal graphs. This is especially problematic since includ-
ing timestamps increases the size of the stored data; for example, a
traditional email graph would only record if one person has ever

emailed another person, whereas the temporal version of the same
network would record every time there is a communication.

To exacerbate the problem, counting temporal motifs turns out
to be fundamentally more difficult in a computational complexity
sense. In particular, we prove that counting basic temporal star mo-
tifs is NP-complete. This contrasts sharply with stars in traditional
static graphs, which are generally considered trivial to count (the
number of non-induced k-edge stars with center node u is simply
(d
k

)

, where d is the degree of u). Thus, our result highlights how
counting problems in temporal graphs involve fundamentally more
challenging computations, thus further motivating the need for
approximation algorithms.

Here we develop the first frequency estimation algorithms for
counting temporal motifs. We focus on the definition of temporal
motifs from Paranjape et al. [45], but our methodology is general
and could be adapted for other definitions. Our approach is based
on sampling that employs as a subroutine any algorithm (satisfying
some mild conditions) that exactly counts the number of instances
of temporal motifs. Thus, our methodology provides a way to accel-
erate existing algorithms [36, 45], as well as better exact counting
algorithms that could be developed in the future.

At a basic level, our sampling framework partitions time into
intervals, uses some algorithm to find exact motif counts in a subset
of the intervals, and weights these counts to get an estimate of



the number of temporal motifs. A key challenge is that the time
duration of a temporal motifs can cross interval boundaries, which
makes it challenging to obtain an accurate frequency estimator
since motifs of larger duration are more likely to be omitted. At
its core, our sampling framework uses importance sampling [43]
in two different ways. First, we use importance sampling as a way
to design an unbiased estimator by appropriately scaling the exact
counts appearing in some intervals. Second, we use importance
sampling as a way to (probabilistically) choose which intervals to
sample, which reduces the variance of our unbiased estimator.

In addition to the scalability advantages offered by sampling, our
framework has two other important features. First, the sampling
requires a smaller amount of memory. We show an example where
this enables us to count a complex motif on a large temporal graph
when existing exact counting algorithms run out memory. Second,
the sampling procedure has built-in opportunity for parallel com-
putation, which provides a path to faster computation with exact
counting algorithms that do not have built-in parallelism.

As discussed above, our sampling framework employs an ex-
act counting algorithm as a subroutine. The constraints on the
algorithm are that it must provide the exact counts along with the
so-called duration of the motif instance (the difference in the earliest
and latest timestamp in the edges in the motif instance; for example,
the duration in the top left motif instance in Figure 1C is 32 - 16
= 16). This constraint holds for some existing algorithms [36] but
not for others [45]. An additional contribution of our work is a new
exact counting algorithm for a class of star motifs that is compatible
with our sampling framework. As an added bonus, this new exact
counting algorithm actually out-performs existing algorithms.

We test our sampling procedure on several temporal graph
datasets from a variety of domains, ranging in size from 60,000
to over 600 million temporal edges and find that our sampling
framework can improve run time of existing algorithms by one to
two orders of magnitude while maintaining a relative error toler-
ance of 5% in the counts. The variance analysis of our error bounds
tends to be pessimistic, since we make no assumptions on the dis-
tribution of timestamps within our datasets. Thus, we also show
empirically that our worst-case bounds are far from what we see
in the data.

2 PRELIMINARIES ON TEMPORAL MOTIFS

We first review some basic notions of temporal motifs. There are a
few types of temporal motifs, which we discuss in the context of
related work in Section 6. Here we review the definitions used by
Paranjape et al. [45], which is one of the more flexible definitions
that also poses difficult computational challenges.

A temporal edge is a timestamped directed edge between an
ordered pair of nodes. A collection of temporal edges is a temporal

graph (see Figure 1A). Formally, a temporal graph T on a node set
V is a collection of tuples (ui ,vi , ti ), i = 1, . . . ,m, where each ui
and vi are elements of V and each ti is a timestamp in R. There
can be many temporal edges from u to v (one example is in email
data, where one person sends an email to another many times). We
assume that the timestamps ti are unique so that the temporal edges
in a graph can be ordered. This assumption makes the presentation

Figure 1: Temporal graph and temporal motifs. (A) Illustra-
tion of a temporal graph. The numbers along edges corre-
spond to timestamps. There can be multiple timestamped
edges between a given pair of nodes. (B) Illustration of a mo-
tif, which is formally a multigraph K with an ordering σ on
its edges. (C) Eight δ-instances of the motif in the temporal
graph with δ = 25. The motifs match the multigraph, the
edge ordering, and appear within the time span δ . The se-
quence of temporal edges (u,v, 16), (u,v, 20), (u,y, 32), (u, z, 48)
is not a δ-instance of the motif because all edges do not fit
within the time span δ . The duration of a motif instanceM ′,
denoted ∆(M ′), is the difference between the last and first
timestamps; for example, the duration of the instance in the
top left is 32 − 16 = 16.

of the paper simpler, but our methods can handle temporal graphs
with non-unique timestamps.

If we ignore time and duplicate edges, the temporal graph induces
a standard (static) directed graph. Formally, the static graph of a
temporal graph T on a node set V is a graph G = (V , E), where
E = {(u,v) | ∃t : (u,v, t) ∈ T }. Edges in G are called static edges.

Next, we formalize temporal motifs (illustrated in Figure 1B).

Definition 2.1 (Temporal motif [45]). A k-node, l-edge temporal
motifM = (K,σ ) consists of a multigraph K = (V , E) with k nodes
and l edges and an ordering σ on the edges of E.

We often find it convenient to represent (K,σ ) by an ordered
sequence of edges (u1,v1), (u2,v2), . . . , (ul ,vl ). Definition 2.1 is a
template for a temporal graph pattern, and we want to count how
many times the pattern appears in a temporal network. Further-
more, we are interested in how often the motif occurs within some
time span δ . A collection of edges in a temporal graph is a δ -instance
of a temporal motifM = (K,σ ) if it matches the same edge pattern
of the multigraphK , the temporal edges occur in the specified order
σ , and all of the temporal edges occur within a δ time window (see
Figure 1C). We now formalize this definition.

Definition 2.2 (Motif δ -instance [45]). A time-ordered sequence
S = (w1, x1, t1), . . ., (wl , xl , tl ) of l unique temporal edges from
a temporal graph T is a δ -instance of the temporal motif M =

(u1,v1), . . . , (ul ,vl ) if
(1) There exists a bijection f on the vertices in M such that

f (wi ) = ui and f (xi ) = vi , i = 1, . . . , l ; and
(2) The edges all occur within the δ time span, i.e., tl − t1 ≤ δ .



With this definition, motif instances are defined by just the existence
of edges (a general subgraph) and not the non-existence of edges
(an induced subgraph).

We are interested in counting how many motifs appear within
a maximum time span of δ time units. Our sampling framework
will also make use of the actual duration of motif instances, or the
difference in the latest and earliest timestamp of a motif instance.
We formalize this notion in the following definition.

Definition 2.3 (Motif duration). Let S = (w1, x1, t1), . . ., (wl , xl , tl )
be an instance of amotifM as per Definition 2.2 with t1 < t2 < . . . tl .
Then the duration of the instance, denoted ∆(S), is tl − t1.

3 COUNTING TEMPORAL STARS IS HARD

Star motifs as in Figure 1B are one of the fundamental small graph
patterns and are used in, e.g., anomaly detection [3] and graph sum-
marization [28]. In static graphs, counting non-induced instances
of stars is simple. Given the degree du of node u, u is the center

of
(du
k

)

(k + 1)-node stars. Thus, there is a simple polynomial-time
algorithm for computing the total number of stars.

In contrast, once we introduce temporal information, it turns
out that stars become hard to compute. Specifically, we show in
this section that counting temporal stars is NP-complete, and even
determining the existence of a temporal star motif is NP-complete.
This result serves two purposes. First, it highlights that the com-
putational challenges with temporal graph data are fundamentally
different from those in traditional static graph analysis. Second, the
computational difficulty in such a simple type of temporal motif
motivates the need for scalable approximation algorithms, which
we develop in the next section. We begin with a formal definition
of a temporal star motif.

Definition 3.1. A k-temporal star is a temporal motif where the
multigraph is connected and has node set {0, 1, . . . ,k} with edges
(ui ,vi ), i = 1, . . . ,m, where either ui or vi is 0, i = 1, . . . ,m.

The restriction that either ui or vi is 0 means that each edge
either originates from node 0 or enters node 0. The ordering σ of the
edges in the multigraph needed by Definition 2.1 is arbitrary—we
only need the star structure of the multigraph. We will show that
determining the existence of an instance of a k-temporal star in a
temporal graph is NP-complete and then generalize our result to an
even more restricted class of star motifs. We begin with the formal
decision problem.

Problem 1. Given a temporal graphT , a k-temporal star S , and a
time span δ , the k-Star-Motif problem asks if there exists at least
one δ -instance of S in T .

To establish NP-completeness, we reduce k-Cliqe to k-Star-
Motif. A k-Cliqe problem instance is formalized as follows: given
an undirected graphG and an integer k , the k-Cliqe problem asks
if there exists at least one clique of size k in G.

Theorem 3.2. k-Star-Motif is NP-complete.

Proof. Our input is an instance (G,k) of k-Cliqe on a vertex
set V . Assume that the nodes in V are numbered from 1 to n = |V |
(Figure 2A). We construct an instance (T , S, δ ) of k-Star-Motif:

• Construction of T (Figure 2B). For each undirected edge
(u,v) inG , add to T two edges (0,u, (v − 1) · (n + 2) +u + 1)

Figure 2: Structures used in proof of Theorem 3.2, which
says that determining the existence of a temporal star is NP-
complete. (A) A static graph G. (B) A temporal graph T . (C)
A star motif S . With the reduction, there is a 3-clique inG if
and only if there is a δ-instance of S in T with δ = ∞.

and (0,v, (u − 1) · (n+ 2)+v + 1). For each u ∈ V , we add two
backward edges, (u, 0, (u−1) · (n+2)+1) and (u, 0,u · (n+2)).
• Construction of S (Figure 2C). For each node u ∈ V , add
two backward edges with timestamps (u − 1) · (n + 2) + 1
and u · (n + 2), and k − 1 forward edges with timestamps
{(i − 1) · (n + 2) + 1 + u | i ∈ [n] \ {u}}.
• Set δ = ∞.

The timestamps come from the set {1, . . . ,n2+2n}, and we think
of the timestamps as partitioned inton blocks, withn+2 timestamps
in each block. If the timestamp of an edge lies in {(u − 1) · (n + 2) +
1, . . . ,u · (n + 2)}, then we say that the edge belongs to block u.
Each block then corresponds to a node in G, with the first and last
timestamp in each block reserved for the backward edges we add to
T . For each node u in the original graph, we add the two backward
edges in block u to node u in T , and for each neighbor v of u, we
add a forward edge using the timestamp in the (u + 1)-th position
of block v . Figure 2 is a schematic of the construction. Observe that
if there is a clique inG , then by construction the star motif S occurs
in T .

Intuitively, the backward edges added to T and S serve as “book-
ends”. If the two backward edges corresponding to a node u are
found to be part of S , then each of the k −1 other nodes in the motif
has to contribute a forward edge with timestamps between the two
backward edges of u. By construction of S , an edge connected to v
can only have a timestamp in block u if v is connected to u in G.
This implies that u is connected to the k − 1 other nodes selected
in the motif S . Applying this argument to each node u in the motif
S , there must be a clique in the original graph G. �

The result does not depend on having edges in two directions.
We call a star motif S unidirectional if all of the edges in S either
originate from or enter the center node (node 0, in our notation).

Theorem 3.3. k-Star-Motif is NP-complete even when restricted
to unidirectional stars.

Proof. (Sketch.) Instead of using two backward edges for book-
keeping, we can expand the size of each block to 3n and use the first
n and last n timestamps within the block as the bookends. Thus,
the graph T in the previous proof is modified by connecting the
center node to each node u with 2n forward edges using the 2n
timestamps reserved for bookkeeping in block u. The motif S is
modified by requiring the same forward edges as before, plus an
additional 2n forward edges, with timestamps in 3(u − 1) ·n ·+i and



3(u−1) ·n+n+ i for i = 1, . . . ,n. By using n forward edges for each
bookend, we ensure that any occurrence S found inT must include
at least one edge from each bookend of the chosen nodes. This
allows us to again argue that k − 1 forward edges must be between
the bookends of block u, implying that there is a k-clique. �

These hardness results illustrate the computational difficulties
in counting temporal graph patterns, which motivates scalable
approximation algorithms for counting such patterns. We next
present a general sampling framework for scalable estimation of
the number of instances of temporal motifs.

4 ALGORITHMIC SAMPLING FRAMEWORK

Supposewe are given amotifM , a time span δ , and a temporal graph
T . In this section, we develop a sampling framework to estimate
the number of δ -instances ofM in T , which we denote by CM . Our
sampling framework will employ some algorithm that can compute
exactly the number of δ -instances ofM on temporal subgraphs of
T . The requirements on the algorithm are that, given a temporal
graph T ′, a motifM , and a time span δ , the algorithm A outputs a
sequence of the count-duration pairs {(counti ,∆i )}, where counti
is the number of instances of the motif with duration ∆i . We denote
this output by A(T ′,M, δ ). We work from these assumptions in this
section, and Section 5 discusses compatible algorithms.

Intervals and the count vector Ys . We begin with some defi-
nitions and technical lemmas that will later be used to develop
our estimator. Let s be a random integer uniformly drawn from
{−cδ + 1, . . . , 0} for some input integer c > 0 that controls the size
of the sampling windows. We call s a shift, and we will eventually
make use of multiple shifts within our sampling framework. We
consider the set of intervals of width cδ with shift s:

Is = {[s + (j − 1)cδ , s + j · cδ − 1], j = 1, 2, . . .}. (1)

For an instanceM ′ of the motifM with duration ∆(M ′), it is easy
to see that the probability (over a random choice of shift s) thatM ′

is completely contained within an interval in Is is

pM ′ = 1 − ∆(M ′)
cδ
. (2)

Next, for an interval I ∈ Is , let XM ′(I ) be an indicator random
variable which equals 1 if M ′ is completely contained in I and 0
otherwise. For each interval I ∈ Is , we associate a weighted count
w(I ) of the number of instances of motifM completely contained
in the interval I :

w(I ) = ∑

M ′
1

pM′
XM ′(I ). (3)

Let Ys be the vector of such counts:

Ys , j = w(Ij ), Ij = [s + (j − 1)cδ , s + j · cδ − 1] ∈ Is (4)

(here, Ys , j denotes the jth coordinate of Ys ). Next, let XM ′ be an
indicator random variable that equals 1 if the motif instanceM ′ is
completely contained in an interval in Is and 0 otherwise. Then
‖Ys ‖1 =

∑

M ′
1

pM′
XM ′ . The following lemma says that ‖Ys ‖1 is an

unbiased estimator for the motif count CM for any value of s .

Lemma 4.1. E[‖Ys ‖1] = CM .

Proof. Since E[XM ′] = pM ′ , E[‖Ys ‖1] =
∑

M ′
1

pM′
E[XM ′] =

∑

M ′ 1 = CM . �

The next lemma bounds the variance of ‖Ys ‖1.

Lemma 4.2. Var[‖Ys ‖1] ≤ 1
c−1C

2
M
.

Proof. First, we have that

E[‖Ys ‖21 ] = E
[

∑

M ′
1

pM′
XM ′

]

=

∑

M1

∑

M2
1

pM1pM2
E[XM1XM2 ],

whereM1 andM2 range over the instances of the motifM . Using
the bounds 1

pM2
≤ c

c−1 and E[XM1XM2 ] ≤ E[XM1 ],

E[‖Ys ‖21 ] ≤
c

c−1
∑

M1
1

pM1
E[XM1 ]

∑

M2
1 = c

c−1C
2
M
.

Putting everything together,

Var[‖Ys ‖1] = E[‖Ys ‖21 ] − (E[‖Ys ‖1])
2

≤ c

c − 1C
2
M −C

2
M =

1

c − 1C
2
M .

�

Our sampling framework estimates ‖Ys ‖1 in order to estimate
the number of motif instances CM . The basic idea of our approach
is to use importance sampling to speed up this estimation task, by
picking a set of intervals in Is and computing their weights. Here,
computing the weight for an interval I uses an exact motif count
restricted to the interval I . Equivalently, we (i) sample a subset of
coordinates ofYs , (ii) compute their values exactly, and (iii) combine
them to estimate ‖Ys ‖1. We describe this procedure next.

Importance sampling for an estimator. Let Ys , j denote the jth
coordinate of Ys , corresponding to interval Ij . Our estimator Z is a
random variable defined as follows. First, we sample interval Ij ∈ Is
(independently) with some probability qj . These qj values will be
based on simple statistics of the intervals; we will specify choices
for qj later but note for now that they do not necessarily sum to 1.
Second, let Q j be an indicator random variable corresponding to
interval Ij , where Q j equals 1 if j is picked and 0 otherwise. Finally,
our estimator is

Z ,
∑

j

Q j
Ys , j

qj
. (5)

Our first result is that Z is an unbiased estimator for CM , the
number of instances of the motifM .

Theorem 4.3. The random variable Z in Eq. (5) is an unbiased
estimator for the number of motif instances, i.e., E[Z ] = CM .

Proof. First, note that E[Q j ] = qj . For any s , E[Z | s] =
∑

j Ys , j = ‖Ys ‖1. Hence, E[Z ] = E[‖Ys ‖1] = CM by Lemma 4.1. �

Next, we work to bound the variance of our estimator Z . To this
end, it will be useful to define a scaled version Ŷs of Ys :

Ŷs , j , Ys , j/
√
qj . (6)

The following lemma provides a useful equality on the variance of
our estimator in terms of Ŷs and Ys , conditioned on the shift s .

Lemma 4.4. Var[Z | s] = ‖Ŷs ‖22 − ‖Ys ‖
2
2 .

Proof. By independence of the Q j ,

Var[Z | s] = ∑

j Var
[

Q j
Ys , j
qj

]

=

∑

j

Y 2
s , j

q2
j

qj (1 − qj ).

Therefore, Var[Z | s] = ∑

j Y
2
s , j/qj − Y

2
s , j = ‖Ŷs ‖

2
2 − ‖Ys ‖

2
2 . �



Algorithm 1: Sampling framework for estimating the num-
ber of instances of a temporal motif in a temporal network.
Without loss of generality, the timestamps in the temporal
network are normalized to start at 0.
Input: Temporal graph T , motifM , time span δ , sampling

probabilities q, number of shifts b, window size
parameter c , exact motif counting algorithm A.

Output: Estimate of the number of instances ofM .
Z ← 0, tmax ← max{t | (u,v, t) ∈ T }
for k = 1, . . . ,b do

s ← random integer from {−cδ + 1, . . . , 0}
for j = 1, . . . , 1 + ⌈ tmax

cδ
⌉ (in parallel) do

if Uniform(0, 1) ≤ qj then

Tj ← {(u,v, t) ∈ T | t ∈ [s+(j−1)cδ , s+j ·cδ−1]}
for (counti ,∆i ) ∈ A(Tj ,M, δ ) do

Zk ← Zk + counti/((1 − ∆i/(cδ )) · qj )

return 1
b

∑b
k=1 Zk

We are now ready to bound the variance of Z .

Theorem 4.5. Var[Z ] ≤ E[‖Ŷs ‖22 ] − E[‖Ys ‖
2
2 ] +

1
c−1C

2
M
.

Proof. For this bound, we first condition on s and then take the
expectation over random choice of s .

Var[Z ] = E[(Z −CM )2]
= Es

[

((Z − ‖Ys ‖1) + (‖Ys ‖1 −CM ))2
]

= Es

[

Var[Z | s] + (‖Ys ‖1 −CM )2
]

= E[‖Ŷs ‖22 ] − E[‖Ys ‖
2
2 ] + Var[‖Ys ‖1] (by Lemma 4.4)

≤ E[‖Ŷs ‖22 ] − E[‖Ys ‖
2
2 ] +

1

c − 1C
2
M (by Lemma 4.2)

�

Our analysis thus far has been for a single shift s . If we repeat
the above computations for b randomly chosen shifts and report
the mean of the estimates, then the variance is reduced by a fac-
tor of b. Algorithm 1 outlines the the overall sampling procedure,
assuming that the sampling probabilities qj are given along with
the exact counting algorithm A. In the algorithm, we use Tj to de-
note the subgraph restricted to interval Ij and A(Tj ,M, δ ) to denote
the output of the exact counting algorithm on the interval, which
is a sequence of the count-duration pairs {(counti ,∆i )} of motif
instances contained in the interval. The algorithm also explicitly
states that the parallelism that can be performed over the samples.

Choosing the sampling probabilities. In order to get average
squared error (ϵCM )2, we need to set the parameters as follows:

E[‖Ŷs ‖22 ] − E[‖Ys ‖
2
2 ] +

1

c − 1C
2
M ≤ b(ϵCM )2 (7)

⇐⇒
E[‖Ŷs ‖22 ] − E[‖Ys ‖

2
2 ]

C2
M

+

1

c − 1 ≤ bϵ2. (8)

The first term in the left-hand side of Eq. (8) combines (i) a natural
measure of sparsity of the distribution of motifs with (ii) the ex-
tent of correlation between the sampling probabilities qj and the
(weighted) motif counts for intervals Ys , j . In order to understand

this, let ℓ denote the dimension of Ys and consider the simple uni-
form setting of qj = 1/ℓ (so one interval is sampled in expectation).
In this case, the term becomes

(ℓ − 1)E[‖Ys ‖22 ]
E[‖Ys ‖21 ]

. (9)

Equation (9) is a natural measure of sparsity of the vector Ys .
In the extreme case where Ys is a vector with only one non-zero
coordinate, the value is ℓ − 1, and in the other extreme where
Ys is a uniform vector, the value is bounded above by 1. In the
sparse case, we need to increase the sampling probabilities—thus
sampling more intervals—to compensate for the large variance. In
the worst case, this would require looking at all the intervals, i.e.,
we get no running time savings from sampling (however, we will
see in our experiments that the data is far from the worst case in
practice). Nonetheless, the ability of the algorithm to pick sampling
probabilities qj gives flexibility to mitigate the dependence on the
sparsity of Ys . To illustrate this point, in the extremely favorable
case when qj is proportional to Ys , j , i.e., qj = Ys , j/

∑

j Ys , j (so one
interval is sampled in expectation), the first term on the left-hand
side of Eq. (8) is less than 1. This analysis suggests that a good
choice of sampling probabilities roughly balances the two terms:

E[‖Ŷs ‖22 ] − E[‖Ys ‖
2
2 ]

C2
M

≈ 1

c − 1 .

A priori, we do not know Ys or Ŷs . What we can do is choose the
sampling probabilities by some easily measured statistic that we
think is correlated with Ys , such as the number of temporal edges
or number of static edges. For this paper, we simply choose qj to be
proportional to the number of temporal edges in the interval, i.e.,

qj = r ·
|{(u,v, t) ∈ T | t ∈ Ij }|

|T | , (10)

where r is a small constant (in practice on the order of 10–100). This
leads to substantial speedups, as we will see in the next section.
There are certainly more sophisticated approaches one could take
to choose the qj , and we leave this as an avenue for future research.

Streaming from sampling.When memory is at a premium, the
sampling framework above can be made memory efficient. By con-
sidering the windows Is in chronological order, the edges of past
windows do not need to be stored. By running several estimators in
parallel, we can achieve any accuracy we want while only needing
to store edges in an interval of at most cδ at a time. As we will
see in our experiments, the memory savings allows us to processes
larger temporal graphs than we could with an exact algorithm.

5 COMPUTATIONAL EXPERIMENTS

In this section, we use our sampling framework from Section 4 and
various exact temporal motif counting algorithms to count temporal
motifs on real-world datasets. By exploiting sampling and the ability
sample in parallel, we obtain substantial speedups with modest
computational resources and only a small error in the estimation.
Datasets and implementations of our algorithm are available at
https://gitlab.com/paul.liu.ubc/sampling-temporal-motifs.

Data.We gathered 10 datasets for our experiments. Paranjape et al.
analyzed seven of them [45], and we collected three larger datasets



Table 1: Summary statistics of temporal networks.

dataset # nodes # static # temporal time
edges edges span

CollegeMsg 1.9K 20.3K 59.8K 194 days
email-Eu-core 986 24.9K 332K 2.20 years
MathOverflow 24.8K 228K 390K 6.44 years

AskUbuntu 157K 545K 727K 7.16 years
SuperUser 192K 854K 1.11M 7.60 years
WikiTalk 1.09M 3.13M 6.10M 6.24 years

StackOverflow 2.58M 34.9M 47.9M 7.60 years
Bitcoin 48.1M 86.8M 113M 7.08 years

EquinixChicago 12.9M 17.0M 345M 62.0 mins
RedditComments 8.40M 517M 636M 10.1 years

to better analyze the performance of our methodology. Table 1
lists summary statistics of the datasets, and we briefly describe
them below. Each dataset is a collection of timestamped directed
edges. The time resolution of each dataset is 1 second, except for the
EquinixChicago dataset, where the time resolution is 1 microsecond.
CollegeMsg [44]. A network of private messages sent on an online
social network at the University of California, Irvine.
email-Eu-core [45]. A collection of internal email records from a
European research institution.
MathOverflow, AskUbuntu, SuperUser, and StackOverflow [45]. These
datasets are derived from user interactions on Stack Exchange ques-
tion and answer forums. A temporal edge represents a user replying
to a question, replying to a comment, or commenting on a question.
WikiTalk [33, 45]. A network of Wikipedia users making edits on
each others’ “talk pages.”
Bitcoin [26]. A network representing timestamped transactions on
Bitcoin. The addresseswere partially aggregated by a de-identification
heuristic [48] implemented by Kondor et al., using all transactions
up to February 9, 2016 [26]. Timestamps are the creation time of
the block on the blockchain containing the transaction. We will
release this dataset with the paper.
EquinixChicago [1]. This dataset was constructed from passive in-
ternet traffic traces from CAIDA’s monitor in Chicago on February
17, 2011. Each edge represents a packet sent from one anonymized
IP address to another. Data was collected from the “A direction” of
the monitor.
RedditComments [20]. This dataset was constructed from a large
collection of comments made by users on https://www.reddit.com,
a popular social media platform. A comment from user u to user v
at time t induces a temporal edge in our dataset.

5.1 Exact counting algorithms

Our sampling framework is flexible since it can use any algorithm
that exactly counts temporal motifs as a subroutine, provided that
this algorithm can be transformed to output the count-duration
pairs {(counti ,∆i )}, where counti is the number of instances of
the motif with duration ∆i . A recently proposed “backtracking”
algorithm satisfies this constraint [36]. The fast algorithms for 2-
node, 3-edge star motifs introduced by Paranjape et al. do not satisfy
these requirements, since the algorithm uses an inclusion-exclusion
rule that cannot output the durations. However, we still use this
algorithm as a baseline in our experiments. We also create a new
exact counting algorithm that is compatible with our sampling
framework, which we describe below.

Algorithm 2: EX23: A simple exact algorithm to count the
two-node motif in Figure 3A. This algorithm can easily be
modified to count any 2-node, 3-edge temporal motif.

Input: Two nodes u and v , and a sequence of temporal
edges (e1, t1), . . . , (eL, tL) with t1 < . . . < tL , time
span δ , and ei = (u,v) or (v,u).

Output: List {(counti ,∆i )} of counts of instances of the
motif in Figure 3A between nodes u and v with
durations ∆i .

C ← empty counter dictionary with default value 0

for i = 1 . . . L do

if ei , (u,v) then continue

Nb ← 0

for j = i + 2 . . . L do

∆← tj − ti
if tj − ti > δ then break

if ej = (v,u) then Nb ← Nb + 1

else C[∆] ← C[∆] + Nb

return [(C[∆],∆) for key ∆ in C]

Backtracking algorithm (BT, [36]). The backtracking algorithm
examines the edges of the input graph in chronlogical order and
matches one edge of the motif at a time. The software was not re-
leased publicly, so we have re-implemented it with some optimiza-
tions. The algorithm is compatible with our sampling framework.
The algorithm is inherently sequential, so our parallel sampling
framework is especially useful with this method.

Fast 2-node, 3-edge algorithm (F23, [45]). Paranjape et al. in-
troduced a collection of algorithms for counting motifs with at
most 3 edges. Here we use their specialized algorithm for motifs
with two nodes and three edges, which produces exact counts in
time linear in the number of edges. This algorithm is incompatible
with our sampling framework, as it does not report the durations
(Definition 2.3) of the counting motifs. However, we still use it for
comparative purposes.

A new exact algorithm for 2-node 3-edge motifs (EX23). We
devised a new algorithm for 2-node, 3-edge motifs that is compati-
ble with our sampling framework. In this case, each pair of nodes
in the input graph forms an independent counting problem. For
each pair of nodes in the input that are neighbours in the static
graph, we gather all temporal edges between the two nodes. Then
we fix the first and last edge of the 3-edge motif by iterating over
all pairs of gathered temporal edges. By maintaining an additional
counter of the number of edges between the two fixed edges, we
can count the number of temporal motifs that begins on the first
fixed edge and ends on the second fixed edge (the procedure is out-
lined in Algorithm 2). Overall, this procedure takes O(∑u ,v k2u ,v )
time, where the sum iterates over all pairs of nodes in the graph,
and ku ,v is the number of temporal edges between nodes u and
v . With additional code complexity from special tree structures,
the running time can be improved to O(∑u ,v ku ,v logku ,v ) and
still be compatible with our sampling framework. However, this
optimization is not crucial for the main focus of our paper, which
is the acceleration of counting algorithms with sampling. Thus, we



Table 2: Running time in seconds of algorithms with and without our sampling framework and with and without parallelism.
The modifiers “+S” and “+PS” stands for sampling and parallelized sampling respectively. We compare the backtracking algo-
rithm (BT, [36]), our specialized algorithm for counting 2-node, 3-edge motifs (EX23, Algorithm 2), and the specialized fast
algorithm from Paranjape et al. for counting 2-node, 3-edge motifs (F23, [45]). In all datasets, our EX23 algorithm within our

parallel sampling framework has the fastest running time.

dataset BT BT+S BT+PS EX23 EX23+S EX23+PS F23 F23+P error (%)

CollegeMsg 0.076 0.072 0.038 0.017 0.016 0.009 0.056 0.054 0.33
Email-Eu 0.339 0.305 0.191 0.073 0.078 0.027 0.217 0.165 1.44

MathOverflow 0.545 0.361 0.143 0.233 0.148 0.097 0.998 0.878 1.74
AskUbuntu 1.414 1.305 0.500 0.592 0.311 0.176 2.534 2.371 1.84
SuperUser 2.590 1.446 0.483 1.097 0.194 0.104 4.595 4.129 1.69
WikiTalk 15.92 14.88 5.463 4.737 3.645 0.876 20.46 18.23 0.89

StackOverflow 198.9 160.8 79.58 108.1 69.50 17.81 299.2 230.1 1.95
Bitcoin 514.0 520.7 102.3 494.4 233.5 88.66 10348 10135 3.59

EquinixChicago 480.4 180.3 37.64 382.7 56.33 24.64 477.3 383.8 0.00
RedditComments 7301 7433 2910 1563 3154 367.4 6602 5036 4.83

Figure 3: Motifs used in counting experiments. (A) The 2-
node 3-edge motif for which results are reported in Table 2.
(B) The bi-fanmotif forwhich results are reported inTable 3.

use the simpler un-optimized algorithm, which we will see actually
out-performs the other exact counting algorithms.

5.2 Performance results

We now evaluate the performance of several algorithms: (i) the
three baseline exact counting algorithms described in the previ-
ous section (BT, F23, EX23); (ii) the F23 baseline with parallelism
enabled (F23+P); (iii) our sampling framework on top of backtrack-
ing and our new exact counting algorithm (BT+S, EX23+S); and
(iv) our parallelized sampling framework on top of backtracking
and our new exact counting algorithm (BT+PS, EX23+PS). As ex-
plained above, the F23 algorithm is incompatible with our sampling
framework; we include the algorithm and its parallelized version
as baselines for fast exact counting.

All algorithms were implemented in C++, and all experiments
were executed on a 16-core 2.20 GHz Intel Xeon CPU with 128 GB
of RAM. The algorithms ran on a single thread unless explicitly
stated to be parallel. The parallel algorithms used 16 threads. In
the case of the sampling algorithm, parameters are set so that the
approximations are within 5% relative error of the true value.

Experiments on a 2-node, 3-edge motif. Table 2 reports the
performance of all algorithms on the 2-node, 3-edge temporal motif
in Figure 3A (we chose this motif to allow us to compare against one
of the fast algorithms of Paranjape et al. [45]). The time span δ was
set to 86400 seconds = 1 day in all datasets except EquinixChicago,
where δ was 86400 microseconds (these are the same parameters
used in exploratory data analysis in prior work [36]).

We highlight three important findings. First, our new EX23 al-
gorithm with parallel sampling is the fastest algorithm on every

dataset. Comparing our algorithm against the previous state of the
art, we see speedups up to 120 times faster than the slowest exact
algorithm (see the results for Bitcoin). This is in part due to the fact
that our EX23 algorithm is actually faster the than the backtracking
algorithm (BT) and the fast algorithm of Paranjape et al. (F23). In
other words, our proposed exact algorithm already out-performs
the current state of the art.

Second, in all cases, parallel sampling provides a substantial
speedup over the exact baseline algorithm. Speedups are typically
on the order of 2–6x improvements in running time. We used 16
threads but did not optimize our parallel algorithms; there is ample
room to improve these results with additional software effort.

Third, the running time of the backtracking algorithm with sam-
pling (BT+S) is often comparable to simple backtracking (BT). In
these cases, we hypothesize that the backtracking algorithm has
enough overhead and is pruning enough edges to make simple
sampling not worthwhile under our parameter settings. However,
parallel sampling with the backtracking algorithm (BT+PS) can
yield substantial speedups (see, e.g., Bitcoin, EquinixChicago, and
RedditComments). This illuminates an important feature of our
sampling framework, namely, we get parallelism for free. The back-
tracking algorithm is inherently sequential, but parallel sampling
can achieve substantial speedups. Thus, future research in the de-
sign of fast exact counting algorithms can largely leave parallelism
to be handled by our sampling framework. Finally, although not
reported, the sampling framework requires a smaller amount of
memory than the exact algorithms; thus, if no parallelism is avail-
able, we can at least gain in terms of memory, if not in speed.

We used the heuristic in Eq. (10) to determine the sampling prob-
abilities q in these experiments. To understand why this heuristic
worked for these datasets (i.e., the relative errors are small), we
measured the correlation of q and the coordinates of the vector
Ys used in the sampling framework (Figure 4). In datasets such as
CollegeMsg and WikiTalk, the correlation between is large, and
consequently, the relative error in the estimates is small (Table 2).

Experiments on a 4-node, 4-edge bi-fan motif. Next, we show
the results of the backtracking algorithm on a so-called “bi-fan”
motif (Figure 3B). This motif has four nodes and four temporal





for algorithm designers while simultaneously providing a solution
for domain scientists working with large-scale temporal networks.
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