

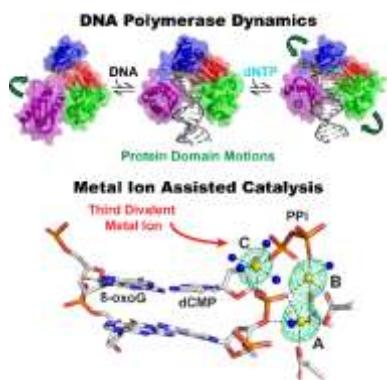
Kinetic Mechanism of DNA Polymerases: Conformational Dynamics and a Third Divalent Metal Ion

Austin T. Raper[†], Andrew J. Reed[†], and Zucai Suo^{*}

4

5 Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State
6 University, Columbus, OH, 43210

⁷ [†]These authors contributed equally.


⁸ *To whom correspondence should be addressed. Tel: (614) 688-3706; Fax: (614) 292-6773; Email:
⁹ suo.3@osu.edu

10

1 **Abstract**

2 Faithful transmission and maintenance of genetic material is primarily fulfilled by DNA
3 polymerases. During DNA replication, these enzymes catalyze incorporation of deoxynucleotides into a
4 DNA primer strand based on Watson-Crick complementarity to the DNA template strand. Through the
5 years, research on DNA polymerases from every family and reverse transcriptases, has revealed
6 structural and functional similarities, including a conserved domain architecture and purported two-
7 metal-ion mechanism for nucleotidyltransfer. However, it is equally clear that DNA polymerases
8 possess distinct differences that often prescribe a particular cellular role. Indeed, a unified kinetic
9 mechanism to explain all aspects of DNA polymerase catalysis, including DNA binding, nucleotide
10 binding and incorporation, and metal-ion-assisted nucleotidyltransfer (*i.e.* chemistry), has been difficult
11 to define. In particular, the contributions of enzyme conformational dynamics to several mechanistic
12 steps and their implications for replication fidelity are complex. Moreover, recent time-resolved X-ray
13 crystallographic studies of DNA polymerases have uncovered a third divalent metal ion present during
14 DNA synthesis, the function of which is currently unclear and debated within the field. In this review,
15 we survey past and current literature describing the structures and kinetic mechanisms of DNA
16 polymerases from each family to explore every major mechanistic step while emphasizing the impact of
17 enzyme conformational dynamics on DNA synthesis and replication fidelity. This also includes brief
18 insight into the structural and kinetic techniques utilized to study DNA polymerases and RTs.
19 Furthermore, we present the evidences for the two-metal-ion mechanism for DNA polymerase catalysis
20 prior to interpreting the recent structural findings describing a third divalent metal ion. We conclude by
21 discussing the diversity of DNA polymerase mechanisms and suggest future characterization of the third
22 divalent metal ion to dissect its role in DNA polymerase catalysis.

1 **Table of Contents Graphics**

2

3 **Table of Contents**

- 4 1. Introduction
- 5 2. DNA polymerases and DNA polymerization
- 6 3. Kinetic and structural mechanism of DNA polymerases
 - 7 3.1. DNA binding and associated polymerase dynamics
 - 8 3.2. DNA translocation and divalent metal-ion binding to the A- and B-sites
 - 9 3.3. Nucleotide binding, incorporation, and polymerase fidelity
 - 10 3.4. Kinetic basis for polymerase fidelity and the rate-limiting step of single-nucleotide incorporation
 - 11 3.4.1. A two-step binding model for DNA polymerase fidelity
 - 12 3.4.2. The open→closed conformational change is not rate-limiting
 - 13 3.4.3. Multiple mechanisms of DNA polymerase fidelity
 - 15 3.5. Post-chemistry steps of nucleotide incorporation
- 16 4. New paradigm for DNA synthesis catalyzed by DNA polymerases
 - 17 4.1. Time-resolved X-ray crystallography of DNA polymerase-catalyzed DNA synthesis
 - 18 4.2. A third divalent metal ion during nucleotide incorporation
 - 19 4.3. Evidence and hypothesized roles for the third divalent metal ion in single-nucleotide

1 incorporation catalyzed by hPol η

2 4.4. Evidence and hypothesized roles for the third divalent metal ion in single-nucleotide
3 incorporation catalyzed by hPol β

4 4.5. Evidence and hypothesized roles for the third divalent metal ion in single-nucleotide
5 incorporation catalyzed by hPol μ

6 4.6. Future characterization of the third divalent metal ion

7 5. Concluding Remarks

8 6. Author Information

9 6.1. Corresponding Author

10 6.2. Notes

11 6.3. Biographies

12 7. Acknowledgements

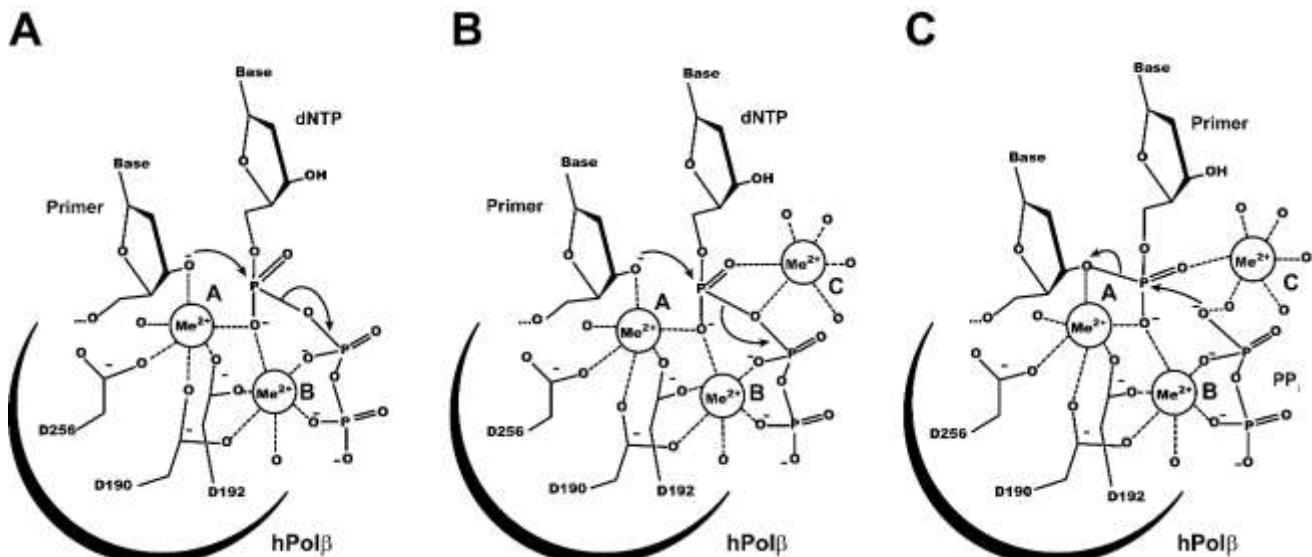
13 8. References

14

1 **1. Introduction**

2 It is well-known that enzymes evolved for catalysis on nucleic acid substrates often undergo
3 conformational dynamics and engage metal ion cofactors to achieve remarkable catalytic efficiency and
4 reaction specificity.¹⁻¹⁴ In fact, replication of valuable genetic material is entrusted to DNA polymerases,
5 which utilize divalent metal ions to catalyze DNA synthesis. Since their initial discovery in 1950s,^{15,16}
6 many DNA polymerases have been identified and phylogenetically classified into distinct A, B, C, D, X,
7 Y, and reverse transcriptase (RT) families based on sequence homology as well as functional and
8 structural analyses.^{8,17,18}

9 As DNA polymerases catalyze the same fundamental reaction (*i.e.* incorporation of
10 deoxyribonucleotide (dNTP) into a nascent DNA primer strand), one could expect these enzymes to
11 share a unified kinetic mechanism describing DNA binding, nucleotide binding, and nucleotide
12 incorporation. However, functional studies have revealed that each polymerase family is often suited to
13 a particular cellular role^{19,20} as evident through the utilization of distinct DNA substrates (*i.e.* primer-
14 template DNA, gapped DNA, damage-containing DNA, single-stranded DNA, *etc.*) and wide-ranging
15 nucleotide substrate specificities, which result in varying DNA replication efficiency and fidelity.^{8,20-26}
16 Indeed, while some mechanistic steps remain common among DNA polymerases, researchers have
17 uncovered several events that seem unique to a particular polymerase, or more broadly, a polymerase
18 family. These events are often related to conformational dynamics and may prescribe distinct properties
19 to the polymerase, which dramatically influence DNA and nucleotide binding as well as nucleotide
20 incorporation. In fact, there is substantial debate about the involvement of a particular conformational
21 change in the rate-limiting step of single-nucleotide incorporation and how this step may influence the
22 fidelity of DNA polymerization.^{4-6,20,27-29} In this review, we will describe the minimal kinetic
23 mechanism for single-nucleotide incorporation determined by extensive structural and functional studies


1 of DNA polymerases performed by our lab and many others over the last 30 years and we will
2 emphasize the importance of DNA polymerase dynamics to the mechanism of DNA polymerization.
3 Altogether, our comprehensive analysis of DNA polymerase kinetics has led us to the conclusion that a
4 common kinetic mechanism, encompassing all DNA polymerases, likely does not exist and each
5 enzyme should be considered independently.

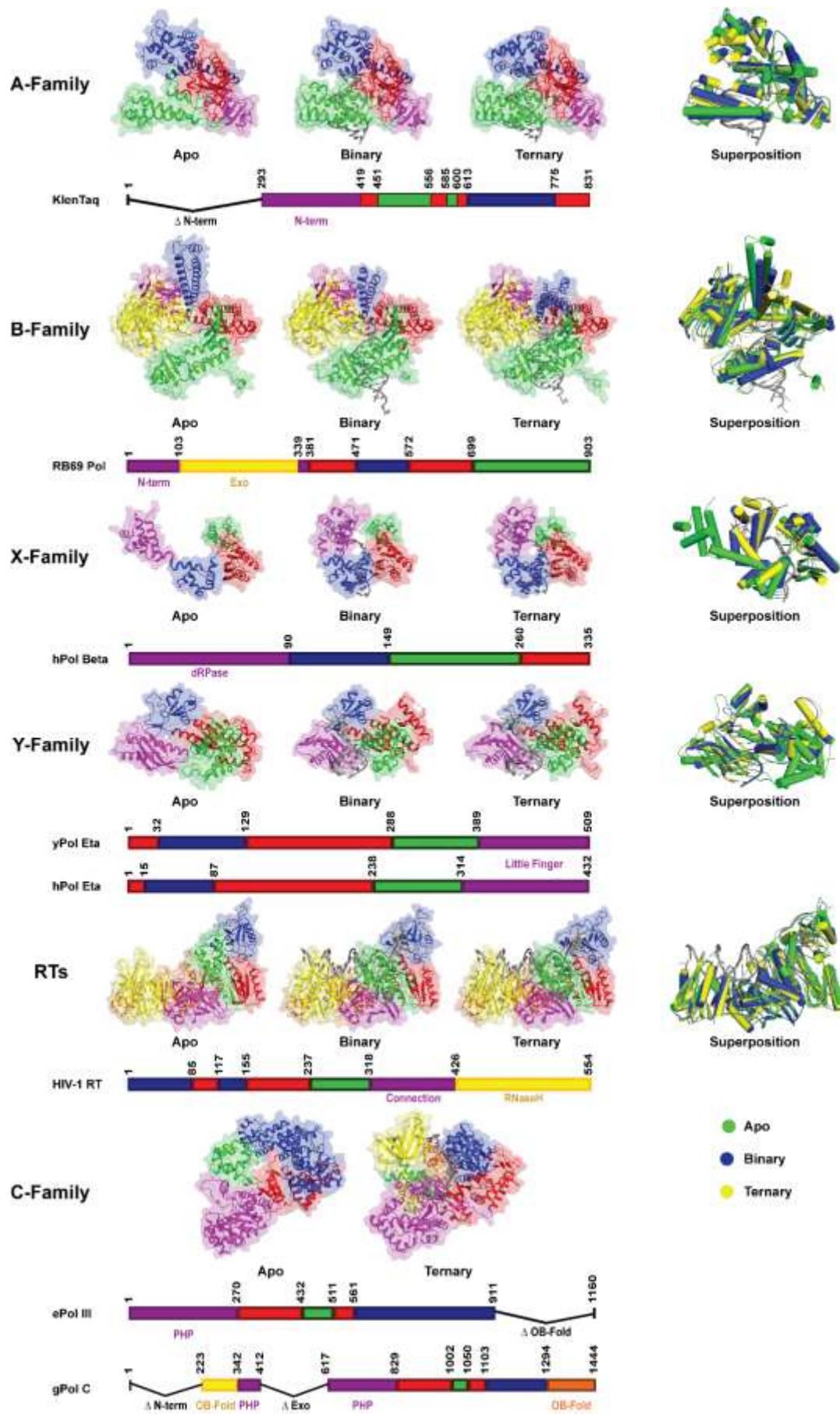
6 A two-metal ion mechanism for enzymes that can act on the phosphodiester backbone of DNA
7 or RNA was first postulated by Beese and Steitz in 1991 based on crystal structures of exonucleolytic
8 substrate and product complexes within the active site of the 3'-5' exonuclease domain of *Escherichia*
9 *coli* DNA polymerase I (Pol I).^{30,31} They postulated that the mechanism of exonucleolytic cleavage
10 would extend to DNA polymerization with each divalent metal ion coordinating essential active site
11 residues and substrate groups as well as providing necessary transition-state stabilization for DNA
12 synthesis thereby reducing the activation energy and facilitating successful nucleotidyltransfer onto a
13 DNA primer strand. Thus far, the putative roles of the two divalent metal ions during the DNA
14 polymerase-catalyzed reaction have been well-established empirically through biochemical and
15 structural investigations.^{1-3,8,24-26,30-37}

16 Notably, this proposed two-metal ion mechanism (Figure 1A) has been heralded as “a
17 mechanism for all polymerases” and draws support from the fact that many crystal structures of DNA or
18 RNA polymerases in complex with nucleic acid and incoming nucleotide (E•DNA•dNTP or
19 E•RNA•rNTP, ternary complex) contain two divalent metal ions in the polymerase active site.^{2,26} In a
20 striking example of evolutionary conservation, DNA polymerases from all families have been
21 characterized to follow the same two-metal ion mechanism based on mutational analysis, structural
22 studies, and kinetic investigation.^{2,8,25,33,34} However, recent time-resolved (also known as time-lapse,
23 time-dependent, or soak-trigger-freeze) crystallographic studies of the Y- and X-family DNA

1 polymerases, including human DNA polymerases η (hPol η)^{38,39}, β (hPol β)⁴⁰⁻⁴⁵, and μ (hPol μ)⁴⁶, have
2 provided substantial evidence to compel an expansion of the two-metal ion mechanism to include a
3 transient (*i.e.* not observed in all time-resolved partial reaction structures), third divalent metal ion, the
4 precise role of which is currently debated (Figure 1B and C).^{47,48}

5 In this review, we aim to briefly summarize the extensive evidence supporting the two-metal ion
6 mechanism for DNA polymerization while highlighting the possibility of a third divalent metal ion and
7 evaluating its involvement in catalysis as well as its biological purpose and significance. This will
8 include a detailed synopsis of the seminal time-resolved X-ray crystallography findings over the last five
9 years that have sparked renewed interest in the metal ion mechanism including discussion about the
10 evidence, timing, and dynamic nature of the third divalent metal ion. As a result of its transient
11 character, there is some inconsistency with the time at which the third divalent metal ion appears during
12 the reaction with some groups reporting its occupancy during nucleotidyltransfer^{38,39,42,45} and others
13 reporting its appearance only in the product complex.^{40,41,44,46} Thus, it is unclear if the third divalent
14 metal ion serves a role in transition-state stabilization (Figure 1B), product release, catalysis of the
15 reverse reaction (*i.e.* pyrophosphorolysis, Figure 1C), or in modulating the chemical equilibrium of
16 nucleotidyltransfer through product-state stabilization. A recent computational analysis of the third
17 divalent metal ion with hPol η ⁴⁹ supports roles in transition-state stabilization during the forward and
18 reverse reactions. Similarly, our work with hPol β ^{42,45} suggests a possible role in transition-state
19 stabilization, while other structural and computational studies completed with hPol β ^{40,41,44,50,51} and
20 hPol μ ⁴⁶ provide evidence for perturbation of the chemical equilibrium by inhibition of
21 pyrophosphorolysis by the third divalent metal ion. Thus, the role of the third divalent metal ion is yet to
22 be fully delineated, and may be unique for each polymerase or polymerase family. We will conclude
23 with a short discussion of the implications that the third divalent metal ion has for the polymerase field

Figure 1. Two- vs. three-metal-ion mechanism for DNA polymerase-catalyzed nucleotidyltransfer and third-metal-ion assisted pyrophosphorolysis. The active site of the well-studied hPol β was selected to depict the metal ion-based chemical mechanisms. (A) Two-metal-ion mechanism. The 3'-OH of the primer is activated (*i.e.* deprotonated) for an in-line nucleophilic attack on the α -phosphate of the incoming dNTP. The α -phosphate is coordinated by two divalent metal ions (M^{2+}). The catalytic metal ion at the A-site is also coordinated by the 3'-OH of the primer, active site carboxylate groups (Asp 190, 192, and 256), and a water molecule. The metal ion at the B-site is coordinated by active site carboxylates (Asp 190 and 192), a water molecule, and non-bridging oxygen atoms of the β - and γ -phosphates, to complete the α, β, γ -tridentate coordination of the dNTP. The A-site ion is suggested to activate the primer 3'-OH nucleophile and the B-site ion stabilizes the negative charge of the pentacoordinated transition state. (B) Three-metal-ion mechanism. The reaction proceeds as in (A) except that a third divalent metal ion at the C-site appears to perhaps stabilize the transition state, serve as counter-ion to the oxyanion of the PP_i leaving group to aid product release, or participate in the reverse reaction, pyrophosphorolysis. The C-site ion is coordinated by water molecules as well as non-bridging oxygen atom of the α -phosphate and the bridging oxygen between α - and β -phosphates. (C) Third-metal-ion assisted pyrophosphorolysis. The third divalent metal ion may serve a similar role as the A-site metal ion in (A) and (B) to assist in the deprotonation and subsequent stabilization of the O_1 of PP_i . This atom would then attack the nascent phosphodiester bond of the DNA backbone, and the primer 3'-hydroxyl would be protonated to restore the pre-catalytic active site of nucleotide incorporation.

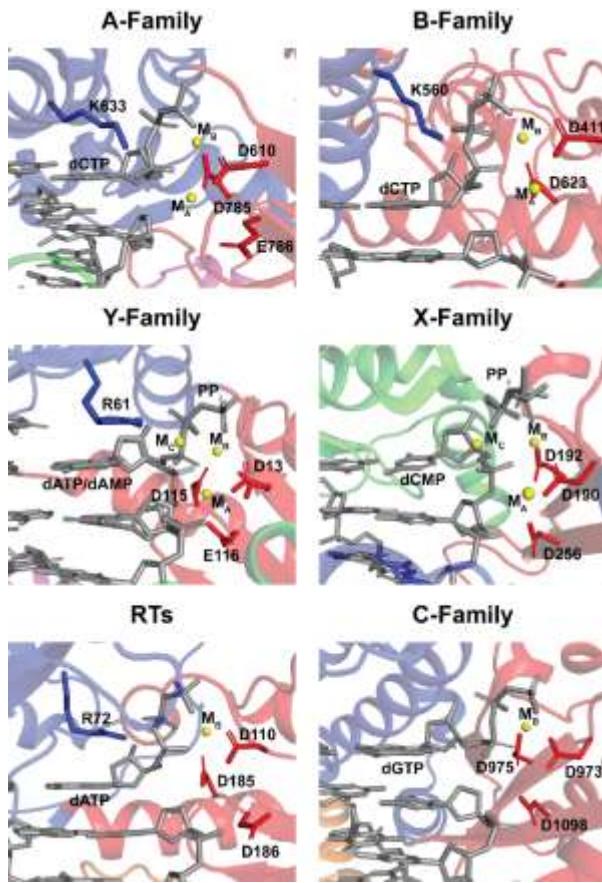

1 including its potential role in the mechanisms of replicative polymerases or as a potential target for
 2 antiviral therapies.

3 2. DNA polymerases and DNA polymerization

4 For 5'-3' nucleic acid synthesis, the terminal 3'-hydroxyl group of a DNA or RNA strand serves
 5 as a nucleophile to attack the α -phosphate of a dNTP or ribonucleotide (rNTP) to form a phosphodiester
 6 bond while releasing pyrophosphate (PP_i) as a byproduct (Figure 1). In effect, a phosphodiester bond is
 7 transferred from the nucleotide to the nascent nucleic acid strand (*i.e.* nucleotidyltransfer). This reaction
 8 is catalyzed by enzymes termed DNA/RNA polymerases which bind both DNA/RNA and nucleotide
 9 substrates. As DNA and RNA polymerases share certain structural and functional similarities, much of

1 the mechanistic discussion of DNA polymerases focused on in this review may also apply to RNA
2 polymerases. However, for more detailed evaluations of RNA polymerase structure and mechanism, we
3 point the interested readers to several insightful reviews.⁵²⁻⁵⁶

4 DNA polymerases take advantage of the specific shape and hydrogen bonding patterns of
5 nucleobase pairs (*i.e.* A:T, G:C) to faithfully recognize and incorporate correct nucleotides during DNA
6 synthesis.²³ In addition to following a conserved two-metal-ion mechanism for nucleotide incorporation
7 (Figure 1A),^{2,26} DNA polymerases of all families adopt a “right-hand” architecture (with the exception
8 of the X-family members which are left-handed: hPol β , hPol λ , hPol μ , and terminal deoxynucleotidyl
9 transferase (TdT))⁵⁷ consisting of fingers, palm, and thumb subdomains (Figure 2).^{8,33} Along with these
10 core domains, DNA polymerases may possess auxiliary domains (Figure 2) which often help in the
11 execution of a specific biological function. For example, i) members of the A- and B- families often
12 demonstrate high base substitution fidelity during DNA synthesis partially due to their accessory 3'-5'
13 exonuclease domain, which removes the small number of incorrect nucleotides incorporated during
14 DNA replication; ii) members of the X-family may contain a deoxyribophosphate lyase (dRPase)
15 domain for processing DNA ends during DNA repair; and iii) members of the Y-family contain a little
16 finger subdomain (also named polymerase associated domain (PAD)) thought to serve a role in damaged
17 DNA binding. These unique accessory subdomains and biochemical characteristics outfit polymerases
18 from a particular family for a specific biological function.¹⁹ Thus, the faithful, efficient, and processive
19 A- and B-family polymerases perform the bulk of leading and lagging DNA strand replication.⁵⁸ In
20 contrast, the error-prone and distributive X-family and Y-family DNA polymerases function in DNA
21 repair and DNA damage response, respectively. Thus, the cell has evolved specialized DNA
22 polymerases to perform an array of diverse functions and activities.¹⁹

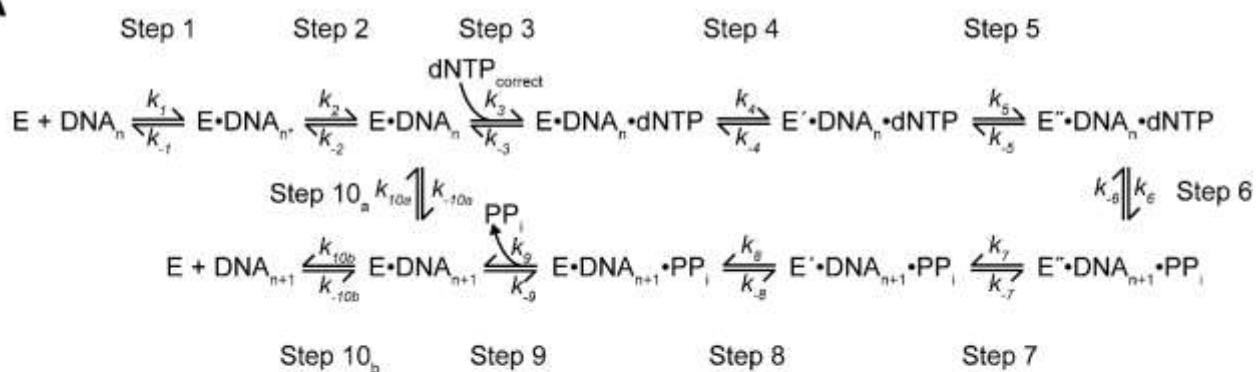
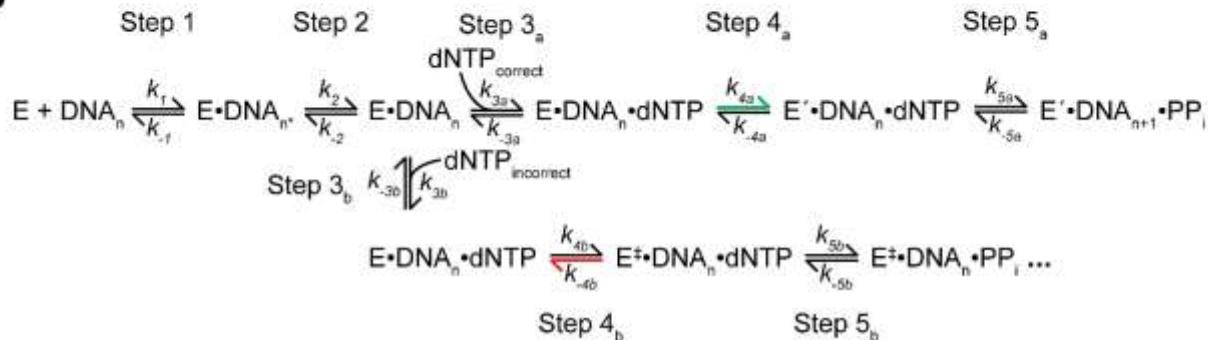

Figure 2. Structural comparison of DNA polymerase families. Structures of apo, binary (DNA bound, E•DNA), and ternary (DNA and nucleotide bound, E•DNA•dNTP) enzyme forms of representative polymerases from each family and superposition of all three forms. The Klenow fragment of *Taq* DNA polymerase I (KlenTaq) was used for A-family (1KTQ, 4KTQ, and 3KTQ), RB69 DNA polymerase (RB69 Pol) was used for B-family (1IH7, 2P5O, and 3NCI), rat DNA polymerase β (rPol Beta, apo) and human DNA polymerase β (hPol Beta, binary and ternary) were used for X-family (1BPD, 1BPX, and 4KLG), yeast DNA polymerase η (yPol Eta, apo) and human DNA polymerase η (hPol Eta, binary and ternary) were used for Y-family (1JIH, 3TQ1, 4ECX), HIV-1 reverse transcriptase (HIV-1 RT) was used for RTs (1DLO, 3KJV, 3KK2), and *E. coli* DNA polymerase III (ePol III, apo) and *Geobacillus kaustophilus* PolC (gPol C, ternary) were used for C-family (4JOM and 3F2D). Each structure is shown as cartoon with transparent surface rendering and individual domains colored. For all structures the thumb, palm, and finger domains are green, red, and blue, respectively. Accessory domains are uniquely colored and named in the associated line diagrams. For the binary and ternary structures, the DNA is shown as gray cartoon. In the ternary structures, the nucleotide is omitted for clarity. The superpositions are shown with cylindrical helices for simplicity of comparison with apo, binary, and ternary structures colored green, blue, and yellow, respectively.

1 To catalyze nucleotidyltransfer, DNA polymerases require divalent metal ion cofactors. The
2 roles of these metal ions in catalysis were elucidated in early structures of the Klenow fragment of *E.*
3 *coli* DNA polymerase I with single-stranded DNA and dTMP product bound to the 3'-5' exonuclease
4 domain.^{30,31,37} As the enzymatic synthesis and decomposition of nucleic acid molecules are closely
5 related processes, the two-metal-ion mechanism proposed for 3'-5' exonuclease degradation was
6 extended to DNA polymerization (Figure 1A). In the exonuclease active site, one divalent metal ion was
7 coordinated by several carboxylate side chains of surrounding amino acids (Asp355, Glu357, and
8 Asp501), a water molecule, and the 5'-phosphate of the primer terminus. An additional divalent metal
9 ion was coordinated by Asp355, the 5'-phosphate of dTMP, and several water molecules. Through
10 mutation of the coordinating residues to alanine it was determined that these metal ions serve distinct
11 mechanistic roles. Interestingly, it was later discovered that the catalytic subunit of HIV-1 reverse
12 transcriptase⁵⁹ (HIV-1 RT) shares the same “right-hand” domain architecture of Klenow fragment with
13 finger, palm, and thumb domains arranged to form the DNA binding cleft. Moreover, three conserved
14 carboxylate amino acids identified in Klenow fragment were found in HIV-1 RT and their mutation to
15 Ala also abolished catalytic activity.⁵⁹ Together, these data strongly supported the two-metal-ion
16 mechanism for phosphoryltransfer reactions, including phosphodiester bond formation and degradation
17 (Figure 1A).⁶⁰

1 This two-metal-ion mechanism for DNA synthesis was later exemplified through the structure of
2 rat DNA polymerase β , an X-family member, bound to primer-template DNA and dideoxy-terminated
3 nucleotide (ddNTP).⁶¹ From this structure, and those of rat DNA polymerase β bound to Mn²⁺ and
4 dATP,⁶² a common nucleotidyltransfer reaction mechanism involving two divalent metal ions for all
5 DNA polymerases was postulated (Figure 1A).⁶¹ Following polymerase binding at the primer-template
6 junction of a DNA substrate, an incoming nucleotide is bound and positioned in the active site by i)
7 Watson-Crick base-pairing with the templating base; ii) intermolecular contacts between the base, sugar,
8 and phosphates with amino acid residues; and iii) coordination of two divalent metal ions by the three
9 carboxylate residues. One metal ion binds between the primer terminal O3' atom and the α -phosphate of
10 the incoming dNTP and is often referred to as the A-site (M_A) or catalytic metal ion (Figure 1A). The
11 second metal ion is coordinated by the incoming dNTP through the non-bridging oxygen atoms of the α -
12 , β -, and γ -phosphates and is often referred to as the B-site or nucleotide binding metal ion (M_B) as its
13 appearance coincides precisely with the binding of nucleotide (Figure 1A). During catalysis, M_A serves
14 as a Lewis acid to lower the pK_a of the primer hydroxyl proton for abstraction and subsequent in-line
15 nucleophilic attack on the α -phosphate of the dNTP to form a pentacoordinated transition-state with the
16 3'-oxygen of the primer terminus and four oxygen atoms of the α -phosphate, including one from the PP_i
17 leaving group, occupying each position of the trigonal bipyramidal. On the other hand, M_B acts to orient
18 the triphosphate moiety of the bound nucleotide for catalysis and destabilizes the ground state ternary
19 complex of the polymerase to promote catalysis. Furthermore, following nucleophilic attack, M_B
20 stabilizes the pentacoordinated transition-state and neutralizes the developing negative charge on the PP_i
21 leaving group (Figure 1A).²

22 Support for the two-metal-ion mechanism of DNA polymerization exists for structurally
23 characterized DNA polymerases from all major families including A,⁶³⁻⁶⁶ B,⁶⁷⁻⁷⁰ C,⁷¹⁻⁷⁴ X,^{40,61,62,75-79} and

1 Y^{38,80-86} as demonstrated through ternary complex
 2 structures of enzyme, DNA, and dNTP with bound
 3 divalent metal ions (Figure 3). For example, the
 4 structures of bacteriophage T7 DNA polymerase⁶³ as
 5 well as *Thermus aquaticus* (*Taq*) DNA polymerase
 6 I⁶⁴ of the A-family, with DNA, ddNTP, and both
 7 divalent metal ions bound, were solved and are
 8 consistent with the earlier structural and mechanistic
 9 findings with rat DNA polymerase β .^{61,62} Crystal
 10 structures of the replicative B-family DNA
 11 polymerases, including the bacteriophage
 12 polymerases T4⁶⁷ and RB69⁶⁸ also support the two-
 13 metal-ion mechanism. Consistently, two metal ions
 14 are also found in the active sites of repair and
 15 damage bypass DNA polymerases as demonstrated
 16 through crystal structures of rat DNA polymerase
 17 β ,^{36,37} discussed above, human DNA polymerase λ
 18 (hPol λ),⁷⁶ hPol β ,^{75,78} and hPol μ ⁷⁷ of the X-family, as
 19 well as hPol η ⁸⁰ and *Sulfolobus solfataricus* DNA
 20 polymerase IV (Dpo4)⁸⁷ of the Y-family.
 21 Interestingly, RTs also engage two divalent metal ions for catalysis as demonstrated by the ternary
 22 crystal structure of HIV-1 RT.⁸⁸ Limited structural evidence from the C- and D-families of DNA
 23 polymerases is available as these enzymes are under-represented in the protein data bank. However, a



Figure 3. Active site comparison of DNA polymerases. Zoomed views of ternary structures of representative DNA polymerases from the A-family (KlenTaq, 3KTQ), B-family (RB69 DNA polymerase, 3NCI), the X-family (hPol β , 4KLG), the Y-family (hPol η , 4ECX), the RTs (HIV-1 RT, 3KK2), and the C-family (*Geobacillus kaustophilus* PolC, 3F2D). The incoming/incorporated nucleotide (dNTP/dNMP+PP_i), DNA primer 3'-nucleotide, and active site carboxylates are shown as sticks. Metal ions bound at the active site are shown as yellow spheres. Importantly, in addition to the typical A- and B-site metal ions (M_A and M_B), the X- and Y-family structures have a third divalent metal ion bound (M_C). Many polymerases have positively charged residue side chains in the area where a third metal ion may bind and are shown as sticks in blue. Notably, *Geobacillus kaustophilus* PolC does not have a positively charged residue in this location.

1 ternary complex crystal structure of a C-family polymerase from *Geobacillus kaustophilus*, as well as a
2 lower resolution (4.6 Å) structure of *E. coli* PolIIIα, suggest a two-metal ion mechanism for nucleotide
3 incorporation.^{71,73}

4

5 **3. Kinetic and structural mechanism of DNA polymerases**

6 Throughout the years, mechanistic studies of DNA polymerases from many diverse families, as
7 well as reverse transcriptases, have culminated in a comprehensive kinetic pathway for nucleotide
8 incorporation (Scheme 1A).^{5,8-14,21-23,27,29,31,43,59,61,62,89-112} While particular details of this model may vary
9 between DNA polymerases or systems (*i.e.* kinetically obligated removal or inclusion of elementary
10 steps, see Scheme 1), we attest that the polymerase-catalyzed addition of correct nucleotides into a
11 growing DNA primer strand occurs through ten steps (Scheme 1A). A DNA polymerase first binds a
12 DNA substrate (Step 1, Scheme 1A) containing a primer-template junction to form the binary complex
13 (E•DNA_n*⁺, Scheme 1A). Initial DNA binding may place the terminal base pair of the DNA substrate
14 within the polymerase active site (*i.e.* pre-insertion state) thereby occluding dNTP binding. However,
15 DNA translocation (Step 2, Scheme 1A) by one nucleotide (E•DNA_n, Scheme 1A) to an insertion state
16 correctly positions the templating base and creates the necessary space to bind an incoming dNTP in the
17 subsequent step (Step 3, Scheme 1A). Notably, Step 3 includes the association of M_B and possibly M_A.
18 Upon formation of this ground-state or loose ternary complex (E•DNA_n•dNTP, Scheme 1A), many
19 polymerases then undergo a conformational change (Step 4, Scheme 1A) of the finger subdomain (or the
20 thumb subdomain for the X-family DNA polymerases) which encloses the newly-formed base pair of
21 the templating nucleotide and the incoming dNTP to form the tight ternary complex (E'•DNA_n•dNTP,
22 Scheme 1A). A second conformational change (Step 5, Scheme 1A) within the polymerase active site
23 generates the activated ternary complex (E''•DNA_n•dNTP, Scheme 1A) wherein reactive groups,

A**B**

Scheme 1. Minimal kinetic mechanisms for nucleotide incorporation. (A) Kinetic mechanism of nucleotide binding and incorporation with E , E' , and E'' representing different conformations of the DNA polymerase with Step 5 representing an essential, rate-limiting conformational change. (B) Alternative kinetic mechanism wherein incorrect nucleotide is selected against by binding in a unique DNA polymerase conformation designated by E^{\ddagger} . Steps 4_a and 5_a occur during correct nucleotide incorporation. Steps 4_b and 5_b occur during incorrect nucleotide incorporation. The green arrow in Step 4_a signifies that the forward rate is highly favored in the presence of correct nucleotide, where E and E' represent a conformational change upon nucleotide binding. In the bottom branch, the red arrow in Step 4_b indicates that the reverse rate is highly favored in the presence of incorrect nucleotide. Following Step 5 the mechanism proceeds as in (A) for both correct and incorrect nucleotides. For (A) and (B) DNA_n^* signifies that the polymerase is bound to the DNA at the pre-insertion site (*i.e.* pre-translocated state).

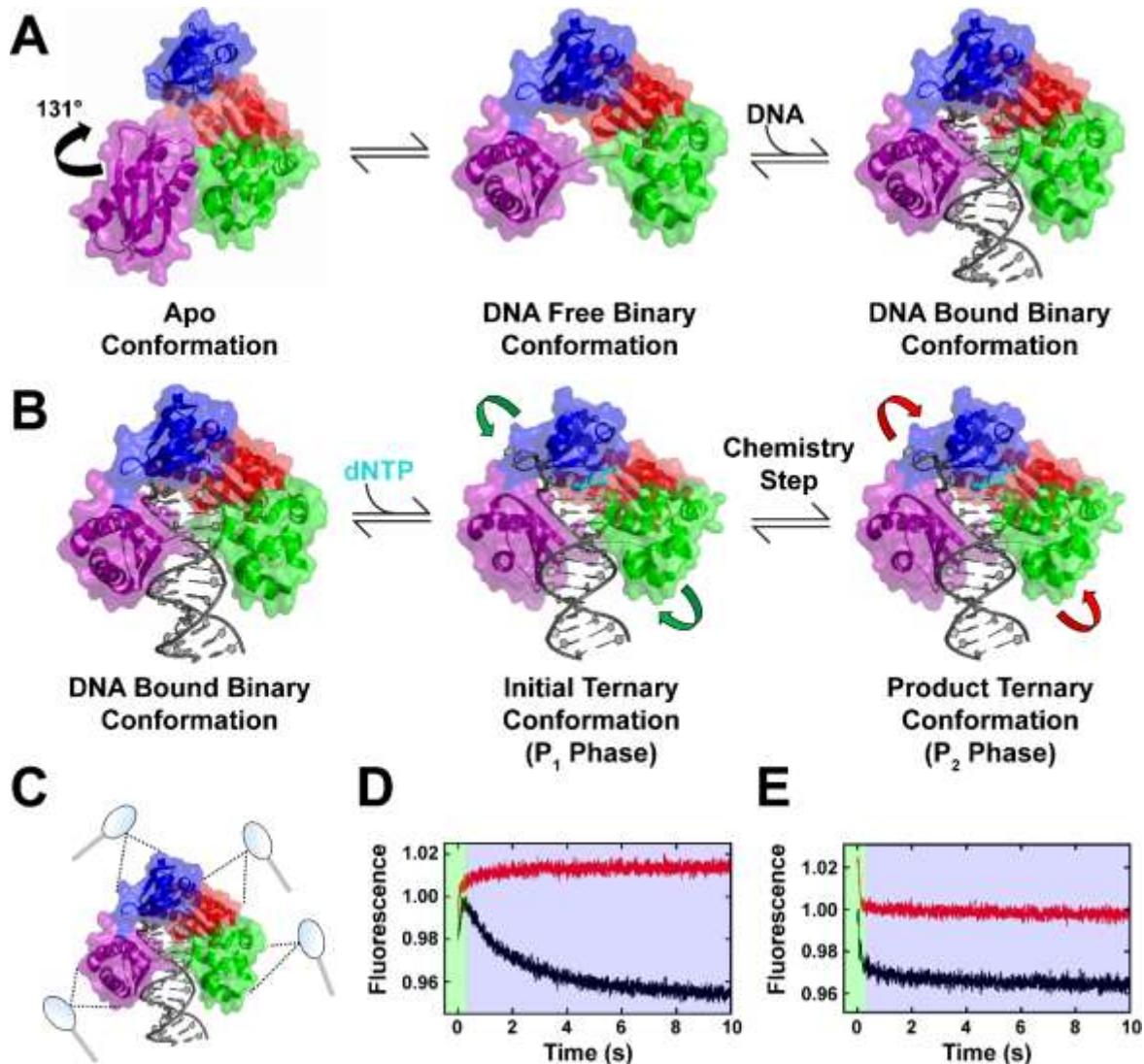
- 1 including divalent metal ions, catalytic carboxylate residues, 3'-OH of the primer strand, and the α -phosphate of the bound nucleotide, are properly aligned for subsequent nucleotidyltransfer (Step 6,
- 2 Scheme 1A), conventionally referred to as the chemistry step, which extends the primer strand by one nucleotide ($E'' \cdot DNA_{n+1} \cdot PP_i$, Scheme 1A). The nucleotide-binding induced conformational changes (Steps 4 and 5, Scheme 1A) are reversed in Steps 7 and 8 (Scheme 1A) before PP_i is released (Step 9,
- 3 Scheme 1A) from the polymerase active site. Following the reverse conformational changes and PP_i dissociation, the polymerase may translocate by one base pair along the DNA (Step 10_a, Scheme 1A) for

1 additional cycles of nucleotide incorporation (*i.e.* processive DNA synthesis) or may dissociate (Step
2 10b, Scheme 1A) from the DNA substrate (*i.e.* distributive DNA synthesis).

3 **3.1. DNA binding and associated polymerase dynamics**

4 The inclusion and order of the elementary steps in Scheme 1A are strongly supported by kinetic,
5 structural, and/or biophysical evidence. Logically, DNA binding (Step 1, Scheme 1A) occurs before
6 dNTP binding as the templating information required for faithful replication is encoded in the DNA.
7 This assertion is supported by inhibitor studies of nucleotide incorporation using PP_i,^{24,113} as well as
8 processivity assays, wherein DNA polymerases are observed to incorporate more than one nucleotide
9 per DNA binding event.^{90-92,94} In addition, ³²P-partitioning experiments with *E. coli* Pol I indicated that
10 the reaction followed a specific order in which the polymerase first associated with the DNA then bound
11 dNTP.¹¹⁴ Lastly, the relative affinity (*i.e.* K_d^{DNA}) of many polymerases for DNA is often in the sub-
12 nanomolar concentration range, while binding affinities for correct or incorrect dNTPs (*i.e.* K_d^{dNTP}) often
13 range from micromolar to millimolar concentrations. Accordingly, DNA polymerases likely spend
14 disproportionately more time bound to DNA than to dNTP, increasing the likelihood of a strict order of
15 substrate binding events. However, a recent structural and biochemical study of the X-family member
16 hPol λ shows a preformed nucleotide binding pocket and reports relatively high affinities for dNTPs with
17 a slight preference for dATP (3.3 μ M for dATP and 15-45 μ M for the other three dNTPs) in the absence
18 of DNA. This suggests that the hPol λ may in fact bind Mg²⁺-associated dNTP before DNA,¹¹⁵ and helps
19 to explain the higher base substitution frequency of hPol λ relative to hPol β , a close X-family
20 homolog.^{109,116,117} While the ability of hPol λ to bind dNTPs prior to DNA is unusual, it has been
21 structurally observed before^{62,64,118-120} with the nucleotides often bound in a non-productive
22 conformation. However, dNTP bound crystal structures of truncated hPol λ have shown productive
23 binding of dNTP at the polymerase active site, but the global conformation of the protein has yet to

1 reach the catalytically active state in the absence of DNA.¹¹⁵ Similarly, dNTP bound crystal and solution
2 NMR structures (E•dNTP) of African swine fever virus (ASFV) Pol X, an X-family homolog, have
3 revealed dGTP bound in a productive conformation that allows formation of *syn*-dGTP:dG Hoogsteen
4 base pairs upon subsequent DNA binding,^{118,121} which is different from the binding of nucleotide in
5 multiple conformations shown for *Thermus thermophilus* Pol X.¹²² Importantly, the structural results
6 regarding this unique substrate binding order for ASFV Pol X have been confirmed by steady-state
7 inhibition assays and nucleotide trapping assays.¹²³ Additionally, modeling based on chemical shift
8 perturbations suggests that nucleotide binding to ASFV Pol X induces a conformational change in the
9 absence of DNA, which further substantiates that dNTP binds first for this viral polymerase.¹²⁴
10 Nevertheless, the binding of nucleotide prior to DNA is likely a rare occurrence and may contribute to
11 the low fidelity of Pol X.¹²⁵


12 In addition, there may be certain scenarios in which the outcome of nucleotide incorporation is
13 not influenced by the identity of the templating base. For example, a DNA polymerase may prefer to
14 almost exclusively incorporate one particular nucleotide or catalyze template independent nucleotide
15 incorporation such as the Y-family DNA polymerase Rev1, which is known to preferentially incorporate
16 dCTP regardless of the templating base through a “protein template” arginine residue,^{83,126-129} or the X-
17 family DNA polymerase TdT, which prefers single-stranded DNA over double-stranded DNA and is
18 incapable of replicating a DNA template,²³ respectively. Moreover, damage to the DNA may result in an
19 unreadable templating base in which case a Y-family DNA polymerase is recruited for non-templated
20 lesion bypass. Accordingly, while certain exceptions to the order of DNA and dNTP substrate binding to
21 a DNA polymerase exist for specific biological contexts or for specialized DNA polymerases, it is
22 widely accepted that DNA binding typically occurs prior to dNTP binding.

23 DNA polymerases have been observed to bind to a variety of DNA substrates and the substrate

1 specificity seems to depend on the polymerase family as well as the particular biological function. In
2 general, it is understood that DNA polymerases bind primer-template DNA substrates wherein the 3'-
3 end of the primer strand is recessed relative to the 5'-end of the template strand. However, specialized
4 DNA polymerases such as hPol β and hPol λ of the X-family prefer to act on gapped DNA substrates
5 containing an upstream primer along with a 5'-phosphorylated or 5'-deoxyribophosphate adducted
6 downstream primer,^{79,116,117,130,131} and the Y-family polymerases can tolerate binding to and replicating
7 on damage-containing DNA substrates,¹³²⁻¹³⁹ unlike their replicative polymerase counterparts.¹⁴⁰⁻¹⁴³
8 Several pre-steady-state kinetic assays exist to measure the equilibrium dissociation constant (*i.e.* K_d^{DNA})
9 for DNA binding by a polymerase including the active site titration. During the active site titration, a
10 fixed amount of a DNA polymerase is titrated with varying amounts of a radiolabeled DNA substrate
11 before being rapidly mixed with correct dNTP to initiate nucleotide incorporation.¹⁴⁴ A burst of product
12 formation is observed at each DNA substrate concentration as dNTP is rapidly bound and incorporated
13 by the pre-formed E•DNA (Scheme 1) complex. An important consideration for successful execution of
14 the active site titration is that nucleotide binding and incorporation must be much faster than the binding
15 equilibration of a polymerase and DNA ($E + DNA \rightleftharpoons E \cdot DNA$), otherwise the burst of product formation
16 will not be observed. The concentration of the E•DNA complex is given by the amplitude of the burst
17 phase which varies as a function of DNA substrate concentration. A quadratic binding equation can then
18 be used to determine both the K_d^{DNA} as well as the active concentration of the polymerase. For example,
19 the DNA binding affinity of the catalytic subunit (*i.e.* p261) of human DNA polymerase ε (hPol ε) of the
20 B-family, which is responsible for leading strand DNA replication, was measured to be 79 nM and the
21 enzyme was determined to be only ~16% active.⁹¹ Interestingly, the assay was later repeated with the
22 holoenzyme of hPol ε (*i.e.* p261, p59, p17, p12) and the binding affinity increased 2.4-fold to 33 nM,
23 while the enzyme did not gain appreciable activity (18% active).¹⁴⁵ In addition, active site titrations have

1 been useful in determining the DNA binding affinities of *Sulfolobus solfataricus* DNA polymerase B1
2 (PolB1)⁹² and Dpo4⁹⁴ as both polymerase demonstrate clear burst phase kinetics. However, when a
3 small or indeterminate burst phase is present, as observed for hPol β ,^{110,146} the necessary conditions
4 prescribed for an active site titration are not met (*i.e.* nucleotide binding and/or incorporation is not
5 faster than the binding equilibration of a polymerase and DNA) and therefore a different method must be
6 used to accurately measure DNA binding affinity. An alternative strategy to determine polymerase
7 affinity to DNA involves measuring the microscopic rate constants of k_{off} and k_{on} comprising K_d^{DNA} (*i.e.*
8 $k_{off}/k_{on} = K_d^{DNA}$) through assays designed to monitor the kinetics of polymerase dissociation from or
9 association to a DNA substrate, respectively. Indeed, directly measured values for k_{off} and k_{on} often
10 strongly agree with the measured K_d^{DNA} of a DNA polymerase and provide additional insight into
11 mechanistic steps which may kinetically limit multiple rounds of DNA synthesis.^{10,90-92,94,110,145,147,148}

12 Binding of a DNA substrate by a polymerase is often accompanied with conformational
13 dynamics of the enzyme as well as nucleic acids (Figure 2). One striking example of protein dynamics
14 upon DNA binding is demonstrated by *S. solfataricus* Dpo4 of the Y-family (Figure 4A). While in the
15 apo state, a crystal structure of Dpo4 reveals that the auxiliary little finger domain interacts with the
16 thumb domain and occupies the DNA binding cleft, thereby occluding the binding of a DNA
17 substrate.¹⁴⁹ Consequently, a major 131° rotation and 1.7 Å translation of the little finger domain is
18 observed in the binary complex crystal structure as the little finger breaks contact with the thumb and
19 establishes new contacts with the finger to vacate the necessary space for DNA to bind (Figure 4A).¹⁴⁹
20 Additionally, high affinity of DNA binding^{9,94,134} ($K_d^{DNA} = 10$ nM) is ensured as both the thumb and
21 finger domains rotate 10° to better contact the DNA in the binary complex structure.¹⁴⁹ This dramatic
22 structural transition was further investigated in fluorescence¹⁴⁹ and stopped-flow Förster resonance
23 energy transfer (FRET) studies monitoring distance changes between¹³ and within¹⁰ individual Dpo4

Figure 4. Conformational dynamics of Dpo4. Finger, palm, thumb, and little finger are colored blue, red, green, and purple, respectively. (A) Dynamics of DNA binding. Dpo4 exists in equilibrium between the apo and binary conformations in the absence of DNA. DNA binds to the free binary conformation which may be mediated by the little finger domain.^{10,13} (B) Dynamics during nucleotide binding and incorporation. In contrast to A-, B-, and some X-family DNA polymerases, comparison of binary and ternary crystal structures of Dpo4 demonstrates a lack of significant nucleotide binding associated protein dynamics. However, stopped-flow FRET analyses have uncovered subtle motions for each domain of Dpo4. Green arrows indicate the concerted movement of domains upon nucleotide binding during P₁ phase to grip the DNA substrate. Red arrows depict the relaxation of domains during the P₂ phase (*i.e.* opposite direction of P₁) following nucleotide incorporation.¹⁰⁻¹³ (C) Pictorial representation of the intradomain FRET approach to investigate Dpo4 conformational dynamics within each domain (represented by magnifying glasses). Trp residues were site-specifically introduced into each domain to serve as FRET donors, while Cys residues modified with 7-diethylamino-3-(4'-maleimidylphenyl)-4-methylcoumarin) were site-specifically introduced into each domain to serve as FRET acceptors.¹⁰ (D) Stopped-flow trace of little finger intradomain FRET construct (Y274W-K329C^{CPM}). Black trace shows correct nucleotide binding and incorporation on a natural DNA primer and demonstrates characteristic, anti-correlated P₁ (green shaded area) and P₂ (blue shaded area) phases. Red trace shows correct nucleotide binding with a dideoxy-terminated primer.¹⁰ (E) Stopped-flow trace of finger intradomain FRET construct (S22W-K56C^{CPM}) colored as in (D). Note the similar direction of P₁ and P₂ phases regardless of natural or dideoxy-terminated primer.¹⁰ PDBs 2RDI and 2RDJ were used to generate the structural figures in (A), (B), and (C).¹⁴⁹

1 domains. Contrary to the initial hypothesis that Dpo4 must follow an induced fit mechanism for DNA 20

1 binding, wherein the DNA substrate would induce the conformational change of the little finger domain,
2 it was found that in the absence of DNA, Dpo4 exists in conformational equilibrium between the
3 structurally distinct apo and binary complex configurations (Figure 4A) and DNA binding selects for the
4 DNA bound state (*i.e.* shifts conformational equilibrium toward DNA bound state). This was concluded
5 as the rate of conformational transition between apo and binary complex upon DNA binding, monitored
6 through relative distance change between interdomain FRET probes positioned in the little finger and
7 palm domains, was independent of DNA concentration over two orders of magnitude.¹³ This assertion
8 was supported by a nuclear magnetic resonance (NMR) study assigning the backbone chemical shifts of
9 full length Dpo4 in the absence and presence of DNA, which suggested that a minor conformation of
10 apo Dpo4 existed in a conformation consistent with that observed in the Dpo4 binary complex crystal
11 structure.¹⁵⁰ Importantly, it was later shown that the little finger mediates initial DNA binding of Dpo4
12 through a stopped-flow FRET system reporting on intradomain distance changes of the little finger,¹⁰ as
13 predicted by a previous computational investigation.¹⁵¹ A similar dramatic structural rearrangement is
14 observed for the related Y-family member human DNA polymerase κ (hPol κ) during DNA binding as its
15 little finger domain moves \sim 50 Å to intimately contact the DNA major groove and the N-clasp, a unique
16 N-terminal extension, helps encircle the DNA substrate.¹⁵² Conformational dynamics during DNA
17 binding can also be observed for the X-family DNA polymerases hPol β ^{61,62} and hPol λ ,^{76,115} but not
18 hPol μ ,^{77,153} as the 8 kDa N-terminal dRPase domain of both hPol β and hPol λ move to engage gapped-
19 DNA substrates (Figure 2). Notably, subtle differences in the dRPase domain dynamics between hPol β
20 and hPol λ may help explain the higher affinity of hPol β (0.077 – 22 nM)^{146,154} for gapped-DNA relative
21 to hPol λ (110 nM),¹⁵⁵ and its role as the primary polymerase for short-patch base excision repair
22 (BER).²¹ In contrast to the limited domain motion demonstrated by the X-family polymerases upon
23 DNA binding, the gapped- (or nicked) DNA duplex undergoes a dramatic structural change involving a

1 90° kink occurring at the 5'-phosphodiester bond of the templating base.^{79,153,156} Importantly, this
2 unusual DNA structure is necessary for thumb domain closure during single-nucleotide gap-filling DNA
3 synthesis by hPol β and therefore ensures that an important fidelity checkpoint is maintained during
4 nucleotide incorporation. Examination of product complex structures from enzymes involved in BER
5 reveals that the DNA becomes progressively bent as it is sequentially bound and processed by most
6 enzymes of the DNA repair pathway (DNA glycosylase → AP endonuclease → X-family DNA
7 polymerase).¹⁵⁷ Accordingly, DNA repair enzymes may recognize and preferentially bind the bent DNA
8 to facilitate rapid and efficient repair of DNA damage. The higher-fidelity A- and B-family DNA
9 polymerases have also been observed to undergo conformational dynamics upon DNA binding as
10 exemplified by comparison of the apo¹⁵⁸⁻¹⁶⁰ and binary or ternary^{64,65,68,161} crystal structures of
11 bacteriophage RB69 DNA polymerase, *Pyrococcus furiosus* DNA polymerase, and *Taq* DNA
12 polymerase I (Figure 2). In general, beyond the occasional structuring of disordered regions, DNA
13 binding is typically accompanied by movement of the thumb (or the fingers for the X-family DNA
14 polymerases) domain towards the palm domain in order to wrap around the DNA substrate.

15 **3.2. DNA translocation and divalent metal-ion binding to the A- and B-sites**

16 Following formation of the E•DNA binary complex (Step 1, Scheme 1A), nucleotide
17 incorporation into the primer strand of the bound DNA substrate commences upon binding of a dNTP.
18 Importantly, DNA polymerases in the binary complex may exist in non-productive or productive
19 configurations depending on whether the polymerase active site is bound in the pre-insertion or insertion
20 state, respectively. Indeed, a binary complex crystal structure of the Y-family member Dpo4 showed the
21 polymerase in the pre-insertion state, while a ternary complex structure revealed the polymerase to have
22 translocated by one base pair along the DNA to the insertion state in order to accommodate the
23 incoming correct dNTP.¹⁶² This essential DNA translocation event was later validated and measured to

1 be rapid ($>150\text{ s}^{-1}$ at 20 °C) by stopped-flow^{11,12} and single-molecule^{9,163} FRET studies monitoring
2 distance changes between a DNA substrate and various domains of Dpo4. Interestingly, the single-
3 molecule FRET studies revealed that the polymerase dynamically fluctuates between the pre-insertion
4 and insertion states on the DNA but exclusively populates the insertion state in the presence of correct
5 nucleotide.^{9,163} Similar repositioning of the DNA polymerase from the pre-insertion state to the insertion
6 state via DNA translocation is proposed from crystal structures of the Klenow fragment of *Taq* DNA
7 polymerase I⁶⁵ and the large fragment of DNA polymerase I from *Bacillus stearothermophilus*.¹⁶⁴
8 Indeed, as the polymerase transitions between these two states while bound to DNA (Step 2, Scheme 1),
9 nucleotide may directly bind to the polymerase-DNA complex at the insertion site or may induce DNA
10 translocation from the pre-insertion site depending on which state is favored at equilibrium.¹¹²

11 Once the polymerase has translocated along the DNA to the insertion state, nucleotide binding
12 can commence (Step 3, Scheme 1). Binding of dNTP coincides with association of the A- and B-site
13 divalent metal ions. Time-resolved crystallographic studies (Figure 5, see Section 4.1) of bacteriophage
14 N4 RNA polymerase indicate that M_B binding occurs simultaneously with nucleotide binding and that
15 M_A binding occurs shortly after.¹⁶⁵ This explicit order for divalent metal ion binding to the polymerase
16 (*i.e.* M_B followed by M_A) is supported by the crystal structure of DNA polymerase ι (hPol ι) wherein M_B
17 is clearly associated with the bound dNTP but M_A has yet to bind.⁸² However, those authors suggest that
18 M_A may not be necessary for nucleotidyltransfer, as abstraction of the 3'-hydroxyl proton may occur by
19 an active site carboxylate (Glu 127) positioned unusually near to the primer terminus.⁸² In addition to
20 binding after the M_B -associated nucleotide, M_A binding is proposed to occur following the
21 conformational change (Step 4, Scheme 1A) to the tight ternary complex, as association of M_B -dNTP,
22 not M_A , is sufficient to elicit the conformational change.^{112,166-168} While this implies a defined order for
23 the binding of each metal ion during the kinetic mechanism of DNA polymerase-catalyzed nucleotide

1 incorporation (Scheme 1A), explicit evidence for the defined sequence of events is lacking and M_A could
2 associate or dissociate at different step(s) of the mechanism.¹¹² Nevertheless, time-resolved
3 crystallographic studies of hPol β ^{40-42,44,45} and hPol μ ⁴⁶ (see Sections 4.4 and 4.5, respectively) have
4 demonstrated that following nucleotide incorporation, M_A dissociates prior to M_B indicating that the
5 relative affinity for the divalent metal ion at the A-site is weaker, and further suggesting that M_A likely
6 associates after M_B .

7 **3.3. Nucleotide binding, incorporation, and polymerase fidelity**

8 The apparent affinity of the DNA polymerase binary complex for dNTP (*i.e.* K_d^{dNTP}) and the
9 maximum rate constant of single-nucleotide incorporation (*i.e.* k_{pol}) can be experimentally measured by
10 pre-steady-state kinetic assays.¹⁴⁴ Briefly, DNA polymerase and DNA substrate can be pre-incubated
11 under single-turnover reaction conditions (*i.e.* $[E] \gg [DNA]$) before mixing with various concentrations
12 of correct or incorrect dNTP. Reactions are quenched at increasing amounts of time and the data are fit
13 to a single-exponential equation ($[\text{product}] = A[1 - \exp(-k_{obs}t)]$) to obtain an observed rate constant
14 (k_{obs}) at each concentration of dNTP. The k_{obs} values are then plotted as a function of dNTP
15 concentration and fit to a hyperbolic equation (*i.e.* $k_{obs} = k_{pol}[\text{dNTP}] / (K_d^{dNTP} + [\text{dNTP}])$) to obtain the
16 desired kinetic parameters.¹⁴⁴ Importantly, the measured values of k_{pol} and K_d^{dNTP} for all 16 possible
17 nucleotide incorporations are extremely useful metrics of polymerase efficiency (k_{pol}/K_d^{dNTP}), fidelity
18 (calculated as $(k_{pol}/K_d^{dNTP})_{\text{incorrect}} / [((k_{pol}/K_d^{dNTP})_{\text{correct}} + (k_{pol}/K_d^{dNTP})_{\text{incorrect}})]$), and processivity. This latter
19 metric can be calculated as the ratio of k_{pol} to the rate of DNA dissociation (k_{off} , see section 3.1) and
20 describes the average number of bases incorporated by the DNA polymerase during a single DNA
21 binding event, which can be more than 1,500 as observed for highly-processive T7 DNA polymerase
22 (bound to the processivity factor *E. coli* thioredoxin)⁹⁰ and human mitochondrial DNA polymerase γ
23 holoenzyme,¹⁶⁹ or less than 20 as observed for the poorly-processive X-family member hPol β ¹¹⁶ and the

1 Y-family member Dpo4.⁹⁴ Importantly, processivity values often increase when the DNA polymerase is
2 associated with accessory subunits or processivity factors (e.g. proliferating cell nuclear antigen (PCNA)
3 and β -clamp).^{90,108,169-171}

4 Some of the fastest and most faithful-DNA polymerases exhibit k_{pol} values >200 s⁻¹ and bind
5 correct nucleotide with relatively high affinity ($K_d^{dNTP} < 10$ μ M), while incorrect nucleotides are bound
6 with \sim 10- to 100-fold lower affinities and are generally incorporated 100- to 10,000-fold more slowly.

7 Consequently, high fidelity polymerases typically make only one error per $\sim 1 \times 10^6$ incorporations.¹¹²

8 For example, the p261 catalytic subunit of hPol ϵ was shown to incorporate correct nucleotides at a rate
9 of $219 - 275$ s⁻¹ with a high base substitution fidelity of $10^{-4} - 10^{-7}$ (i.e. one error per $10^4 - 10^7$
10 incorporations).¹⁷² More impressively, it was further shown that the 3'-5' exonuclease activity of hPol ϵ
11 bolstered the overall *in vitro* polymerization fidelity to $10^{-6} - 10^{-11}$ (i.e. one error per $10^6 - 10^{11}$
12 incorporations), which unprecedently translates to 0.1 – 1 misincorporations per round of human
13 genome replication.¹⁷² This enhancement in overall *in vitro* polymerization fidelity afforded by the
14 exonuclease activity was greater than that observed for the related B-family DNA polymerase PolB1,
15 which demonstrated a two orders of magnitude improvement (i.e. $10^{-4} - 10^{-6}$ to $10^{-6} - 10^{-8}$).¹⁷³

16 For many years, the mechanism by which a DNA polymerase recognizes a mismatch and
17 switches between polymerization and exonuclease modes in order to correct the mismatch remained
18 unclear. It was thought that the exonuclease domain must proofread the nascent DNA for mistakes and,
19 upon identification of a mismatch, must transfer the DNA duplex from the polymerase active site to the
20 exonuclease active site.^{95,174,175} This was hypothesized to be a dynamic conformational change between
21 polymerization and editing modes of the polymerase as the distance between the active sites is relatively
22 large (~ 60 \AA *E. coli* Pol III α , ~ 40 \AA for *Saccharomyces cerevisiae* Pol ϵ).¹⁷⁴ Nevertheless, a recent cryo-
23 electron microscopy (cryo-EM) study has revealed the structural basis for mismatch correction by *E.*

1 *coli* Pol III α .¹⁷⁶ Rather than serving an active role as a “proofreader”, the exonuclease domain is actually
2 passive, with a terminal mismatch causing the DNA substrate to fray (as supported by NMR analysis of
3 the DNA duplex) resulting in a distorted DNA conformation.¹⁷⁶ Accordingly, the mismatch is essentially
4 self-correcting as the primer strand from the frayed DNA duplex travels ~55 Å to the exonuclease active
5 site for passive nucleotide excision.¹⁷⁶ This passive mechanism of exonucleolytic cleavage is
6 corroborated by biochemical studies of *S. cerevisiae* Pol ϵ wherein an extended β -hairpin loop motif,
7 originally thought to serve an active role in mediating a switch between polymerization and editing
8 modes, was shown to have no such effect.¹⁷⁷ Interestingly, relative to matched primer-template termini,
9 the rate of primer extension from a mismatched terminus is slow relative to the rate of exonuclease
10 excision allowing for efficient mismatch removal.^{134,172,173,178,179} The structural basis for inefficient
11 polymerization beyond a mismatch stems from a myriad of active site and DNA distortions that misalign
12 reactive groups¹⁸⁰⁻¹⁸⁴ even when the mismatch is several base pairs removed from the primer-template
13 junction (*i.e.* mismatch position $n-1$ to $n-4$).¹⁸⁰ Moreover, binding of a correct nucleotide when the
14 terminal base pair is a mismatch induces distinct structural alterations which ultimately deter
15 nucleotidyltransfer.¹⁸⁴ Together, these structural determinants prevent misincorporations and subsequent
16 extension and push the equilibrium to exonucleolytic removal of the errantly incorporated nucleotide. In
17 contrast to high-fidelity DNA polymerases, moderate-fidelity DNA polymerases¹⁸⁵ such as the X-family
18 members hPol β and hPol λ lack exonuclease domains (Figure 2) and demonstrate poor base substitution
19 fidelity on both non-gapped and gapped DNA substrates ranging from $10^{-2} - 10^{-5}$ (*i.e.* one error per $10^2 -$
20 10^5 incorporations).^{109,117,186,187} Similarly, the error-prone lesion-bypass Y-family DNA polymerases
21 including hPol η ^{147,188} and Dpo4⁹³ also lack exonuclease domains (Figure 2) and display comparably
22 poor base substitution fidelities of $10^{-2} - 10^{-4}$ on undamaged DNA substrates.

23 **3.4. Kinetic basis for polymerase fidelity and the rate-limiting step of single-nucleotide**

1 incorporation

2 The mechanistic basis by which DNA polymerases achieve their remarkable base substitution
3 fidelity has been thoroughly investigated over the years. Based on the seminal findings of Watson and
4 Crick,¹⁸⁹ it was originally thought that DNA polymerases would achieve high base substitution fidelity
5 from the distinct hydrogen bonding patterns between correct versus incorrect base pairs. However, it
6 was quickly discovered that hydrogen bonding alone could not explain the large difference in efficiency
7 between incorporation of correct and incorrect nucleotides.¹⁹⁰ It was later suggested that both the shape
8 of the nascent base pair within the polymerase active site as well as hydrogen bonding contribute to
9 nucleotide specificity.¹⁹¹⁻¹⁹⁶ Alternatively, it was hypothesized that the difference in free energy between
10 the chemistry of correct versus incorrect nucleotide incorporation alone could explain polymerase
11 fidelity.⁶ However, it has been shown that for many polymerases in which the kinetic mechanism has
12 been thoroughly investigated that chemistry is not the rate-limiting step of correct nucleotide
13 incorporation.⁵ Accordingly, research now indicates that many factors including but not limited to
14 hydrogen bonding, free-energy differences, base-pair shape complementarity, and polymerase
15 conformational dynamics contribute to high-fidelity DNA synthesis.^{5,6,196-198} In fact, even non-catalytic
16 accessory domains¹⁹⁹ as well as the solvent accessibility and water network of a polymerase active
17 site²⁰⁰ have been implicated or directly shown to modulate polymerase fidelity. Furthermore, substrate
18 dynamics have also been hypothesized to effect polymerase fidelity. For example, the rare tautomer
19 hypothesis of polymerase fidelity postulates that replication errors occur at low frequencies due to the
20 formation of high energy tautomers of DNA bases which allow incorrect base pairs to form Watson-
21 Crick-like geometries and mislead the polymerase to catalyze a misincorporation. This hypothesis has
22 gained recent support from crystal structures of the *Bacillus stearothermophilus* DNA polymerase I
23 large fragment bound to a dC:dA mismatch²⁰¹ and a mutant of hPolλ bound to a dG:dT mismatch,²⁰² as

1 well as through NMR spectroscopy of DNA duplexes containing site-specific mismatches, which
2 revealed that sequence-dependent tautomerization and ionization of incoming nucleotides within the
3 polymerase active site leads to misincorporations as originally suspected by Watson and Crick.^{189,203,204}
4 Moreover, DNA template dynamics associated with incorrect nucleotide incorporation have also been
5 observed.²⁰⁵ Lastly, DNA polymerases have been demonstrated to monitor base complementarity
6 through sequence independent minor groove interactions.²⁰⁶⁻²⁰⁸ Therefore, it is clear that polymerase
7 fidelity is complex and is achieved through a vast array of polymerase and substrate interactions and
8 dynamics.

9 **3.4.1. A two-step binding model for DNA polymerase fidelity**

10 Pre-steady-state kinetic studies coupled with pertinent crystal structures of DNA polymerases
11 and RTs provided the first indication that enzyme conformational dynamics were important for the
12 mechanism of DNA polymerization and polymerase fidelity.^{4,5,29,61,63,65,68,88,90,209,210} Together, these
13 studies helped define a two-step nucleotide binding mechanism (Scheme 1B) involving rapid
14 equilibrium binding of dNTP (Step 3_a and 3_b, Scheme 1B) followed by an open→closed conformational
15 change of the finger (or the thumb for the X-family DNA polymerases) (Step 4_a and 4_b, Scheme 1B),
16 supported by comparison of binary and ternary complex structures for many DNA polymerases (Figure
17 2). If rate-limiting, this conformational change would provide the additional selectivity crucial for
18 discriminating against incorrect dNTPs.²⁷ For many polymerases, kinetic data from experiments
19 studying the incorporation of a *S_p*-dNTP α S, a nucleotide analog in which the pro-*S_p* oxygen of the α -
20 phosphate has been substituted with sulfur, indicated that a conformational change, rather than the
21 chemistry of nucleotidyltransfer, was rate-limiting for single-nucleotide incorporation as the sulfur
22 elemental effect (*i.e.* the decrease in the rate of nucleotide incorporation when using α -thio-dNTP versus
23 normal dNTP) was negligible.⁵ Briefly, as the A- and B-site metal ions do not interact with the pro-*S_p*

1 oxygen of a dNTP, the substitution of this atom to sulfur allows kineticists to infer the identity of the
2 rate-limiting step of nucleotidyltransfer from the magnitude of the change in the observed single-
3 nucleotide incorporation rate. Accordingly, significant elemental effects of 4–11-fold (*i.e.* $k_{obs, dNTP}/k_{obs, Sp-dNTP}$)
4 were previously considered to indicate that chemistry is rate-limiting for DNA polymerase
5 catalysis, whereas smaller values (*i.e.* < 2-fold) suggest that pre-chemistry conformational changes are
6 rate-limiting.^{5,94,103,211} Notably, while a significant sulfur elemental effect was not often observed for
7 correct nucleotide incorporation, experiments performed with incorrect nucleotide frequently revealed
8 that the chemistry step (Step 5_b, Scheme 1B) was rate-determining, presumably as a result of misaligned
9 reactive moieties within the polymerase active site.⁵ It is important to mention that the sulfur elemental
10 effect is no longer considered a reliable diagnostic for the rate-limiting step of nucleotide incorporation
11 as intermediate effects (*i.e.* 2–3-fold) are difficult to interpret, while large effects (*i.e.* >10-fold) are
12 thought to arise from disruption of the geometry of the transition-state (*i.e.* steric effects) and therefore
13 no longer exclusively report on the chemistry step.⁵ Moreover, the pro- S_p oxygen of the α -phosphate of
14 the incoming dNTP has been hypothesized to not serve a major role in transition-state stabilization and
15 therefore its substitution with sulfur does not adequately probe the chemistry step.⁶ More convincing
16 than the sulfur elemental effect, were results obtained through the pulse-chase/pulse-quench experiment,
17 wherein an increase in reaction amplitude of the pulse-chase compared to the pulse-quench is indicative
18 of a rate-limiting pre-chemistry conformational change.^{5,99} During the pulse-quench, a pre-incubated
19 solution of polymerase and DNA is mixed with [α -³²P]-radiolabeled dNTP for varying amounts of time
20 before quenching. The pulse-chase proceeds similarly, except that before quenching, an excess of cold
21 dNTP is added to the reaction mixture. Accordingly, if a slow-to-form polymerase complex
22 (E'•DNA_n•dNTP, Scheme 1B) accumulates before the chemistry step (Step 5_a or 5_b, Scheme 1B) then
23 the chase with excess cold dNTP should cause an increase in reaction amplitude as the reaction is chased

1 forward (*i.e.* an [α -³²P]-dNTP-bound polymerase complex can form additional product rather than the
2 [α -³²P]-dNTP dissociating out of the active site). Indeed, results of the pulse-chase/pulse-quench
3 experiments for many DNA polymerases identified a rate-limiting pre-chemistry conformational change
4 and supported the two-step binding mechanism for correct nucleotide incorporation.^{4,5}

5 **3.4.2. The open→closed conformational change is not rate-limiting**

6 While the initial two-step model for nucleotide selection and incorporation was strongly
7 supported by structural and kinetic data, it was later contested as the measured rate of the open→closed
8 conformational transition (Step 4_a, Scheme 1B) for polymerases was too rapid to be considered rate-
9 limiting.^{7,27,212,213} As this model depended on the assumption that the rate of the open→closed
10 conformational change (Step 4, Scheme 1A and 1B) must be slow relative to the chemistry step (Step 6,
11 Scheme 1A; Step 5, Scheme 1B) to afford nucleotide selection specificity, a revised interpretation of the
12 model was necessary.⁴ Indeed, studies of T7 DNA polymerase,^{27,112} RB69 DNA polymerase,^{196,214} and
13 HIV-1 RT²¹⁵⁻²¹⁷ showed that the rates of the pre-chemistry forward and reverse conformational changes
14 for correct (k_{4a} and k_{-4a} , respectively, Scheme 1B) or incorrect nucleotide (k_{4b} and k_{-4b} , respectively,
15 Scheme 1B) relative to the rate of chemistry (k_{5a} or k_{5b} , Scheme 1B) defined nucleotide specificity.
16 Accordingly, binding of the correct nucleotide rapidly induces a conformational change (*i.e.* large k_{4a} ,
17 Scheme 1B) to an enzyme complex committed to catalysis (*i.e.* small k_{-4a} relative to k_{5a} , Scheme 1B),
18 while binding of the incorrect nucleotide induces a unique conformational change to an enzyme complex
19 ($E^{\ddagger}\bullet DNA_n\bullet dNTP$, Step 3, Scheme 1B) which allows rapid release of the incorrect nucleotide (*i.e.* large k_{-4b}
20 relative to k_{5b} , Scheme 1B). Altogether, kinetic analysis revealed that the controversy concerning the
21 relative magnitudes of the rates of the pre-chemistry conformational change (k_{4a} and k_{4b} , Scheme 1B)
22 versus the chemistry step (k_{5a} and k_{5b} , Scheme 1B), and how this could impact nucleotide specificity,
23 was unfounded if the reverse rate of the pre-chemistry conformational change was slow for correct

1 dNTP (k_{-4a} , Scheme 1B), but fast for incorrect dNTP (k_{-4b} , Scheme 1B), relative to the chemistry step
2 (k_{5a} and k_{5b} , Scheme 1B).^{27,112,215,216} This current model suggests that chemistry is fast relative to
3 nucleotide release during correct nucleotide incorporation as the rapid conformational change, promoted
4 by the correct geometry of the base pair within the ground-state ternary complex (E•DNA•dNTP,
5 Scheme 1B), ensures the proper alignment of catalytic moieties (E'•DNA_n•dNTP, Scheme 1B). On the
6 other hand, chemistry is slow during incorrect nucleotide incorporation as a unique conformational
7 change, prompted by the incorrect geometry of the base pair within the ground-state ternary complex
8 (E•DNA•dNTP, Scheme 1B), instigates improper alignment of catalytic groups (E[‡]•DNA_n•dNTP,
9 Scheme 1B) and dissociation of nucleotide. In other words, the reversal of the pre-chemistry
10 conformational change is fast relative to chemistry during incorporation of a mismatch, thereby favoring
11 rapid nucleotide dissociation from the polymerase active site prior to nucleotidyltransfer as
12 demonstrated through studies of high-fidelity T7 DNA polymerase^{27,112} and RB69 DNA
13 polymerases,^{187,203} as well as moderate-fidelity HIV-1 RT.²¹⁵⁻²¹⁷

14 **3.4.3. Multiple mechanisms of DNA polymerase fidelity**

15 While the latter model (see Section 3.4.2)^{27,112,196} elegantly explains how high-fidelity DNA
16 polymerases achieve their remarkable substrate specificity for correct nucleotide, it may not extend to
17 the low-fidelity X- and Y-family DNA polymerases. In contrast to the large structural change upon
18 nucleotide binding observed for many A- and B-family DNA polymerases, involving closure of the
19 finger domain,²¹⁰ all members of the Y-family^{22,218} and some members of the X-family^{57,115,153} do not
20 undergo such a nucleotide-induced conformational change (Figure 2 and 4B). Despite the structural
21 data, results from the sulfur elemental effect and pulse-chase/pulse-quench experiments for several Y-
22 family DNA polymerases suggest that a pre-chemistry conformational change is rate-limiting for single-
23 nucleotide incorporation.^{22,94,103,104} Accordingly, the basis by which error-prone polymerases select for

1 correct nucleotide may involve a distinct mechanism.

2 Strikingly, stopped-flow fluorescence²¹⁹ and FRET¹⁰⁻¹³ studies of the Y-family polymerase Dpo4
3 have revealed subtle conformational motions between and within each subdomain (finger, palm, thumb,
4 little finger) during binding and incorporation of a correct nucleotide (Figure 4B and C). While
5 monitoring distance changes between each polymerase domain and the DNA substrate, based on the
6 anti-correlated increases or decreases in the donor and acceptor fluorescent signals, three FRET phases
7 were observed upon mixing the polymerase-DNA binary complex with correct dNTP corresponding to
8 i) rapid DNA translocation by Dpo4 (P_0), ii) synchronized gripping of the DNA substrate by each
9 domain prior to nucleotide incorporation (Figure 4B, P_1), and iii) subsequent relaxation of each domain
10 following nucleotidyltransfer (Figure 4B, P_2). Interestingly, the slow FRET phase (P_2) vanished during
11 analogous experiments performed using a DNA substrate containing a dideoxy-terminated primer to
12 prevent nucleotide incorporation and therefore must occur following nucleotidyltransfer. The P_1 phase
13 ($\sim 15.3 \text{ s}^{-1}$) occurred much faster than the rate-limiting step of single nucleotide incorporation measured
14 by radioactive chemical quench (0.66 s^{-1}). If the rate of synchronized domain motion ($\sim 15.3 \text{ s}^{-1}$) is
15 considered the forward rate for enzyme isomerization (k_{4a}) in Scheme 1B, then the rate of chemistry (k_{5a} ,
16 Scheme 1B) can be calculated as 0.69 s^{-1} from the relationship $k_{5a} \approx k_{4a}k_{pol}/(k_{4a} - k_{pol})$,²⁷ where k_{pol} is the
17 observed single-turnover rate for correct nucleotide incorporation (0.66 s^{-1}). In contrast to T7 DNA
18 polymerase,^{27,112} the forward isomerization rate (k_{4a} , Scheme 1B) for Dpo4 is much faster (22-fold) than
19 the surprisingly slow calculated rate of chemistry (k_{5a} , Scheme 1B). Consequently, the reverse
20 isomerization rate (k_{-4a} , Scheme 1B) must be much slower (0.0017 s^{-1} based on the 410-fold difference
21 between forward and reverse isomerization rates measured for T7 DNA polymerase)²⁷ than 0.69 s^{-1} in
22 order for Dpo4 to efficiently select the correct nucleotide according to the aforementioned revised model
23 for nucleotide specificity (see Section 3.4.2 and Scheme 1B). However, given the clear lack of a sulfur

1 elemental effect (1.4) and obvious increase in amplitude (5.5 nM) for the pulse-chase compared to the
2 pulse-quench experiment measured for Dpo4,⁹⁴ we hesitate to assign the chemistry step (k_{5a} , Scheme
3 1B) such a slow rate (0.69 s⁻¹) when it appears that some other rate-limiting, pre-chemistry step clearly
4 exists. Indeed, previous kinetic studies of Dpo4 at a range of temperatures (2 – 56 °C) provided four
5 independent lines of kinetic evidence that a pre-chemistry protein conformational change must limit
6 correct nucleotide incorporation.^{94,220} Accordingly, nucleotide incorporation for Dpo4 likely proceeds
7 through a mechanism (Scheme 1A) requiring two pre-chemistry conformational changes (Steps 4 and 5,
8 Scheme 1A). The first conformational change (Step 4, Scheme 1A) involves the synchronized domain
9 movements to enhance interaction with the DNA substrate (Figure 4B), while the second (Step 5,
10 Scheme 1A) is rate-limiting and involves precise alignment of reactive groups achieved through subtle
11 protein motions. Indeed, stopped-flow FRET experiments monitoring distance changes between and
12 within individual domains of Dpo4 during nucleotide binding and incorporation garner support for this
13 model (Figure 4C).^{10,13} For example, the majority of intradomain FRET pairs demonstrated
14 characteristic P₁ and P₂ phases (*i.e.* anti-correlated phases consistent with interdomain FRET pairs,
15 Figure 4B)^{11,13} and the P₂ phase was absent during experiments with a dideoxy-terminated primer
16 (Figure 4D). However, intradomain FRET pairs positioned within the finger domain showed a unique P₂
17 phase regardless if nucleotide incorporation was prevented by utility of a dideoxy-terminated primer
18 (Figure 4E). Importantly, the unique P₂ phases were in the same direction as P₁ (Figure 4E) and the rates
19 of these P₂ phases were on the order of the rate-limiting step of single-nucleotide incorporation
20 measured for Dpo4 by ³²P-based assays. We speculate that the observed P₂ phases reflect subtle,
21 collective domain motions necessary to align reactive moieties around the nascent base pair in
22 preparation for rapid nucleotidyltransfer. Consistent with experimental results, these motions should
23 occur whether or not phosphodiester bond formation is prohibited by a terminating primer¹⁰ and may be

1 reflected in the fine adjustments of loops, secondary structural elements, and amino acid side chains near
2 the nucleotide binding pocket as demonstrated through comparison of the binary and ternary crystal
3 structures of Dpo4.¹⁴⁹ Experiments are currently underway to measure the reverse isomerization rate (k
4 $_4$, Scheme 1A) of Dpo4 in order to distinguish between the two competing mechanisms (see Sections
5 3.4.2 and 3.4.3) and identify how Dpo4 selects for the correct nucleotide. Future work will also
6 determine how an incorrect nucleotide may affect the conformational dynamics of Dpo4. Importantly,
7 an additional mechanism for nucleotide specificity by Dpo4 is based on hydrogen-deuterium exchange
8 experiments suggesting that the DNA translocation step may be involved in correct dNTP selection as
9 certain protein motions, speculated to occur during DNA translocation, are only observable in the
10 presence of correct nucleotide.²²¹ Thus, correct nucleotide binding may stabilize the insertion state
11 relative to incorrect nucleotide by slowing down Dpo4 reverse transition to the pre-insertion state.
12 Similar to the latter model (Scheme 1B) for polymerase fidelity (see Section 3.4.2),^{27,112} this suggests
13 that nucleotide specificity hinges on a reverse step (*i.e.* reverse translocation, k_2) being slow for correct
14 dNTP, but fast for incorrect dNTP, relative to nucleotidyltransfer (Step 5, Scheme 1B). This model is
15 supported by single-molecule FRET studies of Dpo4 showing that the correct nucleotide stabilizes the
16 insertion state to a greater extent than incorrect nucleotide.^{9,163}

17 Taken together, it is clear that the mechanisms by which DNA polymerases attain nucleotide
18 specificity are complex and may vary significantly among the polymerase families. As a result, an
19 overarching or unified mechanism to explain these intricate processes for DNA polymerases is likely not
20 possible and we caution that what may appear true for one polymerase may not extend to all. A clear
21 example of polymerase dependent selection mechanisms comes from our recent structural
22 characterization of the inherent *D*-stereoselectivity of several DNA polymerases.^{87,222,223} Through
23 structures of the Y-family DNA polymerase Dpo4⁸⁷ and the X-family DNA polymerases hPol β ²²² and

1 hPol λ ²²³ bound to various nucleotide analogs with *L*-stereochemistry we identified several unique
2 mechanisms by which these polymerases achieve *D*-stereoselectivity. While it was unsurprising that the
3 Y-family polymerase Dpo4 and the X-family polymerases would not have common mechanisms of *D*-
4 stereoselectivity, it was unexpected that hPol β and hPol λ , which share a high amount of sequence and
5 structural homology, select against *L*-nucleotides in different ways.^{87,222,223} Thus, these studies highlight
6 the difficulties in generating a unified mechanism for any aspect of DNA polymerase catalysis and
7 support the necessity to study each polymerase individually.

8 **3.5 Post-chemistry steps of nucleotide incorporation**

9 Many biochemical, biophysical, and structural studies have aimed to deduce the kinetic
10 mechanism and molecular bases for single-nucleotide incorporation and polymerase fidelity through
11 characterization of the steps up to and including nucleotidyltransfer (Steps 1-6, Scheme 1A). However,
12 post-chemistry steps involving the reverse (Steps 7 and 8, Scheme 1A) of the conformational changes
13 observed during nucleotide binding and incorporation (Steps 4 and 5, Scheme 1A), as well as PP_i release
14 (Step 9, Scheme 1A) have been seldom examined biochemically and/or structurally. Indeed, isolating
15 post-chemistry events has proven to be difficult leading to the lack of sufficient structural and
16 mechanistic characterization. As a consequence, the order in which PP_i release and the post-chemistry
17 conformational changes occur as well as whether or not the events are cooperative (*i.e.* PP_i release
18 triggers the reverse conformational change or vice versa) is unknown. However, recently the slow
19 incorporation of nucleotide analogs, which closely resemble natural nucleotides but possess *L*-
20 stereochemistry, has been utilized to capture *in crystallo* snapshots of post-chemistry events by hPol β .⁴³
21 In performing time-resolved X-ray crystallography (see Section 4.1) with these analogs, the order of
22 events following the chemistry step were unambiguously defined. Interestingly, hPol β completed the
23 closed→open conformational changes (Steps 7 and 8, Scheme 1A) while the product PP_i remained

1 bound to the polymerase active site. In fact, many of the side chain interactions with the PP_i were
2 maintained despite the domain rearrangement, causing the PP_i to move with the thumb domain away
3 from the incorporated nucleotide during the closed→open conformational transition. Presumably this
4 reopening and movement of PP_i away from the reaction center would facilitate PP_i solvation and
5 dissociation. Surprisingly, the third divalent metal ion previously identified in several time-resolved
6 structural investigations³⁸⁻⁴² had already dissociated following domain reopening thereby directly
7 opposing the hypothesis that the third divalent metal ion plays a role in PP_i dissociation (see Sections 1
8 and 4.3). Consistently, recent time-resolved X-ray crystallographic experiments with hPol μ in the
9 presence of Mn²⁺ revealed that the third divalent metal ion dissociates prior to PP_i release and
10 surprisingly showed that the B-site metal ion remains bound following PP_i release, rather than
11 concomitantly dissociating with PP_i as previously purported.⁴⁶ Moreover, the post-chemistry structures
12 of hPol β demonstrate that the next correct nucleotide can bind to the open polymerase conformation to
13 aid PP_i dissociation. This is not unexpected considering that if PP_i were to remain bound at the active
14 site, then the incorporated nucleotide could be removed via pyrophosphorolysis. In this instance, one
15 would expect concerted post-catalytic events including PP_i release, DNA translocation, and dNTP
16 binding (*i.e.* Steps 9, 10_a, and 3, Scheme 1A). Altogether, rapid domain opening and the active
17 displacement of PP_i by the incoming nucleotide ensures forward reaction efficiency during processive
18 DNA synthesis.

19 In a recent study, PP_i mimetic analogs were used to follow the reverse reaction by time-resolved
20 crystallography (see Section 4.1).²²⁴ Consistent with the abovementioned structural findings that PP_i
21 dissociation occurs after opening of the thumb domain,⁴³ this study demonstrated that during
22 pyrophosphorolysis, PP_i binds to the open form of hPol β and an open→closed conformational change
23 occurs prior to the reaction.²²⁴ Moreover, structures inform that PP_i fails to support binding of catalytic

1 Mg^{2+} at the A-site and is too far from the reaction center to promote efficient pyrophosphorolysis.⁴⁰

2 Consistently, biochemical and structural analyses with an imidodiphosphate PP_i analog demonstrated

3 that a single atom change (*i.e.* bridging oxygen of PP_i substituted to nitrogen) allows optimal binding of

4 catalytic M_A and positions the analog for efficient catalysis.²²⁴ Interestingly, neither PP_i nor

5 imidodiphosphate was efficient at removing mismatched primer termini, suggesting that

6 pyrophosphorolysis does not act as a fidelity checkpoint during DNA synthesis.²²⁴ Together, these

7 studies have dissected the post-chemistry events of DNA polymerization and have shown that domain

8 reopening occurs prior to PP_i release and the reverse reaction is highly disfavored.

9

10 **4. New paradigm for DNA synthesis catalyzed by DNA polymerases**

11 **4.1. Time-resolved X-ray crystallography of DNA polymerase-catalyzed DNA synthesis**

12 The ability to follow an enzymatic reaction at atomic resolution has been sought after for many

13 years by biochemists and structural biologists.²²⁵ Static crystal structures of complexes carefully

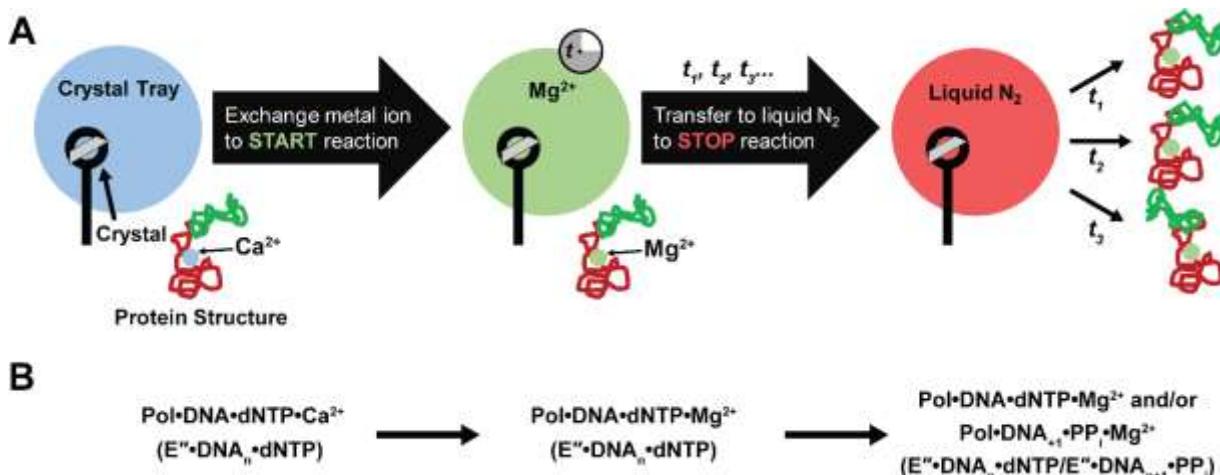
14 designed to mimic reactant-, intermediate-, and product-states can, at best, only offer hints of the actual

15 reaction mechanism. With the advent of time-resolved X-ray crystallography (Figure 5), much of the

16 ambiguity that accompanies the interpretation of static crystal structures is replaced with clear insight

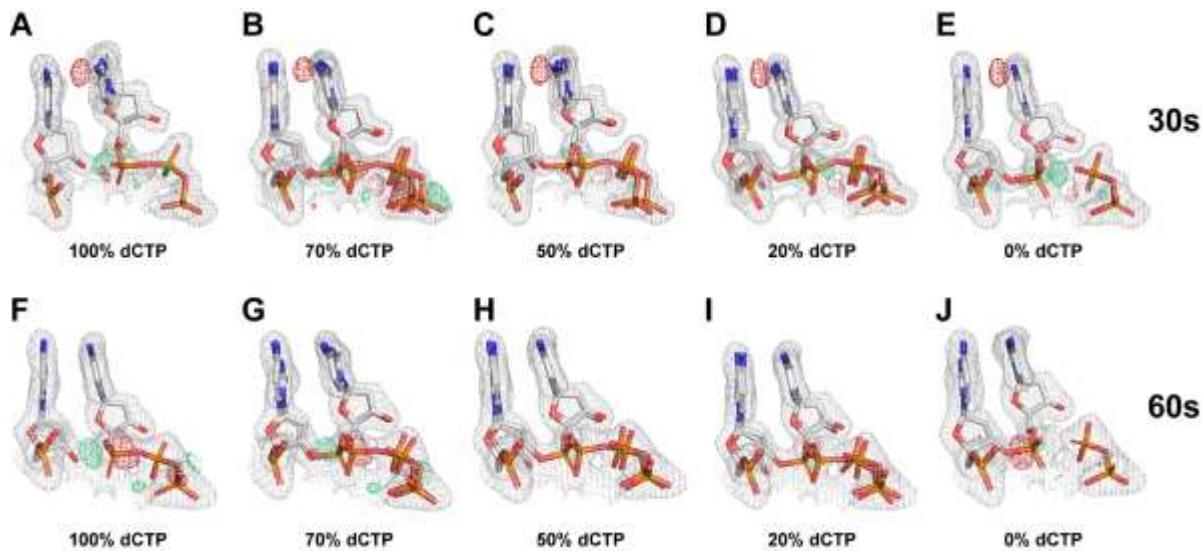
17 into the chemical mechanism of a particular enzyme-catalyzed reaction. Generally, the technique

18 involves preparation and isolation of a crystal containing an enzyme-substrate complex in a pre-catalytic


19 state, followed by reaction initiation by transferring the crystal to a solution containing the reaction

20 activator(s) and cryo-protectant (Figure 5A). Next, the reaction is allowed to proceed for a defined time

21 interval before it is freeze-quenched by transferring the crystal to liquid N_2 (Figure 5A) for subsequent


22 diffraction experiments. During generation of a structural model, the proportions (*i.e.* occupancies) of

23 two or more states (*i.e.* reactant and product) are modeled and refined to fit the diffraction data (Figure

Figure 5. Time-resolved crystallography technique. (A) A crystal in a pre-reactive state is isolated and transferred to a cryo-solution containing the catalytic metal ion. This initiates the reaction *in crystallo* and after varying periods of time, the reaction can be quenched by transferring the crystals to liquid N₂. Diffraction experiments are then performed on the crystals and the diffraction data are used to determine the three dimensional structures. During this process, the electron density of the bond forming and of the bond breaking is modeled as percent occupancy. The F_0 - F_c difference map is then used to evaluate how well the model satisfies the experimental electron density.²²⁵ (B) For time-resolved crystallography of a DNA polymerase-catalyzed nucleotidyltransfer reaction, a crystal of the ternary complex formed in the presence of non-catalytic Ca²⁺ is transferred to a cryo-solution containing the catalytic divalent metal ion, Mg²⁺ or Mn²⁺. The polymerase complexes relevant to panel (A) are depicted and the corresponding enzyme forms relevant to those shown in Scheme 1A are shown in parentheses. Reproduced from Raper, A. T.; Reed, A. J.; Gadkari, V. V.; Suo, Z. Advances in Structural and Single-Molecule Methods for Investigating DNA Lesion Bypass and Repair Polymerases. *Chem. Res. Toxicol.* 2017, 30, 260-269. Copyright 2017 American Chemical Society.

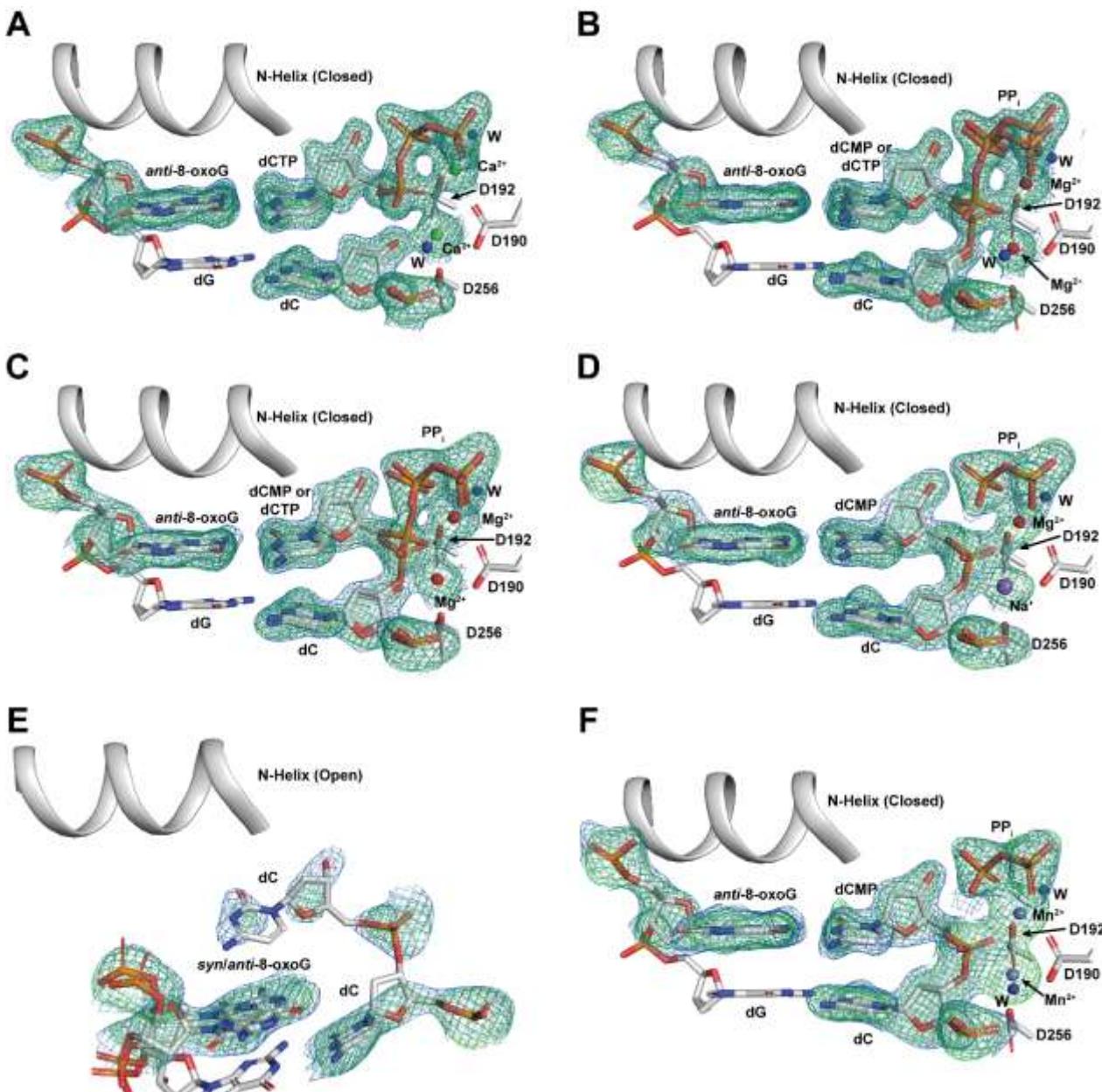

1 6). It is important to note that time-resolved crystallography is not a single-molecule technique. Rather,
 2 the average behavior of numerous molecules within the crystal, in the reactant- or product-states,
 3 contributes to the electron density at each time point. This process is repeated for several crystals, each
 4 allowed to react for an increasing amount of time. Finally, after solving the structure of the pre-catalytic
 5 complex (zero time point), the reaction progress from beginning to the end can be visualized, with each
 6 structure of a particular time point serving as a frame in the reaction film (Figure 7). For example, recent
 7 time-resolved crystallography with DNA polymerases (Figure 5) has been successful in following
 8 single-nucleotide incorporation³⁸⁻⁴⁶ with an example of the modeling procedure applied during time-
 9 resolved crystallography of nucleotidyltransfer by hPol β shown in Figure 6 and example of the time-
 10 resolved snapshots captured by this technique depicted in Figure 7. Mechanistic events were able to be
 11 temporally resolved *in crystallo*, as reaction rates for single-nucleotide incorporation are observed to be

Figure 6. Modeling of phosphodiester bond formation after 30 or 60 s of Mg^{2+}/Ca^{2+} ion-exchange during time-resolved X-ray crystallography of hPol β .⁴² The $2F_o-F_c$ (light blue) maps contoured at 1σ and the F_o-F_c omit maps contoured at either 3σ (green) or -3σ (red) are presented for the primer 3'-terminal nucleotide, incoming dCTP, incorporated dCMP, and PP_i. The modeled occupancy of the reactants is listed below each structure. Strong positive (green) and negative (red) electron density mesh between the primer 3'-OH and the α -phosphate group of dCTP or between the α - and β -phosphate groups of dCTP indicate unsatisfactory modeling, *e.g.* the modeling of the reactants at 100% (A), 70% (B), 20% (D) and 0% (E) occupancies for the 30 s structure and 100% (F), 70% (G), 50% (H), 20% (I), and 0% (J) occupancies for the 60 s structure. In contrast, the absence of any positive or negative electron density with the modeling of the reactants at 50% (C) and 20% (I) occupancies suggests satisfactory modeling for the 30 and 60 s structures, respectively.⁴² Reproduced from Vyas, R.; Reed, A. J.; Tokarsky, E. J.; Suo, Z. Viewing Human DNA Polymerase Beta Faithfully and Unfaithfully Bypass an Oxidative Lesion by Time-Dependent Crystallography. *J. Am. Chem. Soc.* 2015, 137, 5225-5230. Copyright 2015 American Chemical Society.

1 20- to 100-fold slower for hPol η ³⁸ and hPol β ,⁴⁰ compared to rates measured by pre-steady-state kinetic
 2 studies of these enzymes in solution.^{38,104,226} To obtain these structures, the non-catalytic divalent metal
 3 ion Ca^{2+} was exploited to form a stable pre-catalytic complex (Figure 5B). Ca^{2+} was then exchanged for
 4 the catalytic divalent metal ions Mg^{2+} or Mn^{2+} to start the reaction (Figure 5B). Other unique properties
 5 of DNA polymerases made implementation of time-resolved X-ray crystallography successful including
 6 the relative ease of crystallizing pre-catalytic complexes, the ability to achieve high resolution
 7 diffraction data, and the limited impact of conformational heterogeneity or dynamics on crystal integrity
 8 during reaction progression.²²⁵ While still a relatively new method (*e.g.* the first reports for DNA
 9 polymerases appeared only ~five years ago), researchers have already enjoyed success in utilizing the
 10 time-resolved structural technique to uncover new details of structure and function relationships of DNA
 11 polymerases. In the coming years, we expect that more details of the DNA polymerase mechanism,

- extending beyond just the X- and Y-families, will be uncovered as more investigators adapt this
- powerful methodology.

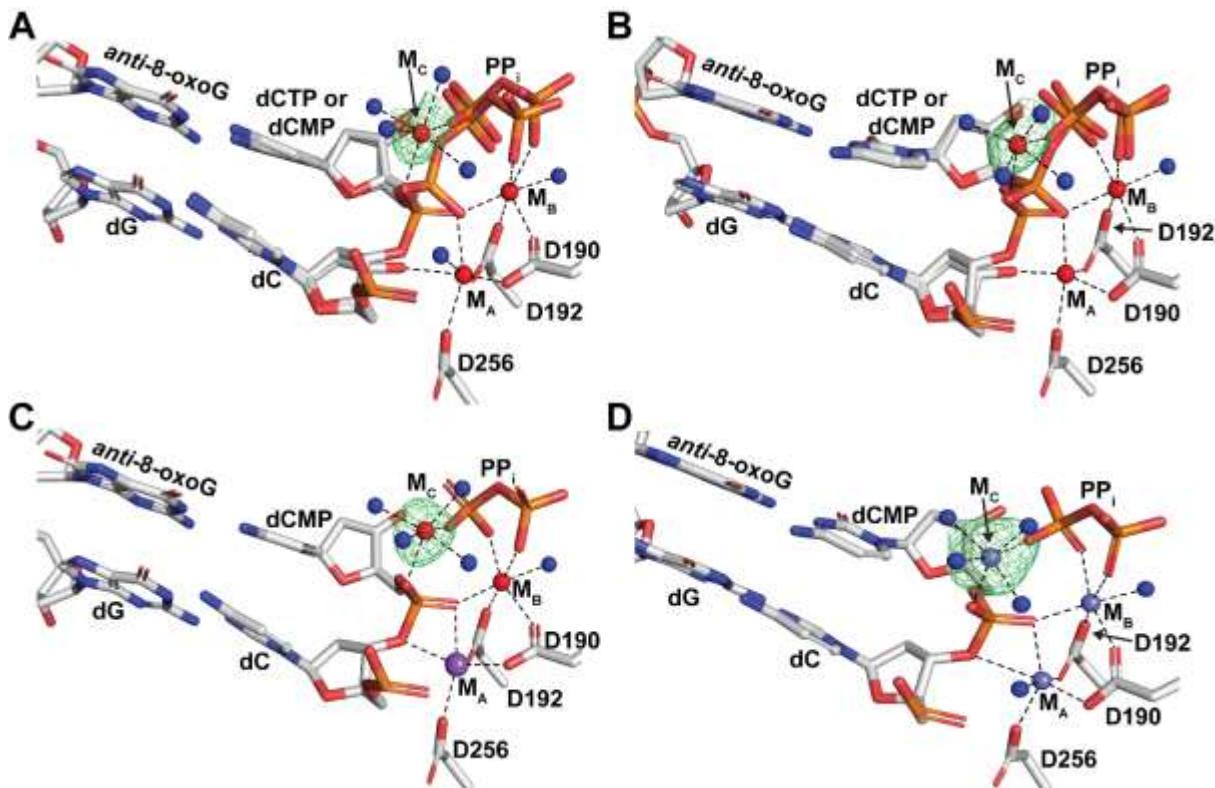


Figure 7. *In crystallo* phosphodiester bond formation by hPol β . Zoomed active sites show the incorporation of dCTP opposite 8-oxoG. The $2F_o-F_c$ (blue mesh) and F_o-F_c (green mesh) maps are shown for the templating 8-oxoG, incoming dCTP, incorporated dCMP, pyrophosphate (PP_i), metal ions at the A- and B-sites, and the primer 3'-terminal nucleotide (dC), contoured to 1σ and 3σ levels, respectively. Water molecules are shown as blue spheres. Ca^{2+} , Mg^{2+} , Mn^{2+} , and Na^+ are shown as green, red, light blue, and purple spheres, respectively. Structures of the hPol β pre-catalytic ternary complex (A), and structures of the hPol β reaction intermediate or product ternary complexes following crystal-soaking with either 200 mM Mg^{2+} for 30 s (B), 60 s (C), 80 s (D), and 1 h (E), or 200 mM Mn^{2+} for 35 s (F). In (E), 8-oxoG was modeled in both *anti*- and *syn*-conformations.⁴² Reproduced from Vyas, R.; Reed, A. J.; Tokarsky, E. J.; Suo, Z. Viewing Human DNA Polymerase Beta Faithfully and Unfaithfully Bypass an Oxidative Lesion by Time-Dependent Crystallography. *J. Am. Chem. Soc.* 2015, 137, 5225-5230. Copyright 2015 American Chemical Society.

1

2 **4.2. A third divalent metal ion during nucleotide incorporation**

3 Despite hundreds of structures of DNA polymerases accumulated through years in the Protein
4 Data Bank, no evidence for a divalent metal ion directly involved in DNA synthesis beyond the well
5 documented M_A and M_B divalent metal ions had been observed. However, the first time-resolved X-ray
6 crystallographic investigation of hPol η ,³⁸ as well as seven additional studies identify a transient, third
7 divalent metal ion, referred to as the C-site (M_C) or product-associated metal ion, during phosphodiester
8 bond formation (Figure 3).³⁹⁻⁴⁶ Thus, traditional pre-catalytic substrate complexes and post-catalytic
9 product complexes of DNA polymerases were not sufficient to structurally capture this apparently
10 dynamic third divalent metal ion. High-resolution diffraction data (~1.5-2.0 Å) permitted for the
11 unambiguous identification of metal ion electron density, coordination geometry, and metal ion-to-
12 ligand coordination distances for M_C (Figure 8). Appropriately, M_C was shown to exhibit octahedral
13 coordination geometry, consistent with a bound divalent metal ion, and short metal-to-ligand
14 coordination distances (~2.2 Å), consistent with Mg^{2+} or Mn^{2+} , rather than non-catalytic Ca^{2+} (~2.4 Å).
15 In some cases,³⁹⁻⁴² Mn^{2+} was used to initiate the *in crystallo* reaction, rather than Mg^{2+} , as its stronger
16 signal (*i.e.* Mn^{2+} is more electron rich) allowed for confident assignment of M_C electron density even at
17 5 σ levels (*i.e.* five standard deviations above background) (Figure 8D)^{40,42} or resulted in anomalous
18 diffraction.⁴⁰ M_C was shown to coordinate four water molecules as well as the non-bridging oxygen
19 atom of the α -phosphate and the leaving oxygen atom of the β -phosphate (bridging oxygen between α -
20 and β -phosphates) of the bound nucleotide (Figure 1B). In some instances, the number of ligands bound
21 to M_C varied from four to six due to the dynamic nature of coordinating water molecules and
22 presumably the transient nature of M_C . Importantly, these ligands fail to form any protein contacts, but
23 only coordinate to the metal ion, therefore preventing any mutational confirmation of the existence or

Figure 8. The third divalent metal ion is present in the reaction-state and post-catalytic structures of hPol β during incorporation of dCTP opposite 8-oxoG. After soaking crystals of the pre-catalytic ternary complex of hPol β (hPol β •8-oxoG-DNA•dCTP) with Mg $^{2+}$ for 30, 60, and 80 s, dCTP incorporation had completed by 50% (A), 80% (B), and 100% (C), respectively. (D) Following 35 s soaking with Mn $^{2+}$, dCTP was 100% incorporated. The F_o - F_c omit maps were contoured at 3 σ (A-C) or 5 σ (D) to show the electron density (green) of Mg $^{2+}$ or Mn $^{2+}$, respectively, at the C-site. Coordinating aspartate side chains are shown as stick models, while water molecule ligands (blue), Mg $^{2+}$ (red), Mn $^{2+}$ (light blue), and Na $^{+}$ (purple) are shown as spheres.⁴² Reproduced from Vyas, R.; Reed, A. J.; Tokarsky, E. J.; Suo, Z. Viewing Human DNA Polymerase Beta Faithfully and Unfaithfully Bypass an Oxidative Lesion by Time-Dependent Crystallography. *J. Am. Chem. Soc.* 2015, 137, 5225-5230. Copyright 2015 American Chemical Society.

1 significance of M_C. Differences in the timing and occupancy of the third divalent metal ion amongst the
 2 time-resolved studies of hPol η ,^{38,39} hPol β ,^{40-42,44,45} and hPol μ ⁴⁶ are suggestive of its dynamic nature.
 3 Furthermore, a third divalent metal ion only appeared with hPol μ when Mn $^{2+}$ was used for metal ion
 4 exchange and not with Mg $^{2+}$.⁴⁶ As a consequence of these inconsistencies, the role of the third divalent
 5 metal ion in the mechanism of nucleotide incorporation has been highly debated (Figure 1B and C) with
 6 hypothesized roles in transition-state stabilization, product release, catalysis of pyrophosphorolysis, or
 7 product-state stabilization.^{46,47}

1 **4.3. Evidence and hypothesized roles for the third divalent metal ion in single-nucleotide**

2 **incorporation catalyzed by hPol η**

3 In the inceptive time-resolved crystallography study, Nakamura *et al.*³⁸ followed nucleotide
4 incorporation by hPol η and identified for the first time a third divalent metal ion utilized by a DNA
5 polymerase during catalysis. M_C appeared midway through phosphodiester bond formation (140 s, 60%
6 reactants, 40% products) and remained associated at the active site until the final recorded time point
7 (230 s, 40% reactants, 60% product). Unfortunately, observation of full product and the subsequent
8 release of PP_i was not observed as both the forward DNA synthesis and reverse pyrophosphorolysis
9 reactions became competing at later time points as product occupancy decreased from the penultimate to
10 the final time point. Furthermore, as the competing reactions were occurring simultaneously, it is likely
11 that both activities were aided by M_C through transition-state stabilization and lowering the activation
12 energy barrier for bond formation. Interestingly, appearance of M_C occurred concomitantly with the
13 movement of a positively charged arginine residue (R61), which had flipped away from the α -phosphate
14 of the bound dNTP, effectively replacing the charge in the active site. This active site configuration led
15 to the hypothesis that the M_C would support chemistry while the subsequent reverse conformational
16 transition of the arginine, or an equivalent positively charged residue in other polymerases, back to its
17 pre-catalytic configuration would act in concert with the third divalent metal ion to actively displace
18 product PP_i. In this way, the side chain is essentially “sweeping out” PP_i from the active site in
19 preparation for DNA translocation and an additional catalytic cycle. Consistently, a molecular dynamics
20 investigation of the pre-catalytic and reaction state side chain conformations of R61 concluded that only
21 the pre-catalytic side chain configuration facilitates nucleotide binding, suggesting that the absence of
22 nucleotide precludes reaction-state configuration. Moreover, following nucleotidyltransfer the side chain
23 must revert back to the pre-catalytic configuration before subsequent rounds of dNTP binding and

1 incorporation.⁴⁹ Furthermore, the computational study maintained the notion that M_C, accompanied by
2 the R61 conformational transition, serves as an exit shuttle for PP_i release, and dissociates along with
3 PP_i.⁴⁹

4 This mechanism of third divalent metal ion-dependent conformational transitions for nucleotide
5 incorporation and product release may be conserved given that a lysine side chain in many polymerases
6 from diverse families,^{18,64,68,164,227,228} or an arginine residue in HIV reverse transcriptase,⁸⁸ is present at a
7 position similar to R61 of hPol η . Alternatively, this positively charged side chain may be static and
8 therefore occlude the binding of a third divalent metal ion and thus fulfil the roles of transition-state
9 stabilization and/or PP_i release. Hence, it is necessary to investigate these other polymerase families or
10 RTs through similar methods to determine the precise role of these amino acids and identify whether a
11 third divalent metal ion is utilized. Notably, the X-family repair polymerases, hPol β , hPol λ , and hPol μ ,
12 which typically act on single-nucleotide gapped DNA substrates (see Section 3.1), do not possess an
13 analogous positively charged residue to interact with the α -phosphate. This may be a mechanism by
14 which processive DNA synthesis is suppressed to prevent potential misincorporations by these
15 moderate-fidelity enzymes.^{79,146-148} While the Y-family polymerases, such as hPol η , are considered low-
16 fidelity enzymes^{22,147,229-231} (see Section 3.3), the necessity to bypass DNA damage and subsequently
17 extend the DNA primer, which are both difficult tasks for high-fidelity replicative polymerases, may
18 justify the need for the positively charged side chain to aid in processivity, in contrast to the X-family
19 polymerases.

20 More recently a time-resolved crystallography study of hPol η directly investigated the role of M_C
21 and suggested that it is absolutely essential for catalysis and its binding may kinetically limit the rate of
22 single-nucleotide incorporation.³⁹ When crystals of the hPol η pre-catalytic ternary complex
23 (E•DNA•dNTP•Ca²⁺) were soaked with 1 mM Mn²⁺ for varying amounts of time, only the A- and B-site

1 metal ions were occupied by Mn^{2+} and no product formation was detected even after 1,800 s. However,
2 after soaking the crystals in 10 mM Mn^{2+} , the A- and B- sites were readily occupied, while M_C appeared
3 at 30 s coinciding precisely with the appearance of reaction product. The authors were able to determine
4 the relative binding affinities for each metal ion from *in crystallo* metal ion titration experiments, where
5 electron density for each metal ion was examined following crystal soaking at various metal ion
6 concentrations and time points. It was determined that Mn^{2+} binds to the C-site with an affinity of ~ 3.2
7 mM. The apparent weak binding of M_C was further supported by in-solution metal ion titration
8 experiments, wherein the concentration of metal ion necessary to achieve half-maximal reaction rate was
9 determined and yielded a similar affinity (2.7 mM). Importantly, the agreement of the metal ion binding
10 affinities from the two approaches (*i.e.* in-solution and *in crystallo* metal ion titrations) is the first
11 experimental evidence to suggest that M_C is bound by hPol η in solution and is not simply a crystal
12 artifact of the time-resolved crystallography technique.

13 Examination of the interaction of hPol η with S_p -dATP α S demonstrated that A- and C- site metal
14 ion binding is affected as a direct result of the substitution of the pro- S_p oxygen atom of dATP with a
15 sulfur atom. As the atom at the S_p position is expected to coordinate M_C , the larger atomic radius of
16 sulfur relative to oxygen disrupts the binding and therefore likely explains the observed rate reduction *in*
17 *crystallo*. In fact, M_C is not observed at all despite product formation (50% product at 600 s), which
18 suggests that M_C may not be absolutely essential for catalysis. However, the authors argue that M_C must
19 be present but is too transient or low occupancy to be observed in the electron density.³⁹ In addition,
20 mutation of active site residue (R61) of hPol η to alanine, resulted in delayed third divalent metal ion
21 binding and misalignment of the bound dNTP relative to the primer 3'-OH. This is somewhat
22 unexpected considering that R61 in the pre-catalytic ternary crystal structures occupies the space where
23 M_C would bind following catalytic metal ion exchange. Based on this single pre-catalytic rotameric

1 conformation, we expect that the exchange between pre- and post-catalytic side chain configurations of
2 R61 is slow and may partially limit the rate of M_C binding. Therefore, it is reasonable to hypothesize
3 that mutation of R61 to alanine would facilitate more efficient binding of M_C . However, considering that
4 R61 makes important contacts with both the α - and β -phosphates of the incoming dNTP, and the primer
5 3'-OH is misaligned relative to wild-type structures, their results may simply reflect the negative impact
6 of the mutation on nucleotide binding as suggested by the significant increase (~2-10-fold) in K_m
7 compared to the wild-type enzyme in steady-state kinetic experiments.⁸⁰

8 Altogether, the authors use these data to suggest that chemistry (Step 6, Scheme 1A) is indeed
9 rate-limiting for hPol η , which contrasts with previous kinetic evidence,^{103,104} and that M_C binding may
10 provide the free energy needed to overcome the activation energy barrier for nucleotidyltransfer (*i.e.*
11 transition-state stabilization). However, it is important to consider that hPol η is first crystallized in a
12 ternary complex in the presence of non-catalytic Ca^{2+} and therefore only the bond forming chemistry
13 step is observed. Substrate binding (Step 3, Scheme 1A) and any associated conformational rate-limiting
14 steps (Steps 4 and 5, Scheme 1A) have presumably already occurred. Thus, the reduction in reaction rate
15 caused by the postponement or disruption to third divalent metal ion binding caused by the S_p -dATP α S
16 or R61A mutation suggest that M_C binding limits the rate of the chemistry step, but likely is not rate-
17 limiting for the entire kinetic pathway for single-nucleotide incorporation (Scheme 1A, see Section 3.4).
18 Altogether, this work confirmed and measured the binding of M_C to hPol η at reasonable metal ion
19 concentrations (in contrast to work with hPol β , 200 mM Mg^{2+}/Mn^{2+})^{40-42,45} and correlates the M_C
20 binding affinities estimated crystallographically and in-solution. However, this study falls short of
21 unequivocally limiting the role of M_C to transition-state stabilization, as the temporal resolution afforded
22 by the time-resolved crystallography technique²²⁵ is not sufficient to distinguish the order of M_C binding
23 and nucleotidyltransfer.

1 **4.4 Evidence and hypothesized roles for the third divalent metal ion in single-nucleotide**
2 **incorporation catalyzed by hPol β**

3 Following the seminal study with hPol η ,³⁸ time-resolved crystallography was employed to
4 visualize nucleotide incorporation by hPol β on a gapped DNA substrate.⁴⁰ Interestingly, a third divalent
5 metal ion at the C-site was also observed for hPol β ⁴⁰ during correct nucleotide incorporation in a similar
6 position to the third divalent metal ion in hPol η (Figure 3).³⁸ However, in contrast to the results obtained
7 for hPol η ,³⁸ M_C only appeared in the product complex structures and coincided with the loss of M_A. This
8 observation suggested that M_C is solely involved in post-chemistry events and perhaps the diverse
9 polymerase families utilize the third divalent metal ion in distinct ways. In fact, the timing of M_C
10 binding suggested a role for M_C in pyrophosphorolysis, wherein it would stabilize the attacking oxygen
11 atom of PP_i following proton abstraction by a water molecule (Figure 1C). Consistent with this
12 hypothesis, open nicked DNA binary complex (E•DNA) crystals soaked with Mg²⁺ and PP_i yielded
13 structures of the polymerase in the closed conformation with M_C and PP_i bound to the active site (*i.e.*
14 reactant-state for reverse reaction, pyrophosphorolysis). However, these complexes failed to initiate
15 pyrophosphorolysis, presumably because M_A was a Na⁺ ion rather than the catalytic Mg²⁺. Interestingly,
16 M_C was not observed during incorrect nucleotide incorporation.⁴⁰

17 The role of M_C in pyrophosphorolysis was further investigated through use of quantum
18 mechanical/molecular mechanical computational methods.⁵⁰ It was determined that M_C was beneficial in
19 the initial stages of the chemical reaction (*i.e.* initiating the attack of P α by O β), but became inhibitory as
20 the two reacting atoms (P α and O β) approached a distance of 2.3 Å, likely due to the strict coordination
21 distances and geometry of M_C, thus effectively preventing the transition-state from forming.⁵⁰ However,
22 replacement of Mg²⁺ with Na⁺ at the C-site resulted in a lowered activation energy barrier, suggesting a
23 mechanism where metal ions may exchange during the reaction pathway to favor reaction completion.

1 In addition, the authors demonstrated that Mg^{2+} binding at the A-site is required for catalysis in either
2 the forward or reverse (*i.e.* nucleotidyltransfer or pyrophosphorolysis) direction and rapid exchange with
3 Na^+ following catalysis effectively pushes the reaction to completion. The inability for Mg^{2+} at the C-
4 site to support the reverse reaction but the requirement of Mg^{2+} at the A-site for forward and reverse
5 catalysis is consistent with the hypothesis that M_C may only be involved in post-chemistry events (*i.e.*
6 PP_i release or conformational changes) for hPol β and explains the inability of PP_i to support
7 pyrophosphorolysis *in crystallo*.^{43,50}

8 In subsequent time-resolved crystallographic investigations of hPol β during faithful and
9 unfaithful translesion DNA synthesis across from the major oxidative lesion 8-oxo-7,8-dihydro-2'-
10 deoxyguanine (8-oxoG) (Figure 7),⁴² M_C was observed in the reaction-state (Figure 8A and B) and post-
11 chemistry (Figure 8C and D) structures with its occupancy similar or equivalent to the product-state
12 occupancy. Notably, as the reaction progressed, M_C moved towards its final position wherein it was
13 fully coordinated with the reaction products and water molecules during bypass of 8-oxoG with dATP,
14 highlighting the dynamic nature of the third divalent metal ion. This observation is similar to hPol η
15 wherein M_C binding occurs prior to or immediately following reaction initiation,^{38,39} and suggests that
16 M_C may diffuse into the hPol β active site following reaction initiation to associate with reaction
17 intermediates as a means to stabilize the transition-state. This result was further supported in a follow-up
18 time-resolved crystallographic study following hPol β -catalyzed extension from 8-oxoG containing base
19 pairs which were generated during the bypass⁴⁵ (*i.e.* dC:8-oxoG or dA:8-oxoG was the primer-template
20 junction pair). Importantly, during this study,⁴⁵ M_C was observed as early as 15% product formation,
21 suggesting an early role in catalysis (*i.e.* transition-state stabilization). Furthermore, the investigation of
22 post-chemistry events for hPol β -catalyzed nucleotide incorporation, revealed that M_C is not involved in
23 PP_i release (see Section 3.5), thus limiting the third divalent metal ion to function in chemical events

1 such as transition-state stabilization or product-state stabilization.

2 Additional time-resolved studies following the incorporation of 8-oxo-dGTP opposite a

3 template dC or dA⁴¹ or the extension from these incorporation products (*i.e.* 8-oxoG:dC or 8-oxoG:dA

4 were the primer-template junction pair)⁴⁴ similarly demonstrated that M_C appears in reaction- and

5 product-state structures. Unexpectedly, the third divalent metal ion appeared in the pre-catalytic

6 structure for incorporation of 8-oxo-dGTP opposite dC presumably as a result of favorable M_C

7 coordination facilitated by the optimal position of the O8 modification of the damaged nucleotide. The

8 inclusion of a third coordinating ligand offered by the O8 atom, in addition to the non-bridging oxygen

9 atoms on the α - and β -phosphates, likely makes M_C binding more favorable in this structure.⁴¹ These

10 damage-specific interactions coupled with the absence of M_C in all other pre-catalytic structures from

11 time-resolved crystallographic investigations of hPol β suggest that pre-catalytic M_C binding is likely

12 unique to this damage DNA context and therefore does not represent a common mechanistic feature.

13 Nevertheless, despite the appearance of M_C in reaction intermediate structures, the authors argue that the

14 third divalent metal ion is only involved in post-chemistry events and does not provide transition-state

15 stabilization.^{41,44}

16 To further investigate the role of M_C in the forward nucleotidyltransfer reaction a similar

17 computational investigation as that completed for hPol β -catalyzed pyrophosphorolysis⁵⁰ was

18 performed.⁵¹ As coordination of M_C by the bridging oxygen (O $\alpha\beta$) between the P α and P β of the

19 incoming nucleotide can only occur after the phosphodiester bond (*i.e.* P α –O $\alpha\beta$) is broken, molecular

20 dynamics was used to determine the position of the Mg²⁺ prior to nucleotidyltransfer. The calculated

21 position of modeled pre-catalytic M_C was similar to that experimentally observed for M_C. However, the

22 modeled pre-catalytic M_C is coordinated by the P α pro-S_p oxygen of the incoming nucleotide and five

23 water molecules, rather than the experimentally observed coordination by the P α pro-S_p oxygen of the

1 incorporated nucleotide, O $\alpha\beta$ of PP $_i$, and four water molecules. Within this system, the simulated
2 activation energy barrier for nucleotidyltransfer was calculated to be 16.6 to 18.1 kcal/mol and, except
3 for a slight repositioning of the product PP $_i$, very few differences in active site structure were observed
4 relative to the time-resolved studies.^{40-42,44,45} Interestingly, a two Mg $^{2+}$ system in which M $_C$ was omitted
5 and only M $_A$ and M $_B$ were used gave a very similar activation energy barrier of 17.5 to 18.6 kcal/mol,
6 suggesting that M $_C$ does not appreciably aid nucleotidyltransfer. Consistent with these computational
7 predictions, the incorporation of a phosphorothioate nucleotide analog, S $_p$ -dCTP α S, in which the sulfur
8 substitution should ablate M $_C$ binding, was only 3-fold slower than incorporation of dCTP.¹⁴⁶ Moreover,
9 time-resolved crystallography of dCTP α S incorporation did not reveal the presence of a third divalent
10 metal ion following nucleotide incorporation.⁵¹ Taken together, these evidences suggest that the third
11 divalent metal ion does not aid the forward reaction by significantly lowering the activation barrier,^{50,51}
12 which is in contrast to hPol η .³⁹ Alternatively, in a two Mg $^{2+}$ (M $_A$ and M $_B$) and one Na $^+$ (M $_C$) system the
13 activation energy barrier is significantly lowered to 11.6 to 13.2 kcal/mol, suggesting a possible
14 mechanism wherein a Na $^+$ is initially bound at the C-site to assist nucleotidyltransfer and is subsequently
15 exchanged with Mg $^{2+}$ following incorporation in order to prevent pyrophosphorolysis. This
16 hypothesized metal ion exchange at the C-site is akin to the structurally observed exchange of the A-site
17 Mg $^{2+}$ for Na $^+$ following nucleotidyltransfer,^{40-42,44,45} which also prevents pyrophosphorolysis. These
18 metal ion exchanges within the hPol β active site may act to favor nucleotidyltransfer while disfavoring
19 pyrophosphorolysis.

20 While the first time-resolved structural study of hPol β documenting a third divalent metal ion
21 showed the appearance of M $_C$ only after full product formation,⁴⁰ the latter four investigations showed
22 M $_C$ binding coinciding exactly with product formation,^{41,42,44,45} which is consistent with the reports of
23 the third divalent metal ion for hPol η .^{38,39} Accordingly, it is unclear for hPol β if M $_C$ binds prior to and

1 supports nucleotidyltransfer, or binds following nucleotidyltransfer to stabilize the product complex (*i.e.*
2 preventing pyrophosphorolysis).⁵⁰ Altogether, conflicting results from the time-resolved^{40-42,44,45} and
3 computational studies,^{50,51} as well as the aforementioned investigation of hPol β post-chemistry events⁴³
4 (see Section 3.5) limits the potential roles of M_C to either transition-state stabilization during
5 nucleotidyltransfer (Figure 1B) or suppression of pyrophosphorolysis through stabilization of the
6 product complex. However, similar concentration dependent divalent metal ion soaks to those with
7 hPol η ³⁹ to determine the effect of M_C on enzymatic rate are necessary to experimentally demonstrate
8 whether or not M_C aids nucleotidyltransfer through transition-state stabilization.

9

10 **4.5. Evidence and hypothesized roles for the third divalent metal ion in single-nucleotide
11 incorporation catalyzed by hPol μ**

12 Similar to studies with hPol β ,⁴⁰⁻⁴⁵ time-resolved crystallography was used to follow nucleotide
13 incorporation into single-nucleotide gapped DNA by hPol μ ,⁴⁶ wherein the pre-catalytic ternary complex
14 formed in the presence of non-catalytic Ca²⁺ was soaked with either Mg²⁺ or Mn²⁺ to initiate metal ion
15 exchange and catalysis. In contrast to the time-resolved structural findings with hPol β ^{40-42,44,45} and
16 hPol η ,^{38,39} a third divalent metal ion bound at the C-site could not be observed with Mg²⁺ even after
17 extensive soaking at a high concentration of Mg²⁺ (100 mM) and despite full product formation. As
18 expected, the Mg²⁺ bound at the A-site was eventually replaced by Na⁺ at longer time points showing
19 complete product formation. On the other hand, soaking with Mn²⁺ resulted in appearance of M_C at time
20 points coincident with 40% product formation and beyond, as well as sustained presence of Mn²⁺ at the
21 A- and B-sites at every time point therefore suggesting that Mn²⁺ may be the physiological catalytic
22 divalent metal ion for hPol μ and perhaps other DNA polymerases that exhibit low activity with Mg²⁺.
23 Notably, the position of M_C and the coordination of M_C by the reaction products, as well as the timing of

1 M_C , are consistent with that observed for hPol β ⁴⁰⁻⁴⁵ and hPol η .^{38,39} Based on the computational work
2 with hPol β ,^{50,51} occupancy of the A-site by a divalent metal ion is essential for pyrophosphorolysis
3 whereas the presence of M_C is inhibitory (see Section 4.4). As hPol β and hPol μ share significant
4 structural similarity, the roles of M_A and M_C for the reverse reaction may be conserved between these
5 two polymerases. Accordingly, by analogy to hPol β (see Section 4.4), the A-site metal ion exchange to
6 Na^+ in the presence of Mg^{2+} observed with hPol μ likely precludes pyrophosphorolysis and therefore a
7 third divalent metal ion may not be necessary to suppress this reaction when Mg^{2+} is supplied as the
8 catalytic metal ion. However, the persistence of M_A in the presence of Mn^{2+} necessitates binding of M_C
9 to prevent pyrophosphorolysis.

10 Single-nucleotide incorporation experiments with S_p -dTTP α S (see Section 3.4.1) suggest that M_C
11 could serve a role in nucleotidyltransfer as experiments in the presence of Mg^{2+} , wherein M_C should not
12 be bound, demonstrated a strong elemental effect, whereas this effect was lost in the presence of Mn^{2+}
13 and presumably M_C .⁴⁶ However, in their publication, the authors suggest that absence of an elemental
14 effect with Mn^{2+} was not due to binding of M_C as i) C-site divalent metal ion binding occurred following
15 nucleotidyltransfer in the time-dependent structures (*i.e.* occupancy corresponded exactly with product
16 accumulation), ii) Mn^{2+} is generally considered thio-phobic,²³² and iii) the sulfur substitution of the pro-
17 S_p oxygen would likely disrupt M_C coordination. Thus, similar to their work with hPol β (see Section
18 4.4),⁵¹ the authors suggest that M_C is not involved in transition-state stabilization during
19 nucleotidyltransfer but rather serves to stabilize the product state to prevent pyrophosphorolysis.
20 Nevertheless, the simultaneous appearance of M_C and reaction products could just as easily imply that
21 the third divalent metal ion is critical for nucleotidyltransfer. Moreover, the expected disruption of M_C
22 binding by the longer P–S bond distance would likely be alleviated by the flexibility of the other
23 coordinating ligands, as four of six are water molecules. Fittingly, it is possible that M_C provides the

1 necessary transition-state stabilization to accelerate the chemistry step in the presence of Mn^{2+} thereby
2 eliminating the elemental effect. In this scenario, the results would be consistent with those of hPol η (see
3 Section 4.3).³⁹

4 Similar to our recent investigation of hPol β -catalyzed post-chemistry events,⁴³ during time-
5 dependent crystallography of hPol μ , M_C was also observed to dissociate before PP_i.⁴⁶ While hPol β
6 displays a large open \rightarrow closed conformational change of the thumb domain (Figure 2) during nucleotide
7 binding (see Section 3.4), such a large change is not observed for hPol μ , which may explain why time-
8 resolved structural capture of the order of M_C and PP_i dissociation was difficult for hPol β (*i.e.* rapid
9 domain motion of hPol β results in loss of synchronization of *in crystallo* events and associated electron
10 density, see Section 3.5), but readily possible for hPol μ . Altogether, the time-resolved structural study of
11 hPol μ ,⁴⁶ featuring the third divalent metal ion, parallel those of hPol β ⁴⁰⁻⁴⁵ and suggest a conserved role
12 for M_C during X-family polymerase-catalyzed DNA synthesis. However, more work is needed to
13 explicitly delineate the mechanistic function of M_C in transition-state stabilization or preventing
14 pyrophosphorolysis.

15

16 **4.6. Future characterization of the third divalent metal ion**

17 The role of M_C in single-nucleotide incorporation is not well-defined with compelling evidence
18 to support its involvement in i) stabilizing the transition-state of nucleotidyltransfer, ii) supporting
19 pyrophosphate release, and/or iii) promoting or suppressing pyrophosphorolysis. It is clear from the
20 limited work investigating the third divalent metal ion that its function in DNA polymerase catalysis is
21 complex and may differ between the X- and Y-family polymerases. For example, the complementary
22 time-resolved crystallographic⁴⁰⁻⁴⁵ and computational studies^{50,51} completed for hPol β (see Section 4.4)
23 support the proposed roles of M_C and provide an argument for analogous functions in hPol μ (see Section

1 4.5).⁴⁶ However, a potential role in transition-state stabilization for M_C in the X-family DNA
2 polymerases cannot be completely ruled out. Conversely, for hPol η , it has been proposed that M_C is
3 directly involved in transition-state stabilization during nucleotide incorporation.^{39,198} Nevertheless,
4 additional work must be completed with other Y-family polymerases to validate the proposed roles of
5 M_C suggested for hPol η (see Section 4.3) and to determine if M_C function is conserved for the Y-family
6 polymerases. In addition, computational investigations, such as those performed for hPol β ,^{50,51} must be
7 undertaken for hPol μ and hPol η to better substantiate the proposed roles of M_C in these polymerases.
8 Similarly, concentration dependent metal ion soaking as performed for hPol η ³⁹ must be performed for
9 hPol β and hPol μ to determine if M_C also acts in transition-state stabilization for these polymerases as
10 argued for hPol η ,^{39,198} especially considering that high metal ion concentrations of ~200 mM were used
11 for the studies of hPol β ⁴⁰⁻⁴⁵ and could negatively affect polymerase activity.^{93,109,233,234}

12 Furthermore, the apparent differences between how M_C is utilized between the X- and Y-family
13 polymerases advocates for future research on the A- or B-family replicative polymerases as well as RTs
14 to determine if a third divalent metal ion is used at all, and if so, what apparent role does it serve, and
15 how does this compare to results of hPol η ,^{38,39} hPol β ,⁴⁰⁻⁴⁵ and hPol μ .⁴⁶ Importantly, if a third divalent
16 metal ion is observed for viral DNA polymerases or RTs and serves a purpose in catalysis (*i.e.*
17 transition-state stabilization as with hPol η), then it may be a potential therapeutic target. For example,
18 the active site of HIV-1 RT is very comparable to that of hPol η and contains an equivalent arginine
19 residue (see Section 4.3) that may function similarly with the third divalent metal ion to facilitate
20 nucleotidyltransfer and pyrophosphorolysis (Figure 3). As HIV-1 RT is known to remove chain-
21 terminating nucleotide analogs by pyrophosphorolysis,²³⁵ design of antiviral small molecules to
22 specifically block the third divalent metal ion binding may prove to be an effective treatment strategy.
23 Finally, as it stands, the only experimental evidence for the third divalent metal ion comes from X-ray

1 structures capturing *in crystallo* reaction progression. Accordingly, it is possible that these findings may
2 represent an artifact of the structural technique. Therefore, we expect that advanced spectroscopic
3 methods such as electroparamagnetic resonance (EPR) spectroscopy,²³⁶ will be necessary to fully
4 validate and further elucidate the function of the third divalent metal ion during polymerase catalysis
5 under a more physiological context.

6

7 **5. Concluding Remarks**

8 Despite thousands of published studies investigating the structure and mechanism of DNA
9 polymerases and RTs, it is abundantly clear that there is so much more to learn. Indeed, as the kinetics
10 and conformational dynamics of each step of the DNA synthesis mechanism have been rigorously
11 investigated for many polymerases from all of the diverse families, it is becoming evident that a
12 singular, unified mechanism to describe every unique aspect of polymerase catalysis, including
13 polymerase fidelity, is unrealistic. Thus far, it is evident that conformational dynamics differentially
14 impact various aspects of the catalytic and kinetic mechanism between DNA polymerase and RT
15 families, or even within a family. In the coming years, research to better understand the contributions of
16 polymerase conformational dynamics during DNA binding and translocation, nucleotide binding,
17 selectivity, and incorporation, pyrophosphate binding, and pyrophosphorolysis to the mechanism of
18 DNA polymerization will be paramount.

19 The skillful application of time-resolved X-ray crystallography to study DNA polymerases has
20 enabled the discovery of a third divalent metal ion during single-nucleotide incorporation. Remarkably,
21 this third divalent metal ion may be important for DNA polymerase and RT catalysis which shifts the
22 long-standing paradigm of two-metal-ion catalysis for DNA polymerization. We are excited at the
23 prospect of identifying the third divalent metal ion in other families of DNA polymerases and RTs to

1 determine if a three-metal-ion mechanism is conserved for DNA synthesis. To date, the third divalent
2 metal ion has only been captured in two X-family members and one Y-family member, but the
3 significant differences in the proposed function of the third divalent metal ion, already apparent between
4 these two families, implore future research of other polymerase families in hopes of exploiting potential
5 drug targets for developing novel antiviral and antibiotic small molecule therapeutics.

6

7 **6. Author Information**

8 **6.1. Corresponding Author**

9 *E-mail: suo.3@osu.edu

10

11 **6.2. Notes**

12 The authors declare no competing financial interest.

13

14 **6.3. Biographies**

15 **Austin T. Raper** graduated *Summa Cum Laude* from the University of Mount Union in 2013 with a
16 B.S. in Biochemistry. As a 2017-2018 Presidential Fellow of The Ohio State University and member of
17 the Ohio State Biochemistry Program, he is conducting his dissertation research in the laboratory of Dr.
18 Zucai Suo (Department of Chemistry and Biochemistry) to earn a Ph.D. in Biochemistry. A.T.R. is also
19 a former fellow of the Chemistry and Biology Interface Training Program at The Ohio State University.
20 His research focus is on characterizing enzymes critical for DNA lesion bypass and repair as well as
21 gene-editing using pre-steady-state kinetics and single-molecule enzymology.

22

23 **Andrew J. Reed** received his B.S. in Biochemistry from the University of Mount Union in 2013. As a

1 member of the Ohio State Biochemistry Program and the Pelotonia Fellowship Program, he is currently
2 researching in the laboratory of Dr. Zucai Suo (Department of Chemistry and Biochemistry) at The Ohio
3 State University in pursuit of a Ph.D. in Biochemistry. Andrew is investigating enzymes critical for
4 DNA replication, base excision repair, and lesion bypass through X-ray crystallographic and pre-steady-
5 state kinetic techniques.

6

7 **Zucai Suo** received both B.S. in chemistry and M.S. in physical chemistry from Fudan University in
8 China and his Ph.D. in chemistry in the laboratory of Kenneth A. Johnson at Pennsylvania State
9 University. He was then a Jane Coffin Childs Memorial Fund Postdoctoral Fellow for two years at
10 Harvard Medical School in the laboratory of Christopher T. Walsh. Subsequently, he worked as a senior
11 biochemist at Eli Lilly. Since October 2001, Dr. Suo has been a professor at The Ohio State University.
12 He was elected to be a fellow of the American Association for the Advancement of Science and has
13 served in different administrative roles for the Division of Chemical Toxicology of the American
14 Chemical Society. His research interests include kinetic, dynamic, and structure-function relationship
15 studies of DNA polymerases and gene-editing enzymes as well as antiviral and anticancer drug
16 discovery.

17

18 **7. Acknowledgements**

19 This work was financially supported by the National Science Foundation grant MCB-1716168 to Z.S.
20 A.T.R and A.J.R were respectively supported by a Presidential Fellowship and a Pelotonia Fellowship
21 from The Ohio State University. Any opinions, findings, and conclusions expressed in this material are
22 those of the author(s) and do not necessarily reflect those of the Pelotonia Fellowship Program.

23

1 8. References

2 (1) Palermo, G.; Cavalli, A.; Klein, M. L.; Alfonso-Prieto, M.; Dal Peraro, M.; De Vivo, M.
3 Catalytic Metal Ions and Enzymatic Processing of DNA and RNA. *Acc. Chem. Res.* **2015**, *48*,
4 220-228.

5 (2) Yang, W.; Lee, J. Y.; Nowotny, M. Making and Breaking Nucleic Acids: Two-Mg²⁺-Ion
6 Catalysis and Substrate Specificity. *Mol. Cell* **2006**, *22*, 5-13.

7 (3) Steitz, T. A.; Steitz, J. A. A General Two-Metal-Ion Mechanism for Catalytic RNA. *Proc. Natl.*
8 *Acad. Sci. U. S. A.* **1993**, *90*, 6498-6502.

9 (4) Johnson, K. A. Conformational Coupling in DNA Polymerase Fidelity. *Annu. Rev. Biochem.*
10 **1993**, *62*, 685-713.

11 (5) Joyce, C. M.; Benkovic, S. J. DNA Polymerase Fidelity: Kinetics, Structure, and Checkpoints.
12 *Biochemistry* **2004**, *43*, 14317-14324.

13 (6) Showalter, A. K.; Tsai, M. D. A Reexamination of the Nucleotide Incorporation Fidelity of DNA
14 Polymerases. *Biochemistry* **2002**, *41*, 10571-10576.

15 (7) Rothwell, P. J.; Mitaksov, V.; Waksman, G. Motions of the Fingers Subdomain of Klentaq1 Are
16 Fast and Not Rate Limiting: Implications for the Molecular Basis of Fidelity in DNA
17 Polymerases. *Mol. Cell* **2005**, *19*, 345-355.

18 (8) Rothwell, P. J.; Waksman, G. Structure and Mechanism of DNA Polymerases. *Adv. Protein*
19 *Chem.* **2005**, *71*, 401-440.

20 (9) Raper, A. T.; Gadkari, V. V.; Maxwell, B. A.; Suo, Z. Single-Molecule Investigation of
21 Response to Oxidative DNA Damage by a Y-Family DNA Polymerase. *Biochemistry* **2016**, *55*,
22 2187-2196.

23 (10) Raper, A. T.; Suo, Z. Investigation of Intradomain Motions of a Y-Family DNA Polymerase
24 During Substrate Binding and Catalysis. *Biochemistry* **2016**, *55*, 5832-5844.

25 (11) Xu, C.; Maxwell, B. A.; Brown, J. A.; Zhang, L.; Suo, Z. Global Conformational Dynamics of a
26 Y-Family DNA Polymerase During Catalysis. *PLoS Biol.* **2009**, *7*, e1000225.

27 (12) Maxwell, B. A.; Xu, C.; Suo, Z. DNA Lesion Alters Global Conformational Dynamics of Y-
28 Family DNA Polymerase During Catalysis. *J. Biol. Chem.* **2012**, *287*, 13040-13047.

29 (13) Maxwell, B. A.; Xu, C.; Suo, Z. Conformational Dynamics of a Y-Family DNA Polymerase
30 During Substrate Binding and Catalysis as Revealed by Interdomain Forster Resonance Energy
31 Transfer. *Biochemistry* **2014**, *53*, 1768-1778.

32 (14) Xu, C.; Maxwell, B. A.; Suo, Z. Conformational Dynamics of *Thermus aquaticus* DNA
33 Polymerase I During Catalysis. *J. Mol. Biol.* **2014**, *426*, 2901-2917.

34 (15) Bessman, M. J.; Kornberg, A.; Lehman, I. R.; Simms, E. S. Enzymic Synthesis of
35 Deoxyribonucleic Acid. *Biochim. Biophys. Acta* **1956**, *21*, 197-198.

36 (16) Lehman, I. R.; Bessman, M. J.; Simms, E. S.; Kornberg, A. Enzymatic Synthesis of
37 Deoxyribonucleic Acid. I. Preparation of Substrates and Partial Purification of an Enzyme from
38 *Escherichia coli*. *J. Biol. Chem.* **1958**, *233*, 163-170.

39 (17) Joyce, C. M.; Steitz, T. A. Function and Structure Relationships in DNA Polymerases. *Annu.*
40 *Rev. Biochem.* **1994**, *63*, 777-822.

41 (18) Braithwaite, D. K.; Ito, J. Compilation, Alignment, and Phylogenetic Relationships of DNA
42 Polymerases. *Nucleic Acids Res.* **1993**, *21*, 787-802.

43 (19) Garcia-Diaz, M.; Bebenek, K. Multiple Functions of DNA Polymerases. *CRC Crit. Rev. Plant*
44 *Sci.* **2007**, *26*, 105-122.

1 (20) Yang, W.; Gao, Y. Translesion and Repair DNA Polymerases: Diverse Structure and
2 Mechanism. *Annu. Rev. Biochem.* **2018**.

3 (21) Beard, W. A.; Wilson, S. H. Structure and Mechanism of DNA Polymerase Beta. *Biochemistry*
4 **2014**, *53*, 2768-2780.

5 (22) Maxwell, B. A.; Suo, Z. Recent Insight into the Kinetic Mechanisms and Conformational
6 Dynamics of Y-Family DNA Polymerases. *Biochemistry* **2014**, *53*, 2804-2814.

7 (23) Fowler, J. D.; Suo, Z. Biochemical, Structural, and Physiological Characterization of Terminal
8 Deoxynucleotidyl Transferase. *Chem. Rev.* **2006**, *106*, 2092-2110.

9 (24) Berdis, A. J. Mechanisms of DNA Polymerases. *Chem. Rev.* **2009**, *109*, 2862-2879.

10 (25) Steitz, T. A. DNA Polymerases: Structural Diversity and Common Mechanisms. *J. Biol. Chem.*
11 **1999**, *274*, 17395-17398.

12 (26) Steitz, T. A. A Mechanism for All Polymerases. *Nature* **1998**, *391*, 231-232.

13 (27) Tsai, Y. C.; Johnson, K. A. A New Paradigm for DNA Polymerase Specificity. *Biochemistry*
14 **2006**, *45*, 9675-9687.

15 (28) Xiang, Y.; Goodman, M. F.; Beard, W. A.; Wilson, S. H.; Warshel, A. Exploring the Role of
16 Large Conformational Changes in the Fidelity of DNA Polymerase Beta. *Proteins* **2008**, *70*, 231-
17 247.

18 (29) Wong, I.; Patel, S. S.; Johnson, K. A. An Induced-Fit Kinetic Mechanism for DNA Replication
19 Fidelity: Direct Measurement by Single-Turnover Kinetics. *Biochemistry* **1991**, *30*, 526-537.

20 (30) Freemont, P. S.; Friedman, J. M.; Beese, L. S.; Sanderson, M. R.; Steitz, T. A. Cocrystal
21 Structure of an Editing Complex of Klenow Fragment with DNA. *Proc. Natl. Acad. Sci. U. S. A.*
22 **1988**, *85*, 8924-8928.

23 (31) Beese, L. S.; Steitz, T. A. Structural Basis for the 3'-5' Exonuclease Activity of *Escherichia coli*
24 DNA Polymerase I: A Two Metal Ion Mechanism. *EMBO J.* **1991**, *10*, 25-33.

25 (32) Batra, V. K.; Beard, W. A.; Shock, D. D.; Krahn, J. M.; Pedersen, L. C.; Wilson, S. H.
26 Magnesium-Induced Assembly of a Complete DNA Polymerase Catalytic Complex. *Structure*
27 **2006**, *14*, 757-766.

28 (33) Brautigam, C. A.; Steitz, T. A. Structural and Functional Insights Provided by Crystal Structures
29 of DNA Polymerases and Their Substrate Complexes. *Curr. Opin. Struct. Biol.* **1998**, *8*, 54-63.

30 (34) Nakamura, T. Z.; Ye; Yamagata, Yuriko; Hua, Yue-jin; Yang, Wei;. Mechanism of the
31 Nucleotidyl-Transfer Reaction in DNA Polymerase Revealed by Time-Resolved
32 Crystallography. *Biophysics* **2013**, *9*, 31-36.

33 (35) Yang, W. Damage Repair DNA Polymerases Y. *Curr. Opin. Struct. Biol.* **2003**, *13*, 23-30.

34 (36) Yang, W. An Equivalent Metal Ion in One- and Two-Metal-Ion Catalysis. *Nat. Struct. Mol. Biol.*
35 **2008**, *15*, 1228-1231.

36 (37) Derbyshire, V.; Freemont, P. S.; Sanderson, M. R.; Beese, L.; Friedman, J. M.; Joyce, C. M.;
37 Steitz, T. A. Genetic and Crystallographic Studies of the 3',5'-Exonucleolytic Site of DNA
38 Polymerase I. *Science* **1988**, *240*, 199-201.

39 (38) Nakamura, T.; Zhao, Y.; Yamagata, Y.; Hua, Y. J.; Yang, W. Watching DNA Polymerase Eta
40 Make a Phosphodiester Bond. *Nature* **2012**, *487*, 196-201.

41 (39) Gao, Y.; Yang, W. Capture of a Third Mg(2)(+) Is Essential for Catalyzing DNA Synthesis.
42 *Science* **2016**, *352*, 1334-1337.

43 (40) Freudenthal, B. D.; Beard, W. A.; Shock, D. D.; Wilson, S. H. Observing a DNA Polymerase
44 Choose Right from Wrong. *Cell* **2013**, *154*, 157-168.

1 (41) Freudenthal, B. D.; Beard, W. A.; Perera, L.; Shock, D. D.; Kim, T.; Schlick, T.; Wilson, S. H.
2 Uncovering the Polymerase-Induced Cytotoxicity of an Oxidized Nucleotide. *Nature* **2015**, *517*,
3 635-639.

4 (42) Vyas, R.; Reed, A. J.; Tokarsky, E. J.; Suo, Z. Viewing Human DNA Polymerase Beta Faithfully
5 and Unfaithfully Bypass an Oxidative Lesion by Time-Dependent Crystallography. *J. Am. Chem.
6 Soc.* **2015**, *137*, 5225-5230.

7 (43) Reed, A. J.; Vyas, R.; Raper, A. T.; Suo, Z. Structural Insights into the Post-Chemistry Steps of
8 Nucleotide Incorporation Catalyzed by a DNA Polymerase. *J. Am. Chem. Soc.* **2017**, *139*, 465-
9 471.

10 (44) Whitaker, A. M.; Smith, M. R.; Schaich, M. A.; Freudenthal, B. D. Capturing a Mammalian
11 DNA Polymerase Extending from an Oxidized Nucleotide. *Nucleic Acids Res.* **2017**, *45*, 6934-
12 6944.

13 (45) Reed, A. J.; Suo, Z. Time-Dependent Extension from an 8-Oxoguanine Lesion by Human DNA
14 Polymerase Beta. *J. Am. Chem. Soc.* **2017**, *139*, 9684-9690.

15 (46) Jansen, J. A.; Beard, W. A.; Pedersen, L. C.; Shock, D. D.; Moon, A. F.; Krahm, J. M.; Bebenek,
16 Kunkel, T. A.; Wilson, S. H. Time-Lapse Crystallography Snapshots of a Double-Strand
17 Break Repair Polymerase in Action. *Nat. Commun.* **2017**, *8*, 253.

18 (47) Yang, W.; Weng, P. J.; Gao, Y. A New Paradigm of DNA Synthesis: Three-Metal-Ion Catalysis.
19 *Cell Biosci* **2016**, *6*, 51.

20 (48) Freudenthal, B. D.; Beard, W. A.; Wilson, S. H. New Structural Snapshots Provide Molecular
21 Insights into the Mechanism of High Fidelity DNA Synthesis. *DNA Repair (Amst)* **2015**, *32*, 3-9.

22 (49) Genna, V.; Gaspari, R.; Dal Peraro, M.; De Vivo, M. Cooperative Motion of a Key Positively
23 Charged Residue and Metal Ions for DNA Replication Catalyzed by Human DNA Polymerase-
24 Eta. *Nucleic Acids Res.* **2016**, *44*, 2827-2836.

25 (50) Perera, L.; Freudenthal, B. D.; Beard, W. A.; Shock, D. D.; Pedersen, L. G.; Wilson, S. H.
26 Requirement for Transient Metal Ions Revealed through Computational Analysis for DNA
27 Polymerase Going in Reverse. *Proc. Natl. Acad. Sci. U. S. A.* **2015**, *112*, E5228-5236.

28 (51) Perera, L.; Freudenthal, B. D.; Beard, W. A.; Pedersen, L. G.; Wilson, S. H. Revealing the Role
29 of the Product Metal in DNA Polymerase Beta Catalysis. *Nucleic Acids Res.* **2017**, *45*, 2736-
30 2745.

31 (52) Liu, X.; Bushnell, D. A.; Kornberg, R. D. RNA Polymerase II Transcription: Structure and
32 Mechanism. *Biochim. Biophys. Acta* **2013**, *1829*, 2-8.

33 (53) Svetlov, V.; Nudler, E. Basic Mechanism of Transcription by RNA Polymerase II. *Biochim.
34 Biophys. Acta* **2013**, *1829*, 20-28.

35 (54) Hahn, S. Structure and Mechanism of the RNA Polymerase II Transcription Machinery. *Nat.
36 Struct. Mol. Biol.* **2004**, *11*, 394-403.

37 (55) Kochetkov, S. N.; Rusakova, E. E.; Tunitskaya, V. L. Recent Studies of T7 RNA Polymerase
38 Mechanism. *FEBS Lett.* **1998**, *440*, 264-267.

39 (56) Ebright, R. H. RNA Polymerase: Structural Similarities between Bacterial RNA Polymerase and
40 Eukaryotic RNA Polymerase II. *J. Mol. Biol.* **2000**, *304*, 687-698.

41 (57) Moon, A. F.; Garcia-Diaz, M.; Batra, V. K.; Beard, W. A.; Bebenek, K.; Kunkel, T. A.; Wilson,
42 S. H.; Pedersen, L. C. The X Family Portrait: Structural Insights into Biological Functions of X
43 Family Polymerases. *DNA Repair (Amst)* **2007**, *6*, 1709-1725.

44 (58) Burgers, P. M. J.; Kunkel, T. A. Eukaryotic DNA Replication Fork. *Annu. Rev. Biochem.* **2017**,
45 86, 417-438.

1 (59) Kohlstaedt, L. A.; Wang, J.; Friedman, J. M.; Rice, P. A.; Steitz, T. A. Crystal Structure at 3.5 \AA
2 Resolution of HIV-1 Reverse Transcriptase Complexed with an Inhibitor. *Science* **1992**, *256*,
3 1783-1790.

4 (60) Steitz, T. A.; Smerdon, S.; Jager, J.; Wang, J.; Kohlstaedt, L. A.; Friedman, J. M.; Beese, L. S.;
5 Rice, P. A. Two DNA Polymerases: HIV Reverse Transcriptase and the Klenow Fragment of
6 *Escherichia coli* DNA Polymerase I. *Cold Spring Harb. Symp. Quant. Biol.* **1993**, *58*, 495-504.

7 (61) Pelletier, H.; Sawaya, M. R.; Kumar, A.; Wilson, S. H.; Kraut, J. Structures of Ternary
8 Complexes of Rat DNA Polymerase Beta, a DNA Template-Primer, and Ddctp. *Science* **1994**,
9 264, 1891-1903.

10 (62) Sawaya, M. R.; Pelletier, H.; Kumar, A.; Wilson, S. H.; Kraut, J. Crystal Structure of Rat DNA
11 Polymerase Beta: Evidence for a Common Polymerase Mechanism. *Science* **1994**, *264*, 1930-
12 1935.

13 (63) Doublie, S.; Tabor, S.; Long, A. M.; Richardson, C. C.; Ellenberger, T. Crystal Structure of a
14 Bacteriophage T7 DNA Replication Complex at 2.2 \AA Resolution. *Nature* **1998**, *391*, 251-258.

15 (64) Li, Y.; Kong, Y.; Korolev, S.; Waksman, G. Crystal Structures of the Klenow Fragment of
16 *Thermus aquaticus* DNA Polymerase I Complexed with Deoxyribonucleoside Triphosphates.
17 *Protein Sci.* **1998**, *7*, 1116-1123.

18 (65) Li, Y.; Korolev, S.; Waksman, G. Crystal Structures of Open and Closed Forms of Binary and
19 Ternary Complexes of the Large Fragment of *Thermus aquaticus* DNA Polymerase I: Structural
20 Basis for Nucleotide Incorporation. *EMBO J.* **1998**, *17*, 7514-7525.

21 (66) Korolev, S.; Nayal, M.; Barnes, W. M.; Di Cera, E.; Waksman, G. Crystal Structure of the Large
22 Fragment of *Thermus aquaticus* DNA Polymerase I at 2.5- \AA Resolution: Structural Basis for
23 Thermostability. *Proc. Natl. Acad. Sci. U. S. A.* **1995**, *92*, 9264-9268.

24 (67) Wang, J.; Yu, P.; Lin, T. C.; Konigsberg, W. H.; Steitz, T. A. Crystal Structures of an N_{h2}-
25 Terminal Fragment of T4 DNA Polymerase and Its Complexes with Single-Stranded DNA and
26 with Divalent Metal Ions. *Biochemistry* **1996**, *35*, 8110-8119.

27 (68) Franklin, M. C.; Wang, J.; Steitz, T. A. Structure of the Replicating Complex of a Pol Alpha
28 Family DNA Polymerase. *Cell* **2001**, *105*, 657-667.

29 (69) Hogg, M.; Wallace, S. S.; Doublie, S. Crystallographic Snapshots of a Replicative DNA
30 Polymerase Encountering an Abasic Site. *EMBO J.* **2004**, *23*, 1483-1493.

31 (70) Wang, M.; Xia, S.; Blaha, G.; Steitz, T. A.; Konigsberg, W. H.; Wang, J. Insights into Base
32 Selectivity from the 1.8 \AA Resolution Structure of an Rb69 DNA Polymerase Ternary Complex.
33 *Biochemistry* **2011**, *50*, 581-590.

34 (71) Evans, R. J.; Davies, D. R.; Bullard, J. M.; Christensen, J.; Green, L. S.; Guiles, J. W.; Pata, J.
35 D.; Ribble, W. K.; Janjic, N.; Jarvis, T. C. Structure of Polc Reveals Unique DNA Binding and
36 Fidelity Determinants. *Proc. Natl. Acad. Sci. U. S. A.* **2008**, *105*, 20695-20700.

37 (72) Bailey, S.; Wing, R. A.; Steitz, T. A. The Structure of *T. aquaticus* DNA Polymerase III Is
38 Distinct from Eukaryotic Replicative DNA Polymerases. *Cell* **2006**, *126*, 893-904.

39 (73) Wing, R. A.; Bailey, S.; Steitz, T. A. Insights into the Replisome from the Structure of a Ternary
40 Complex of the DNA Polymerase III Alpha-Subunit. *J. Mol. Biol.* **2008**, *382*, 859-869.

41 (74) Barros, T.; Guenther, J.; Kelch, B.; Anaya, J.; Prabhakar, A.; O'Donnell, M.; Kuriyan, J.;
42 Lamers, M. H. A Structural Role for the Php Domain in *E. coli* DNA Polymerase III. *BMC*
43 *Struct. Biol.* **2013**, *13*, 8.

44 (75) Pelletier, H.; Sawaya, M. R.; Wolfle, W.; Wilson, S. H.; Kraut, J. A Structural Basis for Metal
45 Ion Mutagenicity and Nucleotide Selectivity in Human DNA Polymerase Beta. *Biochemistry*
46 **1996**, *35*, 12762-12777.

1 (76) Garcia-Diaz, M.; Bebenek, K.; Krahn, J. M.; Kunkel, T. A.; Pedersen, L. C. A Closed
2 Conformation for the Pol Lambda Catalytic Cycle. *Nat. Struct. Mol. Biol.* **2005**, *12*, 97-98.

3 (77) Moon, A. F.; Garcia-Diaz, M.; Bebenek, K.; Davis, B. J.; Zhong, X.; Ramsden, D. A.; Kunkel,
4 T. A.; Pedersen, L. C. Structural Insight into the Substrate Specificity of DNA Polymerase Mu.
5 *Nat. Struct. Mol. Biol.* **2007**, *14*, 45-53.

6 (78) Pelletier, H.; Sawaya, M. R.; Wolfle, W.; Wilson, S. H.; Kraut, J. Crystal Structures of Human
7 DNA Polymerase Beta Complexed with DNA: Implications for Catalytic Mechanism,
8 Processivity, and Fidelity. *Biochemistry* **1996**, *35*, 12742-12761.

9 (79) Sawaya, M. R.; Prasad, R.; Wilson, S. H.; Kraut, J.; Pelletier, H. Crystal Structures of Human
10 DNA Polymerase Beta Complexed with Gapped and Nicked DNA: Evidence for an Induced Fit
11 Mechanism. *Biochemistry* **1997**, *36*, 11205-11215.

12 (80) Biertumpfel, C.; Zhao, Y.; Kondo, Y.; Ramon-Maiques, S.; Gregory, M.; Lee, J. Y.; Masutani,
13 C.; Lehmann, A. R.; Hanaoka, F.; Yang, W. Structure and Mechanism of Human DNA
14 Polymerase Eta. *Nature* **2010**, *465*, 1044-1048.

15 (81) Irimia, A.; Eoff, R. L.; Guengerich, F. P.; Egli, M. Structural and Functional Elucidation of the
16 Mechanism Promoting Error-Prone Synthesis by Human DNA Polymerase Kappa Opposite the
17 7,8-Dihydro-8-Oxo-2'-Deoxyguanosine Adduct. *J. Biol. Chem.* **2009**, *284*, 22467-22480.

18 (82) Nair, D. T.; Johnson, R. E.; Prakash, S.; Prakash, L.; Aggarwal, A. K. Replication by Human
19 DNA Polymerase-Iota Occurs by Hoogsteen Base-Pairing. *Nature* **2004**, *430*, 377-380.

20 (83) Swan, M. K.; Johnson, R. E.; Prakash, L.; Prakash, S.; Aggarwal, A. K. Structure of the Human
21 Rev1-DNA-dNTP Ternary Complex. *J. Mol. Biol.* **2009**, *390*, 699-709.

22 (84) Ling, H.; Boudsocq, F.; Woodgate, R.; Yang, W. Crystal Structure of a Y-Family DNA
23 Polymerase in Action: A Mechanism for Error-Prone and Lesion-Bypass Replication. *Cell* **2001**,
24 *107*, 91-102.

25 (85) Trincao, J.; Johnson, R. E.; Escalante, C. R.; Prakash, S.; Prakash, L.; Aggarwal, A. K. Structure
26 of the Catalytic Core of *S. cerevisiae* DNA Polymerase Eta: Implications for Translesion DNA
27 Synthesis. *Mol. Cell* **2001**, *8*, 417-426.

28 (86) Ummat, A.; Silverstein, T. D.; Jain, R.; Buku, A.; Johnson, R. E.; Prakash, L.; Prakash, S.;
29 Aggarwal, A. K. Human DNA Polymerase Eta Is Pre-Aligned for dNTP Binding and Catalysis.
30 *J. Mol. Biol.* **2012**, *415*, 627-634.

31 (87) Gaur, V.; Vyas, R.; Fowler, J. D.; Efthimiopoulos, G.; Feng, J. Y.; Suo, Z. Structural and Kinetic
32 Insights into Binding and Incorporation of L-Nucleotide Analogs by a Y-Family DNA
33 Polymerase. *Nucleic Acids Res.* **2014**, *42*, 9984-9995.

34 (88) Huang, H.; Chopra, R.; Verdine, G. L.; Harrison, S. C. Structure of a Covalently Trapped
35 Catalytic Complex of HIV-1 Reverse Transcriptase: Implications for Drug Resistance. *Science*
36 **1998**, *282*, 1669-1675.

37 (89) Kuchta, R. D.; Mizrahi, V.; Benkovic, P. A.; Johnson, K. A.; Benkovic, S. J. Kinetic Mechanism
38 of DNA Polymerase I (Klenow). *Biochemistry* **1987**, *26*, 8410-8417.

39 (90) Patel, S. S.; Wong, I.; Johnson, K. A. Pre-Steady-State Kinetic Analysis of Processive DNA
40 Replication Including Complete Characterization of an Exonuclease-Deficient Mutant.
41 *Biochemistry* **1991**, *30*, 511-525.

42 (91) Zahurancik, W. J.; Klein, S. J.; Suo, Z. Kinetic Mechanism of DNA Polymerization Catalyzed by
43 Human DNA Polymerase Epsilon. *Biochemistry* **2013**, *52*, 7041-7049.

44 (92) Brown, J. A.; Suo, Z. Elucidating the Kinetic Mechanism of DNA Polymerization Catalyzed by
45 *Sulfolobus solfataricus* P2 DNA Polymerase B1. *Biochemistry* **2009**, *48*, 7502-7511.

1 (93) Fiala, K. A.; Suo, Z. Pre-Steady-State Kinetic Studies of the Fidelity of *Sulfolobus solfataricus*
2 P2 DNA Polymerase IV. *Biochemistry* **2004**, *43*, 2106-2115.

3 (94) Fiala, K. A.; Suo, Z. Mechanism of DNA Polymerization Catalyzed by *Sulfolobus solfataricus*
4 P2 DNA Polymerase IV. *Biochemistry* **2004**, *43*, 2116-2125.

5 (95) Donlin, M. J.; Patel, S. S.; Johnson, K. A. Kinetic Partitioning between the Exonuclease and
6 Polymerase Sites in DNA Error Correction. *Biochemistry* **1991**, *30*, 538-546.

7 (96) Kati, W. M.; Johnson, K. A.; Jerva, L. F.; Anderson, K. S. Mechanism and Fidelity of HIV
8 Reverse Transcriptase. *J. Biol. Chem.* **1992**, *267*, 25988-25997.

9 (97) Beard, W. A.; Wilson, S. H. Structure and Mechanism of DNA Polymerase Beta. *Chem. Rev.*
10 **2006**, *106*, 361-382.

11 (98) Eger, B. T.; Benkovic, S. J. Minimal Kinetic Mechanism for Misincorporation by DNA
12 Polymerase I (Klenow Fragment). *Biochemistry* **1992**, *31*, 9227-9236.

13 (99) Dahlberg, M. E.; Benkovic, S. J. Kinetic Mechanism of DNA Polymerase I (Klenow Fragment):
14 Identification of a Second Conformational Change and Evaluation of the Internal Equilibrium
15 Constant. *Biochemistry* **1991**, *30*, 4835-4843.

16 (100) Frey, M. W.; Sowers, L. C.; Millar, D. P.; Benkovic, S. J. The Nucleotide Analog 2-
17 Aminopurine as a Spectroscopic Probe of Nucleotide Incorporation by the Klenow Fragment of
18 *Escherichia coli* Polymerase I and Bacteriophage T4 DNA Polymerase. *Biochemistry* **1995**, *34*,
19 9185-9192.

20 (101) Hsieh, J. C.; Zinnen, S.; Modrich, P. Kinetic Mechanism of the DNA-Dependent DNA
21 Polymerase Activity of Human Immunodeficiency Virus Reverse Transcriptase. *J. Biol. Chem.*
22 **1993**, *268*, 24607-24613.

23 (102) Capson, T. L.; Peliska, J. A.; Kaboord, B. F.; Frey, M. W.; Lively, C.; Dahlberg, M.; Benkovic,
24 S. J. Kinetic Characterization of the Polymerase and Exonuclease Activities of the Gene 43
25 Protein of Bacteriophage T4. *Biochemistry* **1992**, *31*, 10984-10994.

26 (103) Washington, M. T.; Prakash, L.; Prakash, S. Yeast DNA Polymerase Eta Utilizes an Induced-Fit
27 Mechanism of Nucleotide Incorporation. *Cell* **2001**, *107*, 917-927.

28 (104) Washington, M. T.; Johnson, R. E.; Prakash, L.; Prakash, S. The Mechanism of Nucleotide
29 Incorporation by Human DNA Polymerase Eta Differs from That of the Yeast Enzyme. *Mol.*
30 *Cell. Biol.* **2003**, *23*, 8316-8322.

31 (105) Wohrl, B. M.; Krebs, R.; Goody, R. S.; Restle, T. Refined Model for Primer/Template Binding
32 by HIV-1 Reverse Transcriptase: Pre-Steady-State Kinetic Analyses of Primer/Template Binding
33 and Nucleotide Incorporation Events Distinguish between Different Binding Modes Depending
34 on the Nature of the Nucleic Acid Substrate. *J. Mol. Biol.* **1999**, *292*, 333-344.

35 (106) Schermerhorn, K. M.; Gardner, A. F. Pre-Steady-State Kinetic Analysis of a Family D DNA
36 Polymerase from *Thermococcus sp.* 9 Degrees N Reveals Mechanisms for Archaeal Genomic
37 Replication and Maintenance. *J. Biol. Chem.* **2015**, *290*, 21800-21810.

38 (107) Lahiri, I.; Mukherjee, P.; Pata, J. D. Kinetic Characterization of Exonuclease-Deficient
39 *Staphylococcus aureus* PolC, a C-Family Replicative DNA Polymerase. *PLoS One* **2013**, *8*,
40 e63489.

41 (108) Einolf, H. J.; Guengerich, F. P. Kinetic Analysis of Nucleotide Incorporation by Mammalian
42 DNA Polymerase Delta. *J. Biol. Chem.* **2000**, *275*, 16316-16322.

43 (109) Fiala, K. A.; Abdel-Gawad, W.; Suo, Z. Pre-Steady-State Kinetic Studies of the Fidelity and
44 Mechanism of Polymerization Catalyzed by Truncated Human DNA Polymerase Lambda.
45 *Biochemistry* **2004**, *43*, 6751-6762.

1 (110) Werneburg, B. G.; Ahn, J.; Zhong, X.; Hondal, R. J.; Kraynov, V. S.; Tsai, M. D. DNA
2 Polymerase Beta: Pre-Steady-State Kinetic Analysis and Roles of Arginine-283 in Catalysis and
3 Fidelity. *Biochemistry* **1996**, *35*, 7041-7050.

4 (111) Maxwell, B. A.; Suo, Z. Single-Molecule Investigation of Substrate Binding Kinetics and Protein
5 Conformational Dynamics of a B-Family Replicative DNA Polymerase. *J. Biol. Chem.* **2013**,
6 288, 11590-11600.

7 (112) Johnson, K. A. The Kinetic and Chemical Mechanism of High-Fidelity DNA Polymerases.
8 *Biochim. Biophys. Acta* **2010**, *1804*, 1041-1048.

9 (113) McClure, W. R.; Jovin, T. M. The Steady State Kinetic Parameters and Non-Processivity of
10 *Escherichia coli* Deoxyribonucleic Acid Polymerase I. *J. Biol. Chem.* **1975**, *250*, 4073-4080.

11 (114) Bryant, F. R.; Johnson, K. A.; Benkovic, S. J. Elementary Steps in the DNA Polymerase I
12 Reaction Pathway. *Biochemistry* **1983**, *22*, 3537-3546.

13 (115) Liu, M. S.; Tsai, H. Y.; Liu, X. X.; Ho, M. C.; Wu, W. J.; Tsai, M. D. Structural Mechanism for
14 the Fidelity Modulation of DNA Polymerase Lambda. *J. Am. Chem. Soc.* **2016**, *138*, 2389-2398.

15 (116) Ahn, J.; Kraynov, V. S.; Zhong, X.; Werneburg, B. G.; Tsai, M. D. DNA Polymerase Beta:
16 Effects of Gapped DNA Substrates on dNTP Specificity, Fidelity, Processivity and
17 Conformational Changes. *Biochem. J.* **1998**, *331* (Pt 1), 79-87.

18 (117) Brown, J. A.; Pack, L. R.; Sanman, L. E.; Suo, Z. Efficiency and Fidelity of Human DNA
19 Polymerases Lambda and Beta During Gap-Filling DNA Synthesis. *DNA Repair (Amst)* **2011**,
20 10, 24-33.

21 (118) Wu, W. J.; Su, M. I.; Wu, J. L.; Kumar, S.; Lim, L. H.; Wang, C. W.; Nelissen, F. H.; Chen, M.
22 C.; Doreleijers, J. F.; Wijmenga, S. S. et al. How a Low-Fidelity DNA Polymerase Chooses Non-
23 Watson-Crick from Watson-Crick Incorporation. *J. Am. Chem. Soc.* **2014**, *136*, 4927-4937.

24 (119) Ollis, D. L.; Brick, P.; Hamlin, R.; Xuong, N. G.; Steitz, T. A. Structure of Large Fragment of
25 *Escherichia coli* DNA Polymerase I Complexed with dTMP. *Nature* **1985**, *313*, 762-766.

26 (120) Beese, L. S.; Friedman, J. M.; Steitz, T. A. Crystal Structures of the Klenow Fragment of DNA
27 Polymerase I Complexed with Deoxynucleoside Triphosphate and Pyrophosphate. *Biochemistry*
28 **1993**, *32*, 14095-14101.

29 (121) Chen, Y.; Zhang, J.; Liu, H.; Gao, Y.; Li, X.; Zheng, L.; Cui, R.; Yao, Q.; Rong, L.; Li, J. et al.
30 Unique 5'-P Recognition and Basis for dG:dGTP Misincorporation of Asfv DNA Polymerase X.
31 *PLoS Biol.* **2017**, *15*, e1002599.

32 (122) Nakane, S.; Ishikawa, H.; Nakagawa, N.; Kuramitsu, S.; Masui, R. The Structural Basis of the
33 Kinetic Mechanism of a Gap-Filling X-Family DNA Polymerase That Binds Mg(2+)-dNTP
34 before Binding to DNA. *J. Mol. Biol.* **2012**, *417*, 179-196.

35 (123) Kumar, S.; Bakhtina, M.; Tsai, M. D. Altered Order of Substrate Binding by DNA Polymerase X
36 from African Swine Fever Virus. *Biochemistry* **2008**, *47*, 7875-7887.

37 (124) Maciejewski, M. W.; Shin, R.; Pan, B.; Marintchev, A.; Denninger, A.; Mullen, M. A.; Chen, K.;
38 Gryk, M. R.; Mullen, G. P. Solution Structure of a Viral DNA Repair Polymerase. *Nat. Struct.
39 Biol.* **2001**, *8*, 936-941.

40 (125) Showalter, A. K.; Tsai, M. D. A DNA Polymerase with Specificity for Five Base Pairs. *J. Am.
41 Chem. Soc.* **2001**, *123*, 1776-1777.

42 (126) Brown, J. A.; Fowler, J. D.; Suo, Z. Kinetic Basis of Nucleotide Selection Employed by a Protein
43 Template-Dependent DNA Polymerase. *Biochemistry* **2010**, *49*, 5504-5510.

44 (127) Nair, D. T.; Johnson, R. E.; Prakash, L.; Prakash, S.; Aggarwal, A. K. Rev1 Employs a Novel
45 Mechanism of DNA Synthesis Using a Protein Template. *Science* **2005**, *309*, 2219-2222.

1 (128) Nelson, J. R.; Lawrence, C. W.; Hinkle, D. C. Deoxycytidyl Transferase Activity of Yeast Rev1
2 Protein. *Nature* **1996**, *382*, 729-731.

3 (129) Howell, C. A.; Prakash, S.; Washington, M. T. Pre-Steady-State Kinetic Studies of Protein-
4 Template-Directed Nucleotide Incorporation by the Yeast Rev1 Protein. *Biochemistry* **2007**, *46*,
5 13451-13459.

6 (130) Chagovetz, A. M.; Sweasy, J. B.; Preston, B. D. Increased Activity and Fidelity of DNA
7 Polymerase Beta on Single-Nucleotide Gapped DNA. *J. Biol. Chem.* **1997**, *272*, 27501-27504.

8 (131) Garcia-Diaz, M.; Bebenek, K.; Sabariego, R.; Dominguez, O.; Rodriguez, J.; Kirchhoff, T.;
9 Garcia-Palomero, E.; Picher, A. J.; Juarez, R.; Ruiz, J. F. et al. DNA Polymerase Lambda, a
10 Novel DNA Repair Enzyme in Human Cells. *J. Biol. Chem.* **2002**, *277*, 13184-13191.

11 (132) Fiala, K. A.; Hypes, C. D.; Suo, Z. Mechanism of Abasic Lesion Bypass Catalyzed by a Y-
12 Family DNA Polymerase. *J. Biol. Chem.* **2007**, *282*, 8188-8198.

13 (133) Brown, J. A.; Newmister, S. A.; Fiala, K. A.; Suo, Z. Mechanism of Double-Base Lesion Bypass
14 Catalyzed by a Y-Family DNA Polymerase. *Nucleic Acids Res.* **2008**, *36*, 3867-3878.

15 (134) Maxwell, B. A.; Suo, Z. Kinetic Basis for the Differing Response to an Oxidative Lesion by a
16 Replicative and a Lesion Bypass DNA Polymerase from *Sulfolobus solfataricus*. *Biochemistry*
17 **2012**, *51*, 3485-3496.

18 (135) Kusumoto, R.; Masutani, C.; Shimmyo, S.; Iwai, S.; Hanaoka, F. DNA Binding Properties of
19 Human DNA Polymerase Eta: Implications for Fidelity and Polymerase Switching of
20 Translesion Synthesis. *Genes Cells* **2004**, *9*, 1139-1150.

21 (136) Ohashi, E.; Ogi, T.; Kusumoto, R.; Iwai, S.; Masutani, C.; Hanaoka, F.; Ohmori, H. Error-Prone
22 Bypass of Certain DNA Lesions by the Human DNA Polymerase Kappa. *Genes Dev.* **2000**, *14*,
23 1589-1594.

24 (137) Woodgate, R. A Plethora of Lesion-Replicating DNA Polymerases. *Genes Dev.* **1999**, *13*, 2191-
25 2195.

26 (138) Sherrer, S. M.; Brown, J. A.; Pack, L. R.; Jasti, V. P.; Fowler, J. D.; Basu, A. K.; Suo, Z.
27 Mechanistic Studies of the Bypass of a Bulky Single-Base Lesion Catalyzed by a Y-Family
28 DNA Polymerase. *J. Biol. Chem.* **2009**, *284*, 6379-6388.

29 (139) Gadkari, V. V.; Tokarsky, E. J.; Malik, C. K.; Basu, A. K.; Suo, Z. Mechanistic Investigation of
30 the Bypass of a Bulky Aromatic DNA Adduct Catalyzed by a Y-Family DNA Polymerase. *DNA*
31 *Repair (Amst)* **2014**, *21*, 65-77.

32 (140) Garcia-Gomez, S.; Reyes, A.; Martinez-Jimenez, M. I.; Chocron, E. S.; Mouron, S.; Terrados,
33 G.; Powell, C.; Salido, E.; Mendez, J.; Holt, I. J. et al. Primpol, an Archaic Primase/Polymerase
34 Operating in Human Cells. *Mol. Cell* **2013**, *52*, 541-553.

35 (141) Meng, X.; Zhou, Y.; Zhang, S.; Lee, E. Y.; Frick, D. N.; Lee, M. Y. DNA Damage Alters DNA
36 Polymerase Delta to a Form That Exhibits Increased Discrimination against Modified Template
37 Bases and Mismatched Primers. *Nucleic Acids Res.* **2009**, *37*, 647-657.

38 (142) Schmitt, M. W.; Matsumoto, Y.; Loeb, L. A. High Fidelity and Lesion Bypass Capability of
39 Human DNA Polymerase Delta. *Biochimie* **2009**, *91*, 1163-1172.

40 (143) Higuchi, K.; Katayama, T.; Iwai, S.; Hidaka, M.; Horiuchi, T.; Maki, H. Fate of DNA
41 Replication Fork Encountering a Single DNA Lesion During OriC Plasmid DNA Replication in
42 Vitro. *Genes Cells* **2003**, *8*, 437-449.

43 (144) Johnson, K. A. *In 1 Transient-State Kinetic Analysis of Enzyme Reaction Pathways*; Academic
44 Press, Inc.: San Diego, CA, 1992.

1 (145) Zahurancik, W. J.; Baranovskiy, A. G.; Tahirov, T. H.; Suo, Z. Comparison of the Kinetic
2 Parameters of the Truncated Catalytic Subunit and Holoenzyme of Human DNA Polymerase
3 Varepsilon. *DNA Repair (Amst)* **2015**, *29*, 16-22.

4 (146) Vande Berg, B. J.; Beard, W. A.; Wilson, S. H. DNA Structure and Aspartate 276 Influence
5 Nucleotide Binding to Human DNA Polymerase Beta. Implication for the Identity of the Rate-
6 Limiting Conformational Change. *J. Biol. Chem.* **2001**, *276*, 3408-3416.

7 (147) Brown, J. A.; Zhang, L.; Sherrer, S. M.; Taylor, J. S.; Burgers, P. M.; Suo, Z. Pre-Steady-State
8 Kinetic Analysis of Truncated and Full-Length *Saccharomyces cerevisiae* DNA Polymerase Eta.
9 *J. Nucleic Acids* **2010**, *2010*.

10 (148) Zhao, L.; Pence, M. G.; Eoff, R. L.; Yuan, S.; Fercu, C. A.; Guengerich, F. P. Elucidation of
11 Kinetic Mechanisms of Human Translesion DNA Polymerase Kappa Using Tryptophan Mutants.
12 *FEBS J.* **2014**, *281*, 4394-4410.

13 (149) Wong, J. H.; Fiala, K. A.; Suo, Z.; Ling, H. Snapshots of a Y-Family DNA Polymerase in
14 Replication: Substrate-Induced Conformational Transitions and Implications for Fidelity of
15 Dpo4. *J. Mol. Biol.* **2008**, *379*, 317-330.

16 (150) Lee, E.; Fowler, J. D.; Suo, Z.; Wu, Z. Backbone Assignment of the Binary Complex of the Full
17 Length *Sulfolobus solfataricus* DNA Polymerase IV and DNA. *Biomol. NMR Assign.* **2017**, *11*,
18 39-43.

19 (151) Chu, X.; Liu, F.; Maxwell, B. A.; Wang, Y.; Suo, Z.; Wang, H.; Han, W.; Wang, J. Dynamic
20 Conformational Change Regulates the Protein-DNA Recognition: An Investigation on Binding
21 of a Y-Family Polymerase to Its Target DNA. *PLoS Comput. Biol.* **2014**, *10*, e1003804.

22 (152) Lone, S.; Townson, S. A.; Uljon, S. N.; Johnson, R. E.; Brahma, A.; Nair, D. T.; Prakash, S.;
23 Prakash, L.; Aggarwal, A. K. Human DNA Polymerase Kappa Encircles DNA: Implications for
24 Mismatch Extension and Lesion Bypass. *Mol. Cell* **2007**, *25*, 601-614.

25 (153) Moon, A. F.; Pryor, J. M.; Ramsden, D. A.; Kunkel, T. A.; Bebenek, K.; Pedersen, L. C.
26 Sustained Active Site Rigidity During Synthesis by Human DNA Polymerase Mu. *Nat. Struct.
27 Mol. Biol.* **2014**, *21*, 253-260.

28 (154) Lang, T.; Maitra, M.; Starcevic, D.; Li, S. X.; Sweasy, J. B. A DNA Polymerase Beta Mutant
29 from Colon Cancer Cells Induces Mutations. *Proc. Natl. Acad. Sci. U. S. A.* **2004**, *101*, 6074-
30 6079.

31 (155) Brown, J. A.; Pack, L. R.; Sherrer, S. M.; Kshetry, A. K.; Newmister, S. A.; Fowler, J. D.;
32 Taylor, J. S.; Suo, Z. Identification of Critical Residues for the Tight Binding of Both Correct
33 and Incorrect Nucleotides to Human DNA Polymerase Lambda. *J. Mol. Biol.* **2010**, *403*, 505-
34 515.

35 (156) Garcia-Diaz, M.; Bebenek, K.; Krahn, J. M.; Blanco, L.; Kunkel, T. A.; Pedersen, L. C. A
36 Structural Solution for the DNA Polymerase Lambda-Dependent Repair of DNA Gaps with
37 Minimal Homology. *Mol. Cell* **2004**, *13*, 561-572.

38 (157) Wilson, S. H.; Kunkel, T. A. Passing the Baton in Base Excision Repair. *Nat. Struct. Biol.* **2000**,
39 7, 176-178.

40 (158) Wang, J.; Sattar, A. K.; Wang, C. C.; Karam, J. D.; Konigsberg, W. H.; Steitz, T. A. Crystal
41 Structure of a Pol Alpha Family Replication DNA Polymerase from Bacteriophage Rb69. *Cell*
42 **1997**, *89*, 1087-1099.

43 (159) Kim, Y.; Eom, S. H.; Wang, J.; Lee, D. S.; Suh, S. W.; Steitz, T. A. Crystal Structure of *Thermus
44 aquaticus* DNA Polymerase. *Nature* **1995**, *376*, 612-616.

45 (160) Kim, S. W.; Kim, D. U.; Kim, J. K.; Kang, L. W.; Cho, H. S. Crystal Structure of Pfu, the High
46 Fidelity DNA Polymerase from *Pyrococcus furiosus*. *Int. J. Biol. Macromol.* **2008**, *42*, 356-361.

1 (161) Wynne, S. A.; Pinheiro, V. B.; Holliger, P.; Leslie, A. G. Structures of an Apo and a Binary
2 Complex of an Evolved Archeal B Family DNA Polymerase Capable of Synthesising Highly
3 Cy-Dye Labelled DNA. *PLoS One* **2013**, *8*, e70892.

4 (162) Rechkoblit, O.; Malinina, L.; Cheng, Y.; Kuryavyi, V.; Broyde, S.; Geacintov, N. E.; Patel, D. J.
5 Stepwise Translocation of Dpo4 Polymerase During Error-Free Bypass of an OxoG Lesion.
6 *PLoS Biol.* **2006**, *4*, e11.

7 (163) Brenlla, A.; Markiewicz, R. P.; Rueda, D.; Romano, L. J. Nucleotide Selection by the Y-Family
8 DNA Polymerase Dpo4 Involves Template Translocation and Misalignment. *Nucleic Acids Res.*
9 **2014**, *42*, 2555-2563.

10 (164) Johnson, S. J.; Taylor, J. S.; Beese, L. S. Processive DNA Synthesis Observed in a Polymerase
11 Crystal Suggests a Mechanism for the Prevention of Frameshift Mutations. *Proc. Natl. Acad. Sci.
12 U. S. A.* **2003**, *100*, 3895-3900.

13 (165) Basu, R. S.; Murakami, K. S. Watching the Bacteriophage N4 RNA Polymerase Transcription by
14 Time-Dependent Soak-Trigger-Freeze X-Ray Crystallography. *J. Biol. Chem.* **2013**, *288*, 3305-
15 3311.

16 (166) Bakhtina, M.; Roettger, M. P.; Kumar, S.; Tsai, M. D. A Unified Kinetic Mechanism Applicable
17 to Multiple DNA Polymerases. *Biochemistry* **2007**, *46*, 5463-5472.

18 (167) Wang, M.; Lee, H. R.; Konigsberg, W. Effect of a and B Metal Ion Site Occupancy on
19 Conformational Changes in an Rb69 DNA Polymerase Ternary Complex. *Biochemistry* **2009**,
20 *48*, 2075-2086.

21 (168) Bakhtina, M.; Lee, S.; Wang, Y.; Dunlap, C.; Lamarche, B.; Tsai, M. D. Use of Viscogens,
22 dNTPalphaS, and Rhodium(III) as Probes in Stopped-Flow Experiments to Obtain New
23 Evidence for the Mechanism of Catalysis by DNA Polymerase Beta. *Biochemistry* **2005**, *44*,
24 5177-5187.

25 (169) Johnson, A. A.; Tsai, Y.; Graves, S. W.; Johnson, K. A. Human Mitochondrial DNA Polymerase
26 Holoenzyme: Reconstitution and Characterization. *Biochemistry* **2000**, *39*, 1702-1708.

27 (170) Graves, S. W.; Johnson, A. A.; Johnson, K. A. Expression, Purification, and Initial Kinetic
28 Characterization of the Large Subunit of the Human Mitochondrial DNA Polymerase.
29 *Biochemistry* **1998**, *37*, 6050-6058.

30 (171) O'Donnell, M. E.; Kornberg, A. Complete Replication of Templates by *Escherichia coli* DNA
31 Polymerase III Holoenzyme. *J. Biol. Chem.* **1985**, *260*, 12884-12889.

32 (172) Zahurancik, W. J.; Klein, S. J.; Suo, Z. Significant Contribution of the 3'-->5' Exonuclease
33 Activity to the High Fidelity of Nucleotide Incorporation Catalyzed by Human DNA
34 Polymerase. *Nucleic Acids Res.* **2014**, *42*, 13853-13860.

35 (173) Zhang, L.; Brown, J. A.; Newmister, S. A.; Suo, Z. Polymerization Fidelity of a Replicative
36 DNA Polymerase from the Hyperthermophilic Archaeon *Sulfolobus solfataricus* P2.
37 *Biochemistry* **2009**, *48*, 7492-7501.

38 (174) Joyce, C. M. How DNA Travels between the Separate Polymerase and 3'-5'-Exonuclease Sites of
39 DNA Polymerase I (Klenow Fragment). *J. Biol. Chem.* **1989**, *264*, 10858-10866.

40 (175) Reha-Krantz, L. J. DNA Polymerase Proofreading: Multiple Roles Maintain Genome Stability.
41 *Biochim. Biophys. Acta* **2010**, *1804*, 1049-1063.

42 (176) Fernandez-Leiro, R.; Conrad, J.; Yang, J. C.; Freund, S. M.; Scheres, S. H.; Lamers, M. H. Self-
43 Correcting Mismatches During High-Fidelity DNA Replication. *Nat. Struct. Mol. Biol.* **2017**, *24*,
44 140-143.

45 (177) Ganai, R. A.; Bylund, G. O.; Johansson, E. Switching between Polymerase and Exonuclease
46 Sites in DNA Polymerase Epsilon. *Nucleic Acids Res.* **2015**, *43*, 932-942.

1 (178) Johnson, A. A.; Johnson, K. A. Exonuclease Proofreading by Human Mitochondrial DNA
2 Polymerase. *J. Biol. Chem.* **2001**, *276*, 38097-38107.

3 (179) Johnson, A. A.; Johnson, K. A. Fidelity of Nucleotide Incorporation by Human Mitochondrial
4 DNA Polymerase. *J. Biol. Chem.* **2001**, *276*, 38090-38096.

5 (180) Johnson, S. J.; Beese, L. S. Structures of Mismatch Replication Errors Observed in a DNA
6 Polymerase. *Cell* **2004**, *116*, 803-816.

7 (181) Xia, S.; Konigsberg, W. H. Mispairs with Watson-Crick Base-Pair Geometry Observed in
8 Ternary Complexes of an Rb69 DNA Polymerase Variant. *Protein Sci.* **2014**, *23*, 508-513.

9 (182) Trincao, J.; Johnson, R. E.; Wolfle, W. T.; Escalante, C. R.; Prakash, S.; Prakash, L.; Aggarwal,
10 A. K. Dpo4 Is Hindered in Extending a G.T Mismatch by a Reverse Wobble. *Nat. Struct. Mol.*
11 *Biol.* **2004**, *11*, 457-462.

12 (183) Picher, A. J.; Garcia-Diaz, M.; Bebenek, K.; Pedersen, L. C.; Kunkel, T. A.; Blanco, L.
13 Promiscuous Mismatch Extension by Human DNA Polymerase Lambda. *Nucleic Acids Res.*
14 **2006**, *34*, 3259-3266.

15 (184) Batra, V. K.; Beard, W. A.; Pedersen, L. C.; Wilson, S. H. Structures of DNA Polymerase
16 Mispaired DNA Termini Transitioning to Pre-Catalytic Complexes Support an Induced-Fit
17 Fidelity Mechanism. *Structure* **2016**, *24*, 1863-1875.

18 (185) McCulloch, S. D.; Kunkel, T. A. The Fidelity of DNA Synthesis by Eukaryotic Replicative and
19 Translesion Synthesis Polymerases. *Cell Res.* **2008**, *18*, 148-161.

20 (186) Osheroff, W. P.; Jung, H. K.; Beard, W. A.; Wilson, S. H.; Kunkel, T. A. The Fidelity of DNA
21 Polymerase Beta During Distributive and Processive DNA Synthesis. *J. Biol. Chem.* **1999**, *274*,
22 3642-3650.

23 (187) Bebenek, K.; Garcia-Diaz, M.; Blanco, L.; Kunkel, T. A. The Frameshift Infidelity of Human
24 DNA Polymerase Lambda. Implications for Function. *J. Biol. Chem.* **2003**, *278*, 34685-34690.

25 (188) Johnson, R. E.; Washington, M. T.; Prakash, S.; Prakash, L. Fidelity of Human DNA Polymerase
26 Eta. *J. Biol. Chem.* **2000**, *275*, 7447-7450.

27 (189) Watson, J. D.; Crick, F. H. Genetical Implications of the Structure of Deoxyribonucleic Acid.
28 *Nature* **1953**, *171*, 964-967.

29 (190) Loeb, L. A.; Kunkel, T. A. Fidelity of DNA Synthesis. *Annu. Rev. Biochem.* **1982**, *51*, 429-457.

30 (191) Kool, E. T.; Sintim, H. O. The Difluorotoluene Debate--a Decade Later. *Chem. Commun.*
31 (*Camb.*) **2006**, *0*, 3665-3675.

32 (192) Kool, E. T. Hydrogen Bonding, Base Stacking, and Steric Effects in Dna Replication. *Annu. Rev.*
33 *Biophys. Biomol. Struct.* **2001**, *30*, 1-22.

34 (193) Dzantiev, L.; Alekseyev, Y. O.; Morales, J. C.; Kool, E. T.; Romano, L. J. Significance of
35 Nucleobase Shape Complementarity and Hydrogen Bonding in the Formation and Stability of
36 the Closed Polymerase-DNA Complex. *Biochemistry* **2001**, *40*, 3215-3221.

37 (194) Lee, H. R.; Helquist, S. A.; Kool, E. T.; Johnson, K. A. Importance of Hydrogen Bonding for
38 Efficiency and Specificity of the Human Mitochondrial DNA Polymerase. *J. Biol. Chem.* **2008**,
39 283, 14402-14410.

40 (195) Xia, S.; Eom, S. H.; Konigsberg, W. H.; Wang, J. Structural Basis for Differential Insertion
41 Kinetics of dNMPs Opposite a Difluorotoluene Nucleotide Residue. *Biochemistry* **2012**, *51*,
42 1476-1485.

43 (196) Xia, S.; Konigsberg, W. H. Rb69 DNA Polymerase Structure, Kinetics, and Fidelity.
44 *Biochemistry* **2014**, *53*, 2752-2767.

45 (197) Kunkel, T. A.; Bebenek, K. DNA Replication Fidelity. *Annu. Rev. Biochem.* **2000**, *69*, 497-529.

1 (198) Nat. Commun. CRC Critical Reviews in Biochemistry Wu, W.-J.; Yang, W.; Tsai, M.-D. How
2 DNA Polymerases Catalyse Replication and Repair with Contrasting Fidelity. *Nat. Rev. Chem.*
3 **2017**, *1*, 0068.

4 (199) Fiala, K. A.; Duym, W. W.; Zhang, J.; Suo, Z. Up-Regulation of the Fidelity of Human DNA
5 Polymerase Lambda by Its Non-Enzymatic Proline-Rich Domain. *J. Biol. Chem.* **2006**, *281*,
6 19038-19044.

7 (200) Qin, Y.; Yang, Y.; Zhang, L.; Fowler, J. D.; Qiu, W.; Wang, L.; Suo, Z.; Zhong, D. Direct
8 Probing of Solvent Accessibility and Mobility at the Binding Interface of Polymerase (Dpo4)-
9 DNA Complex. *J. Phys. Chem. A* **2013**, *117*, 13926-13934.

10 (201) Wang, W.; Hellinga, H. W.; Beese, L. S. Structural Evidence for the Rare Tautomer Hypothesis
11 of Spontaneous Mutagenesis. *Proc. Natl. Acad. Sci. U. S. A.* **2011**, *108*, 17644-17648.

12 (202) Bebenek, K.; Pedersen, L. C.; Kunkel, T. A. Replication Infidelity Via a Mismatch with Watson-
13 Crick Geometry. *Proc. Natl. Acad. Sci. U. S. A.* **2011**, *108*, 1862-1867.

14 (203) Szymanski, E. S.; Kimsey, I. J.; Al-Hashimi, H. M. Direct NMR Evidence That Transient
15 Tautomeric and Anionic States in dG•dT Form Watson-Crick-Like Base Pairs. *J. Am. Chem.
16 Soc.* **2017**, *139*, 4326-4329.

17 (204) Kimsey, I. J.; Szymanski, E. S.; Zahurancik, W. J.; Shakya, A.; Xue, Y.; Chu, C. C.;
18 Sathyamoorthy, B.; Suo, Z.; Al-Hashimi, H. M. Dynamic Basis for dG•dT Misincorporation Via
19 Tautomerization and Ionization. *Nature* **2018**, *554*, 195-201.

20 (205) Batra, V. K.; Beard, W. A.; Shock, D. D.; Pedersen, L. C.; Wilson, S. H. Structures of DNA
21 Polymerase Beta with Active-Site Mismatches Suggest a Transient Abasic Site Intermediate
22 During Misincorporation. *Mol. Cell* **2008**, *30*, 315-324.

23 (206) Minnick, D. T.; Astatke, M.; Joyce, C. M.; Kunkel, T. A. A Thumb Subdomain Mutant of the
24 Large Fragment of *Escherichia coli* DNA Polymerase I with Reduced DNA Binding Affinity,
25 Processivity, and Frameshift Fidelity. *J. Biol. Chem.* **1996**, *271*, 24954-24961.

26 (207) Kiefer, J. R.; Mao, C.; Braman, J. C.; Beese, L. S. Visualizing DNA Replication in a
27 Catalytically Active *Bacillus* DNA Polymerase Crystal. *Nature* **1998**, *391*, 304-307.

28 (208) Freudenthal, B. D.; Beard, W. A.; Wilson, S. H. DNA Polymerase Minor Groove Interactions
29 Modulate Mutagenic Bypass of a Templating 8-Oxoguanine Lesion. *Nucleic Acids Res.* **2013**,
30 *41*, 1848-1858.

31 (209) Spence, R. A.; Kati, W. M.; Anderson, K. S.; Johnson, K. A. Mechanism of Inhibition of HIV-1
32 Reverse Transcriptase by Nonnucleoside Inhibitors. *Science* **1995**, *267*, 988-993.

33 (210) Doublie, S.; Sawaya, M. R.; Ellenberger, T. An Open and Closed Case for All Polymerases.
34 *Structure* **1999**, *7*, R31-35.

35 (211) Herschlag, D.; Piccirilli, J. A.; Cech, T. R. Ribozyme-Catalyzed and Nonenzymatic Reactions of
36 Phosphate Diesters: Rate Effects Upon Substitution of Sulfur for a Nonbridging Phosphoryl
37 Oxygen Atom. *Biochemistry* **1991**, *30*, 4844-4854.

38 (212) Arndt, J. W.; Gong, W.; Zhong, X.; Showalter, A. K.; Liu, J.; Dunlap, C. A.; Lin, Z.; Paxson, C.;
39 Tsai, M. D.; Chan, M. K. Insight into the Catalytic Mechanism of DNA Polymerase Beta:
40 Structures of Intermediate Complexes. *Biochemistry* **2001**, *40*, 5368-5375.

41 (213) Luo, G.; Wang, M.; Konigsberg, W. H.; Xie, X. S. Single-Molecule and Ensemble Fluorescence
42 Assays for a Functionally Important Conformational Change in T7 DNA Polymerase. *Proc. Natl.
43 Acad. Sci. U. S. A.* **2007**, *104*, 12610-12615.

44 (214) Lee, H. R.; Wang, M.; Konigsberg, W. The Reopening Rate of the Fingers Domain Is a
45 Determinant of Base Selectivity for Rb69 DNA Polymerase. *Biochemistry* **2009**, *48*, 2087-2098.

1 (215) Kirmizialtin, S.; Nguyen, V.; Johnson, K. A.; Elber, R. How Conformational Dynamics of DNA
2 Polymerase Select Correct Substrates: Experiments and Simulations. *Structure* **2012**, *20*, 618-
3 627.

4 (216) Kellinger, M. W.; Johnson, K. A. Nucleotide-Dependent Conformational Change Governs
5 Specificity and Analog Discrimination by HIV Reverse Transcriptase. *Proc. Natl. Acad. Sci. U.*
6 *S. A.* **2010**, *107*, 7734-7739.

7 (217) Kellinger, M. W.; Johnson, K. A. Role of Induced Fit in Limiting Discrimination against AZT by
8 HIV Reverse Transcriptase. *Biochemistry* **2011**, *50*, 5008-5015.

9 (218) Yang, W. An Overview of Y-Family DNA Polymerases and a Case Study of Human DNA
10 Polymerase Eta. *Biochemistry* **2014**, *53*, 2793-2803.

11 (219) Beckman, J. W.; Wang, Q.; Guengerich, F. P. Kinetic Analysis of Correct Nucleotide Insertion
12 by a Y-Family DNA Polymerase Reveals Conformational Changes Both Prior to and Following
13 Phosphodiester Bond Formation as Detected by Tryptophan Fluorescence. *J. Biol. Chem.* **2008**,
14 283, 36711-36723.

15 (220) Fiala, K. A.; Sherrer, S. M.; Brown, J. A.; Suo, Z. Mechanistic Consequences of Temperature on
16 DNA Polymerization Catalyzed by a Y-Family DNA Polymerase. *Nucleic Acids Res.* **2008**, *36*,
17 1990-2001.

18 (221) Eoff, R. L.; Sanchez-Ponce, R.; Guengerich, F. P. Conformational Changes During Nucleotide
19 Selection by *Sulfolobus solfataricus* DNA Polymerase Dpo4. *J. Biol. Chem.* **2009**, *284*, 21090-
20 21099.

21 (222) Vyas, R.; Reed, A. J.; Raper, A. T.; Zahurancik, W. J.; Wallenmeyer, P. C.; Suo, Z. Structural
22 Basis for the D-Stereoselectivity of Human DNA Polymerase Beta. *Nucleic Acids Res.* **2017**, *45*,
23 6228-6237.

24 (223) Vyas, R.; Zahurancik, W. J.; Suo, Z. Structural Basis for the Binding and Incorporation of
25 Nucleotide Analogs with L-Stereochemistry by Human DNA Polymerase Lambda. *Proc. Natl.*
26 *Acad. Sci. U. S. A.* **2014**, *111*, E3033-3042.

27 (224) Shock, D. D.; Freudenthal, B. D.; Beard, W. A.; Wilson, S. H. Modulating the DNA Polymerase
28 Beta Reaction Equilibrium to Dissect the Reverse Reaction. *Nat. Chem. Biol.* **2017**, *13*, 1074-
29 1080.

30 (225) Raper, A. T.; Reed, A. J.; Gadkari, V. V.; Suo, Z. Advances in Structural and Single-Molecule
31 Methods for Investigating DNA Lesion Bypass and Repair Polymerases. *Chem. Res. Toxicol.*
32 **2017**, *30*, 260-269.

33 (226) Brown, J. A.; Duym, W. W.; Fowler, J. D.; Suo, Z. Single-Turnover Kinetic Analysis of the
34 Mutagenic Potential of 8-Oxo-7,8-Dihydro-2'-Deoxyguanosine During Gap-Filling Synthesis
35 Catalyzed by Human DNA Polymerases Lambda and Beta. *J. Mol. Biol.* **2007**, *367*, 1258-1269.

36 (227) Bedford, E.; Tabor, S.; Richardson, C. C. The Thioredoxin Binding Domain of Bacteriophage T7
37 DNA Polymerase Confers Processivity on *Escherichia coli* DNA Polymerase I. *Proc. Natl.*
38 *Acad. Sci. U. S. A.* **1997**, *94*, 479-484.

39 (228) Beard, W. A.; Wilson, S. H. Structural Insights into the Origins of DNA Polymerase Fidelity.
40 *Structure* **2003**, *11*, 489-496.

41 (229) Ohmori, H.; Friedberg, E. C.; Fuchs, R. P.; Goodman, M. F.; Hanaoka, F.; Hinkle, D.; Kunkel,
42 T. A.; Lawrence, C. W.; Livneh, Z.; Nohmi, T. et al. The Y-Family of DNA Polymerases. *Mol.*
43 *Cell* **2001**, *8*, 7-8.

44 (230) Lehmann, A. R.; Niimi, A.; Ogi, T.; Brown, S.; Sabbioneda, S.; Wing, J. F.; Kannouche, P. L.;
45 Green, C. M. Translesion Synthesis: Y-Family Polymerases and the Polymerase Switch. *DNA*
46 *Repair (Amst)* **2007**, *6*, 891-899.

1 (231) Matsuda, T.; Bebenek, K.; Masutani, C.; Hanaoka, F.; Kunkel, T. A. Low Fidelity DNA
2 Synthesis by Human DNA Polymerase-Eta. *Nature* **2000**, *404*, 1011-1013.

3 (232) Pecoraro, V. L.; Hermes, J. D.; Cleland, W. W. Stability Constants of Mg²⁺ and Cd²⁺ Complexes
4 of Adenine Nucleotides and Thionucleotides and Rate Constants for Formation and Dissociation
5 of MgATP and MgADP. *Biochemistry* **1984**, *23*, 5262-5271.

6 (233) Roettger, M. P.; Fiala, K. A.; Sompalli, S.; Dong, Y.; Suo, Z. Pre-Steady-State Kinetic Studies of
7 the Fidelity of Human DNA Polymerase Mu. *Biochemistry* **2004**, *43*, 13827-13838.

8 (234) Oertell, K.; Harcourt, E. M.; Mohsen, M. G.; Petruska, J.; Kool, E. T.; Goodman, M. F. Kinetic
9 Selection Vs. Free Energy of DNA Base Pairing in Control of Polymerase Fidelity. *Proc. Natl.*
10 *Acad. Sci. U. S. A.* **2016**, *113*, E2277-2285.

11 (235) Hanes, J. W.; Johnson, K. A. A Novel Mechanism of Selectivity against AZT by the Human
12 Mitochondrial DNA Polymerase. *Nucleic Acids Res.* **2007**, *35*, 6973-6983.

13 (236) Nami, F.; Gast, P.; Groenen, E. J. Rapid Freeze-Quench EPR Spectroscopy: Improved Collection
14 of Frozen Particles. *Appl. Magn. Reson.* **2016**, *47*, 643-653.

15

16