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ABSTRACT. We give the first explicit examples beyond the Chabauty-Coleman
method where Kim’s nonabelian Chabauty program determines the set of ratio-
nal points of a curve defined over Q or a quadratic number field. We accomplish
this by studying the role of p-adic heights in explicit nonabelian Chabauty.
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1. INTRODUCTION

Let X be a smooth projective curve of genus g > 1 defined over a number field
K. By Faltings’ celebrated work on the Mordell conjecture, the set of K-rational
points on X, denoted X (K), is known to be finite [24]. However, the method of
proof is not constructive and does not produce the set X (K). Nevertheless, in
certain cases, it is possible to compute X (K); perhaps the most widely applicable
technique is the p-adic method of Chabauty and Coleman.

The Chabauty-Coleman method imposes linear conditions on the Jacobian of
X, and in an essential way, requires that the Mordell-Weil rank of the Jacobian
is less than g. Kim has proposed that one can lift this restriction on the rank by
replacing the Jacobian of X with a larger object, the Selmer variety, which captures
more refined information about the étale topology of X. In this paper, we discuss
new techniques for studying Selmer varieties, which we translate into methods for
determining the set X (K) in a number of new cases. In particular, we study curves
whose Jacobians have Mordell-Weil rank equal to g and give the first examples
beyond the Chabauty-Coleman method where Kim’s nonabelian Chabauty program
can be used to precisely determine the set of rational points of a curve defined over
Q or a quadratic number field.
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To give some context for our results, let us begin by recalling the Chabauty-
Coleman method. Let p be a prime of good reduction for X, let p be a prime above
p, and let J denote the Jacobian of X. Let

log; : J(K,) — H(Xg,,Q')*

be the p-adic logarithm map for the abelian variety J, where X, denotes the base
change of X to K,. Suppose that X(K) # 0, and for convenience, that we know
one point b in X(K). If the Mordell-Weil rank r = rk J(K) is less than g, the
method of Chabauty [15] produces a finite set of p-adic points on X, which we shall
denote X (K,)1, and we have

X(K,) D X(K,p)1 D X(K).

Following Coleman [17], the set X (K,); may be interpreted as the zeros of a p-adic
path integral

X(Kp) = {z € X(K,): /bzw = 0}

for some differential w in H°(X KWQI). By further interpreting this p-adic path
integral as a p-adic power series and solving for its zeros, one can often effectively
compute X (K,); (subject to the usual issues with inexact computation and p-adic
precision) and in practice, one can often recover X (K). This is known as the
Chabauty-Coleman method.

The Chabauty-Coleman method requires that the Mordell-Weil rank of the Ja-
cobian be less than the genus of the curve, which is somewhat restrictive. As such,
one would like to have a refinement of the Jacobian which remembers more infor-
mation about the set X (K). The insight of Kim [30] is that, rather than trying
to generalise the Jacobian of X it is easier to generalise its Galois cohomological
avatar: the Selmer group. In [31], Kim defined a family of Selmer varieties Sel(U,,)
giving a decreasing sequence of subsets [2]

X(Kp)l D X(Kp)g D...

of X(K,)1, which can be computed in terms of iterated p-adic path integrals. The
sets X (K,), contain X (K'), so by proving finiteness of X (K, ), and explicitly com-
puting it, one can hope to recover X (K). We refer to this as nonabelian Chabauty
or the Chabauty-Kim method. Note that when K = Q, conjectures of Bloch and
Kato imply that X (Q,),, is finite for n sufficiently large [31].

However, at present, there are few examples of curves X where X (K,), has
been used to give more information than X (XK,);. Coates and Kim [16] proved
that when X/Q is a curve whose Jacobian is isogenous to a product of CM abelian
varieties, for n sufficiently large, X (Qp), is finite. Recently, Ellenberg and Hast
[23] used this to give a new proof of finiteness of X (Q) of any solvable Galois cover
X of P! (which, for instance, includes the class of superelliptic curves). Even in
these cases, it is not clear how to actually compute X (Q)p.

In this paper, we give techniques to compute rational points on curves in some
cases beyond the scope of Chabauty-Coleman, by computing finite sets containing
X(Kp)2. The methods used are a generalisation of those employed to study integral
points on hyperelliptic curves using p-adic heights [5], combined with new methods
for relating unipotent path torsors to p-adic heights [22].

In [5], one works with a hyperelliptic curve X/Q of genus g with a model

(1) y? = flx) = 229t 4 aggng + -+ ag, a; € 7.
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Let Tj) denote the set of primes of bad reduction for this model and let p be a prime
of good reduction. Let Y = Spec(Z[z,y]/(y*> — f(z))), so that Y(Z) denotes the
set of integral solutions to (1), and let co denote the point at infinity. Using p-adic
heights, one can compute a finite set of points containing Y (Z):

Theorem 1.1 (Quadratic Chabauty for integral points [5]). Let X/Q be a genus
g hyperelliptic curve as in (1). Let Q C Q, be the explicitly computable, finite set
of values taken by the sum of the Coleman-Gross local heights

- Z hy (2 — 00),

veTy

for (zv) in[[,cq, Y (Zy). Suppose thatr = g. Then there is an explicitly computable
symmetric bilinear map

B: H%(Xq,,0")" x H'(Xg,.0")" = Q,
such that Y (Z) C Y(Z,) is contained inside the finite set of solutions to
hy(z — 00) + B(log ;(z — 00),log ;(z — 00)) € Q.

In the present work, we give a generalisation of this theorem which allows us to
study rational points on curves in some cases where the Mordell-Weil rank is not
less than the genus.

To state our results more precisely, we fix some notation. Let K be Q or an
imaginary quadratic field, and let X/K be a smooth projective curve of genus
g > 1 with a K-rational point b. Let Tj be the set of primes of bad reduction for
X, let p be a prime of Q such that {v|p} N Ty is empty, and let T = Ty U {v|p}.
Let p(J) = rkNS(J) denote the Picard number of J (over K, not necessarily its
geometric Picard number). The starting point for generalising Theorem 1.1 is the
following lemma, which may be of independent interest:

Lemma (Lemma 3.2). Ifr < g+ p(J) — 1, then X(K,)2 is finite.

To explain the proof of this key lemma, we first recall the set-up of Kim’s non-
abelian Chabauty method in Section 2. Once this foundational material is recalled,
the proof (in Section 3) is entirely elementary and essentially just uses the crys-
talline version of the Kummer isomorphism.

We further describe cases where we can describe X (K,)2 more explicitly. The
main example we consider is the situation when the rank of J is g and p(J) is
greater than 1. For a result applying when the rank is greater than the genus, see
Proposition 5.9.

To state our next results, we set a bit more notation. Let X := X x g K, and let
in : X = X x X denote the diagonal morphism, with image A = Ax = ia(X).
For a codimension d cycle Z in a variety W we denote by cly the cycle class map
Qp(—d) — H*Y(W,Q,), and denote the support of Z by |Z|. By our assumptions
on the Picard number, there is a codimension 1 cycle Z in X x X such that the
composite map

Qp(—1) = HZ(X x X,Qp) = Hy(X,Qp) @ H(X,Qp) — A2HH(X,Qp)
is nonzero (where the maps are, from left to right, the cycle class map clz, the Kiin-
neth projector, and the antisymmetric projection), and such that the intersection

number of Z with A — X x P — P, x X is zero, where P; and P, are any points on
X. For distinct points b and z in X not contained in i1'(|Z|), we associate a cycle
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D(b,z) € Div?(X) to the triple (b, z, Z) (see Definition 6.2). The theorem below is
inspired by a theorem of Darmon, Rotger, and Sols relating the class of D(b, z) in
J(C) to iterated integrals [19, Theorem 1| (see §6.4).

Theorem 1.2 (Quadratic Chabauty for rational points). Let X/K be a smooth
projective curve of genus g > 1. Let b € X(K) be a fized basepoint and let z, Z, and
D(b, 2) be as above. Let X' := X —i'(|Z]).

(i): For each v prime to p, the local height function h,(z — b, D(b, z)) takes only
finitely many values for z in X'(K,). If v is a prime of potential good reduction,
then hy(z — b, D(b, 2)) s identically zero.

(ii): Suppose r = g, p(J) > 1, and the p-adic closure J(K) has finite index in
J(K,). Let Q C K, be the finite set of values taken by the sum of local heights

= ho(ze — b, D(b, 2))
vfp
for (zv) in [1, X'(Ky). Then there is a symmetric bilinear map
B:H(Xg,, Q") x H(Xg,, Q") = Q,
such that the set of z in X'(K,) for which
hy(z —b,D(b,z)) — B(log;(z — b),log ;(D(b, 2))) € Q
is finite and contains X (K,)2 N X' (K,).

Remark 1.3. If A is a simple abelian variety, it is a conjecture of Waldschmidt that
the condition that A(K') has finite index in A(K,) will be satisfied whenever the
rank is equal to the dimension [45, Conjecture 1].

Note that, although Theorem 1.1 and 1.2 are both statements about relations
between p-adic heights and single integrals which are only valid away from a finite
set of points, Theorem 1.2 produces a polynomial in p-adic heights and single in-
tegrals that takes only finitely many values on X (K) (away from this finite set),
whereas in Theorem 1.1, we obtain a polynomial in p-adic heights and single inte-
grals that takes only finitely many values when restricted to integral points. The
key difference which allows one to prove things about rational rather than integral
points is that the local height h,(z — b, D(b, 2)) takes only finitely many values.
From the point of view of nonabelian Chabauty, the difference is that Theorem 1.1
genuinely uses Kim’s method applied to a quotient of the fundamental group of Yz,
whereas the proof of Theorem 1.2 applies Kim’s method to the fundamental group
of X, and expresses the formula in terms of a height pairing via an auxiliary choice
of a correspondence Z. Note that, by the Moving lemma [27, § 11.4], given any
z € X(Q), and any Z as above, we can choose a rationally equivalent cycle Z’ with
the property that Z’ intersects A +b x X + X X z properly, and does not contain
the points (b,b) or (z,z), and hence with the property that b and z are points of
X —ix'(1Z).

The proof of Theorem 1.2 may be used to prove an analogue for integral points
on an affine curve (see Remark 6.4). The only differences are that there is no
condition on p(Jg), and the intersection number Z.(A — X x P; — P, x X) is no
longer required to be zero. In Lemma 7.6 we see that this recovers Theorem 1.1.

Before we give an overview of the proof of Theorem 1.2, we briefly sketch
Nekovai’s approach to p-adic height pairings, which plays a crucial role in the
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proof. The construction has two steps: first, one constructs, for all v, a local height
function h, on a certain set of equivalence classes of G,-representations, which we
refer to in this paper as mized extensions with graded pieces Qp, H}, (X, Qp(1)) and
Q,(1). This construction is explained in detail in Section 4, and an interpretation is
given in terms of nonabelian cohomology. Second, for any pair of divisors with dis-
joint support Dy, Dy in DivO(XQv), one associates such a mixed extension, denoted
Hx (D1, D2); the representation is a subquotient of H2, (X — |Ds[;|D2]).

The proof of Theorem 1.2 proceeds in two stages. First, we construct a map
from the Selmer variety of X to a variety parametrising equivalence classes of mixed
extensions as above. The idea is to find a mixed extension, which we denote A(b),
on which the pro-unipotent fundamental group acts in a Galois-equivariant way,
and then map a torsor P in the Selmer variety to the twist A(b)(F) of A(b) by P.
This construction is described in detail in Section 5. As explained in Proposition
5.5, this construction is already enough to provide a nontrivial equation for X (K, )s,
in terms of single integrals and p-adic heights of twists of A(b).

To get from Proposition 5.5 to Theorem 1.2, we relate the mixed extensions
Az(b,z) and Hx(z — b, D(b, 2)), where Az (b, z) denotes the twist of A(b) by the
element of the Selmer variety corresponding to z. As noted above, the latter is
constructed as a subquotient of HZ, (X — {z,b}; D(b,z)). In Section 6.3, we show
that by a theorem of Beilinson, Az (b, z) similarly has a cohomological interpretation
relating it to the second étale cohomology group of X x X relative to b x X UAx U
X X z. Hence the heart of the proof is a rather elaborate diagram chase relating
these two étale cohomology groups, details of which are in Section 6.4.

The remainder of the paper is devoted to turning Theorem 1.2—in certain special
cases—into something explicit and computable. To produce an algorithm using
Theorem 1.2 to find a finite set containing X (K})2, one needs to compute the cycle
Z and the local heights h,. In this paper we focus on the simplest such example,
which we describe below.

Let X/K be a genus 2 bielliptic curve with affine equation

(2) y? =25 + agzt + asa® + ao,

with a; € K. Flynn and Wetherell [25] previously considered the problem of de-
termining the rational points of X. Let F; and E5 be the elliptic curves over K
defined by the equations

E1:y2:x3+a4x2+a2x+a0 E21y2zx3+a2x2+a4aox+a8

and let f; denote the map X — FE;, (i = 1,2), sending (v,y) to (2%y) and
(apx =2, agyxr~3) respectively.

Let hp, and hg, denote the height pairings on E; and E3 corresponding to an
idele class character x : G2 — Q,, and an isotropic splitting of the Hodge filtration.
In the case when K = Q, we take p = (p) to be a prime of good reduction. In the
case when K is an imaginary quadratic extension, we take p to be a prime of Q
which splits as pp in K, where p and p are both primes of good reduction, and take
x to be a character which is trivial on (’)FX.

Theorem 1.4. Let X/K be the genus 2 bielliptic curve (2).
(i): For all v not above p,

hg,o(f1(2)) = he, o (f2(2)) = 2x0(2(2))
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takes only finitely many values on X (K,), and for almost all v it is identically zero.
(ii): Let Q) denote the explicitly computable, finite set of values taken by

- Z(hEl,v(fl(Zv)) - hEg,v(fQ(Zv)) - 2Xv(17(2v)))

vip

for (zy) in HWX(KU). Suppose E1 and Es each have Mordell-Weil rank 1 over
K, and let P; € E;(K) be points of infinite order. Let a;; = %, Then
X (K) is contained in the finite set of z in X (K,) satisfying

heyp(F1(2) = hp, p(f2(2)) = 2xp(2(2)) — a1 logp, (f1(2))” + azlog g, (f2(2))* € Q.

We further show how Theorem 1.4 can be used in conjunction with other tech-
niques to determine the set X (K). In Section 8, we give an algorithm to compute
the quantities in Theorem 1.4 and present two examples using the algorithm. Ap-
pendix A, by J. Steffen Miiller, discusses how the Mordell-Weil sieve can be used
with quadratic Chabauty to find rational points and describes the sieving carried
out to recover Xy(37)(Q(%)) after applying the algorithm for a suitably chosen col-
lection of primes.

In the sequel to the present work, a slightly more general framework is developed
[8], which has some practical advantages for computing rational points on curves
with everywhere potential good reduction. In recent work with Miiller, Tuitman,
and Vonk [9], we use the methods described in these papers to determine the rational
points on X (13), the split Cartan modular curve of level 13, the last remaining
case of Serre’s uniformity problem for normalisers of split Cartan subgroups, after
the work of Bilu, Parent, and Rebolledo [11, 12].

2. THE CHABAUTY-KIM METHOD

We begin by recasting the Chabauty-Coleman method in a motivic framework
and then use this to describe Kim’s generalisation. Nothing in the section is new,
although as far as we are aware, the statement of Lemma 2.6 is not in the literature.
In this section, X is a smooth projective curve of genus g over a number field K.
(By a curve over a field K we shall always mean a separated, geometrically integral
scheme over K of dimension 1.) Let Ty denote the set of primes of bad reduction
for X, let p be a prime of Q which splits completely in K and is coprime to Tj.
Let T = Ty U {v|p}, and fix a prime p lying above p. Let G denote the maximal
quotient of the Galois group of K unramified outside 7. Unless otherwise indicated,
when we write G we will mean either G or G, for v a prime of K.

2.1. The Chabauty-Coleman method. We begin with the classical description
of the Chabauty-Coleman method. Fix a basepoint b € X (K) and let ¢ denote the
Abel-Jacobi map

L X = J; 2z [(2) = (D).

Let log; : J(K,) — H°(Jk,,Q")* denote the p-adic logarithm map for the abelian
variety J. Consider the following diagram:
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X(K) —— J(K)

{p|1g‘,\

X(Ky) —— J(Ky) —2 HO(J,, Q') —— HO(X,, Q1)

The image of z under the composite map h : X(K,) — H°(Xg,,Q")* may be
described as the functional sending a global differential 1 to the Coleman integral
sz 7. Since the Mordell-Weil rank of J is less than g, there is a nonzero differential
win H°(Xg,,")* that annihilates the image of J(K)®Q,. Hence X (K) C X(K,)
lies in the set of points for which sz w=0.

A description of the Chabauty-Coleman method more amenable to nonabelian
generalisation is in terms of some standard facts from Galois cohomology and p-
adic Hodge theory (see e.g., [35, §1], [13, §3] or [20, §1.3]). We begin by letting
V = H}(X,Qy(1)) and define H(Gr,V) to be the subspace of the space of
continuous cohomology classes in H'(G7,V) which are crystalline at all primes
above p. Let k be the étale Abel-Jacobi map

k: DIV (X)®Q, = H(Gr,V)
sending a divisor Y u;2; to the Kummer class of [} p;2;] € J(K) @ Q in
HYGr,T,J)®Q, = H'(Gr,V).

This may be related to p-adic Hodge theory as follows. We first briefly recall
the Fontaine functors D., and Dggr, which send p-adic Galois representations to
various enriched vector spaces. Associated to V' there is a vector space D¢, (V) :=
H O(GQP, V ® B.,), where B, is Fontaine’s ring of crystalline periods. The filtration
F'B., and Frobenius action on B,, induces a filtration F* and Frobenius action on
D (V). As explained in [13, §3.11], the exact sequence

0—Q, = B = Byr/F° = 0
induces an isomorphism H}!(Gp, V) ~ Dar(V)/F° (the Bloch-Kato logarithm)
where Dggr (V) is the filtered vector space H O(GQP7 V ® Bqr) with filtration induced
by the filtered ring Bar, and H}(Gg,,V) := Ker(H'(Gg,,V) — H'(Gg,,V ®
Bg=1)). Moreover, in this case we have H}(Gg,,V) = I1T]10(C7'Qp7 V). Returning to
the Abel-Jacobi map, x lands in the subspace H}(GT7 V), and there is a commu-
tative diagram

X(K) —"— H}Gr,V)
[ |loc\
X(K,) i H}(Gy, V) —— Dar(V)/F°

where the top map sends z to k(z — b), and the bottom right isomorphism is via
p-adic Hodge theory. Moreover, the Bloch-Kato logarithm is compatible with the
usual p-adic logarithm: i.e., the composite map j : X(K,) — Dgr(V)/F° may be
described (see [13, 3.11.1]), via the isomorphism

Dar(V)/F°® ~ Hig(X)"/F° = H*(X,Q")",
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as the map sending z to the functional sending a global differential n to the Coleman
integral sz 1. Now as before, we have that X (K) C X(K,) lies in the set of points
for which sz w =0.

2.1.1. Refinements over number fields. In [12], Siksek explains a refinement of the
classical Chabauty-Coleman method over number fields. As explained in loc. cit.,
heuristically one might expect that if X is a curve of genus g defined over a number
field K of degree d over QQ, then the Chabauty-Coleman method works whenever
the rank of J(K) is less than or equal to d(g — 1) (as the Weil restriction of X
is now a g-dimensional subscheme of the Weil restriction of its Jacobian). In [12,
Theorem 2] a precise technical condition on linear independence of p-adic integrals
is given which is sufficient to ensure that the Chabauty-Coleman method produces
a finite set of points in J[,, X (k).

2.2. The Chabauty-Kim method. We now explain how this motivic approach

generalises. Given b € X (K), let wft’Q” (X, b) denote the unipotent Q,-étale funda-
mental group of X with basepoint b [20]. Recall that this is equal to the Q,-Maltsev

completion of the usual étale fundamental group. In particular, as a pro-algebraic
group (i.e. forgetting about the Galois action) it is isomorphic to the quotient of a

free pro-unipotent group on 2g generators by one relation. Let U(®) := wft’(@p (X,b),
and for i > 0 define U™ := [U© U"=1]. Define
Uy = Up(b) = 7% (X, b) /U™,
and define
Uln] := Ker(U,, = U,—1).

We will mostly be interested in the case when n = 2. In this case, using the
standard presentation of the topological fundamental group of a surface of genus g,
we deduce that the sequence of Galois representations

(3) 0— HZ(X,Q,)" 55 A2V = U[2] — 0.
is exact. Define
Py(b,2) := n¢(X; b, 2) X pét (X ) U, (b).
Then the assignment z +— [P, (b, z)] defines a map
X(K) — HYGr,Uy(b)).

One of the fundamental insights of the theory of Selmer varieties is that the co-
homology spaces H!(G,U (b)) carry a much richer structure than merely that of a
pointed set, and that this extra structure has Diophantine applications.

Theorem 2.1 (Kim [30]). Let U be a finite-dimensional unipotent group over Q,,
admitting a continuous action of G. Let U = U©) > UM > ... be the central series
filtration. Suppose HO(G,U® JUFTY)(Q,) = 0 for all i. Then the functor

R— HY(G,U(R))

from Qp-algebras to sets is represented by an affine scheme of finite type over Q,,
such that the siz-term exact sequence in nonabelian cohomology is a diagram of
schemes over Q.
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In this paper we will never distinguish between such a cohomology scheme and
its Q,-points. We now take U = U(b) to be a finite-dimensional Gp-stable quotient
of U, (b) whose abelianisation equals V. Note that since the abelianisation of U(Q),)
has weight —1, it satisfies the hypotheses of the theorem, and hence H' (G, U) has
the structure of the Q)-points of an algebraic variety over Q. For z a point of X,
we denote by P(z) = P(b, z) the push-out of P, (b, z) by U, — U.

2.3. Local conditions. To go from the cohomology varieties H'(Gr,U) to Selmer
varieties, one must add local conditions. For each v 1 p, there is a local unipotent
Kummer map

Jo : X(K,) = HY(G,,U); 2z [P(2)]

which is trivial when v is a prime of potential good reduction and has finite image
in general [33]. For p | p, by the work of Olsson [36], the assignment x — [P(z)]
lands inside the subspace of crystalline torsors H}(Gp, U). We define

Jp: X(Kp) = Hi(G,,U).

There is then a commutative diagram

X(K) HY(Gr,U)
J JH]OCU

(4) [lyer X(Ky) — [Tyer HY(Gy, U).

It is also shown in [30] that the localisation morphisms are morphisms of varieties,
and the set of crystalline cohomology classes has the structure of the QQ,-points of
a variety. We would like to understand the following subscheme of H! (G, U):

Definition 2.2. The Selmer variety of U, denoted Sel(U), is the reduced scheme
associated to the subscheme of H'(G7,U) consisting of cohomology classes ¢ sat-
isfying the following conditions:

(1) locy(c) comes from an element of X (K,) for all v prime to p,
(2) locy(c) is crystalline for all v above p,
(3) the projection of ¢ to H'(G7, V) lies in the image of J(K) ® Q,.

Remark 2.3. As this definition is slightly non-standard, we briefly recall other def-
initions of Selmer varieties and Selmer schemes which appear in the literature. In
[30], it is proved that H*(Gr,U), H'(G,,U) and the corresponding cohomology
groups with local conditions are represented by affine schemes of finite type over
Q,. However, as explained in [32], in general these cohomology varieties need not
be reduced. The definition given above is most similar to the definition of the
Selmer scheme given in [2]. There, the authors define the Selmer scheme of U to be
the intersection over all v # p (equivalently over all v € Tp) of loc, ' (j, (X (Q,))).
If we denote this scheme by Sel’(U), then Sel(U) is simply the reduced scheme
associated to the fibre product Sel’(U) XHY(Gr,V) J(K)®Q,. The reason we adopt
this more utilitarian definition is to avoid any assumptions on the finiteness of the
Shafarevich-Tate group of the Jacobian of X in the statement of our results.
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2.4. Applications to Diophantine geometry. Let p be a prime above p. We
have a refinement of the commutative diagram (4):
J
X(K) Sel(U (b))
l ) llocp
Jp
X(Ky) — Hj(Gy,U(D)).

The map j, is not algebraic, but is locally analytic, i.e., on each residue disk in
X (K,), we have that j, is given by a p-adic power series. Furthermore by [31], j, has
Zariski dense image. Hence if loc, is not dominant, then the set j, ' (loc,(Sel(U)))
is finite. Note that the case n = 1 now recovers the Chabauty-Coleman method.

Definition 2.4. Define the set X (K,)y C X(I,) to be j, ' (loc,(Sel(U))). When
U =U,, we write X (K,)y, as X(Kp)n.
Remark 2.5. The sets X (K,),, are contained in the set of points which are weakly

global of level n, defined in [2]. If the p-primary part of the Shafarevich-Tate group
of the Jacobian of X is finite, then the two sets are equal.

2.5. Properties of Sel(U). In this subsection we recall some properties of the
varieties Sel(U). We make repeated use of the twisting construction in nonabelian
cohomology, as in [41, 1.5.3]. For topological groups U and W, equipped with a
continuous homomorphism U — Aut(W), and a continuous U-torsor P, we shall
denote by W) the group obtained by twisting W by the U-torsor P:

W =W xy P.
Given a group U with an action of G and a continuous G-equivariant U-torsor P,
we may form a group U") which is the twist of U by the U-torsor P, where U acts
on itself by conjugation. There is a bijection
HY(G,U) —» HY(G,U™)
which sends G-equivariant U-torsors to G-equivariant U(")-torsors. We will make
use of the following properties of the twisting constructions:

e The U-torsor P is sent to the trivial U*)-torsor.
e If H is a subgroup of G, U is a G-group and P is a G-equivariant U-torsor,
then the following diagram commutes:

HYG,U) —— HY(G,UD)

|

HY(H,U) — H'(H,U®)).

o If U — W is a homomorphism of G-groups, then the diagram

HY(G,U) — HY(G,U"))

l |

HY(G,W) — HY(G, W)

commutes, where P is a G-equivariant U-torsor and () is the W-torsor
P XU wW.
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Since the twisting construction is functorial, if H'(G,U) and H'(G,U")) are rep-
resentable, then the twisting isomorphism is an isomorphism of schemes. This
implies the following lemma, which is used in the next section. To state the lemma,
let ai,...,an € Sel(U) be a set of representatives for the image of Sel(U) in

[Loer, 7o (X(Qy))-

Lemma 2.6. Sel(U) is isomorphic to U}, Hy, (G, U@, where HY (Gr, Ulei)
is defined to be the scheme representing U(*) cohomology classes which are crys-
talline at p and trivial at all other primes.

Proof. Let o € [[, e, Ju(X (K)) be in the image of Sel(U) under the map [ [, o, loc,,
and let Sel(U), denote the fibre of o in Sel(U). We show that Sel(U),, is isomor-
phic to HleK (Gr,U). The first two bullet points above imply that the twisting
morphism
HY(Gr,U) — H' (G, U)

sends loc; ! (loc,()) to loc, *(1). The first and third bullet points imply that the
twisting morphism sends the pre-image of J(K) ® Q, to itself. Finally, using all
three bullet points, we see that the twisting morphism sends crystalline U-torsors
to crystalline U-torsors. O

3. NON-DENSITY OF THE LOCALISATION MAP

For the rest of this paper, we take K to be Q or an imaginary quadratic extension
of Q. Unless otherwise stated, we will henceforth take U to be a quotient of Us
surjecting onto V. From the standard presentation of the topological fundamental
group of a smooth surface of genus g in terms of 2g generators and 1 relation
between commutators, the natural map A2V — U|[2] gives an exact sequence

(5) 0— HZ(X)* 5 A2V = U[2] - 0.
Hence the quotients U intermediate between Uz and V' correspond to Galois sub-
representations of A2V/HZ,(X)*. Note that for any such choice of U, there is an

inclusion X (K,)2 C X(K,)y. In this paper we restrict attention to the case where
[U, U] is isomorphic to Q,(1)™ for some n > 1.

3.1. Finiteness results. The reason for considering quotients of the fundamental
group which are extensions of V' by Q,(1)™ is that

(6) H}(Gpan(l)) = O; ®Qp:(@p7
(the first isomorphism may be found in [13, 3.9], and the second comes from the
fact that we assume that p splits in K, so K, ~ Q,), and hence by Kummer theory

(7) H}(Gr,Qp(1)) 2 Ox ®Q, = 0.
This means dim H (G, Qp(1)) = 0 and dim H (G, Qp(1)) = 1 (this is the only
place where our restrictions on K are essential). In many situations, the Galois

cohomology computation above is enough to prove non-density of the localisation
map for Sel(U).

Lemma 3.1. Let U be a quotient of Us which is an extension of V' by Q,(1)™. Let
p be a prime of Q such that X has good reduction at all primes above p, and let p
be a prime above p.

(i) The dimension of Sel(U) is bounded above by rk J(K).



12 JENNIFER S. BALAKRISHNAN AND NETAN DOGRA

ii) The dimension of H:(Gy,,U) is equal to g + n.
AN

Proof. (i) By Lemma 2.6, it is enough to prove the dimension of H(IDK (Gr,U) is
bounded by rk J(K) for each o in a set of representatives for the image of Sel(U) in
[loer, H Y(G,,U). The action of U on itself by conjugation induces a trivial action
on V and [U, U], giving a Galois-equivariant short exact sequence

1o [UU]=-U® 5V 1,
which induces an exact sequence of pointed varieties
H}(Gr,[U,U]) = H{(Gr,U'™)) — H}(Gr, V).
Since [U,U] ~ Q,(1)", we may apply (7) to deduce an inequality
dim Sel(U) < dim H}(Gr, [U,U]) + dim J(K) ® Q, = rk J(K).

(ii) The computation of the dimension of H}(G,U) follows [31, §2|. By p-adic
Hodge theory, we have an isomorphism

H}(Gy,U) ~ Dar(U)/F°,
and this gives a short exact sequence
1 — Dar([U,U))/F® = H}(Gy,U) = Dar(V)/F° — 1.

Since [U,U] ~ Q,(1)", the dimension of H(Gy,U) is g +n by (6). O

We deduce the following:

Lemma 3.2. Suppose X is a curve of genus g, such that tk J(K) < g+ p(J) — 1.
Then X (K,)2 is finite.

Proof. By Lemma 3.1, the problem of finiteness reduces to finding an appropriate
quotient U of U,. Note that, since H%(J,Q,) ~ A?H}(X,Q,), by dualising we
have Homg,. (A%V,Q,(1)) ~ Homg, (Q,, H%(J,Q,(1))) and hence the rank of this
vector space is at least p(J). Furthermore this is an equality, since H? of an

abelian variety satisfies the Tate conjecture [24]. On the other hand by §2, the
representation U|[2] is isomorphic to the cokernel of Q,(1) 5 A2V, O

Remark 3.3. If z is a rational point of X, Y := X — x and b is an integral point of
Y, a minimal regular model of Y, then the same argument as in Lemma 3.2 shows
that Y(Z,)2 is finite whenever rk J(K) < g + p(J).

4. MIXED EXTENSIONS AND NEKOVAR’S p-ADIC HEIGHT FUNCTION

In this section we introduce some notation for mixed extensions in an abelian
category, discuss the relationship between mixed extensions and cohomology with
values in unipotent groups, and then review Nekovai’s p-adic height function on
mixed extensions.
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4.1. Mixed extensions. Let A be an abelian category. Let Wy, ..., W,, be objects
of A, such that for all ¢ < j, Hom4(W;, W;) = 0.

Definition 4.1. We define a mized extension with graded pieces Wy, ..., W, to be
a tuple (M, (M;, «;)), where M is an object of A,
M=My+— M My ...~ M,4+1 =0
is a filtration in A and ayg, ..., q, are isomorphisms
;M /Mg ~ W,
A mixed extension (M, (M;,a;)) as above will sometimes be denoted simply by

M.

Definition 4.2. Let (M, (M;,«;)) and (N, (N;,B;)) be mixed extensions with
graded pieces Wy, ..., W,,. A morphism of mized extensions is a sequence of com-
patible isomorphisms

T Mz i> Nz
such that if r; denotes the induced morphism M;_;/M; — N;_1/Nj;, then for all 4,

fiori = aj.

We denote by C(A; Wy, ..., W,) the category of mixed extensions with graded
pieces Wy, ..., W,, and by C(A; Wy, ..., W,,) the set of isomorphism classes. Note
that our assumption on Hom 4(W;, W;) implies that an object of C(A; Wy, ..., W,,)
has no nontrivial automorphisms. For any 0 < i < j7 < n we have a tautological
functor

Pig - C(A7 WOa R Wn) — C(A, Wi, ey WJ)
which induces a map

@ij C(A Wy, ..., W) = C(A; W, ..., ;).

Remark 4.3. The reason for the term “mixed extension” is as follows: if n = 2 and
M is an object in C(A; Wy, Wi, W3), then in the notation of [28, IX.9.3], M is a
mized extension of @o 1 (M) and @1 2(M).

In the case n = 1, we have an isomorphism
C(A, Wo, Wl) ~ Eth (Wo, Wl),

and in particular we can add mixed extensions with two graded pieces. For general
n, if M and N are objects in C(A; Wy, ..., W,,) such that ¢y 1 (M) ~ ©1,,—1(N),
then the Baer sum of M and NN, denoted M +; ,,—1 IV, will again be an object in
C(A; Wy, ..., W,,). Similarly, if pa., (M) =~ 2., (N), then we can form M +,,, N.

Definition 4.4. Let A be an abelian group. A function
a:CAWy,...,W,) = A
is said to be bi-additive if, whenever ¢1 ,_1(M) = ¢p1,,—1(IN), we have
a(M +1,,-1 N) = a(M) + a(N),
and whenever @3, (M) = 2., (N), we have
a(M+2, N)=a(M)+ a(N).
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4.2. Relation to nonabelian cohomology. Now suppose that A = Repg, (@)

is the category of continuous p-adic representations of a profinite group G. Let
Wo, ..., W, be objects in Repr(G) with the property that for all i < j,

Homg(Wi7 W]) =0.

Definition 4.5. Define U(Wy, ..., W,,) to be the unipotent subgroup of Aut(Po<i<nW;)
consisting of homomorphisms whose Hom(W;, W;)-component is zero if ¢ > j and

the identity endomorphism if i = j.

Note that here Aut(@o<;<n,W;) refers to the group of automorphisms of vector
spaces (i.e. not necessarily G-equivariant). The group Aut(®o<;<,W;) has a con-
tinuous G-action (the restriction of the G-action on Hom(@o<;<,W;). In this way,
U(Wo,...,W,) inherits a continuous G-action.

Definition 4.6. Let (M, (M;, «;)) be an object in C(Repg, (G); Wo, ..., Wy). De-
fine ®(M) to be the set of isomorphisms of vector spaces

p:MiWOEB-“EBWn
such that p(M;) =W, @& --- ® W,, and the induced quotient homomorphism
pi: Mi/M; 1 — W;
is equal to «;.

®(M) has the structure of a G-equivariant U (W, ..., W,,) torsor, and this in-
duces a map

@ : C(Repg, (G); Wo, ..., W) = H' (G, UWo, ..., Wy)).
Lemma 4.7. ® is a bijection.

Proof. To construct an inverse to @, define ®' to be the functor from the category of
equivalence classes of G-equivariant U-torsors to C (Repr (G); Wa, ..., W,,) sending
a torsor P to the twist of Wy & ... & W, by P. ([

Under the correspondence, when G = Gy, the subcategory of crystalline G-
representations is sent to H }(Gp, UWa,...,W,)), and similarly for semistable rep-
resentations. Define

HY(Gp,UWo,...,W,)) Cc H{(Gr,UWy,...,W,))

to be the subvariety of U-torsors which are semistable at all primes above p (with no
conditions at the primes in Tp). We will henceforth use C(Repg, (G); Wo, ..., Wy)
and HY(G,U(Wy,...,W,)) interchangeably. Note that, by our assumption that
Homg (W;, W;) = 0 for all i < j, we have H*(G,U(Wy,...,W,)) = 0, and hence
HY(G,U(Wy,...,W,)) is represented by an affine scheme of finite type over Q, by
[30, Proposition 2|. In particular, we use this to view C'(Repg, (G); Wo, ..., Wy),
and its various decorated versions, as the Q,-points of an algebraic variety.

4.3. Nekovar’s p-adic height pairing on mixed extensions. In this section
we recall the construction of Nekovai’s p-adic height pairing [35]. We will only work
in the context of a smooth projective curve over K having good reduction at all
primes above p. Our categories will be G-representations (for G = Gr or G,), and
our objects will be Wy = Q,, W1 =V, W5 = Qp(1). The group U(Q,,V,Qp(1)) is a
central extension

1—=Qp(1) = U(Qp, V,Qp(1)) = V& Hom(V,Qpu(1)) — 1.
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This induces an action of HY (Gr,Q,(1)) on HL (Gr,U(Q,, V,Q,(1))), and an exact
sequence
1= Hy(Gr,Qy(1)) = Hy(Gr, U(Qy, V. Qp(1))) = Hyy(Gr, VeHom(V, Qp(1)) — 1.
In particular, this gives an isomorphism
H (G, U(Qp, V,Qp(1))/Hy (G, Qp(1)) — Hyy (G, V)@ Hy, (Gr, Hom(V, Q,(1))).
The variety C(Repg, (G); Qp, V,Qp(1)) has a natural involution defined by
M — M*(1).

We say a function

Q: C(Repr (G); Qp, V,Qp(1)) = Qp
is symmetric if a(M) = a(M*(1)). Nekovar’s p-adic height pairing is defined via a
family of local height functions

hy Hl(vaU(vav’ Qp(l))) — @Pv

for v prime to p, and

hy - Hslt(Gv»U(vaVa Qp(1))) = Qp
for v above p, which are continuous, bi-additive and symmetric. The input for
Nekovai’s construction is a class x in H'(Gr,Q,) and a splitting
(8) St HéR(XKwQ;D) - FlHéR(XKpr)

of the Hodge filtration of H éR(X K,,Qp) at every prime v above p. We will restrict
attention to splittings s for which Ker(s) is an isotropic subspace with respect to
the Hodge filtration. For such splittings, the local height is symmetric in the sense
that h, (M) = hy(M*(1)) (see [35, §4.11]).

4.3.1. v prime to p. For v not above p, the construction of local height pairings is
immediate given the weight-monodromy conjecture for curves [38], which implies
that

H°(G,,V)=HYG,,V)=0,

and hence by the six-term exact sequence in nonabelian cohomology,
HY(Gy,U(Qp, V,Qp(1))) = H' (G, Qp(1)).
This gives a function
Uxe t HY(Gy, U(Qy, V,Qp(1)) = Q,
via the isomorphism H?(G,, Q,(1)) ~ Q, coming from local class field theory.
4.3.2. v above p. For v above p, the construction of local height pairings uses p-

adic Hodge theory. As we will only be interested in the crystalline case, we restrict
attention to describing Nekovai’s functional on crystalline mixed extensions

hv : H}(G’LMU(Q;D?V? Qp(l))) — QP‘

The construction is analogous to the case when v was prime to p: given a mixed
extension M in the category of filtered ¢-modules, with graded pieces Qp, Der (V)
and D¢, (Qp(1)), one constructs an extension ¢ of Q, by D¢ (Q,(1)), identifies this
as an element ¢’ of H} (Gp,Qp(1)), and then defines

h(M) := ¢ U xo.
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We now sketch the construction of ¢. Note that (in the category of admissible
filtered ¢-modules) Ext'(Q,, Der(Qp(1))) = Dar(Q,(1)), so one may equivalently
think of ¢ as an element of Dyr(Q,(1)). Let (M, (M;,;)) be a mixed exten-
sion with graded pieces Qp, De(V) and D¢ (Qp(1)). The extension class of M
in Extl(Qp, M) defines an element of M;/F°. Using the splitting s specified in
(8), one lifts this to an element of M;. For weight reasons there is a canonical
¢-equivariant splitting of the inclusion My < M, and hence via ay one obtains an
element ¢ of Dyr(Q,(1)), as required.

In the language of [31] we may define the local height of a crystalline mixed
extension as follows. There is an isomorphism [31, §2]:

H(Go, U(Qp, V. Qp(1))) = Dar(U(Qp, V, Qp(1)))/F*.

Let VIR = D (V) and D¢ (1) := Der(Qp(1)). As for G-representations, we define a
unipotent group U(Q,, VIR, D, (1)) with filtration and ¢-action. This is then iso-
morphic (as a group with filtration and ¢-action) to De(U(Qp,V,Qp(1))). The
homogeneous space U(Q,, VIR, D..(1))/F° parametrises mixed extensions with
graded pieces Q,, VIR and D, (1) in the category of filtered ¢-modules. Argu-
ing as above, a splitting of the Hodge filtration determines an algebraic function

U(Qp, VIR, Dy (1)) /F° = Dey(1).
In particular, we obtain the following lemma.
Lemma 4.8. The local height function

hy + Hi(Gy, U(Qp, V,Qy(1))) = Qp
is algebraic.

Remark 4.9. If s; and s, are two splittings of the Hodge filtration, giving associated
height functions h,; and h, 2, then their difference defines a bilinear map

Var/F° x Var/F® — Der(1).
4.3.3. Global heights. We define
h: Hg(Gr,U(Qp, V,Qy(1))) — Qp
to be the composite of

HY (G, U(Qy, V, Q1)) T2 T HY (G, U@, Vi QD) X[ ] HE(Go, U@, V. @, (1))

veto vlp
with
[T #'(G0.U (@ Ve Qu(1)) x [T HA(G,. U@, V.0, (1)) =75 Q.

veTH ’U|P

The function & is invariant under the action of H} (Gr,Q,(1)) on Hy (Gr,U(Qp, V,Q,(1))):
for all ¢ in HL(G7,U(Q,,V,Q,(1))) and d € HL(Gr,Q,(1)), and all primes v in
T, we have

hy(c+d) = hy(c) +1oc, (x U d),
hence h(c) = h(c+ d) by class field theory. We have

o1 % g2t Hy(Gr, U(Q,, V. Q,(1))) = H} (G, V) x Hi(Gr, V),
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using the fact that H (Gr, V) ~ H(Gr,V). By additivity and continuity, it hence
factors through

Hslt(GTv U(Q,’DvV’QP(l))) - H}(GT’V)(XQ
M = 90,1(M) ® (p1,2(M)"(1)).

If s is chosen to be isotropic with respect to the cup product, the function h is
furthermore symmetric, i.e. h(M) = h(M*(1)) [35, §4.11].

5. SELMER VARIETIES AND MIXED EXTENSIONS

We now return to Selmer varieties. Here U will be an extension of V' by Q,(1).
To obtain equations for X (K,)y, we use Nekovai’s construction to define a map

Sel(U) — Q,.

A natural analogue of Nekovai’s construction is to start with the input of a coho-
mology class x in H'(Gr,Q,), and to define, at all primes v in Tp, an algebraic
function

HY(Gy,U) = Qp

which, restricted to H'(G,, Qp(1)), is simply the cup product with y.

Given a splitting of the Hodge filtration, one may define such a function, but
in order to determine equations for Selmer varieties, it is better to have a con-
struction with some kind of linearity properties analogous to those of the global
height pairing. For this reason, in this section we define a way to embed Sel(U)
into HY (G, U(Qp, V,Qp(1)) via twisting. We then apply Nekovai’s construction,
giving (via composition) local functions Sel(U) — Q,. Note that if Q,(1) is re-
placed by a different Galois representation W of motivic weight —2 arising in U[2],
one may mimic Nekovai’s construction with the cohomology class x replaced by
a cohomology class in H'(Gr, W*(1)) which is nontrivial and noncrystalline at p,
assuming one can prove such a class exists. This is developed in the sequel to this

paper [8].

5.1. Twisting the enveloping algebra. To construct a mixed extension associ-
ated to an element of H'(G,U), we define a G-representation with an equivariant
U-module structure, which will be denoted A(b), and then send a U-torsor P to
the twist of A(b) by P.

A(b) will be defined to be a certain finite-dimensional quotient of the universal

enveloping algebra of ﬂft’(@p (X,b). By the theory of Maltsev completion, this has
a very concrete description, which we now recall (see [16, §2]).

Definition 5.1. Let
Zy[x{" P (X, 0)] = lim Z, [w{ (X, b)/N]

denote the inverse limit of the group algebras of quotients 7¢* (X, b)/N of p-power
order. Let I denote the kernel of the natural map

Ly [[ﬂ'ft(p) (X,b0)] — Lp.

Then we define A, (b) := Q, ® Z,[x:"P) (X, )] /171
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A, (b) is equipped with the structure of a Galois-equivariant 7¢¢(X, b)-module,
via the action of mH(X,b) on Z,[ri" P (X,b)]. Hence for any Galois-equivariant

7$t(X, b)-torsor P, we can twist A, (b) by P to get a Galois representation A,, (b)(*")
When P = ﬂ'ft(Y;b, z), we may identify A,(b)") with the Galois-equivariant
A,,(b)-module A, (b, z) obtained by tensoring Q, [7{!(X; b, 2)], thought of as a Q,[r{! (X, b)]-
module, with A, (b). Tt follows from the theory of Maltsev completion that the
action of 7{*(X,b) on A, (b) factors through the homomorphism

(X, b) = Un(b).

Furthermore, A, () is a quotient of the enveloping algebra of U, (b) and a faithful
representation of U, (b). More generally we can view the Q,-vector space generated
by the torsor of paths from b to z, denoted Q,[7{!(X;b, 2)], as a G-equivariant free
rank 1 module over Q,[r{!(X,b)]. Hence we may make the following definition.

Definition 5.2. Let A, (b, z) be the G-equivariant free rank 1 A, (b)-module
Qp[rf (X0, 2)] XQp[rét (X,)] Ap(b).
Note that A,,(b, z) is naturally equipped with a G-stable filtration
An(b,2) DITA,(b,2) D ... D" A, (b,2) =0

coming from the I-adic filtration on Q,[7¢*(X;b,2)], and that the action of A, (b)
respects this filtration. We define

Alk] o= I A (0) /1571 Ay ().

A second viewpoint is that A, (b, z) is the twist of A, (b) by [7{*(X;b,z)] via the
left action of 7{*(X,b) on A, (b). There is also a more general construction: for all
k, I* A, (b) admits compatible actions of U, (b) and G. Hence for any G-equivariant
U, (b)- torsor P, we may construct the twist A, (b)) of A, (b) by P. In the case

when P is 7{t(X; b, 2) x 40 (X,b) U, (b), we have that AP is just A, (b, z). The action
of U,, on I*/I**+1 is trivial, hence for any such P we have an isomorphism
I A, (D)D) ) TF1 A, (0) ) ~ T8 A, (b)) TFTL A, (D).
Thus we obtain a well-defined map
[.]: HY(G,U,) — H(G,U(A[0], A[1],..., A[n]))
P [A, (b))

An equivalent definition of this map would be to define Aut(A, (b)) to denote the
group of unipotent automorphisms of A,,(b) as a filtered vector space (i.e. automor-
phisms of A,,(b) which respect the filtration and are the identity on the associated
graded). Then there is a group homomorphism

U,(b) — Aut(A, (b))
and an induced map on cohomology
HY(G,U,) - HY(G, Aut(A,(b))).
There is also an isomorphism

H' (G, Aut(A, (b)) = H'(G,U(Qp, A[1],...., Aln]))
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coming from the G-equivariant (Aut(A, (b)), U(Qy, A[1],..., A[n]))-bitorsor of iso-
morphisms of filtered vector spaces
see [41, Proposition 35]. The map [ . ] defined above is simply the composite.
We now focus on the depth 2 case. There is a short exact sequence
0— A[2] —» Az(b) — A1(b) —» 0
compatible with the action of G and U. We have that A[2] is canonically isomorphic
to [Uy, Us] @ Sym? V.
Definition 5.3. Suppose that p(J) > 1. Let
€:Al2] —» Qp(1)

be a Galois-equivariant surjection whose restriction to [Us, U] ~ Coker(A2V N
Q,(1)) is nonzero and factors through [Us,Us] — [U,U]. Define A(b) to be the
mixed extension with graded pieces Qp,V, and Q,(1) obtained by pushing out
A2l — Ag(b) by € : A]2] — Qp(1). We define TA(b) to be the kernel of the
projection A(b) — Q,.

The representation A(b) has a compatible U-action, and hence for any U-torsor P
we obtain a mixed extension A(b)(") with graded pieces Q,, V', and Q,(1). Since the
projection map A(b) — @Q, and the inclusion map Q,(1) — A(b) are U-equivariant,
for any P we have exact sequences

0= TAD)D) = AT - Q, =0
and
0— Q1) = AD)P) — Ay (b)) — 0.

When P = P(b, z) we denote A(b)"") by A(b,z) and TA(b)F) by TA(b,z). When
we want to emphasise the dependence on X, we write A(X)(b) and A(X)(b, z).
By our assumptions on the homomorphism A[2] — Q,(1), A(b) is a faithful U-
representation. Note that since the U-action on A[2] is trivial, we could define
A(b)) to be the pushout of A[2] < As(b)) by A[2] — Q,(1). As in the above
discussion of the map [ . ], the map from H'(G,U) to H'(G,U(Q,,V,Q,(1))) is
algebraic.

5.2. Description of h(A(b, z)). Let U be a quotient of U; which is an extension
of V by Qp(1). As explained in Section 3, U corresponds to a Tate class

Z:Qp— AzHét(Yy Qp(1))

lying in the kernel of the cup product map. Let A(b) be the corresponding quotient
of the enveloping algebra of U. We now consider the maps

HY Gy, U) = Qp; P hy(AD)T))
HYGr,U) = Qp P h(A(b)D).
The following lemma follows from the work of Kim and Tamagawa [33].
Lemma 5.4. Let v be a prime of K that is coprime to p. Then the map
X(Ky) = Qp; 2z hy(A(D, 2))

is identically zero when v is a prime of potential good reduction and has finite image
in general.



20 JENNIFER S. BALAKRISHNAN AND NETAN DOGRA

Proof. If v is a prime of potential good reduction, then there is a finite Galois
extension L|K, such that for every L-rational point z, the U-torsor P(z) admits a
G r-equivariant trivialisation. From [41, §1.5.8], there is a short exact sequence

1 — HY(Gal(L|K,),U%") = HY (Gk,,U) = HY (G, U),

and hence every Gk, -equivariant U-torsor is trivial, since U%% = 1.
For the general case, we use [33, Corollary 0.2], which says that the map

Jo : X(K,) — HY(Gg,,U)

has finite image. This implies the lemma, as the map z — h,(A(b, 2)) factors
through j,. O

We now consider global properties of A(b, z). The mixed extension A(b, z) is a
mixed extension of A;(b, z) and TA(b, z)*(1). To understand the height of A(b, z),
we first need to understand the map

HY(G,U) — Ext'(V,Q,(1))

defined by sending a torsor P to the twist of TA(b) by P (when P = P(b, z), the twist
of TA(b) by Pis IA(b, z)). Let (, ) : VxV — Qp,(1) be the homomorphism induced
from the Weil pairing and let Ty : V' — Hom(V, @, (1)) denote the homomorphism
sending v to w +— (w,v). Let 7y, denote the induced isomorphism H'(G,V) =~
Ext'(V,Qp(1)). Let 77 : V — Hom(V,Q,(1)) denote the homomorphism sending
v to w — [w,v], where w and v are lifts of w and v to U and [, ] denotes the
commutator in the group U. Let 7z, denote the induced homomorphism

HY(G,U) — HY(G,V) — Ext'(V,Q,(1)).

We will also denote by 7z. the map H'(G,V) — Ext'(V,Q,(1)) through which
the above map factors. Then by definition of the twisting construction, there is an
equality of extensions of Q,(1) by V:

[LA(b, 2)] = [TA(D)] + 72+([P(b, 2)]).
Let a(Z) denote the linear map H;(Gr,V) — H(Gr,V) defined by
a(Z) = Tyt 0 7.

By the above, A(b, z) is a mixed extension of k(2 —b) and a(Z)(k(z — b)) + [T A(b)],
where k is the étale Abel-Jacobi map.

We now explain how one obtains equations for the finite set X (K,)y. First we
make precise our choice of p-adic height. If K = Q, then up to scalars, there is a
unique choice of character x. Recall that in the imaginary quadratic case, we have
a decomposition pOg = pp. We henceforth take x to be an idele class character
which vanishes on OFX. By class field theory, the space of such characters is one-
dimensional, and hence y is uniquely determined up to scalars. Since the mixed
extensions A(b, z) are crystalline at all primes above p, this means that

h(A(b, 2)) = hy(A(b, 2)) + > hy(A(b, 2)).

veT)

Let wo, . ..,wg—1 be a basis of H*(Xg,, Q).
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Proposition 5.5. Suppose tk J(K) = g, that p(J) > 1, and that the map
(9) J(K)®zQp — Hi(Gy, V)
is an isomorphism. Let b be a K-rational point of X. Then the set
Q={-> h(Ab z)): (z) e [[ XK}
veTy veT)

is finite, and there are constants c;j,d; (for 0 < i < g —1) such that X(K,)y is
finite and contained in the set of z in X(K,) satisfying

10)  hy(Ab)+ 3 e (/bw) G+ a(Z)jk/bzwk cq,

0<4,5<g 0<k<g

where a(Z) ;1 denotes the matriz of a(Z) acting on H°(X, Q') with respect to the
basis w;.

Proof. By injectivity of (9), for all 0 <14 < g — 1 there is a k; in H}(GT, V) such
that locy(k;) = w via the isomorphism H}(Gp) ~ H°(Xg,,Q')*. Let Hi; be a
mixed extension with graded pieces Qp, V, and Q,(1) such that ¢ 1(H;;) = k; and
(,01_]2(H@') = lﬁ);((].) Define Cij = 7h(H1J) Define dl by

locy (TA(B)* (1)) = Y diw}.

0<i<g

Then since (9) is an isomorphism, we have

eoatat ) = Y ([ )

0<i<g
901,2(14((),2)) = Z dj—|- Z G(Z)jk/ Wk K;(l)
0<j<g 0<k<g b

Hence in Sym? H} (Gr,V) we have

eor(ab a2 = 3 ([a) (a5 ¥ a@ [ o) n,

0<i,j<g 0<k<g

giving an equality of global heights

rav) = ¥ ([w) (a4 2 a@n [ o) nim)

0<i,5<g b 0<k<g

This establishes that K-rational points on X satisfy the above equation. By §4.3.2
and §5.1, for any § in Q,, and any functional

B:H}(Gy,V)® H{(Gy,V) = Qp,

the equation
hp(A(D)7) + B(AL(0) D), (TA(D) )" (1)) = 8
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defines a codimension one subvariety W, of H} (Gy,U). For P = A(b, z), the left
hand side of this equation is equal to

) wae+ ¥ ([a) |4+ X oz [ o] Burew -

0<i,j<g 0<k<yg
Then, as in [31], jp_l(Wa) is finite, completing the proof of the proposition. |

Remark 5.6. Note that the constants d; and c;; depend on the choice of splitting
of the Hodge filtration. However by Remark 4.9, the left hand side of (11) is
independent of the splitting.

Remark 5.7. If Z; and Z5 are two nontrivial Tate classes in the kernel of the
cup-product, and Z; # —Z,, then their sum will be another such Tate class, and
the associated mixed extension Az, z,(b, z) is simply the Baer sum of the mixed
extensions Az, (b, z) and Az, (b, z) corresponding to Z; and Zs; i.e., in the notation
of Section 4.1,
AZ1+Z2 (b7 Z) = AZ1 (b7 Z) +o,1 AZz (b’ Z)'

Hence by additivity, h,(Az, 4+2,(b,2)) = hyp(Az, (b,2)) + hp(Az, (b, 2)), and so we
get no new equations for X (K,). On the other hand, if Zi,...,Z; is a basis for
Hom(Q,, Ker(A2H'(X,Q,) — Q,(—1))(1), then the morphism

H}(Cy, Uz) = H}(Gy, V) x O
sending a torsor P to
(me(P), by (Az, (0)P)), . B (Az, (1))

is surjective. Since X (K, ) has Zariski dense image in H} (Gp, Us), this implies that
we obtain d independent equations satisfied by X (Q).

Remark 5.8. In the sequel to this paper [%, Lemma 13|, it is shown that X (K,)y
is equal to the set of z € X (K,) satisfying (10).

To complete the proof of Theorem 1.2, we need to relate h(A(b, z)) to a height
pairing between algebraic cycles. This identification is explained in §6.

5.3. Equations for X(K,)y when the Mordell-Weil rank is larger than
the genus. We briefly consider the case where the rank is larger than the genus.
Then the formula becomes more complicated, as to get constraints on the height
of A(b, z), one needs to know the class of A;(b,z) in H}(GT, V), and this can no
longer be recovered directly from its image in H} (Gp, V). Instead one shows that
the class of a point in H*(Gr,V) is ‘overdetermined’ by the linear and quadratic
relations it satisfies and produces an equation just involving functions on X (K,)
by taking an appropriate resultant.
For convenience, we fix a connected component of Sel(Us) corresponding to

o = (au) S H ]Q(X(KU))a
vETy

and describe

X(Kp)a = Gy Mocp (] 40) 7M@) € X (K)o
veTy
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Suppose that rk J(K) =n = g + k, and that rkNS(J) > k. Let
(Zoy -+ s Zk) - Q=) s Ker(A2HL(X) — HZ,(X)).

be an injective Galois-equivariant homomorphism, let Uz, be the quotient of U,
corresponding to Z,,, and let Az (b) denote the corresponding quotient of As(b).
For 0 < m < k, define ,, to be minus the sum of the local heights of Az_ (b))
away from p:
U == Y hy(Ag, (0)*)).
veTy

Let Dy, ..., D,_1 be elements of Pic’ (X) generating PicO(X) ®Q. For 0 <m <k,
let (a(Z)ij)o0<i,j<n denote the matrix of the endomorphism of J(K) ® Q induced
by Zm, and let the image of IAz, (b) in HY(Gr,V) equal Y ¢(Zp)ik(D;). Let F,
in @p[S0,...,5-1,T0,...,Tn—1] for 0 < m < n denote the following polynomial:

Tm—Z?;(}ijDjwm 0<m<g-1
T —=m—g =2 0<i jen MDis D) Si(c(Zim—g) S5 + 2 0<ian U Zm—g)1551), g <m <n.

Proposition 5.9. Let F' = Res(Fy,. .., F,) € Qy[Ty,...,T,] be the resultant of the
polynomials Fy, ..., F, with respect to the variables Sy, ...,Sn—1. Then the set of
z in X(K,) such that

F(/ wo,...,/ wg_l,hp(AZO(b,z)),...,hp(AZk(b,z))> ~0
b b
is finite and contains X (K )q.

6. CHABAUTY-KIM THEORY AND p-ADIC HEIGHTS

This section is concerned with relating the mixed extensions A(b, z) defined above
to the mixed extensions arising from the theory of motivic height pairings as de-
veloped by Nekoval [35] and Scholl [40]. Such relations have been established in
the case of fundamental groups of affine elliptic curves in work of Balakrishnan and
Besser [3] and Balakrishnan, Dan-Cohen, Kim and Wewers [2] and in the case of
affine hyperelliptic curves in work of Balakrishnan, Besser and Miiller [5].

6.1. Notation. In this section, we will repeatedly consider various Ext groups of
constructible Qp-sheaves on X x X. As all cohomology will be étale, we will omit
subscripts. For codimension one cycles Z;, Zo C X x X, we will write H*(X x X —
|Z1];]Z2|) to mean
Bxt’ (j177 Qp, 255 Qp) = Qp @ U Ext' (juji Z/p"Z, 233 2/p" L),

where j; and j2 are the open immersions of the complements of Z; and Z3 into
X x X, and the Ext groups are in the category of constructible sheaves on X x X.
Similarly if 41,42 are the closed immersions of |Z1| and |Z3| into X x X we write
Hiy, (X x X;|Z2|) to mean Q, ® lim Ext’(i1,i{Z/p"Z, j21j3Z/p"Z), and so on. We
write D.E to mean the intersection number of the cycles. For a smooth variety S
and a cycle E in Z*(S) we write clg to mean the induced homomorphism

Qu(—k) — HE(S)
and write clg to mean the composite map

Qp(—k) — H¥(S) — H*(S).
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Finally, to simplify notation we will often write H*(X) to mean H*(X), etc.

6.2. The height pairing on algebraic cycles. To relate fundamental groups to
p-adic heights, we first explain what the local height functions defined above have
to do with height pairings. We restrict attention to the case of the p-adic height
pairing on the curve X. Given a pair (Z, W) of cycles in DiVO(X) with disjoint
support |Z| and |W|, we construct a mixed extension Hx (Z, W) with graded pieces
Q,,V, and Q,(1) as a subquotient of H'(X — |Z|;|W])(1) as follows [35, §5.6].
The representation H'(X — |Z|;|W|)(1) is a mixed extension with graded pieces
Ker(HﬁZl(Y) — H?(X))(1), V and Ker(HﬁW‘(Y) — H?(X))*. Pulling back by

a _ _
Qy =5 Ker(Hfy (X) » H*(X))(1)
and then pushing out by the dual of

Qp(~1) 2% Ker(H, (X) - HA(X))

gives a mixed extension with graded pieces Qp,V, and Q,(1), denoted Hx (Z,W).
Composing with h, gives, at each prime, a functional

(Z, W) — hy(Hx(Z,W)).
By [35, §2], this is bi-additive, symmetric, and if Z = div(f) then
ho(Z, W) = X (f(W)).

We denote h, (Hx (Z,W)) simply by h,(Z, W). Given cycles Z and W in Div®(X )
with disjoint support, one defines the global p-adic height h(Z, W) associated to
X, 8 to be the sum over all v of h,(Z,W). The function h is bilinear and factors
through Pic(X) x Pic’(X), unlike the local heights.

6.3. Beilinson’s formula. The proof of the relation to p-adic heights starts with
a motivic interpretation of A, (b, z), due to Beilinson [21, Proposition 3.4] and is
followed by a little diagram chasing. To state Beilinson’s theorem, let Y be a
smooth geometrically connected variety over a field K of characteristic zero. Let b
and z be K-rational points of Y. As before, let

An(Y)(b) == Qi (Y, b)] /1"

and
A (YV)(b,2) = Qp[r{" (Y, b, 2)] @ st (7 ) An(Y) (D)

Theorem 6.1 (Beilinson [21, Proposition 3.4]). Let Y™ denote the n-fold product
of Y over K. Let Dy denote b x Y"1, D,, denote Y™ ! x z, and for 0 < i <
n, define D; to be the codimension one subscheme of Y™ on which the ith and
(i + 1)th coordinates are equal. Then there is a functorial isomorphism of G -
representations

An(Y)(b, 2) :{ H* (Y5 Uy D) b#z

HT UL, D) 60, b=z
We will be interested in applying Theorem 6.1 in the case when n = 2, for

the smooth projective curve X and for the affine curve Y := X — x obtained by
removing « € X(K). Define S :=Y x Y.
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Let b and z be distinct, both not equal to z. Define X := {b} x X, X5 := X x{z},
and define

i1, iyin i X o X x X

to be the closed immersions with images X, Xo, and A, respectively. For future
use we also let

T, T : XxX—=X
denote the projection maps. We use the same notation for the corresponding maps

with X and X x X replaced by Y and Y x Y.
By Beilinson’s theorem, the diagram

0 V@2

As(Y)(b,2) — A1(Y)(b,z) — 0

J J

0 —— Coker(Q,(1) > V2) —— Ay(X)(b, 2) — A1 (X)(b,2) — 0

is dual to
(12)
0 — HY(X;{b,z}) — H2(X xX; X;UX5UA) — Ker(H*(X)®2 5 H2(X)) — 0
| |

0—— HYY;{b,2}) —— H*(S; X1UXoUA) ———— HY(X)® HY(X) —— 0.

Here, the top right morphism is the map

H* (X x X; X1 UX,UA) = Ker(H*(X x X; X1 UX,) = H*(X;bU2))
composed with the isomorphism
Ker(H?(X x X; X1 UXy) — H*(X:{b,2})) ~ Ker(H'(X) ® H'(X) - H*(X))

coming from the commutative diagram

H2(X x X; X1 UXy) — HYX;b) @ HY(X;2) — HY(X) @ H'(X)

|a T

H2(X; {b, 2}) ————— H(X;{b, 2}) ———— H*(X)

and the bottom right map is similarly coming from an isomorphism H?(S; X; U
Xo) ~ HY(X)®2,

Via Kiinneth projectors, we have a cycle class map clz : Q,(—-1) - H'(X) ®
H'(X). Via the cycle class map, we may pull back the bottom row of (12) to obtain
an extension of Q,(—1) by H'(Y;{b,z}), giving a mixed extension with graded
pieces Qp(—1),V(—1) and Q,. Let Ez = Ez(b,z) be the mixed extension with
graded pieces Q,, V and Q,(1) obtained by twisting this by Q,(1). As explained
above, Ez is the Tate dual of Az(Y)(b,z). If the intersection number of Z with
A — X7 — X, is zero, then its cycle class lies in the image of ¢, hence in this case
we may pull back the top row of (12) by clz, and then Ej is the Tate dual of
A7(X)(b, 2).
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6.4. h(A(b,z)) as a height pairing between algebraic cycles. Via the coho-
mological characterisation of Ayz(b,z), describing the local heights of A(b, z) in
terms of the height pairings on X amounts to finding divisors D;, Dy in Div®(X),
and an isomorphism between the subquotient H'(Y — |Dy|;|D2|) corresponding to
h(D1, D) and the subquotient of H2(S; X; U X5 U A) corresponding to A(b, z).

Let Z be a divisor of S intersecting X1, X5, and A properly. We somewhat
abusively denote the composite map

Q,(—1) 2% H2(S) —» H'(X)®? = H2(S5; X, U X»)
by clz, where the last map is the isomorphism defined above.
Definition 6.2. Define D(b, z) € Div?(X) to be the cycle

INZ — {72 — 52+ (Z.X1+ Z. Xy — Z.A\)x.

The following theorem says that the mixed extension A(b, z) is exactly the one
built out of the degree zero divisors z—b and D(b, z). In [19, Theorem 2.2], Darmon,
Rotger and Sols proved that the Abel-Jacobi class of D(b, z) is equal to the extension
of Z-mixed Hodge structure corresponding to the motive whose étale realisation is
ITA(b,z). This generalised previous work of Kaenders [29]. The theorem below
refines this to determine A(b, z) as a mixed extension of k(z — b) and TA(b, 2)*(1).

Theorem 6.3. Let Z be any codimension 1 cycle in X x X whose image in H?(S)
is nonzero. The mized extension Eyz is isomorphic to Hx(z —b,i\Z —i1Z —i5Z +
mx)(—1), where m is the intersection number of Z with X1 + Xo — A, and Hx is
Nekovdi’s mized extension construction defined in Section 6.2.

Before giving the proof of this theorem, we explain how it completes the proof
of Theorem 1.2.

Proof of Theorem 1.2. By Theorem 6.3, for all v,
hy(A(b, 2)) = ho(Ez) = h(z = b, D(b, 2)),

as Bz and Hx (z—b, D(b, z)) are isomorphic mixed extensions and h(z—b, D(b, z)) =
h(Hx(z — b,D(b,z))) by definition. Hence Theorem 1.2 follows from Proposition
5.5. d

Remark 6.4. One may also use Theorem 6.3 to turn Remark 3.3 into a formula
computing a finite set of points containing Y(O). More precisely, if b is an integral
point of Y, and Z is a cycle with nonzero image in A2H'(X), then for all v not
dividing p, h,(z — b, (iy — 47 — i5)Z + mx) takes only finitely many values and is
identically zero on all primes of good reduction, and one obtains a formula for a
finite set containing Y(O,)2 N X'(K,) in terms of hy(z — b, (i} — i —3)Z + mx)
and log ; in an analogous manner.

Proof of Theorem 6.5. For any cycle W C X we have a commutative diagram with
exact columns and rows

H‘li*AW‘(Y; {b,2}) ———— H?

(S X1UXaUA) —— HZ

‘WI(S, X1 UXQ)

|

HY(Y;{b,2}) —————— H?(S; X1 UX2UA) ———— H?(S; X1 U X2)

|

HY Y — [iA W5 {b,2}) — H2(S — [W|; X1 U X2 UA) — H2(S — |W|; X1 U X2).
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To prove the theorem, we first find a cycle W such that the image of clz(Q,(—1))
in H2(S — |[W|; X1 U X3) is zero. This identifies Ez with a subspace of
HYY — |is\W|;{b,2}). One then determines the subspace exactly by giving a
cohomological interpretation of the inclusion of the weight 2 part of E inside the
weight 2 part of H(Y — [iAW]; {b,2}).

Suppose it Z = S n;x;. Then w3iiZ = S n;x; x X. Similarly, define 7}i32.
Define

W =27 —n3iiZ —nyisZ.

Lemma 6.5. The image of clz(Q,(—1)) in H*(S — |W|; X1 U X3) is zero.

Proof. Let D := X x X —S. It is enough to show that clz(Q,(—1)) is in the image
of
H|2W\UD(X x X; X1 U Xy) — H*(S; X1 U Xo).

Let Wy := |[iW|Ui; D and Wy := |isW|Ui; ' D. There is a commutative diagram
with exact rows

X3 X1 U Xz) — HRy (X x X) — HE, (X) ® HE,, (X)

H2(X x X; X1 UXg) —— H3(X x X) —— H?(X1) ® H%(X2).

The class of Z in H?(X x X) lifts to an element of HZ, (X x X) by construction.
Hence to show clz(Q,(—1)) lifts to an element of HZ, (X x X;X; U X»), it is
enough to show that it lies in the kernel of
— . &en
Hiyup(X x X) = Hiy, (X) & Hiy, (X).
This is the case since, in Hg, (X), we have i{m3iiZ = iiZ and i{n}i3Z = 0, and

similarly for Hy, (X). O

Hence we deduce that Ez is a subobject of H(Y — |iAxW|; {b, z}), and all that
remains is to determine the homomorphism

Qp(=1) = Hijy e (X)

induced by this identification. Let ¢ : Ker(y) — Coker(«) denote the connecting
homomorphism associated to

HYY;{b,2}) ———— H*(S; X1UX2UA) ———— H?*(S; X1UX5) —— 0

le |’ |

0 — HYY — [iaW|; {b,2}) — H*(S — |W|; X1UX2UA) — H?*(S — |W|; X1UX>).

Then by construction, Ez is isomorphic to the pullback of H(Y — i\ W|; {b, 2})
by the homomorphism
Qp(—1) — Ker(y) N Coker(a) — HIQZ'*AWI(Y; {b, z}).
We claim that the diagram
0

Ker(y) ———— Coker(a)

loa

Hpy (85 X1 U X)) — Hﬁzm(y;{b,z})
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commutes. This follows from the definition of the long exact sequence in cohomol-
ogy associated to a short exact sequence of sheaves: for example, it is implied by
the following lemma, whose proof we sketch.

Lemma 6.6. For 1 <4,5 <3, let I?; be complexes of abelian groups, and let

0 0 0
0—— Ity — Ity — I8 — 0
0 134 I3, I35 0
0—— I3y —— I35 — I§3 — 0
0 0 0

be a commutative diagram of abelian groups with exact columns and rows. Define
Jy = Ker(H'(I35) — H™(I3,)),
Jy == Coker(H' ' (I3 5) — H'(I3,)),
Ky = Ker(H'(I} 3) — H*Y(13,)),
Ky := Coker(H'"'(I3 3) — H'' (I} ,)).

Let
§ : Ker(Jy — H'(I3 3)) — Coker(H'(I3 1) — J2)

be the connecting homomorphism associated to

Hi(f,l) — Hi(fz) T 0
O JQ Hi(_[372) — Hi(Ig,g).

Then the diagram

Ker(Ji — H'(I33)) 9, Coker(H (I2,1) — J=)

_— \K2
\ /

H(I3) ———————— H'"™ (I11)

K

commutes.

Proof. Let dﬁj be the differential Iik,'j — Iik’;rl and let Z;fj = Ker(dﬁj). Consider the
following function from K; and Ks: start with v; in K7, lift to vs in Zis, lift that
to get vs in 1572, take differentials to get v4 in Z%El, check that this can be lifted
to vs in Zﬁl, take its image in K5. We claim the top and bottom maps from K3

to Koy are both instances of this construction. In the top map, one starts with an
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element in Z} 5, maps it to an element of Zj 5, lifts it to an element of Zj ,, maps
it down to Zj4 ,, lifts it to an element of Zj |, lifts that to an element of I}, maps
it to an element of Z;Jrll and finally lifts that to an element of Z”l. In the bottom
map, one starts with an element in Z} 3, lifts it to an element of Ii 2, maps that
down to an element of Z{’;l, and then lifts that to an element of Z H'l. This proves
the claim, since I7 5 and I3, are both subcomplexes of I3 5, and the dlfferentlals on
I 5 and I3 are just the restriction of the differential on I3,. ]

By commutativity of the diagram

| s

HE (Vi {b,2}) —— HE (V)

\WI

we deduce that Ey is isomorphic to the pullback of H'(Y — [i\W|; {b, z}) by
cligw = Qp(=1) = Hy (V).
Finally, we show that this implies that the map
Qp(—1) = Ker(Hf, e (X) = H* (X))
is equal to
cliyw-w.a) = H\Qi*AW\Uw(X)'
Via the isomorphism H'(X;{b,z}) ~ H*(Y;{b, z}), one obtains an isomorphism
HE; ) (Y) == Ker(H; )00 (X) = H*(X))

which sends the class of a cycle Y d;(z;) with support in WNY to > d;(z;)—(>_ d;)x.
This completes the proof of the theorem. ([

7. p-ADIC HEIGHTS ON HYPERELLIPTIC CURVES

In this section, we recall facts about p-adic height pairings and use them to relate
the height pairing of the cycles z — b and D(b, z) to the height pairings arising in
Theorems 1.1 and 1.4. We fix a choice of idele class character y and an isotropic
splitting s of the Hodge filtration on H(E}R(XKP).

By the work of Besser [10], Nekovar’s p-adic height pairing is equal to the p-adic
height pairing of Coleman and Gross defined in [18]. In [3, §2], it is shown that one
may extend the Coleman-Gross local height pairing to divisors with non-disjoint
support, although as in the case of the real-valued height pairing, such an extension
will, in general, depend on a choice of a global tangent vector at each point. As
explained in [5], there is a canonical choice of such a tangent vector when X is a
hyperelliptic curve with a fixed odd degree model.

We write h, (D) to mean h,(D, D), and h(D) to mean ), h,(D). When X = E
is an elliptic curve with origin oo, for z in F(K,) we define

hy(2) 7= ho((2) = (00)).
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7.1. Height identities. Let X be a hyperelliptic curve, and let w denote the
hyperelliptic involution on X. In this subsection, we briefly review the theory of
height pairings on hyperelliptic curves [3, 4].

Definition 7.1. For a divisor D on X, define DV := D4+w*D and D~ := D—w*D.

Lemma 7.2. For any divisors D1, Dy € Div’(X),
1 1
hU(DlaDQ) = ZhU(Df—aD;) + lhv(Dl_7D2_)
Part (i) of the next lemma is proved in [5] (see (4.3) and the subsequent discus-
sion). Part (ii) also follows straightforwardly from the proof.

Lemma 7.3. Let X be a hyperelliptic curve of genus g, defined by a monic odd
degree model y?> = f(x). Let oo denote the point at infinity.
(i) Let z be a point of X not equal to oo, with y(z) # 0. Then
hy(2T —200) = 2x0 (y(2)) + 2x0(2).
(#i) Let z1, zo be points of X not equal to co. Suppose x(z1) # x(z2). Then
ho(2] — 200, 25 — 200) = 2x,(2(21) — 2(22)).

Proof. As explained in [5, §4], one finds that normalised parameters at z and w(z)
are given by x—x(2)/2y(z), and that —y /291! is a normalised parameter at infinity.
The lemma now follows from the definition of the Coleman-Gross pairing on divisors
of non-disjoint support. O

Lemma 7.4. Let E be an elliptic curve
y? =23 +ax® +bx +c.
Then for any z1, ze in E both not equal to co, and with x(z1) # x(z2),
2hy (21 — 00) + 2Ry (22 — 00) — hy(21 — 22) — hy (21 — w(22)) = 2x0(2(21) — 2(22)).
Proof. We first break the left hand side into symmetric and antisymmetric parts.
The antisymmetric part equals
1

_ 1 _ 1 _ _ 1 _ _
§hv(z1 )+ ihv(zz ) — Zhv(*’d —zy) — ihv(zl + 25 ).

By expanding, this can be seen to be zero. The symmetric part equals
Shu(zF = 200) + Sha(f — 200) — shu(e — ).
Expanding, this equals
%hv(zf — 200, 24 — 200) + %hv(z;r — 200, 2 — 200),
hence the result now follows from Lemma 7.3. O

Lemma 7.5. For any z not equal to oo,
hy(z — 00, w(z) — 00) + hy(2 — 00,2 — 00) = Xu(2y(2)).

Proof. The antisymmetric parts of h, (z — 00, w(z) —o00) and h,(z— 00, z—00) cancel
out, hence the left hand side is equal to $h, (2" — 200), which equals x,(2y(z)) by
Lemma 7.3. O
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7.2. Integral points on hyperelliptic curves. Let X be a hyperelliptic curve
given by an equation of the form y? = f(x), where f(z) is a monic polynomial in
O[] of degree 2g+1. Let Y = X —oco. Take Z to be the cycle 'y, = {(z,w(z))} C
X x X. Let {z1,...,224+1} denote the set of K points of X with y-coordinate zero,
and let W denote the divisor ), z;. Let b and z be points of ¥ with nonzero
y-coordinate. Then

7Ty = w(b), Ty =w(z), iAlw =W + o0,
hence D(b,z) = W —w(b) — w(z) — (29 — 1)oo. So the class of A(Y)(b, z) is dual to
Hx(z—b,W —w(b) — w(z) — (29 — 1)o0), by Theorem 6.3. The following lemma
illustrates how Theorem 1.1 may be deduced from Theorem 6.3 together with the
affine version of Theorem 1.2.

Lemma 7.6. For any prime v,
hy(z —b,D(b,2)) = hy(z — 00) — hy(b — 00).

Proof. First, note that additivity yields

hy(z —b,D(b,2)) = hy(z —b,W — (29 + 1)00) — hy(2 — b,200 — w(z) — w(D)).
Since 2(g 4+ 1)oo — W = div(y), the first term is equal to x(y(z)) — x(y(b)). For the
second term, since z — b and 200 — w(z) — w(b) are disjoint,
hy(z—b,200—w(z)—w(b)) = %hu(z—b, 2oo—w(z)—w(b))+%hv(200—w(z)—w(b), z—b).
By additivity,

hy(z — b,200 — w(z) — w(b)) = hy(z — 00,00 — w(2)) + hy(z — 00,00 — w(b))

+ hy (00 — by00 — w(2)) 4 hy(00 — by 00 — w(b))
and similarly for h, (200 — w(z) — w(b),z — b). Using the fact that h,(Dq, Dy) =
hy(w(D1),w(Dy)), this gives

hy(z = b,200 — w(z) — w(b)) = hy(z — 00,00 — w(z)) + hy(co — b, 00 — w(b)).

The result now follows from Lemma 7.5. O

7.3. Rational points on bielliptic curves. In this subsection we return to the
case where X is a genus 2 curve of the form 3% = 2% + asz* + as2? + a9, and
explain how to deduce Theorem 1.4 from Theorem 1.2. Let h, and h denote (local
and global, resp.) heights on X, hg, , and hg, heights on Ey, and hg, , and hg,
heights on Fs. Recall from the introduction the associated elliptic curves

E1:y2=x3+a4x2+a2x+a0 Eg:y2=x3+a2x2+a4aox+a8
and morphisms f; : X — E;. Define 71,75 C X x X to be the graphs of the
automorphisms ¢; : (z,y) — (—z,y) and g¢o : (x,y) — (—z, —y) respectively. As
explained at the end of §6.3, the fact that the intersection number of Z; — Z5 with
A — X — X» is zero implies that Z = Z; — Z3 defines a quotient of the fundamental
group of X, and a quotient A(b, z) of A(X)(b, z). Note that

i1(Z1 = Z2) = 91(2) — 92(2), i3(Z1 — Z2) = g1(b) — g2(D),
iN(Z1 — Z2) = (0,+/ag) + (0, —\/ag) — 00 — w(c0),

so D(b, z) = (0,/ag) + (0, —\/ag) — 00 — w(o0) — g1(2) + g2(2) — g1(b) + g2(b). The
following lemma completes the proof of Theorem 1.4.
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Lemma 7.7. For any b and z with x(b) # x(z) and both not equal to zero or
infinity,
ho(z = b, D(b, 2)) = h, o (f1(2) = 00) = h, o (f1(b) — 00) = hp, o (f2(2) — 00)
+ hig, 0 (f2(b) — 00) + 2x(2(b)) — 2x(2(2))-
Proof. For i = 1,2, let D; denote the divisor w(f;(z)) + w(fi(b)) — 200. Then
D(b, z) = —00 —w(o0) 4 (0, Vao) + (0, =v/ao) — g1(2) + 92(2) — 91(b) + g2(b)
= f1(D1) = f5(D2),

hence

hyo(z = b, D(b, 2)) = hp, »(f1(2) = f1(b), w(f1(2)) + w(f1(b)) — 200)
— hiy 0 (f2(2) = f2(b), w(f2(2)) + w(f2(b)) — 200).
As in the proof of Lemma 7.6,

h, o (f1(2) = [1(0), w(f1(2)) + w(f1(b)) = 200) = hp, v (f1(2) — 00) = h, »(f1(b) — o0)
+x(y(f1(2))) = x(y(f1(b)))

and similarly for fo. Hence

hy(z = b,D(b,2)) = hp, o (f1(2) — 00) = hp, o (f1(b) — 00) — hp, o (f2(2) — 00)
+ hp, o (f2(b) — 00) + x(y(f1(2)y(f2(0))/y(f1(0))y(f2(2))).

The lemma now follows from recalling that y(f1(z))/y(f2(2)) = aox(2)?. O

The proof of Theorem 1.4 now follows from Theorem 6.3 and Lemma 7.7.

8. COMPUTING X (K,)y AND X (K)

In this section, we explain how to use Theorem 1.4 in practice and describe the
computation of X (K,)y, where X is a bielliptic genus 2 curve whose Jacobian
has rank 2 and U is associated to the cycle Z as in Section 7.3. Throughout this
section, we will use the phrase “computing X (K, )y” to mean “computing a finite set
containing X (K,)y” (though see Remark 5.8). We give two numerical examples of
X (Kp)u and further discuss how one might effectively extract X (K) from X (K,)u.
We assume in this section that p is a prime of good reduction for X and of ordinary
reduction for J.

8.1. An alternative formula for X (K,)y. We record the following slight variant
of Theorem 1.4, which turns the computation into one which can be carried out
over two affine patches covering X (K).

Corollary 8.1. Let X/K be a genus 2 bielliptic curve
y2 = 2% 4+ as2* + asz? + ag

over K = Q or an imaginary quadratic field, and E; an elliptic curve as above.

Define Q; € E;(Q) by Q1 = (0,+/ag), Q2 = (0,a0).
(i) For allvtp, andi=1,2,

hg,o(fi(2) + Qi) + hi, o(fi(2) — Qi) — 2hE,_, »(f3-i(2))
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takes only finitely many values on X (K,), and for almost all v is identically zero.
(ii) Suppose tk E1(K) = rtk Eo(K) = 1, and let P; € E;(K) be points of infinite

he, (F1) Let ; denote the finite set of values taken by

order. Let o; = [KQlToz, (P

Z (hew(fi(2) + Qi) + b, o (fi2) = Qi) = 2hi,_, o(f3-i(2))) ,

vip
for (zv) in [ [, X(Ky). Then fori=1,2, X(K) is contained in the finite set of z
in X(K,) satisfying
(13) pi(2) 7= 2hp, . p(f3-i(2)) = hm p(fi(2) + Qi) = hp, p(fi(2) — Qi)
— 203 IOgE3,,;(f3—i(Z))2 + QO‘i(loegEi(fi(Z))Q + IOgEi(Qi)Q) € Q.
Proof. This follows from Theorem 1.4 together with Lemma 7.4. (]

8.2. Computing all points in X (K,)y. Using Corollary 8.1, we calculate X (K, )u
as the union of points found in the following two computations:

X(Kp)o ={z € X(Kp)v : 2(2) ¢ p,p1(2) € L}U{z € X(Kp)u = 2(2) € p, pa(2) € Do}

We explain in Algorithm 8.3 below how to compute each of the following terms:

p1(2) = 2hm, p(f2(2)) = hp, p(f1(2) + (0, Vao)) = hg, »(f1(2) + (0, —Vao)))

Steps 7d,e,f Steps 7b,e,f Steps 7c,e,f
2 2 2
— 204 logp, (2(2))* + 204 (logp, (1(2))? + loggs, (0. v/an))?)
Step 3 Step 7g Step 3 Step 7g Step 3

as power series over K, which allows us to search for the points z € X (K,)y that
are solutions to the equation p;(z) = 3 for g € Q.

Essentially all of the terms of p;(z) can be computed in terms of single and
double Coleman integrals. By a double Coleman integral we mean an iterated
Coleman integral of the form f;f 1mi1n2 where n; are differential 1-forms. We recall
an interpretation of the local height h, as a double Coleman integral, which is used
in Algorithm 8.3:

Lemma 8.2. We have that hg, »(z) = [ wowo, where Wy is the dual to wy = "21—;
under the cup product pairing on HtllR(Ei).
Proof. See [, §4], where the local height h), of z — oo is denoted as 7(z). a

Algorithm 8.3 (Computing the set {z € X(K,)v : z(2) ¢ p,p1(2) € N }).
Input: Genus 2 curve X/K defined by an equation y* = x5 + agx* + asa® + ag
such that the corresponding E1(K), Eo(K) each have Mordell-Weil rank 1, a good
ordinary prime p, finite set of values ;.
Output: The following subset of X (K,)u : {z € X(Kp)v : x(2) € p,p1(z) € Q1 }.
(1) Compute points P € E1(K) and Py € E5(K) of infinite order.
(2) Compute global p-adic heights hg, (Py) and hg,(Ps), using minimal models
for Ey, Es, using the algorithm of Mazur, Stein, and Tate [34].
(3) Compute

Ova)  \? ,
IOgEl((Oa\/CTO))Z:(/ w0> , aizma%, i=1,2.
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(4) Compute the cup product pairing between elements in H}n(E1) and also
between elements in HéR(EQ); use this to compute Wy for Fy and wy for Eo
to write hg, , = [ wowo-

(5) Enumerate the list of points D = X (Fp) \ {(0, £,/ao)}.

(6) Initialise an empty set R.

(7) For each D € D:

(a) Compute Q, a lift of D, and a local coordinate (x(t),y(t)) at Q.

(b) Compute Sy := f1(Q) + (0, /ag). Likewise compute f1((z(t),y(t))) +
(0,/ag), which sends the local coordinate to this residue disk.

(c) Compute f1(Q)—(0,/ag). Likewise compute f1((x(t),y(t)))—(0,+/ao),
which gives a local coordinate in the residue disk.

(d) Compute fo(Q). We have fao(x(t)) = (z(t))~2 gives the x-coordinate
of a local coordinate in the residue disk of f2(Q).

(e) Compute the following local heights at p of the points in Steps 7b - 7d:
hEuP(fl(Q) + (07 \/%))7 hEhP(fl(Q) - (Oa \/%))7 hE27P(f2(Q))'

(f) Using Step 4, for each of the points in Steps 7b - 7d, use the local
coordinates computed to calculate a power series expansion of hg, p in
the disk of the respective point, using Step 7e to set the global constant
of integration.

(g) Compute logg, (fi(Q)(1)) =logg, (fi(Q)) + ffi(Q)(t) Wo-

(h) Finally, let p1(t) be the appropriately weighted sum of contributions
from Steps 3, 7f, and 7g, as in Equation 13.

(i) For each B € Qq, compute the set of roots of p1(t) = B. For each root
r, append X (z(r),y(r)) € X(K,) with multiplicity to the set R.

(8) Output R, the subset {z € X(Ky)u :2(2) € p,p1(z) € %} C X(Kp)u.

Remark 8.4. We clarify Step 7f above: e.g., for Sy, first compute a local coordinate
S1(t) = (z1(t),y1(t)) at Sy (if Sy is non-Weierstrass, z1(t) = ¢ + x(S1)) and use
it to compute hg, ,(S1(t)) = hg, p(S1) — 2 (f;’ll(t) wowo + fssll(t) wo il wo) . Then
use the parametrisation computed in Step 7b so that this power series in the disk of
S1 uses the correct parameter, that induced by the local coordinate at (). Likewise,
in Step 7g one must also be careful about local coordinates: one way is to compute
a local coordinate f;(Q)(t) = (z:(t),y:(t)) at f;(Q) to compute ffi(Q)(t) wo, then
correct the parametrisation so that this power series within the disk of f;(Q) uses
the correct parameter, that induced by the local coordinate at @, as in Step 7f.

The computation of py(z) € s is carried out in an analogous manner and only
involves the two residue disks of X (K,) not considered in Step 5 of Algorithm 8.3.
Putting this together gives an algorithm to compute X (K, )y .

Remark 8.5. For a discussion of the p-adic precision in the computation of Coleman
integrals resulting in a provably correct number of terms in the corresponding power
series expansions, see [0, §3.3]. Applying Strassman’s theorem gives an upper bound
on the number of roots, which may be found explicitly using gp.

We now give two examples illustrating the algorithm to compute X (K, )y, car-
ried out using Sage [14].
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8.3. Example 1: Rational points on a genus 2 bielliptic curve with rank
2 Jacobian. We compute X (Q), where X is the genus 2 curve

X:y? =20 —22% — 224+ 1.

Let E; and E»> be the corresponding elliptic curves, which each have Mordell-Weil
rank 1 over Q and integral j-invariant. On Ej, the point P; = (0,1) is of infinite
order, and on Fs, the point P, = (0,1) is of infinite order. We fix a branch of the
p-adic logarithm log,, and take x to be the cyclotomic character, normalised so that
Xp(2) = log,(2) and for v # p, x.(2) = —v(2)log,(v). Note that, with respect to
this choice of character, our local height is twice the local height as defined in [43].
Moreover, E1 and Es each have good ordinary reduction at p = 3. We determine a
finite set containing X (Q3)2 and use this to determine X (Q) exactly. We are not
able to determine whether X (Q3)2 = X(Q).

8.3.1. Local contributions away from p. The curve X has bad reduction at 2, bad
but potential good reduction at 7, and good reduction at all other primes. Hence
to determine the set 2 we need to determine the possible values of

hE, 2(f1(2)) = hi, 2(f2(2)) — 2x2(x(2)).

First note that X (Q2) has no Qy points whose z-coordinate has valuation zero (e.g.
by checking mod 8). It will turn out that the above functions can (each) only take
two possible values, corresponding to v(z) > 0 and v(z) < 0, where v denotes the
2-adic valuation. We compute local heights on F;. The equation given above for Ey
is minimal at 2. F; has type II reduction, which means that the singular point mod
2 does not lift to a Q2 point. Hence hg, 2(f1(2)) = 2max{0, —v2(z(2))} log,(2).
We compute local heights on E5. The equation given for Fs is minimal, and it
has type IV reduction. The unique singular point of the special fibre is (0,1). By
Silverman [43], the local height at points (zg, yo) of bad reduction is given by

2
h,2((20,90)) = =5 (1 + v(y0)) log, (2)-
Hence the possible values of hg, 2(f2(2)) are 2max{0,v(z(z))}log,(2) when the

valuation of x(f2(2)) is positive, and —% log,(2) when the valuation of z(f2(2)) is
negative. Hence

b a(f(6) ~ k(o) ~ 2uala) = { a0 o HEEN S0

Finally hp, »((0,1)) = —21log,(2) and hg, 2((0,1)) = 0.
Hence by Lemma 7.4,

hE, 2(f1(2)+(0,1))+hg, 2(fi1(2)—(0,1))=2hE, 2(f2(2)) = { L1og,(2) U(x(z); <0

(ol PH0. ) e, a( () (0. 1) -2 () = { {108 M <D

We deduce Q; = {0, 3 log,(2)} and Oy = {-3 log,,(3), -3 log,,(3)}.
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8.3.2. Local contributions at p = 3. By Corollary 8.1, to determine the X (Qs)y,
we need to carry out Algorithm 8.3 twice: for the residue disks corresponding to

oot, we find z with p1(z) € @, and for the residue disks corresponding to (0, +1),
we find z with pa(z) € Qo. This gives X(Q3)y:

X (Fs) recovered z(z) in residue disk | z € X(Q) | pi(2) =S
oot 371 +1432 423" +0(3% pi1(z) =0
2371 41423423243 4+2.3°40(3° p1(z) =0

oo™ oo™ p1(z) = 5 logs(2)

(0,+1) 2:3+3°+3° 43" +3°+03°% | (2,£L) | pa(2) = —Elogs(2

3+3°+3°+3'+3°+0(3% | (-%,£2) pz(z)=—§10g3(2

O(3%) | (0,%£1) | pa(2) = —35logs(2

Code illustrating Algorithm 8.3, producing this set of points, is available at [7].
Theorem 8.6. We have X(Q) = {(0, +1), (%,:I:é) , (f%, :i:%) ,ooi} .

Proof. We wish to compute X (Q) from X (Q3)y. To do this, we must do two things:
prove that the points in X (Q3)y which do not appear to be rational actually are
not rational and check the multiplicities of all recovered points, to rule out the
possibility that the table collapses multiple points that are just 3-adically close
to the points in the table to the indicated precision. We start with the second
task. Our computation shows that the solution z(z) = O(3%) occurs as a root
of p(z) = —35logs(2) with multiplicity two, which gives the known global points
(0,£1) and two points 3-adically close to (0, +1). Likewise, solving p(z) = 3 logs(2)
yields oo™ on X and two points 3-adically close to oo*. The other points in
the table, however, occur as roots with multiplicity 1. Note that p(z) is an even
function, so by considering the local expansion of p at each of the global points
(0,1),(0,—1),00T, 007, we see that its power series expansion must have a global
double root at each of these points.

Now we show that the “extra” Qs points recovered in the disks of co® cannot be
rational, for the following formal group consideration. Consider z € X (Q3) with
v3(z(z)) = —1. Then the corresponding point f;(z) on Fj has vs(xz(f1(z))) = —2.
However, note that E;(F3) has order 3 and F4(Q) is generated by P, where P =
(0,1). Thus the smallest multiple of P in the formal group is 3P = (—8%, —%),
which implies that the v3(2(Q)) < —4 for any Q € (3P). So f1(z) cannot be rational
and thus z € X (Q). Thus we conclude X (Q) = {(O7 +1), (%, i%) , (—%, i%) ,ooi} .

([l

8.4. Example 2: X((37)(Q(7)). Over Q, the modular curve X(37) has the model
y? = —2% — 92% — 1122 + 37. Recall that X((37) has good reduction away from 37.
For convenience, we make the change of variables (x,y) — (iz,y) so that we take
as our working model

X 2 =2a% —92* +112% 4+ 37.

Let J denote the Jacobian of X. We have rk J(Q) = rk Jo(37)(K) = 2. We thank
Daniels and Lozano-Robledo [1] for bringing this example to our attention.

In this subsection, we construct finite sets of p-adic points containing X (K, )2
for various primes p. Using the Mordell-Weil sieve, as carried out by J. Steffen
Miiller (described in Appendix A), this is then used to determine X (K). We work
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with the following models of F; and Fs:
Ei:y? =2 162+ 16 Ey :y? = a3 — 2% — 373z + 2813,

with maps f; from X to E; that are given by sending (x,y) to (2 — 3,y) and
(37272 +4,37273), respectively.

We have rk By (K) = rkEy(K) = 1 and we take P, = (0,4) € Ei(K) and
P, = (4,37) € E3(K) as our points of infinite order. We use primes p which are
good, ordinary, and, so that we work over @, and not a quadratic extension, split in
K and Q(\/ﬁ): we take p = 41,73, and 101. For each of these primes p, we choose
a prime p lying above it in Ok, and take x to be a non-trivial idele class character
of K which is trivial on (9;. We normalise x so that x37(37) = —log,(37).

8.4.1. Local calculations at 37. In this subsection we prove that for all b, z € X (Qs7)
with z(z) and x(b) not equal to infinity,

b, 37(f1(2)) = b, 37(f1(0) — hi, 37(f2(2))
+ hg, 37(f2(b)) + 2x37(2(2)) — 2x37(2(b)) = 0.

Recall that by Lemma 7.7, this is equivalent to the statement that the inertia
subgroup of Gg,, acts trivially on A(b, z). In [22] this is proved directly. As that
proof involves other tools we do not want to introduce, we shall prove this by
determining the local heights explicitly.

Lemma 8.7. For all z in X(Qs7), we have
(i) hpy 37(f1(2)) = 2x37(2(2)).
(i) hi, 37(f2(2)) = x37(37).

Proof. Note that there are no Qs7-points of X for which z(z) has positive 37-adic
valuation. The Weierstrass equations given for F; and Fs are both minimal at 37.
The Weierstrass equation for F; is also regular, hence all Q37-points are points of
good reduction. This establishes part (i). The elliptic curve Fs has split multiplica-
tive reduction of type I3. The singular point of Es(F37) is (4,0), and all points of
Es s, in the image of X (Qs7) reduce to this point. By Silverman’s algorithm [13,
Theorem 5.2], we deduce that for all z in X (Qs7), we have hp, 37(f2(2)) = 2x37(37).
This completes the proof of part (ii). O

By Lemmas 7.4 and 7.7, this gives Q; = {3 log,(37)} and Qg = {-2 log,,(37)}.
Hence X (K,)y may be computed by determining the solutions to
pi(2) = 2hp,_, p(fs-i(2)) = h, p(fi(2) + Qi) — b, p(fi(2) — Qi)
—2a3-ihpy_, (fs-i(2)) + 205 (hp, (fi(2)) + logp, (Q:)?) € i,

where Q1 = (—3,v/37) and Q2 = (4, 37).

We computed finite sets containing X (Q41)v, X (Q73)v, and X (Q101)y using the
methods of the paper, using a mild adaptation of the code in [7]. Full output is
given in [7]. Using a slightly modified Mordell-Weil sieve (see Appendix A) on the

sets X (Qq1)v, X(Qr3)v, and X (Q101)y, one may determine the K-rational points
exactly.

Theorem 8.8. We have Xo(37)(Q(i)) = {(£2, £1), (&4, £4), 00T }.

Remark 8.9. We note that the computation of X(Qr3)y recovered the points

(£V=3,44) € Xo(37)(Q(v/=3)) as well.
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APPENDIX A. APPLYING THE MORDELL-WEIL SIEVE, BY J. STEFFEN MULLER

The Mordell-Weil sieve. Let K be a number field with ring of integers Ox and
let X/K be a smooth projective curve of genus g > 2 with Jacobian J/K of rank
r =1k(J/K). Fix an embedding ¢ : X < J defined over K. The Mordell-Weil sieve
is a technique for obtaining information about K-rational points on X by combining
information about the image of X (k) inside J(k,) under ¢ for several primes v of
Ok, where k, is the residue field at v. It was introduced by Scharaschkin [39];
further information on the case K = Q can be found, for instance, in [14] and [37].
Siksek [12] describes a variant of the Mordell-Weil sieve over number fields which
is adapted to work well with his explicit Chabauty method over number fields
introduced in loc. cit., see also §2.1.1.

The general idea of the Mordell-Weil sieve is as follows: Suppose for simplicity
that there are no nontrivial K-torsion points on J (see [0, Remark 6.1] on how
to remove this assumption). Also suppose that we know generators Py, ..., P. of
J(K). Let M > 1 be an integer and let Cpy C J(K)/MJ(K) be a set of residue
classes ¢ for which we want to show that the image of X (K) under ¢ does not map
to ¢ under the canonical epimorphism 7 : J(K) — J(K)/MJ(K). Let S be a finite
set of primes of Ok such that X has good reduction at these primes and consider
the commutative diagram

X(K) = J(K)/MJ(K)

| -

HveS X(kv) T H’UES J(kv)/MJ(kv) .

Here ag = (ay)ves and Bs = (By)ves, where «,, is induced by reduction J(K) —
J(k,) and B, = m, o, is the composition of the canonical epimorphism 7, :
J(ky) — J(ky)/MJ(ky) and the embedding ¢,: X (k,) — J(k,). To prove that
7((X(K))) N Chp = 0 it suffices to show that

as(Cy) Nim(Bs) = 0.

One can also include information at bad primes and “deep” information, see [14].
Now suppose that Py,...,P. € J(K) only generate a subgroup G of J(K) of
finite index. It is often difficult to deduce generators of J(K) from G; in fact, it
is not known how this can be done in practice when » > 0 and g > 3. Instead
one typically proceeds by first saturating G at small primes and then pretending
that G = J(K). The final step is to show that the orders #.J(k,) are coprime to
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the index (J(K) : G) for all v € S, which implies that G and J(K) have the same
image in J(k,) for all v € S.

Sometimes, however, it is advantageous to work directly with a subgroup G,
which is known to be not saturated. In this case, one can use the following
strategy, suggested by Besser. Suppose that v € S is a prime such that D :=
ged (#J(ky), (J(K) : G)) > 1. Let q1,...,qs be the primes dividing D. For
i€ {1,...,5} welet ; = vy, (#J(ky,)) and set n = [[°_, ¢"". Then the reduc-
tion of nJ(K) := {nP : P € J(K)} is contained in the reduction of G mod-
ulo v, so the multiple ne,(P) is contained in the reduction of G at v for every
P € X(ky). Therefore, instead of checking whether 3,(P) € o, (Chr), we check
whether n3,(P) € a,(nCu), where nCp = {nc : ¢ € Cp}.

Quadratic Chabauty and the Mordell-Weil sieve. The p-adic techniques de-
scribed in the main part of the present text give congruence conditions for rational
points on X. More precisely, they can be used to compute, for good ordinary
primes p of O, a finite subset X (K,)y C X (K,) (to finite precision) which con-
tains X (K). After identifying the rational points among X (K, )y, one is left with
the task of showing that the remaining elements do not correspond to rational
points.

It is discussed in [6] how to use the Mordell-Weil sieve for this purpose: Suppose
for now that J(K )tors is trivial and that Py, ..., P. generate J(K). Using linearity
of single Coleman integrals, we can compute, for every point z € X (K, )y, a tuple
(a1,...,a,) € (Z/pNZ)T so that if ¢(z) = a1 Py + ... + a,-P. for integers ay,...,a,,
then a; = a; (mod p") for all i € {1,...,7}. We can apply quadratic Chabauty
for several primes pi,...,ps to Ni,..., N respective digits of precision, and set
M=m- pfi 1...pNs where m is an auxiliary integer. Discarding rational points
and using the Chinese Remainder Theorem, we find tuples (ay,...,a,) € (Z/MZ)"
with the following property: If the set Chs of residue classes in J(K)/MJ(K)
corresponding to these tuples does not contain the image of a K-rational point on
X, then the known K-rational points are the only ones on X. The Mordell-Weil
sieve can be used to prove this.

Suppose now that G C J(K) is a subgroup of finite index that is generated
by the classes of the differences of all known K-rational points on X. Quadratic
Chabauty requires the computation of p-adic integrals and the current implemen-
tation requires this to take place over 5, as opposed to an extension field. Since,
for the combination with the Mordell-Weil sieve, we need to do this for several
primes of good ordinary reduction, we would like to work directly with the group
G, and not with its saturation at small primes. This is possible using the approach
introduced at the end of the previous subsection.

See [0, §86 — 8] for more details about fine-tuning the Mordell-Weil sieve when
used in combination with quadratic Chabauty; after some slight modifications the
statements given there remain valid in the situation considered here.

Computing X((37)(Q(¢)). We use the Mordell-Weil sieve, combined with the p-
adic methods described in the main text, to compute the set of K-rational points on
X0(37), where K = Q(i). Recall from Section 8.4 that X : y? = 25 —92* + 1122+ 37
is a model for X((37) over K and that we have r = rk(J/K) = 2. Note that

A= {(£2,+1), (i : +4), 00T} € X(K),
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where the sign of Y/X is + for co™; we want to show that we actually have equality.
We use the point (2,1) as our base point for the Abel-Jacobi map ¢ : X < J.

The subgroup G of J(K) generated by the differences of points in A can be
generated by P, Q and R, where P = [(—2,—1)—(2,—1)] and Q = [(2,1) — (¢, —4)]
are non-torsion points, and R = [(—i,4) — (i,4)] is a generator of J(K )iors = Z/37Z.
The group G is not saturated at 2; for instance, we have

16[cot — (2,1)] = P —10Q — R.

As discussed in the previous subsection, we nevertheless prefer to work with G
directly, without first saturating at 2.

A detailed account of the computation of the sets X (K, )y for i = 1,2, 3, where
p; is a prime of Ok lying above p; and p; = 41, po = 73 and p3 = 101, is given
in §8.4. After taking out the elements corresponding to the known rational points,
we get a set of tuples (a1, as) € (Z/MZ)?, where M = 9-413-732.1013, and a
corresponding set Cpy C G/MG containing 2099520 residue classes.

To this end, we run the Mordell-Weil sieve (modified as above) with S containing
primes above 7,13,17,29,101, 109, 199, 239, 313, 373,677, 757. We finally show that
no odd prime divides both lem ({#J(k,) : v € S}) and (J(K) : G); this proves
that we indeed have X (K) = {(£2 : £1), (£i,4+4), 00}, thus finishing the proof
of Theorem 8.8.

REFERENCES

1. Personal communication with H. Daniels and A. Lozano-Robledo, 2015.

2. J. S. Balakrishnan, I. Dan-Cohen, M. Kim, and S. Wewers, A non-abelian conjecture of Tate-
Shafarevich type for hyperbolic curves, Math Ann., to appear (2017).

3. J. S. Balakrishnan and A. Besser, Coleman-Gross height pairings and the p-adic sigma func-
tion, J. Reine Angew. Math. 698 (2015), 89-104.

4. J.S. Balakrishnan and A. Besser, Computing local p-adic height pairings on hyperelliptic
curves, IMRN 2012 (2012), no. 11, 2405-2444.

5. J.S. Balakrishnan, A. Besser, and J.S. Miiller, Quadratic Chabauty: p-adic height pairings
and integral points on hyperelliptic curves, J. Reine Angew. Math. 720 (2016), 51-79.

, Computing integral points on hyperelliptic curves using quadratic Chabauty, Math.
Comp. 86 (2017), no. 305, 1403—-1434.

7. J.S. Balakrishnan and N. Dogra, Sage code and data, https://github.com/jbalakrishnan/
QcI.

, Quadratic Chabauty and rational points II: Generalised height functions on Selmer
varieties, arXiv preprint arXiv:1705.00401 (2017).

9. J.S. Balakrishnan, N. Dogra, J.S. Muller, J. Tuitman, and J. Vonk, Explicit Chabauty-Kim
for the split Cartan modular curve of level 13, arXiv preprint arXiv:1711.05846 (2017).

10. A. Besser, The p-adic height pairings of Coleman-Gross and of Nekovdr, Number Theory,
CRM Proceedings & Lecture Notes, vol. 36, American Mathematical Society, 2004, pp. 13—
25.

11. Y. Bilu and P. Parent, Serre’s uniformity problem in the split Cartan case, Ann. of Math. (2)
173 (2011), no. 1, 569-584.

12. Y. Bilu, P. Parent, and M. Rebolledo, Rational points on :63' (p"), Ann. Inst. Fourier 63 (2013),
no. 3, 957-984.

13. S. Bloch and K. Kato, L-functions and Tamagawa numbers of motives, The Grothendieck
Festschrift, Vol. I, Birkhauser Boston, Boston, MA, 1990, pp. 333—400.

14. N. Bruin and M. Stoll, The Mordell-Weil sieve: proving non-existence of rational points on
curves, LMS J. Comput. Math. 13 (2010), 272-306.

15. C. Chabauty, Sur les points rationnels des courbes algébriques de genre supérieur a l'unité,
C. R. Acad. Sci. Paris 212 (1941), 882-885.

16. J. Coates and M. Kim, Selmer varieties for curves with CM Jacobians, Kyoto J. Math. 50
(2010), no. 4, 827-852.



https://github.com/jbalakrishnan/QCI
https://github.com/jbalakrishnan/QCI
https://arxiv.org/abs/1705.00401
https://arxiv.org/abs/1711.05846

17.
18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

QUADRATIC CHABAUTY AND RATIONAL POINTS I 41

R.F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), no. 3, 765-770.

R. F. Coleman and B. H. Gross, p-adic heights on curves, Algebraic Number Theory — in honor
of K. Iwasawa, Advanced Studies in Pure Mathematics, vol. 17, 1989, pp. 73-81.

H. Darmon, V. Rotger, and I. Sols, Iterated integrals, diagonal cycles and rational points
on elliptic curves, Publications mathématiques de Besangon. Algébre et théorie des nombres,
2012/2, Publ. Math. Besangon Algébre Théorie Nr., vol. 2012, Presses Univ. Franche-Comté,
Besancon, 2012, pp. 19-46.

P. Deligne, Le groupe fondamental de la droite projective moins trois points, Galois groups
over Q, Publ. MRSI, no. 16, 1989, pp. 79-297.

P. Deligne and A. B. Goncharov, Groupes fondamentaux motiviques de Tate mizte, Ann. Sci.
Ecole Norm. Sup. (4) 38 (2005), no. 1, 1-56.

N. Dogra, Topics in the theory of Selmer varieties, Oxford Ph.D. thesis (2015).

J.S. Ellenberg and D.R. Hast, Rational points on solvable curves over Q wvia non-abelian
Chabauty, arXiv preprint arXiv:1706.00525 (2017).

G. Faltings, Endlichkeitssdtze fir abelsche Varietdten tber Zahlkérpern, Invent. Math. 73
(1983), no. 3, 349-366.

E.V. Flynn and J.L. Wetherell, Finding rational points on bielliptic genus 2 curves,
Manuscripta Math. 100 (1999), no. 4, 519-533.

J.-M. Fontaine and B. Perrin-Riou, Autour des Conjectures de Bloch et Kato: Cohomologie
Galoisienne et valeurs de fonctions L in Motives, Proc. Sympos. Pure Math, vol. 55, 1994,
pp. 599-706.

W. Fulton, Intersection theory, vol. 2, Springer Science & Business Media, 2013.

A. Grothendieck, P. Deligne, N. Katz, et al., Groupes de monodromie en géométrie algébrique,
séminaire de géométrie algébrique du Bois Marie 1967-1969 (SGA 7 I, II), Lecture Notes in
Mathematics 288, 340.

R. H. Kaenders, The mized Hodge structure on the fundamental group of a punctured Riemann
surface, Proc. Amer. Math. Soc. 129 (2001), no. 5, 1271-1281.

M. Kim, The motivic fundamental group of P!\ {0,1,00} and the theorem of Siegel, Invent.
Math. 161 (2005), no. 3, 629-656.

, The unipotent Albanese map and Selmer varieties for curves, Publ. Res. Inst. Math.
Sci. 45 (2009), no. 1, 89-133.

, Tangential localization for Selmer varieties, Duke Math. J. 161 (2012), no. 2, 173~

199.

M. Kim and A. Tamagawa, The l-component of the unipotent Albanese map, Math. Ann. 340
(2008), no. 1, 223-235.

B. Mazur, W. Stein, and J. Tate, Computation of p-adic heights and log convergence, Doc.
Math. (2006), no. Extra Vol., 577614 (electronic).

J. Nekovaf, On p-adic height pairings, Séminaire de Théorie des Nombres, Paris, 1990-91,
Birkhauser Boston, Boston, MA, 1993, pp. 127-202.

M. C. Olsson, Towards non-abelian p-adic Hodge theory in the good reduction case, Mem.
Amer. Math. Soc. 210 (2011), no. 990, vi+157.

B. Poonen, E. F. Schaefer, and M. Stoll, Twists of X(7) and primitive solutions to x>+ y3 =
27, Duke Math. J. 187 (2007), no. 1, 103-158.

M. Raynaud, I-motifs et monodromie géométrique, Astérisque (1994), no. 223, 295-319, Péri-
odes p-adiques (Bures-sur-Yvette, 1988).

V. Scharaschkin, Local-global problems and the Brauer-Manin obstruction, ProQuest LLC,
Ann Arbor, MI, 1999, Thesis (Ph.D.)—University of Michigan.

A. J. Scholl, Height pairings and special values of L-functions, Motives (Seattle, WA, 1991),
Proc. Sympos. Pure Math., vol. 55, Amer. Math. Soc., Providence, RI, 1994, pp. 571-598.
J.-P. Serre, Galois cohomology, Springer-Verlag, Berlin, 1997, Translated from the French by
Patrick Ton and revised by the author.

S. Siksek, Ezplicit Chabauty over number fields, Algebra Number Theory 7 (2013), no. 4,
765-793.

J. H. Silverman, Computing heights on elliptic curves, Math. Comp. 51 (1988), no. 183,
339-358.

W. A. Stein et al., Sage Mathematics Software (Version 8.0), The Sage Development Team,
2017, http://www.sagemath.org.



42 JENNIFER S. BALAKRISHNAN AND NETAN DOGRA

45. M. Waldschmidt, On the p-adic closure of a subgroup of rational points on an abelian variety,
Afrika Matematika 22 (2011), no. 1, 79-89.

JENNIFER S. BALAKRISHNAN, DEPARTMENT OF MATHEMATICS AND STATISTICS, BosToN UNI-
VERSITY, 111 CummMmINGTON MALL, BosTon, MA 02215, USA
E-mail address: jbala@bu.edu

NETAN DOoGRA, DEPARTMENT OF MATHEMATICS, IMPERIAL COLLEGE LoNDON, LoNDON SW7
2AZ, UK
E-mail address: n.dogra@imperial.ac.uk



	1. Introduction
	2. The Chabauty-Kim method
	3. Non-density of the localisation map
	4. Mixed extensions and Nekovár's p-adic height function
	5. Selmer varieties and mixed extensions
	6. Chabauty-Kim theory and p-adic heights
	7. p-adic heights on hyperelliptic curves
	8. Computing X(Kp)U and X(K)
	Appendix A. Applying the Mordell-Weil sieve, by J. Steffen Müller
	References

