Three-Component Protein Modification Using Mercaptobenzaldehyde Derivatives

Yuanwei Dai, Jiaping Weng, Justin George, Huan Chen, Qishan Lin, Jun Wang, Maksim Royzen, and Qiang Zhang*

Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States

Supporting Information

ABSTRACT: A chemoselective primary amine modification strategy that enables the three-component, one-pot bioconjugation is described. The specifically designed, mercaptobenzaldehyde-based bifunctional linker achieves highly selective and robust amine labeling under biocompatible conditions. This linker demonstrates wide functional group tolerance and is simple to prepare, which allowed facile payload incorporation. Finally, our studies have shown that the introduction of linker does not impair the function of modified protein such as insulin.

fficient chemical modification of peptide or protein systems with multiple components has been shown to be essential toward achieving important biological and therapeutic functions. Several therapeutic applications have recently been reported where proteins have been functionalized with different bioactive components.2 As the case in point, the usage of multiple antigens modified trivalent peptides to trigger a potent immune response,³ linkage of polypeptide and biotin in a three-component fashion to facilitate elucidation of intracellular interactome with pulldown assays.4,5 Despite the aforementioned examples, convergent synthetic strategies to achieve multicomponent peptide assemblies in a one-pot reaction remain challenging.

Many approaches have emerged in recent years. Most notably, Francis et al. reported a three-component Mannichtype transformation for selective tyrosine modification. Meanwhile, Ball and co-workers recently described an organometallic approach for three-component tyrosine bioconjugation.8 Herein, we report a one-pot three-component protocol that is specifically targeting primary amine position at native polypeptides and proteins under mild biocompatible conditions. The described approach builds upon the conventional "click" modification (see Figure 1a) and recently developed bioorthogonal strategies that entail genetic incorporation of unnatural amino acid residues and typically result in monofunctionalized peptides. 10

Our approach is based on the understanding of the unique reactivity of the thiol group toward imines. 11 We hypothesized that alkynyl mercaptobenzoate 1 will be a suitable heterobifunctional linker, which can be concisely synthesized (see Figure 1b). The mercaptobenzoate end of the molecule will

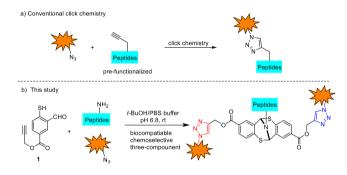


Figure 1. Three-component one-pot bioconjugation: (a) conventional click chemistry and (b) this study.

selectively react with primary amines, whereas an alkynyl group could facilitate a robust copper-catalyzed azide alkyne cycloaddition (CuAAC)¹² within the protein framework. The proposed chemoselective amine conjugation requires no exogenous additives or reagents, concurrent conjugation of primary amines and CuAAC may be performed at the same time in a one-pot manner. Lastly, because of the planar structure of aryl ring, the modification shown is unlikely to impair the native functions and activity of the targeted peptides or proteins.

To test our hypothesis, we performed a model study that is depicted in Scheme 1. A known disulfide substrate (2) was obtained from the commercially available mercapto-benzyl

Received: April 13, 2019 Published: May 6, 2019

Scheme 1. Synthesis of Bicyclic [3.3.1] Framework under Mild Conditions^a

^aReaction conditions: compound **2** (0.364 mmol) was dissolved in THF (0.4 mL), THF/PBS buffer (1:9, v/v), room temperature (rt), 10 h.

alcohol in two steps. The reaction of 2 and glycine methyl ester under conditions of TCEP, THF/PBS buffer (1:9, v/v) at neutral pH (6.8) generated 4 containing a unique [3.3.1] bicyclo nonane structure in 90% yield. Previously, compound 4 has been reported as the analogue of Tröger's base. 14 The pioneering work by Toste and co-workers described synthesis of 4 in nonaqueous solution and at the elevated temperature $(80~^{\circ}\text{C}).^{15}~\hat{\text{W}}\text{e}$ found that the transformation could be performed at room temperature and in a biocompatible PBS buffer (Scheme 1). We believe that the reaction began with reduction of the disulfide bond of 2 to liberate mercaptobenzaldehyde 5. Amination of 5 with glycine methyl ester 3 generated imine 6, which was trapped by a second equivalent of 5. The adduct (7) subsequently underwent intramolecular amination and yielded iminium ion 8. Another intramolecular thiol addition to the iminium intermediate afforded bicyclic product 4, which was confirmed by X-ray analysis.

Intrigued by the benign reaction conditions and excellent yields, we hypothesized that the mercaptobenzaldehyde derivatives could be applied toward the modification of primary amines within the protein's framework. However, utilization of disulfide 2 would not be ideal. The substrate would require disulfide reduction using TCEP, which could also disrupt the protein's disulfide linkages, thereby denaturing the protein. On the other hand, a motif with a similar structure of substrate 5 would be preferred. The addition of an alkynyl group facilitates a secondary site of conjugation using wellestablished CuAAC chemistry. Synthesis of the heterobifunctional linker was performed in two steps, using readily available 4-bromo-3-formylbenzoic acid 9, as shown in Table 1. Opropargylation furnished bromo-benzaldehyde 10 in 95% yield, which was treated with sodium sulfide in dimethylformamide afforded 1 in 90% yield.

With the desired compound in hand, we next investigated the reactivity of 1 in the bioconjugation settings. Under the standard reaction conditions, the coupling of linker 1 and peptide proceeded smoothly and the bicyclic adduct 11 was produced in high yield in THF/PBS buffer. The small amount of THF was necessary to achieve complete solubility of 1. A small library of peptides was prepared and subjected to the standard bioconjugation conditions (see Table 1). It is notable that the described chemistry is compatible with functional groups that are relevant to proteins and polypeptide. Fmocprotected peptides (11a) furnished lysine modification products in 83% yield. Hydrophobic and hydrophilic side chains are well-tolerated; lysine could be modified in the presence of adjacent carboxylic acid or amide groups. Secondary amine of proline N-terminus will not engage bioconjugation and lysine was modified with excellent yields (11b-11g). We next examined the chemoselectivity between peptidyl N-terminus and the lysine ε -amino group (entries 11h-11j). Under a neutral reaction medium, lysine was selectively modified when the polypeptides constitute sterically demanding amino acids, such as valine residues at the Nterminus. The polypeptides bearing either alanine or glycine residues at the N-terminus can also be efficiently functionalized with compound 1 (entries 11k-11n). Overall, the linker (1)

Table 1. Scope of Peptides in Conjugation with Bifunctional Linker 1*

	peptide	yield** (%)		peptide	yield** (%)
11a	Fmoc-Glu-Gly-Lys-Asn-Ala-Glu-Gly	83	11b	Pro-Ala-Lys-Met-Gln-His-Gly	88
11c	Pro-Glu-Asn-Leu-Lys-Tyr	90	11d	Pro-Tyr-Gly-Lys-Gln-Leu-Glu-Gly	84
11e	Pro-Gly-Lys-Glu-Ala-Glu-Gly	90	11f	Pro-Ala-Glu-Lys-Gly-Glu-Asn-Tyr-Gly	86
11g	Pro-Glu-Phe-Glu-Ala-Lys-Asn-Leu-Gly-Tyr	88	11h	Val-Glu-Lys-Gln-lle-Asn-Tyr***	82
11i	Val-Glu-Ala-Lys-Asn-Leu-Glu-Gly***	78	11j	Val-Leu-Glu-Lys-Asn-Gly-Glu-Gly-Gln-Tyr ****	71
11k	Ala-Gln-Ser-Gly-Cys-Glu-Gly	85	111	Ala-Gln-Leu-Glu-Tyr	81
11m	Gly-Tyr-Glu-Ala-Gln-Gly	75	11n	Gly-Glu-Ala-Trp-Leu-Arg-Gly	89

^{*}Reaction conditions for (a): propargyl bromide, K_2CO_3 , DMF, rt, 2 h, 95%. Reaction conditions for (b): Na_2S , DMF, rt, 5 h, 90%. Compound 1 was dissolved in in THF (80 μ L), THF/PBS buffer (1:9, v/v), final concentration of peptides and compound 1 is 0.01 and 0.022 M. **Isolated yields. ****Structure was confirmed by tandem MS.

Scheme 2. One-Pot Bioconjugation with Different Azido Compounds*

*Reaction conditions: 0.1 equiv of CuSO₄, 0.2 equiv of sodium ascorbate, 0.1 equiv of TBTA and 2 equiv of 1, 1.2 equiv of glycine methyl ester hydrochloride and 1.2 or 2.4 equiv of azide were used. Isolated yields were shown in all examples.

demonstrated an exclusive preference for primary amines in the polypeptides. The reaction conditions are compatible with all types of amino acid residues. Commonly known nucleophilic peptidyl side chains such as His, Cys, Trp, and Ser are compatible with our bioconjugation approach. Other amino acids with polar side chains (Asn, Glu, Tyr, Met, and Arg) would not interfere with the described conjugations.

We subsequently investigated one-pot three-component bioconjugation using compound 1 under the CuAAC conditions (CuSO₄, sodium ascorbate, TBTA, t-BuOH/H₂O (1:1)). The reaction involving linker 1, glycine methylester 3, and the azido cargos 12 generated the double-clicked adducts 13. In one step, benzyl azide and acetophenone azide were connected to glycine through linker 1 and produced 13a and 13b in 87% and 86% yields, respectively. Fluorophore azidomethoxycoumarin and monosaccharide azides were also

evaluated, and 13c-13e were obtained in good to excellent yield.

We have discovered that the level of cargo installation can be controlled using azido compounds as limiting reagents. The one-pot reaction exclusively yielded double-clicked products when 2.4 equiv of azido compounds were used (13a–13e) (Scheme 2a). On the other hand, when 1.2 equiv of azido compounds were used, the monoclicked adducts were produced (Scheme 2b). Under the monoclicked conjugation conditions, fluorophore azido-methoxycoumarin was furnished in 72% yield (15b). In addition, we evaluated a variety of azides, such as monosaccharide azides (15d–15e), and a biotinylation reagent azide-PEG3-biotin (15f); these examples successfully modified target amino acids or peptides in good yields in a one-pot fashion. Moreover, one-pot labeling experiments were extended to polypeptides without the erosion of the yields. Methoxycoumarin and glucose was

connected to the peptides in good yields under bioconjugation conditions (15h-15j).

Furthermore, monoclicked constructs generated in Scheme 2b retained an unreacted alkynyl group which potentially could be used to intergrade a different labeling group. We continued our investigation with these considerations (see Scheme 3). A

Scheme 3. Second Cargo Incorporation of Monoclicked Products a,b

^aReaction conditions: 0.1 equiv of CuSO₄, 0.2 equiv of sodium ascorbate, 0.1 equiv of TBTA and 1.5 equiv of azido compound were used. ^bIsolated yields. ^cReaction was stirred for 30 h.

consequent conjugation of monofunctionalized compounds 15c-15e was achieved under standard reaction conditions. Formation of the heterobifunctional compounds 16 was realized. The conjugate successfully placed both N-acetylglucosamine and methoxycoumarin on the molecule in excellent yield (16a). Glucose, benzylphenone, and methoxycoumarin were combined to furnish 16b and 16c with almost quantitative yields. The generation of 16d required longer reaction time and provided an 85% yield. In principle, the highly diversified functional groups could be introduced to the amino sites of the protein.

To demonstrate the practicality of our three-component bioconjugation strategy, we performed the modification of a more sophisticated protein. The recombinant human insulin was selected because of its well-established biological activities. Structurally, insulin consists of two peptide chains: the 21amino-acid A chain and the 30-amino-acid residue B chain, which are connected by three pairs of disulfide bonds. Lys residue is located at B53. The N-terminus of insulin was chosen for modification, as it would cause the least perturbation to its activity. 13 Considering the insulin could form insoluble fibrils upon stirring, 16 the optimized conditions were used to chemoselectively modify insulin at the Nterminus (Figure 2a). The linkage between insulin and AF546 azide was accomplished in one-pot setting. The modification of the insulin site specifically occurred at the both N-termini of the A chain and B chain, which was validated by the extensive LC-MS/MS analysis.¹⁷ The N-termini selectivity might be attributed to either the lower pK_a of N-terminus, compared to the lysine amino group or the steric of insulin shielding the lysine side chain. ^{16,18} More interestingly, the disulfide bonds remained intact during the modification process, which

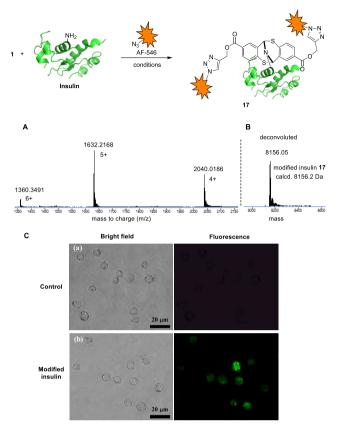


Figure 2. (A) Three-component conjugation of human insulin. Reagents and conditions: $100~\mu L$ THF/PBS (1:4, v/v), pH 5.5, 0.15 equiv of CuSO₄, 0.3 equiv of sodium ascorbate, 0.3 equiv of TBTA and 9 equiv of AF546 azide were used, final concentration of insulin is 1.72 mM, incubated for 4 h. (B) Examination of modified insulin 17 function on THP1 cells. Panel (C) shows (a) bright-field and fluorescence images of THP1 cells incubated with 0.06 mM AF546 azide for 4 h and (b) bright-field and fluorescence images of THP1 cells incubated with 0.06 mM modified insulin 17 for 4 h. Scale bar = $20~\mu m$.

suggested that our linker is compatible with commonly observed protein disulfide linkages.

As illustrated in Figure 2c, the modified insulin is well-suited for cell biology studies. Labeling of insulin with the AF-546 fluorophore showed no obvious perturbation to the insulin's functions. THP1 cells incubated with the modified insulin show the expected strong fluorescence, whereas the control cells incubated with the fluorophore and native insulin demonstrated negative fluorescence. Further examination of the fluorescent cells found that fluorescence is not uniform across the cells but, instead, forms clusters near cellular nuclei. That might be due to the rapid internalization of the insulin receptor being transported to the endosomal apparatus of the cell. ¹⁹ Such a phenomenon implies that the insulin activity was not impaired by the conjugation.

In summary, we have established a general protocol for chemoselective conjugation of primary amine groups within the protein framework using alkynyl mercaptobenzaldehyde (1). This bioorthogonal method allows native peptide and protein conjugation with two different functional groups, thus facilitating rapid modification of biomolecules with great flexibility. We have shown that the method is compatible with a variety of amino acid side-chains and disulfide linkages, which allows facile attachment of functional payloads, such as

glycans, fluorescent groups, and affinity handles in a one-pot fashion. Moreover, the modification of the mercaptobenzald-hyde aryl ring could introduce a variety of moieties other than alkynyl ester, and it is reasonable to speculate that diversified functional groups²⁰ could be selected as the suitable linkers. The practicality of our approach was illustrated by modifying insulin with fluorescent groups and cell imaging experiments were performed, which suggested that the protein's functions were not impaired. Further investigations of the bifunctional linker toward other protein modification will be reported in due course.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.9b01294.

Complete experimental procedures and characterization data for all new compounds (PDF)

Accession Codes

CCDC 1825270 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_ request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: + 44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

*E-mail: qzhang5@albany.edu.

ORCID ®

Huan Chen: 0000-0003-1682-8809 Qishan Lin: 0000-0002-1756-1432 Jun Wang: 0000-0002-8781-8248 Maksim Royzen: 0000-0002-2930-2171 Qiang Zhang: 0000-0003-2787-1781

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Support for this work was provided by the National Science Foundation (No. CHE 1710174), and the University at Albany-SUNY to Q.Z. This work was partially supported by National Institute of Health (No. R01GM12898401) and NYSTEM (No. C32574GG) to J.W. The early work performed by Dr. Gu Zhan (University at Albany—SUNY) is acknowledged. Dr. Zheng Wei (University at Albany—SUNY) is acknowledged for assistance with X-ray analysis.

■ REFERENCES

(1) For selected reviews, see: (a) deGruyter, J. N.; Malins, L. R.; Baran, P. S. Residue-Specific Peptide Modification: A Chemist's Guide. *Biochemistry* **2017**, *56*, 3863–3873. (b) Tamura, T.; Hamachi, I. Chemistry for Covalent Modification of Endogenous/Native Proteins: From Test Tubes to Complex Biological Systems. *J. Am. Chem. Soc.* **2019**, *141*, 2782–2799. (c) Spicer, C. D.; Davis, B. G. Selective chemical protein modification. *Nat. Commun.* **2014**, *5*, 4740–4754. (d) Lang, K.; Chin, J. W. Bioorthogonal Reactions for Labeling Proteins. *ACS Chem. Biol.* **2014**, *9*, 16–20. (e) Sletten, E. M.; Bertozzi, C. R. Bioorthogonal Chemistry: Fishing for Selectivity in

- a Sea of Functionality. Angew. Chem., Int. Ed. 2009, 48, 6974-6998. (f) Krall, N.; Da Cruz, F. P.; Boutureira, O.; Bernardes, G. J. Siteselective protein-modification chemistry for basic biology and drug development. L. Nat. Chem. 2016, 8, 103-113. (g) Boutureira, O.; Bernardes, G. J. Advances in Chemical Protein Modification. Chem. Rev. 2015, 115, 2174-2195. (h) Silvestri, A. P.; Cistrone, P. A.; Dawson, P. E. Adapting the Glaser Reaction for Bioconjugation: Robust Access to Structurally Simple, Rigid Linkers. Angew. Chem., Int. Ed. 2017, 56, 10438-10442. (i) Devaraj, N. K. The Future of Bioorthogonal Chemistry. ACS Cent. Sci. 2018, 4, 952-959. (j) Reguera, L.; Méndez, Y.; Humpierre, A. R.; Valdés, O.; Rivera, D. G. Multicomponent Reactions in Ligation and Bioconjugation Chemistry. Acc. Chem. Res. 2018, 51, 1475-1486. (k) Li, J.; Chen, P. R. Development and application of bond cleavage reactions in bioorthogonal chemistry. Nat. Chem. Biol. 2016, 12, 129-137. (1) Koniev, O.; Wagner, A. Developments and recent advancements in the field of endogenous amino acid selective bond forming reactions for bioconjugation. Chem. Soc. Rev. 2015, 44, 5495-5551. (m) Blagg, J.; Workman, P. Choose and Use Your Chemical Probe Wisely to Explore Cancer Biology. Cancer Cell 2017, 32, 9-25.
- (2) Fisher, S. A.; Baker, A. E.G.; Shoichet, M. S. Designing Peptide and Protein Modified Hydrogels: Selecting the Optimal Conjugation Strategy. *J. Am. Chem. Soc.* **2017**, *139*, 7416–7427.
- (3) Cai, H.; Zhang, R.; Orwenyo, J.; Giddens, J.; Yang, Q.; LaBranche, C. C.; Montefiori, D. C.; Wang, L.-X. Multivalent Antigen Presentation Enhances the Immunogenicity of a Synthetic Three-Component HIV-1 V3 Glycopeptide Vaccine. ACS Cent. Sci. 2018, 4, 582–589.
- (4) (a) Wright, M. H.; Sieber, S. A. Chemical proteomics approaches for identifying the cellular targets of natural products. *Nat. Prod. Rep.* **2016**, 33, 681–708. (b) Leitner, A. Cross-linking and other structural proteomics techniques: how chemistry is enabling mass spectrometry applications in structural biology. *Chem. Sci.* **2016**, 7, 4792–4803. (c) MacKinnon, A. L.; Taunton, J. Target Identification by Diazirine Photo-Cross-linking and Click Chemistry. In *Current Protocols in Chemical Biology*, Vol. 1; Wiley: Hoboken, NJ, 2009; pp 55–73 (DOI: 10.1002/9780470559277.ch090167). (d) Carrico, I. S. Chemoselective modification of proteins: hitting the target. *Chem. Soc. Rev.* **2008**, 37, 1423–1431.
- (5) (a) Mu, J.; Liu, F.; Rajab, M. S.; Shi, M.; Li, S.; Goh, C.; Lu, L.; Xu, Q.; Liu, B.; Ng, L.; Xing, B.-G. A Small-Molecule FRET Reporter for the Real-Time Visualization of Cell-Surface Proteolytic Enzyme Functions. *Angew. Chem., Int. Ed.* **2014**, 53, 14357–14362. (b) Weinstain, R.; Savariar, E. N.; Felsen, C. N.; Tsien, R. Y. In Vivo Targeting of Hydrogen Peroxide by Activatable Cell-Penetrating Peptides. *J. Am. Chem. Soc.* **2014**, 136, 874–877.
- (6) For selected examples, see: (a) Tung, C. L.; Wong, C. T. T.; Fung, E. Y. M.; Li, X. C. Traceless and Chemoselective Amine Bioconjugation via Phthalimidine Formation in Native Protein Modification. Org. Lett. 2016, 18, 2600-2603. (b) Raj, M.; Wu, H.; Blosser, S.; Vittoria, M.; Arora, P. Aldehyde capture ligation for synthesis of native peptide bonds. J. Am. Chem. Soc. 2015, 137, 6932-6940. (c) Zhang, C.; Dai, P.; Vinogradov, A. A.; Gates, Z. P.; Pentelute, B. L. Site-Selective Cysteine-Cyclooctyne Conjugation. Angew. Chem., Int. Ed. 2018, 57, 6459-6463. (d) Bloom, S.; Liu, C.; Kölmel, D. K.; Qiao, J. X.; Zhang, Y.; Poss, M. A.; Ewing, W. R.; MacMillan, D. W. C. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials. Nat. Chem. 2018, 10, 205-211. (e) Lin, S.; Yang, X.; Jia, S.; Weeks, A. M.; Hornsby, M.; Lee, P. S.; Nichiporuk, R. V.; Iavarone, A. T.; Wells, J. A.; Toste, F. D.; Chang, C. J. Redox-based reagents for chemoselective methionine bioconjugation. Science 2017, 355, 597-602. (f) Taylor, M. T.; Nelson, J. E.; Suero, M. G.; Gaunt, M. J. A protein functionalization platform based on selective reactions at methionine residues. Nature 2018, 562, 563-568. (g) Bertran-Vicente, J.; Penkert, M.; Nieto-Garcia, O.; Jeckelmann, J.-M.; Schmieder, P.; Krause, E.; Hackenberger, C. P. R. Chemoselective synthesis and analysis of naturally occurring phosphorylated cysteine peptides. Nat. Commun. 2016, 7, 12703-12712. (h) McCarthy, K. A.; Kelly, M. A.;

Li, K.; Cambray, S.; Hosseini, A. S.; van Opijnen, T.; Gao, J.-M. Phage Display of Dynamic Covalent Binding Motifs Enables Facile Development of Targeted Antibiotics. J. Am. Chem. Soc. 2018, 140, 6137-6145. (i) Bandyopadhyay, A.; Cambray, S.; Gao, J.-M. Fast and selective labeling of N-terminal cysteines at neutral pH via thiazolidino boronate formation. Chem. Sci. 2016, 7, 4589-4593. (j) Diehl, K. L.; Kolesnichenko, I. V.; Robotham, S. A.; Bachman, J. L.; Zhong, Y.; Brodbelt, J. S.; Anslyn, E. V. Click and chemically triggered declick reactions through reversible amine and thiol coupling via a conjugate acceptor. Nat. Chem. 2016, 8, 968-973. (k) Mendez, Y.; Chang, J.; Humpierre, A. R.; Zanuy, A.; Garrido, R.; Vasco, A. V.; Pedroso, J.; Santana, D.; Rodriguez, L. M.; García-Rivera, D.; Valdes, Y.; Verez-Bencomo, V.; Rivera, D. G. Multicomponent polysaccharide-protein bioconjugation in the development of antibacterial glycoconjugate vaccine candidates. Chem. Sci. 2018, 9, 2581-2588. (1) Matos, M. J.; Oliveira, B. L.; Martínez-Sáez, N.; Guerreiro, A.; Cal, P. M.; Bertoldo, J.; Maneiro, M.; Perkins, E.; Howard, J.; Deery, M. J.; Chalker, J. M.; Corzana, F.; Jiménez-Osés, G.; Bernardes, G. J. L. Chemo- and Regioselective Lysine Modification on Native Proteins. J. Am. Chem. Soc. 2018, 140, 4004-4017. (m) Kubota, K.; Dai, P.; Pentelute, B. L.; Buchwald, S. L. Palladium Oxidative Addition Complexes for Peptide and Protein Cross-linking. J. Am. Chem. Soc. 2018, 140, 3128-3133. (n) Boutureira, O.; Martínez-Sáez, N.; Brindle, K. M.; Neves, A. A.; Corzana, F.; Bernardes, G. J. L. Site-Selective Modification of Proteins with Oxetanes. Chem. - Eur. J. 2017, 23, 6483-6489. (o) Row, R. D.; Shih, H.-W.; Alexander, A. T.; Mehl, R. A.; Prescher, J. A. Cyclopropenones for Metabolic Targeting and Sequential Bioorthogonal Labeling. J. Am. Chem. Soc. 2017, 139, 7370-7375. (p) Zhang, Y.; Zhou, X.; Xie, Y.; Greenberg, M. M.; Xi, Z.; Zhou, C. Thiol Specific and Tracelessly Removable Bioconjugation via Michael Addition to 5-Methylene Pyrrolones. J. Am. Chem. Soc. 2017, 139, 6146-6151. (g) Chan, A. O.-Y.; Ho, C.-M.; Chong, H.-C.; Leung, Y.-C.; Huang, J.-S.; Wong, M.-K.; Che, C.-M. Modification of N-terminal α -amino groups of peptides and proteins using ketenes. J. Am. Chem. Soc. 2012, 134, 2589-2598. (r) Ariyasu, S.; Hayashi, H.; Xing, B.; Chiba, S. Site-Specific Dual Functionalization of Cysteine Residue in Peptides and Proteins with 2-Azidoacrylates. Bioconjugate Chem. 2017, 28, 897-902. (s) Hacker, S. M.; Backus, K. M.; Lazear, M. R.; Forli, S.; Correia, B. E.; Cravatt, B. F. Global profiling of lysine reactivity and ligandability in the human proteome. Nat. Chem. 2017, 9, 1181-1190. (t) Adusumalli, S. R.; Rawale, D. G.; Singh, U.; Tripathi, P.; Paul, R.; Kalra, N.; Mishra, R. K.; Shukla, S.; Rai, V. Single-site labeling of native proteins enabled by a chemoselective and siteselective chemical technology. J. Am. Chem. Soc. 2018, 140, 15114-15123.

- (7) Joshi, N. S.; Whitaker, L. R.; Francis, M. B. A three-component Mannich-type reaction for selective tyrosine bioconjugation. *J. Am. Chem. Soc.* **2004**, *126*, 15942–15943.
- (8) Ohata, J.; Miller, M. K.; Mountain, C. M.; Vohidov, F.; Ball, Z. T. A Three-Component Organometallic Tyrosine Bioconjugation. *Angew. Chem., Int. Ed.* **2018**, *57*, 2827–2830.
- (9) Moses, J. E.; Moorhouse, A. D. The growing applications of click chemistry. *Chem. Soc. Rev.* **2007**, *36*, 1249–1262.
- (10) (a) Lang, K.; Davis, L.; Wallace, S.; Mahesh, M.; Cox, D. J.; Blackman, M. L.; Fox, J. M.; Chin, J. W. Genetic Encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions. *J. Am. Chem. Soc.* 2012, 134, 10317–10320. (b) Liu, D. S.; Tangpeerachaikul, A.; Selvaraj, R.; Taylor, M. T.; Fox, J. M.; Ting, A. Y. Diels-Alder cycloaddition for fluorophore targeting to specific proteins inside living cells. *J. Am. Chem. Soc.* 2012, 134, 792–795. (c) Tang, W.; Becker, M. L. "Click" reactions: a versatile toolbox for the synthesis of peptide-conjugates. *Chem. Soc. Rev.* 2014, 43, 7013–7039.
- (11) Wu, X.; Li, X.; Danishefsky, S. J. Thio-mediated two-component coupling reaction of carboxylic acids and isonitriles under mild conditions. *Tetrahedron Lett.* **2009**, *50*, 1523–1525.

(12) (a) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. *Angew. Chem., Int. Ed.* **2001**, *40*, 2004–2021. (b) Presolski, S. I.; Hong, V. P.; Finn, M. G. Copper-Catalyzed Azide—Alkyne Click Chemistry for Bioconjugation. In *Current Protocols in Chemical Biology*, Vol. 3; Wiley: Hoboken, NJ, 2011; pp 153–162 (). (c) Kappe, C. O.; Van der Eycken, E. Click chemistry under non-classical reaction conditions. *Chem. Soc. Rev.* **2010**, *39*, 1280–1290. (d) Singh, M. S.; Chowdhury, S.; Koley, S. Advances of azide-alkyne cycloaddition-click chemistry over the recent decade. *Tetrahedron* **2016**, *72*, 5257–5283.

- (13) Chen, D.; Disotuar, M. M.; Xiong, X.; Wang, Y.; Chou, D. H-C. Selective N-terminal functionalization of native peptides and proteins. *Chem. Sci.* **2017**, *8*, 2717–2722.
- (14) Spielman, M. A. The Structure of Troeger's Base. J. Am. Chem. Soc. 1935, 57, 583-585.
- (15) Still, I.; Natividad-Preyra, R.; Toste, F. D. A versatile synthetic route to 1,5-dithiocins from o-mercapto aromatic aldehydes. *Can. J. Chem.* **1999**, *77*, 113–121.
- (16) Ichiishi, N.; Caldwell, J. P.; Lin, M.; Zhong, W.; Zhu, X.; Streckfuss, E.; Kim, H.-Y.; Parish, C. A.; Krska, S. W. Protecting group free radical C–H trifluoromethylation of peptides. *Chem. Sci.* **2018**, *9*, 4168–4175.
- (17) See the Supporting Information for details of the structure elucidation.
- (18) Ivanova, M. I.; Sievers, S. A.; Sawaya, M. R.; Wall, J. S.; Eisenberg, D. Molecular basis for insulin fibril assembly. *Proc. Natl. Acad. Sci. U. S. A.* **2009**, *106*, 18990–18995.
- (19) Di Guglielmo, G. M.; Drake, P. G.; Baass, P. C.; Authier, F.; Posner, B. I.; Bergeron, J. J. Insulin receptor internalization and signalling. *Mol. Cell. Biochem.* **1998**, *182*, 59–64.
- (20) (a) Anderson, G. W.; Zimmerman, J. F.; Callahan, F. M. N-Hydroxysuccinimide Esters in Peptide Synthesis. *J. Am. Chem. Soc.* 1963, 85, 3039. (b) Oliveira, B. L.; Guo, Z.; Bernardes, G. J. L. Inverse electron demand Diels-Alder reactions in chemical biology. *Chem. Soc. Rev.* 2017, 46, 4895–4950. (c) Darko, A.; Wallace, S.; Dmitrenko, O.; Machovina, M. M.; Mehl, R. A.; Chin, J. W.; Fox, J. M. Conformationally strained *trans*-cyclooctene with improved stability and excellent reactivity in tetrazine ligation. *Chem. Sci.* 2014, 5, 3770–3776. (d) Jewett, J. C.; Bertozzi, C. R. Cu-free click cycloaddition reactions in chemical biology. *Chem. Soc. Rev.* 2010, 39, 1272–1279.