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1 Introduction

Let @Q be an acyclic quiver of rank n, i.e. a quiver with n vertices and without oriented cycles, and
mod(Q) be the category of finite dimensional representations of @, or equivalently, the category of finite
dimensional modules over the path algebra of Q. Among the objects in mod(Q), the indecomposable
representations M with Extl(M , M) = 0 are called rigid and their dimension vectors are called real Schur
roots. They play prominent roles in understanding the category mod(Q). Moreover, the real Schur roots
form an important subset of the set of positive real roots of the Kac-Moody algebra g(Q) associated to
Q.

In an attempt to establish a form of Homological Mirror Symmetry [4], we proposed in a previous paper
[5] a correspondence between rigid representations in mod(@)) and the set of certain non-self-intersecting
curves on a Riemann surface ¥ with n labeled curves. The conjecture is now proven by Felikson and
Tumarkin [1] for 2-complete quivers @) where, by definition, every pair of vertices in @Q is connected by
more than two edges. However it is wide open for general acyclic quivers.

The conjectural correspondence factors through a family of reflections in the Weyl group of g(Q) to
relate non-self-intersecting curves in X with real Schur roots. Since reflections make sense for any Coxeter
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groups, one can consider such a family of reflections in an arbitrary Coxeter group. Indeed, let W be a
Coxeter group with n ordered generators:

W = (51,82, 8p ¢ 87 =- =52 =¢e, (5i8;)™ =e (i #j)),

where m;; € {2,3,4,...} U{oo}. Then we define rigid reflections in W using non-self-intersecting curves
on the Riemann surface ¥ and rigid roots to be the associated positive roots to the rigid reflections in the
set of positive roots of W. (See Definitions 2.2 and 2.5.) These definitions are in line with the conjectural
correspondence. In particular, when m;; = oo for all 7 # j, the set of rigid reflections is in bijection with
the set of rigid representations of any 2-complete acyclic quiver @ of rank n.

This paper is concerned with an unexpected, surprising phenomenon that the rigid roots of W are
parametrized by the positive roots of a seemingly unrelated Kac—Moody algebra . This phenomenon
seems true for a wide range of Coxeter groups W, and we will show this for a family of rank 3 Coxeter
groups in this paper.

To be precise, fix a positive integer m > 2 and consider the following Coxeter group

W(m) = <51a82753 : 3% = 3% = 8§ = (3132)m = (8253)7” = e>.

Here we put mi3 = mg; = oo as the usual convention. Let H(m) be the rank 2 Kac-Moody algebra
2 —m
—m 2 °

associated with the Cartan matrix ( We denote an element of the root lattice of H(m) by [a, D],
a,b € Z, where [1,0] and [0, 1] are the positive simple roots. A root [a,b] of H(m) is called reduced if
ged(a,b) =1 and ab # 0. A reduced root determines a non-self-intersecting curve 7 on the torus ¥ with
triangulation by three labeled curves. Then we define a function, [a,b] — s([a,b]) € W, by reading off

the labels of the intersection points of  with the labeled curves on ¥, and make the following conjecture.

Conjecture 1.1. Form > 2, the function, [a,b] — s([a,b]), is a bijection from the set of reduced positive
roots of H(m) to the set of rigid reflections of W (m).

The case m = 2 will be verified in Example 2.8, and the case m = 3 will be established in a forthcoming
paper [6] where mutations of quivers and cluster variables will be exploited. As the main result of this
paper, we prove

Theorem 1.2. For m > 2, the function in Conjecture 1.1 is a surjection.

Our proof of Theorem 1.2 shows that the Weyl group of #(m), which is isomorphic to the infinite dihe-
dral group, governs the symmetries of the set of rigid reflections of W (m), and utilizes these symmetries
to make an induction argument work on the values of the square norm of [a, b]. It is intriguing that such
a nice structure dwells in the set of rigid reflections.

The organization of this paper is as follows. In Section 2, we define rigid reflections and rigid roots and
provide examples. After introducing notations for rank 2 Kac-Moody algebras #H(m), we state the main
theorem and illustrate with examples. In particular, the case m = 2 is completely described. Section 3 is
devoted to a proof of the main theorem. We first establish several lemmas, and a main step is achieved
in Proposition 3.8 whose proof is an inductive algorithm for, given [a, b] in the positive root lattice, how
to find a reduced positive root [ag, bg] of H(m) with the same rigid reflections, i.e, s([ag,bo]) = s([a, b]).
Then Lemma 3.9 shows that it is enough to consider the positive root lattice, which completes the proof.

2 Rigid reflections and the main theorem
As in the introduction, let

W = (51,82, 8p : 81 =-- =52 =¢e, (5i8;)™ =¢)

be a Coxeter group with m;; € {2,3,4,...} U {oo}. In this section, after the rigid reflections in W and
rigid roots in the root system of W are defined, the main theorem of this paper will be stated.
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To begin with, we need a Riemann surface ¥ equipped with n labeled curves as below. Let G; and G»
be two identical copies of a regular n-gon. Label the edges of each of the two n-gons by 11,75, ...,T,
counter-clockwise. On G; (i = 1,2), let L; be the line segment from the center of G; to the common
endpoint of 7;, and T;. Later, these line segments will only be used to designate the end points of
admissible curves and will not be used elsewhere. Fix the orientation of every edge of Gy (resp. G2) to
be counter-clockwise (resp. clockwise) as in the following picture.

T3 T2

Tn

Let ¥ be the Riemann surface of genus L"?_lj obtained by gluing together the two n-gons with all
the edges of the same label identified according to their orientations. The edges of the n-gons become n
different curves in X. If n is odd, all the vertices of the two n-gons are identified to become one point in
3> and the curves obtained from the edges become loops. If n is even, two distinct vertices are shared by
all curves. Let T =Ty U---T,, C X, and V be the set of the vertex (or vertices) on 7.

Let 20 be the set of words from the alphabet {1,2,...,n}, and let & C 20 be the subset of words
t = iyiy---i; such that k is an odd integer and i; = ix41—; for all j € {1,...,k}, in other words,
SiySiy - Si, 18 a reflection in W. For to = iyig - - i € 2, denote s;,...8;, € W by s(tv).

Definition 2.1.  An admissible curve is a continuous function 7 : [0,1] — ¥ such that

1) n(z) € V if and only if z € {0,1};

2) n starts and ends at the common end point of T} and 7T,,. More precisely, there exists ¢ > 0 such
that 7([0,¢€]) C Ly and n([1 — €, 1]) C Lo;

3) if n(x) € T\ 'V then n([xr — €,z + €¢]) meets T transversally for sufficiently small ¢ > 0.

If 5 is admissible, then we obtain v(n) := iy - - iy € 20 given by

{re(0,1) : nz)eTr={z1 <---<ap} and n(z,) €Ty, for £ €{1,....k}.

Note that the word v(n) only depends on the isotopy class of the admissible curve, and the group
element s(v(n)) does not change even if we allow non-transversal intersections with 7 in the isotopy,
because all that can happen in a generic one parameter family is a simple tangency, which inserts/removes
s;s; somewhere in a presentation of s(v(n)).

Conversely, note that for every o € 20, there is an admissible curve n with v(n) = w. Hence, every
element in W can be represented by some admissible curve(s). For brevity, let s(n) := s(v(n)).

Definition 2.2. An element s;,s;,---s;, in W is called a rigid reflection if there exists a non-self-
crossing admissible curve n with v(n) = 41...ix € R.

Example 2.3. Let n =3, and W = (s1,52,83 : s; =s3 =53 =e), i.e., mj; = oo for i # j. Consider
the universal cover of ¥ and a curve 7 as in the following picture.

@

/\\

INA

Q

Here each horizontal line segment represents 77, vertical T3, and diagonal T5. One sees that 7 has no
self-intersection in ¥. Thus we obtain the corresponding rigid reflection

s(n) = (838281)482838281828382838281828382(818283)4.
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On the other hand, the reflection sps3515352 comes from the following curve 7’ which has a self-
intersection. The picture on the right shows several copies of 1’ on the universal cover.

Consequently, the reflection s(n’) = s283518382 is not rigid.

Example 2.4. Let n =38, and we have a rigid reflection

(857 5251)° (8857 52)s1(59 - 5788) (5152 - - 5788)°,

which corresponds to the following non-self-intersecting curve on X.

Let ® be the root system of W, realized in the real vector space E with basis {a1,...,a,} with the
symmetric bilinear form B defined by

B(a, aj) = —cos(m/m;;) for 1 < i,j < n.
For each 7 € {1,...,n}, define the action of s; on E by
Sz()\) =A— 2B(A, Oéi)Oli, A E E,

and extend it to the action of W on E. Then each root «w € ® determines a reflection s, € W. (See [2]
for more details.)

Definition 2.5. A positive root a € ® of W is called rigid if the corresponding reflection s, € W is
rigid.
Example 2.6. In Example 2.3, we obtained the rigid reflection
(535951 )%52535051525350535251525359(515253)".
It give rises to a rigid root
16624900, + 435266300 4 1139521203 = (535251 ) 52535051 525300.
Fix a positive integer m > 2. As in the introduction, we set
W(m) = (s1,82,83 : 81 =535 =853 = (5152)™ = (s2583)™ = e).
Note that we put, in particular, mis = mg; = oco. Let H(m) be the rank 2 hyperbolic Kac-Moody

2
by [a,b], a,b € Z, where [1,0] and [0, 1] are the positive simple roots. A root [a,b] of H(m) is called
reduced if ged(a,b) = 1 and ab # 0. One can see that every non-simple real root is reduced.

algebra associated with the Cartan matrix (_2m _m). We denote an element of the root lattice of H(m)
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Let Pt = {[a,b] : a,b € Z~g, ged(a,b) = 1}. For every [a,b] € P, let n([a,b]) be the line seg-
ment from (0,0) to (a,b) on the universal cover of the torus, which has no self-intersections. Write
s([a, b)) := s(n([a,b])) € W(m) for the corresponding rigid reflection. For example, we have s([5,3]) =
52535251 525352538251525352 as one can check in the following picture.

With these definitions, we now state the main theorem of this paper.

Theorem 2.1. The function, [a,b] — s([a,b]), is an onto function from the set of reduced positive roots
of H(m) to the set of rigid reflections of W(m).

Equivalently, if we let 3([a,b]) be the rigid root determined by the rigid reflection s([a,b]), then the
above theorem asserts that the function, [a,b] — S([a,b]), is an onto function from the set of reduced
positive roots of H(m) to the set of rigid roots of W (m).

A proof of Theorem 2.1 will be given in the next section. In the rest of this section we will present
some examples. Recall from [3] that

[a,b] is a root of H(m) if and only if a® +b* — mab < 1. (2.1)

We will use this fact in the following example without further mentioning it.
Example 2.7.

(1) Let m = 3. Consider the rigid reflection s([4,1]) = s2535283528352 = s2 and its rigid root 5([4,1]) =
ag. The point [4,1] is not a root of H(3). However, these are covered by the root [1,1] of H(3) since
s([1,1]) = s2 and B([1,1]) = ao.

One can also check s([30,11]) = sas3s281528352 = $([3,2]) and 3([30,11]) = a1 + 32 + 3as = 5([3,2]).
Here [30,11] is not a root of H(3), whereas [3, 2] is.

(2) Now let m = 4. Then we have

s([6,2]) = s([13,2]) = $283525352515283525352 and

8(15,2) = B([13,2)) = ar +3v2as + 6as.
Here [13,2] is not a root of H(4), but [5,2] is a root.

(3) For a general m, let = 2cos(mw/m). Then s([5, 3]) = $2535251528352835251 828382 and
B([5,3]) = (2® + z)ag + (25 + 32* + 227 — 1) g + (2 + 32° + 22)as.
Example 2.8. Assume that m = 2. Then the Kac-Moody algebra #(2) is the affine Lie algebra 5?[2
and its set of reduced positive roots is given by
{[n,n+1], [n+1,n], 1,1] : n>1}.
On the other hand, since s; commutes with s; and s3 in W (2), we see that the set of rigid reflections in
W(2) is
{s1(s351)" ", s3(s183)" 7", s2 1 n =1},

and that the set of rigid roots of W (2) is
{na; + (n—1)as, (n—1)ay +nas, as, : n>1}
Applying the maps s(-) and 3(-) to the set of reduced positive roots, we obtain, for n > 1,

s([n,n +1]) = s1(s3s1)" 1, s([n+1,1]) = s3(s183)" 1, s([1,1
B([n,n +1]) = noy + (n - 1)as, Aln+1,1]) = (n = Day + nas, p(1,1

Therefore, the maps are clearly bijections, and Conjecture 1.1 is verified in this case m = 2.
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3 Proof

In this section, we prove Theorem 2.1. The last lemma (Lemma 3.9) enables us to focus only on the
positive root lattice P*. Lemma 3.5 shows that we can use a certain transformation to preserve rigid
roots. Lemmas 3.2 and 3.7 guarantee this transformation to work inductively, and the inductive algorithm
is given in Proposition 3.8. We explain the algorithm in Example 3.2.

Define a sequence Fj, recursively by Fy =0, F; = 1, and F,, = mF,,_1 — F,,_o. Define another sequence
E,by Eg=F, =1and E, = mFE,_1— E,_>. Below we collect some general facts about these sequences,
which will be frequently used for the rest of the paper.

Lemma 3.1. (a) The sequence Fy, Fy,--+ , Fy, -+ is monotone, and the pairs (F,, F,_1) run through all
the integer points on the quadric x> + y?> — maxy = 1 subject to the condition x >y > 0.

(b)
Fn anl
det =1.
Fn+1 Fn

P _F_ B

< “e
i B Fota
(c) For every [a,b] € PT such that a > b and a® + b*> — mab > 1, there exits a unique n such that

anl b Fn

< =< .
Fn a Fn+1

In particular, we get

< eee

(d) We have
Enfl anl
> )
E, Fy
Fn = (m - 1)Fn—1 + En—la
and

Enfl En
det =1.
anl Fn

H={(z,y) GZ;O : x>y and x2+y27mxy:1},

Proof.  (a) Let

Suppose that (z,y) € H. Then y? + (my — x)? — my(my — x) = 1. We also have y > my — z, because if
y < my—z then y?—1 = x(my—=x) > xy > y2, which is absurd. Hence (y, my—x) € H. Iterate this until
we get (1,0) € H. By backtracking, we get (x,y) = (Fy,, F,—1) for some n, and Foy < Fy < -+ < F, -+ -.
(b) See [8, Lemma 3.1].

Fy By Fy

(¢c) The sequence 0 = PR

lim (Fn )2—m<Fn>+1 = lim 1
n—oo F’VL—‘,—l Fn—',—l n— o0 F’?L—‘rl

Since a? + b? — mab > 1 implies (3)2 —m(2)+1>0, weget 2 < %”2_4 or & > mivmo—4 V2’”2_4. The
inequality a > b implies 3 < M= —2 V2m2_4. By (a), we have (a,b) € H, so (a,b) # (Fy,, F,_1) for any n.
Actually (a,b) # (gF,, gF,—1) for any g and n, since ged(a,b) = 1. Therefore there exits a unique n such

that

—+/m?2—
- converges to mfm‘l, because

=0.

Fh_1 < b < F,
F, a Fn—&-l.

E, 1 E,

(d) It is easy to see F,, = (m —1)F,,_1 + E,,_1 by induction on n. This implies det ( ! " ) =1 and
n—1 n

En_1

Frn_1
net s m

Fn
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The following lemma will be used for the inductive algorithm in the proof of Proposition 3.8.

Lemma 3.2. Assume that [a,b] € PT is not a root of H(m), and that

Fn—l b Fn

< =< .
Fn a Fn+1

We have either

[a,b] —m(—F,_1a+ F,b)[F,, F,_1] € P, or
[a,b] + m(—Fpa+ Fp1b)[Fpy1, ) € PT.

Proof.  The properties of the sequence {F;} imply that [a,b] = «[F,,, Fr—1] + B8[Fn+t1, Fn), where a and
[ are positive integers. Moreover, we have

Fn Fn—l
B = det =—F,_1a+ F,b
a b
and
dt| ¢ ") ra-F
o =de = F,a —
Fn+1 Fn n n+1
Therefore
[07 d] = [a7 b] - mB[Fru anl] = a[F'ru anl] + ﬁ[FnJrh Fn] - mﬁ[Fn7Fn71]
= [aFn - 6Fn—1; ol — ﬁFn—2]a
and
[6, f] = [a‘a b] - ma[Fn-i-h Fn] = a[Fna Fn—l] + ﬂ[Fn-l-la Fn] - mOé[Fn+1, Fn]
= [ﬂFn+1 - aFn—i—QyBFn - aFn—i—l]a
where we used the recursive relation F,, = mF,_; — F},_ four times. Now the property %:f < ‘F;ﬂ; - <
Fn o Fotr implies that

Fopr O Foio
d=aF,_1—pPF,_2<0
— c=aF,—pBF,_1 <0
= —f=aF,11—0F, <0
= —e=akF,12— fF,4+1 <0

In particular, if at least one of the numbers ¢ and d is negative, then both e and f are positive. It remains
to show that ged(c,d) = 1 and ged(e, f) = 1.
Let u = F,,_1,v = F,, and w = F,, 41 for convenience. Then we have

mv =u+ w, v2:1+uw,
and

[, d] = [(1 + muv)a — mv?b, mu’a + (1 — muw)b],

e, f] = [(1 — mvw)a + mw?b, —mv?a + (1 4+ mow)b].

Note that the matrices
14+ muv —mu? 1—mow  mw?
and
mu? 1 —muv —mv? 1+ mow

have determinant 1. Since ged(a,b) = 1, we have ged(c,d) = 1 and ged(e, f) = 1. O
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Let (a1, as2) be a pair of positive integers with a; > as. A mazimal Dyck path of type a; X ag, denoted
by D*1*%2 g a lattice path from (0, 0) to (a1, as) that is as close as possible to the diagonal joining (0, 0)
and (a1, as) without ever going above it. Assign s2s3 € W(m) to each horizontal edge of D *?2 and
s981 € W(m) to each vertical edge. Read these elements in the order of edges along D *%2_ then we get
a product of copies of sos3 and s9s1. Denote the product by s%1*?2,

Let o7 and o be the simple reflections of 7(m) associated to the simple roots [1, 0] and [0, 1], respec-
tively. Then they act on [a,b] € Z? in the usual way by

o1la,b] = [—a+mb,b] and o3]a,b] = [a, —b+ mal.
Lemma 3.3. Assume that [a,b] € PT with a > b, and write [c,d] = o102[a,b]. Then we have

(1) s(la,b]) = s3s25"""s1;

(2) 5183525%%bs3835) = 5%,

(3) s3s2s18([a,b])s1s253 = s([c,d]).

Proof. (1) Straightforward.

(2) Given D***, we replace a horizontal step, which is followed by another horizontal step, with
Dm*=1)xm and a two-step path with horizontal step and an immediate vertical step with D(m*—m=1)x(m—1)
Then the resulting path is D°*?. This transformation of Dyck paths can also be obtained from a sequence
of Dyck path mutations considered in [7, Section 3].

For example, when m = 3, we have

e N e 1]

)

and obtain D'3*5 from D2*! through this transformation:

I N L

We consider the associated Coxeter group elements
sh = g(m*=Dxm _ s([m, 1)™ ts(fm — 1,1])
= ((5253)™5951)™ ! (5083)™ L5951 = (s951)™ 's351 = 51528351 and
shv = g(m®=m=1)x(m=1) _ s(fm,1])™ 2s(fm — 1,1]) = 515251525351,
and obtain
5253515 515352 = (525351)(51525351)(515352) = s253,
$953515" 518389 = (828351)(8152515258381)(518382) = ($253)(5251)-

This proves the assertion.

(3) This is an immediate consequence of the parts (1) and (2). O
Lemma 3.4. We have the following formulas.
(a) s = 5561 and  sP2XE1 = g5,
GFuxFai1 _ 51(535251) "3/ 25553 (s515283) ("3 25 forn >3 odd;
51(535251) "9/ 253515983 (515983) "D/ 25y, forn >4 even
EnxBas1 _ 51(535251) "3/ 25551 8953 (515283) ")/ 25y forn >3 odd;
51(333231)("_4)/2533233515253(318283)("_4)/231, forn >4 even
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(b) (s382818([Fp, Fre1]))™ = (s182838([Fn, Fro1]))™ =€ for allm > 1.

Proof.  (a) Let F,, := Dfn*In-1 and &, := DE»*Fn-1 We use induction on n. It is easy to check the
base cases. Suppose n > 3. Then the Dyck path F, consists of m — 1 copies of F,,_; followed by one
copy of &,_1. This is because ((m — 1)F,_1,(m — 1)F,,_2) is below the diagonal, and Pick’s theorem
implies that there is no integral point in the interior of the triangle formed by (0,0), (F,, F,—1), and
((m—=1)F,—1,(m — 1)F,_2). Similarly, the Dyck path &, consists of m — 2 copies of F,_; followed by
one copy of &, 1. It is straightforward to check the induction process as follows.

Suppose that n is odd. From the induction hypothesis, we have

st = 81(‘9382‘91)(n_3)/25253(818283)("_3)/2.91, and
gEnXEn_1 _ 31(535281)("_3)/252515253(318283)(”_3)/231_
Then
SFn+1 X Fyn
= (81 (838251)(n—3)/28283(813253)(n—3)/251)m—1 (51 (838281)(n_g)/282818283(815253)(n_3)/251)
= 81(838281)(n_3)/2(8283)m_152515253(818283)(n_3)/231
=5 (338251)(n—3)/233818283(515253)(11—3)/251’
and
sE7L+1><En

= (81(833281)("_3)/28233(313253)("_3)/251)’”_2(31(535231)(n—3)/282818233(818283)(n—3)/281)
= 31(535231)(”_3)/2(5253)m_232515253(515253)(”_3)/231

n—3)/2 n—3)/2
:81(838281)( )/ 838283818283(818283)( )/ S1.

The other case can be similarly proved.

Fp X F, FpXF,_

(b) Each of s382818([Fn, Fri—1]) = $3528183528 —1sy and $182838([Fr, Fr—1]) = 518 lg; is a

conjugate of one of s153, 8951, S253, Or 352, which implies the statement. O

Remark 3.1. Notice that s3ses; can be considered as a curve going around below an integral point
and s15283 going around above an integral point. See the illustrations below.

This fact will be used frequently in the proof of the following lemma.

Lemma 3.5. For a fized positive integer n and [a,b] € Pt with a > b, let K = —F,_1a + F,b. Assume
that o’ :==a — m|k|F, >0 and V' :=b—m|k|F,—_1 > 0. Then

s([a',0']) = s([a, b]).

Proof. If k = 0 then trivial. Here we give a proof for the case of k > 0, as the k < 0 case is similar.
We need to be able to locate the integral points inside the triangle, say T, formed by (0,0), (a,b) and
(a’,b"). Pick’s theorem implies that there are exactly m(g) integral points in the interior of T. For each
i€{l,...,k}, let L; C R? be the line segment from (éa/, éb’) to (%a, ib) For technical simplicity, assume
that L, is open ended at (a,b) so that L, contains exactly mx integral points. Also note that x > 0
implies g < Z—l,.

First, observe that all integer points inside 7" have to be on the intervals L;. Indeed, if (¢,d) is an
integer point inside T, consider the triangle with vertices (a,b), (¢, d), and (a — F,,,b— F,,_1) (the integer
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P3,10

Figure 3.1 A picture illustrating the case of m = k = 3, [a,b] = [48,17] and [a/,b'] = [21,8]. The three blue-colored
curves represent M1, M2, and M3 (from the bottom). The four orange-colored line segments are S1, S2, 71, and Tb.

point on the interval L, next to (a,b)). Suppose that its area is i/2, where ¢ is an integer. Note that
the area of the triangle with vertices (0,0), (a,b), and (a — F,,,b — F,_1) equals

1det Fn o =
2 a b 2

Therefore, (c,d) has to be % times closer to the interval L, than (0,0). So, (c,d) belongs to L, ;.

Note that the distances between consecutive integer points on all L;’s are the same and equal to ﬁ |Ly|,
and the lengths of the intervals are given by |L;| = =|L,|. Therefore, since for 0 < i <  the end points
of L; are not integer points, each L; contains exactly mi integer points.

For i € {1,...,x}, let M; be an admissible curve which starts at (0,0), goes below P; 1, ..., P; y,; but
above P;_11,..., Pi_1 m(i—1), and ends at (a,b). Tt would be useful to give two different names to M;
by letting M, (resp. M;") be a curve (isotopic to M;) sufficiently close to P;_1 1, ey i1 m(i—1) (resp.
Pi1, ...y Pimi). Note that s(M;) = s(M;") = s(M;").

For ¢ € {1,...,k — 1}, let S; be the line segment from P;_1 1 to P;1 (where Py = (0,0)), and let T;
be the line segment from P; ,,,;11 to P; 1 m(i+1)+1, where P; ;11 is the integral point that makes P; n;
become the midpoint between P; ,,,;—1 and P ji41.

Then, by Lemma 3.4 (b) and Remark 3.1, we have

s([a,b]) = s(My) = s(M;") = 5(S1)(s352515([Fpn, Fr1]))™s152535(T1) - - - 5152535(T\e—1)
s(S1)(s182838([Frns Fruo1])) ™ s182838(T1) - - - $182838(Ti—1) = s(My ) = s(Ms)
s(M3) = 5(S1)s152835(S2)(s382515([Fp, Fo1]))?"s150835(Th) - - - 5159535(Th_1)

. (S1)5182838(52) - - $182838(Sk—1)(8182835([Fh, Fn,l]))(“_1)m8182833(TN,1)

= s(M;) = s(M;) = s([a',b])(s3s2515([Fn, Fua]))™ = s([d, V']).

When n = 0 in the above lemma, we have x = b and obtain the following corollary.
Corollary 3.6. Let [a,b] € Pt. Then, for j € Zo,
s(la + jmb,b]) = s([a,b]).

For [a,b] € PT, define
Q([a,b]) = a® + b* — mab.
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Lemma 3.7. Assume that

F, - b < F,
Fn a Fn+1

, [a,b] € PT.

Then, for any j € Z~q, we have

Q ([a,b] — mj(—Fn_1a+ Fp.b)[F,, F._1]) < Q([a,b]), and
Q ([a, b] + mj(_Fna + Fn+1b)[Fn+1a Fn]) < Q([aa b])

Proof. Let uw=F,_1,v=F, and w = F},; for convenience. First, set
z = a+ mjauww —mjbv®  and y = b+ mjau® — mjbuv.

We want to prove
22 —may +y? < a® — mab + b2
We compute

x? — may +y* — (a* — mab + b?) (3.1)

2 2

= mj(mju* — m?ju™v + mjuv
2

— mu? 4 2uv)a
+mj(mjuv? — m?jun™ + mjv* — 2uv + mo?)b?

—2mj(mjuv — m*juv? + mjuv™ — u? + v?)ab
Since ua < vb, we multiply the identity (3.1) by v/mj and then replace vb by ua to obtain the inequality

(3.1) x (v/mj) < (mju'v — m2ju™v* + mju*v™ — mu*v + 2uv?)a®
+ (mjuv — m?juv® + mjv™ — 2u + mo)u’a?
—2(mju™v — m?juv? + mjuv™ — u? + v¥)ua® = 0.
Thus we have (3.1)< 0 as desired.
Now let
1 = a—mjavw + mjbw? and 1y = b—mjav?® + mjbvw,

and compute to obtain

2 —mayy +y1? — (a® — mab + b?) (3.2)
= mgj(mjv* — m?*ju™w + mjv’w® + mv® — 20w)a’®
+ mj(mjv?w? — m2jow™ + mjw* + 2vw — mw?)b?
—2mj(mjv™w — m?jviw? + mjvw™ 4 v* — w?)ab.
Since wb < wa, we multiply the identity (3.2) by v/mj and then replace va by wb to obtain the
inequality

(3.2) x (v/mj) < (mjv™ — m?jo*w + mjvw? + mv — 2w)w?b*

+ (mjv™w? — m?jviw™ + mjow* + 20*w — mow?)b?

— 2(mjv™w — m2jv3w? + mjvw™ 4 v? — w?)wb?® = 0.

This implies (3.2)< 0 as desired.

O

Combining the lemmas in this section, we obtain the following proposition, which is a main step toward
the proof of Theorem 2.1.

Proposition 3.8. Assume that [a,b] € PT. Then there exists [ag,bo] € P such that [ag, bo] is a reduced
root of H(m) and s([ao,bo]) = s([a,b]) or equivalently, B([ao,bo]) = B([a,b]).
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Proof. TIf [a,b] € PT is a root of H(m), it is already reduced from the definition of PT and we simply
take [ag, bo] = [a, b]. Assume that [a,d] is not a root of H(m ) Without loss of generality, we may further
assume that @ > b. Then, by Lemma 3.1 (c), we have FF <boo Py, - for some n € Z>o. By Lemma 3.2,
we have either [a,b] — m(—Fy_1a + Fb)[Fy, Fr_1] € Pt o [ ] ( Fp,a+ Fyi1b)[Foi1, Fy] € PT.
Put [@/,b] = [a,b] — m(—F,_1a + F,b)[Fy, Fi,_1] or [d/,V] = [a,b] + m(—Fpa + Fp11b)[Frt1, Frl, so
that [a’,b'] € PT. Then we have s([a’,V']) = s([a,b]) and Q([a’,V']) < Q([a,b]) by Lemmas 3.5 and 3.7,
respectively.

If Q([a’,b']) < 1 then [d/,b'] is a positive reduced root of H(m) from (2.1) and we take [ag, bo] = [a’,V'].
If Q([a’,¥']) > 1 then [d/, ] is not a root of H(m) and we repeat the process by putting o’ and b’ to be

new a and b. Clearly, this process ends in a finite number of steps. O
Example 3.2. Assume that m = 3, and consider [487,186]. Since Q([487,186]) = 19, it is not a root
of H(3). Note that 2f < 188 < 2%. We compute 3 x (—55 x 487 + 144 x 186) = —3 and

[487,186] — 3 x [144,55] = [55,21] € PT.

Since Q([55,21]) = 1, [55,21] is a real root of #H(3) and the process ends here. Indeed, we have
s([487,186]) = s([55,21]) and

B([487,186)) = B([55, 21]) = 6a; + 8as + 17as.

Now consider [1789,683] with Q([1789,683]) = 1349. Since £ < {25 < 2L we get

[1789,683] + 3(—21 x 1789 + 55 x 683)[55, 21] = [1129,431], Q([1129, 431]) = 605.
We continue to obtain

[1129,431] + 3(—21 x 1129 + 55 x 431)[55,21] = [469, 179], Q([469,179]) = 149,
469, 179] — 3(—8 x 469 + 21 x 179)[21,8] = [28,11], Q([28,11]) = —19.

Thus [28,11] is an imaginary root of H(3), and we have
B([1789,683]) = B([28, 11]) = 551 + 55as + 14das.

Lemma 3.9. Let n be any non-self-crossing admissible curve with v(n) € K. Then there exists [a,b] € PT
such that s(n) = s([a,b]).

Proof.  Each non-self-crossing closed curve on the torus is a torus knot. As an admissible curve has a
distuinguished marked point, which is the origin, we allow Dehn twists around the origin. Hence (the lift
of) the curve i (to the universal cover) is isotopic to a spiral (around the origin) followed by a line segment
which is then followed by the opposite spiral (around the end point of 1). Without loss of generality, we
may assume that the first spiral goes around counterclockwise. Then s(n) can be written in one of the
forms

(s35251)"s(V)(s15253)", (s35251)"s3s(v)s3(s15283)", and (s35251)"s3528(V)s2s3(s15283)"

for some n > 0 and a line segment v. We will consider the case when n = 0 and show that each of the
forms is equal to s([a,b]) with [a,b] € PT and a > b. Then we immediately obtain the statement for
any n > 0 by Lemma 3.3 (3) and an induction argument. Thus we only need to consider each of the
reflections

s(v), s3s(v)ss, and s3525(v)sass.

First, if s(n) = s(v) with v a line segment, then we have s(n) = s([a, b]) with a > b, if necessary, by
applying Corollary 3.6.

Next, if s(n) = s3s(v)ss, then s(v) starts with the letter 1; if s(v) starts with the letter 2, then s(n)
would be of the form s3sos(v)sass, which would fall into the next case. Let D(n) be the lattice path from
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(0,0) to (0,1) then to the end point of n that goes North and West, and is closest to (but never crosses)
the line segment v.

Assign the element sos1 € W(m) to each vertical edge of D(n), and s1s2s381 to each horizontal edge.
Let w(n) € W(m) be the product of these elements obtained by reading them while traveling along D(n).
Then s(n) = szsqow(n)si.

Let (¢, d) be the end point of . The maximal Dyck path D(¢+m@)xd consists of (copies of ) m consecutive
horizontal edges followed by a vertical edge, and (copies of) m — 1 consecutive horizontal edges (which
is preceded by a vertical edge) followed by a vertical edge. Remember s([c + md, d]) = szsos(ctmd)*dg,
from Lemma 3.3 (1).

A vertical edge of D(n), which is followed by another vertical edge, corresponds to m consecutive
horizontal edges followed by a vertical edge in D(ctmd)xd A vertical edge followed by a horizontal edge
in D(n) corresponds to m — 1 consecutive horizontal edges followed by a vertical edge in D(ctmd)xd,
Moreover, the element sos1 of a vertical edge of D(n), which is followed by another vertical edge, is
equal to (s2s3)™sas1 that is associated to m consecutive horizontal edges followed by a vertical edge in
pletmd)xd  The combined element (s281)(815253581) = s3s1 of a vertical edge followed by a horizontal
edge in D(n), is equal to (s283)™ 1s2s; that is associated to m — 1 consecutive horizontal edges followed
by a vertical edge in D(ctmd)xd,

Hence w(n) = slctmdxd 5o s(n) = s([c + md,d]). Since ¢ +d > 0, we have ¢ + md > d and
[c+ md,d] € PT. For example, the following figures illustrate the case m = 3 and (c¢,d) = (-2, 3).

N

\

Here we have
s(n) = 5352(3251)2(51525351)(5251)(51525351)51 = 5351535183

= $253525352515283525352515283828352 = s([7, 3]).

Lastly, suppose that s(n) = s3sas(v)s2ss. Let (c,d) be the end point of 5. If [c + md,d] € PT then a
similar argument to the previous case shows that s(n) = s([c + md, d]). Otherwise, we have ¢ +md < 0
and take a curve n’ such that

s(n') = s3s25(1V)s283

where v/ is a line segment between (¢ + md + €,d — €) and (—¢,€) for some small € > 0. Then one
can see that s(n) = s(n'). Repeating this process, we obtain a curve n”” whose end point is (¢”, d) with
c’ +md > 0 and we are done by Corollary 3.6 as s(n) = s([¢” + md, d]). O

Proof of Theorem 2.1.  Assume that s(n) is a rigid reflection of W(m) given by a non-self-intersecting
admissible curve . By Lemma 3.9, there exists [a, b] € P such that s(n) = s([a, b]). Then by Proposition
3.8 there exists a reduced positive root [ag, bg] of H(m) such that

s(n) = s([a, b]) = s([ao, bo])-
This completes the proof. O
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