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Abstract—In recent years, robotic technologies, e.g. drones or
autonomous cars have been applied to the agricultural sectors to
improve the efficiency of typical agricultural operations. Some
agricultural tasks that are ideal for robotic automation are yield
estimation and robotic harvesting. For these applications, an
accurate and reliable image-based detection system is critically
important. In this work, we present a low-cost strawberry
detection system based on convolutional neural networks.
Ablation studies are presented to validate the choice of hyper-
parameters, framework, and network structure. Additional
modifications to both the training data and network structure that
improve precision and execution speed, e.g., input compression,
image tiling, color masking, and network compression, are
discussed. Finally, we present a final network implementation on
a Raspberry Pi 3B that demonstrates a detection speed of 1.63
frames per second and an average precision of 0.842.

Keywords—precision agriculture, deep learning, fruit detection

I. INTRODUCTION

As agricultural automation becomes more feasibley'due in
part to lighter and mere tobust computer| vision algorithms,
produce detection has, emerged as an essential part of the
production pipeline. Automatic harvesting of fruit requires a
precise understanding of individual fruit location, and delicate
fruit may require systems to be aware of additional attributes
like color or shape. Fundamental tasks like yield estimation and
resource management also rely on having accurate knowledge
of fruit location. These tasks are expensive and time-consuming
when performed manually, and mishandling of produce by
workers can often result in damaged produce [1]. Automation,
through use of a produce detector, provides a very cost-
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effective method of processing produce and mitigates the risk
of damage by improper handling.

There exist several approaches to detecting fruit, most of
which utilize convolutional neural networks (CNNs), as color
cameras are inexpensive and make capturing data over large
swaths of field easy. However, existing implementations
capture images which contain very dense patches of small
fruits, a configuration which lends to large, complex networks.
Existing implementations also favor high resolution images to
maximize learned features, especially with very small fruits.
Because of this, these systems require expensive hardware to
operate, or are unable to predict quickly on most hardware.

This work presents a sparse CNNyoptimized to run quickly
on mobile low-power hardware=@tur approach is novel as it
applies manypoptimization.techniques to enable the system to
run), on.-eomputationally,limited “hardware. Our network
implements”Single Shot Multibox Detector (SSD) [2], a state-
of-the-art detector framework which maximizes both speed and
precision. Our system is designed to process low density images
of strawberries, allowing us to experiment with exhaustive
input reduction methods and techniques to exploit color and
location to produce better predictions. These optimizations
enable our system to predict quickly when deployed on a highly
mobile low-power single board computer (SBC).

This paper is organized as follows: In Section II, we provide
a brief overview of existing fruit detection systems and network
optimization methods. In Section III, we provide an overview
of our proposed CNN for detecting strawberries. In Section IV,
we discuss the techniques implemented to optimize the CNN,
which enables the network to run efficiently on low-cost off the
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Fig. 1. Our initial SSD network configuration. The first 3 convolutional layers perform basic image classification. Successive layers generate feature maps,
establish multi-scale predictions and generate classification confidences. The final predictions are then pruned using non-maximum suppression.
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shelf devices such as the Raspberry PI 3B SBC. In Section V,
we describe our experimental setup, the dataset we use, and
present several ablation studies performed on our dataset.
Finally, in Section VI we present our final CNN configuration
and discuss how our designed fruit detector can be incorporated
into a low-cost robot for fruit harvesting.

II. RELATED WORK

Several methods have already been proposed and tested to
identify fruit on a large scale for automating agricultural tasks.
Most prior approaches utilize a state-of-the-art localization,
segmentation, or classification network to identify one or more
types of fruit in their growing habitat. Approaches generally
favor high resolution images, allowing more fruit to be included
in each image and maximizing learned features. Additional pre
or post-processing techniques are sometimes employed, such as
Region Of Interest (ROI) segmentation or color masking, to
identify zones which have a higher probability of containing
fruit [3]. Various compression techniques can also be applied to
the input to reduce computational workload. Combinations of
these processes have the potential to both accelerate prediction
speed and increase network accuracy.

Bargoti et al. describe a segmentation network for fruit
detection in various settings [4], [5] using feature learning
algorithms, tested on apples and almonds. This approach gives
precise predictions, identifying individual fruit on a pixel-wise
basis. Various heuristic measures.are then used to classify them
as correct or incorrect. Linker et al. describessblobfextraction
[6], which allows individual mangos to| be resolved when
occluded or clustered by matching transformed circular zones
to proposed mangos. Similarly, Payne et al. analyzes colors and
textures to produce pixel-wise classifications on mangos, which
are then refined using blob extraction [7]. Shape analysis can
also be employed to verify proposed fruit regions [8], as shown
by Yamamoto et al.,, who extracts circular apples from
segmented predictions. Nuske et al. also uses radial symmetry
of specular reflections to extract key points on berries [9].

Though many algorithms which focus on image
segmentation exist, object detection using bounding boxes has
become increasingly used for piecemeal identification, as
bounding box annotations are much easier to generate. Several
more optimized detectors which implement bounding box
detection (R-CNN, Faster R-CNN, YOLO) have recently been
shown to achieve high accuracy on the PASCAL-VOC
detection dataset [10]. Further optimizations to Faster R-CNN
using fully convolutional networks have shown additional
speed and accuracy improvements [11]. Faster R-CNN has been
used to detect densely clustered almonds, mangos, and apples
[12] in high resolution images, and has also been used for sweet
pepper and rockmelon detection when shown with five other
unknown fruit types [13]. However, these implementations
require expensive desktop computers to run in real time. Our
approach is novel as it produces accurate predictions while
running on computationally limited low-cost hardware.
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III. FRUIT DETECTOR

Though Faster R-CNN has been most frequently used for
fruit detection, SSD has been shown to give similar accuracy
results and is able to generate predictions significantly faster
[2], which is why it was implemented for our system. This
section presents an overview of our SSD framework for fruit
detection. It also includes brief descriptions of common
techniques for improving speed and accuracy that were used in
the base network implementation or were used in our network.

A. Network Architecture

Our network, shown in Fig. 1, is based on the framework
proposed by Liu et at. [2]. As in the original implementation,
our network is composed of four primary modules:

1) Base network image classifier

A set of convolutional layers for basic image classification.
Multi-scale feature maps for detection

Additional convolutional feature layers of progressively
decreasing size which augment the truncated base network
to allow predictions of detections at multiple scales.
Convolutional predictors for detection

A set of convolutional feature layers which generate a fixed
set of predictions using a set of convolutional filters.
Default boxes and aspect ratios

Layers that generate and associate default bounding boxes
with feature map cells and compute-per-class scores for each
identified bounding box:

2)

3)

4)

During-training, the input’to the network is a set of three-
channel"BRG 'color images with associated rectangular ground
truth bounding boxes. A set of prediction boxes over a variety
of locations, aspect ratios, and scales is generated and compared
to ground truth boxes using Jaccard overlap. Considering the
substantial number of boxes generated by this method, it is
essential to perform non-maximum suppression (NMS)
efficiently during inference. This can be done by choosing an
appropriate confidence threshold and a suitable Jaccard overlap
threshold to filter out less relevant boxes.

B. Transfer Learning

Instantiating weights from a pretrained network has become
an established method to train new, highly accurate networks.
Other approaches have used this technique to create fruit
detection networks which exhibit high accuracy [12]. The
original implementation of SSD recommends using VGG-16 as
a base network to perform general object classification.
However, a robust network like VGG-16 is both large and
somewhat slow to predict. Because our implementation utilizes
low-power hardware, this must be taken into account when
choosing a classifier. Therefore, to accelerate predictions our
network does not take advantage of transfer learning, instead
using weights which are randomly initialized. Our network is
also significantly smaller than most state-of-the art classifiers,
with only three dedicated convolutional classification layers.

C. Data Augmentation

Enlarging datasets by performing geometric or color
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Fig. 2. Image tiling method of input reduction. (a) Purple bounding box shows ROI image generated using color mask. (b) Red bounding boxes show overlapping
sub-images that contain valid color values. (¢) Orange bounding boxes show strawberry predictions after sub-images are sent to the predictor. (d) Predictions are
adjusted based on the location of their corresponding sub-image within the input frame.

transformations is an effective way to create more robust and
adaptable networks. Our data generator uses a sequence of
geometric transformations to augment the data during training:
This allows the network to_cemrectly identify fruits from a.
variety of angles and occlusions, as may sberobserved during
field traversal. However, the data generator, generally preserves
the input color, as this is.amore vital indicator of fruit condition.
Fruits in particular exhibit specific colors at various stages of
maturity, and for this reason generating filters that can
accurately identify them requires preserving their initial color.

D. Hardware

A frequent concern of industrial consumers when
considering adopting an emerging technology is its high initial
cost. This cost is usually a result of prolonged development of
software or hardware. As shown in the related works section,
several methods already exist to identify fruits from densely
populated images, but their high prediction speed can only be
achieved on high-end computers. In this project, we desire to
take advantage of existing low-cost hardware so that our
deployment is inexpensive and efficient. To satisfy this, we
optimize our fruit detector to run at a reasonable frame rate on
a Raspberry Pi 3B low-power SBC, which is available from a
variety of suppliers for $35. This off-the-shelf device is of
interest since it has a 1.2GHz CPU and 1GB of RAM, supports
USB peripherals and ethernet, has dedicated camera and display
ports, and consumes a peak of only 2.5A at 5V when under load.
Additionally, this computer can easily be attached to a field-
traversing robot, taking up only about 100 cubic cm.

IV. CNN OPTIMIZATION TECHNIQUES

As stated earlier, we design our fruit detector to run on a low-
cost SBC like the Raspberry Pi 3B. In this section we explore
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the various optimization techniques required to achieve high
inference speed while maintaining high.precision.

A. Input.Compression

Compressing the input t6"a neural network is one of the most
effective methods of accelerating its inference speed. For
convolutional neural networks, this can be achieved by down
sampling the input images to a lower resolution. Reduction of
the input dimensions by half results in an almost four times
reduction in inference time, and this exponential trend
continues with even higher compression factors. However,
compressing the input also degrades the data, resulting in
generally lower precision as the compression factor is
increased. Even though our dataset is composed of images with
relatively low object density, reducing the input dimensions too
much resolves fruits to an unrecognizable degree, plummeting
precision. It is therefore the goal of input compression to strike
a balance between inference speed and relative precision. This
objective is recurrant in other opimization methods as well.

B. Color Masking and Image Tiling

Like input compression, image tiling is another method of
reducing the size of the network input. Image tiling relies on
identifying regions of an image that have a higher chance of
containing objects of interest. This allows regions of the image
which are obviously background to be ignored by the predictor.
As mentioned in the related works section, several methods
exist to produce these regions of interest. Our system
implements color masking, as ripe strawberries are a
recognizable shade of red and background foliage is primarily
green. Additionally, the implementation of SSD that our system
utilizes can predict more quickly on batches of images than on
singleton images when prediction times are averaged. Our



system exploits this property by segmenting the region of
interest into many smaller sub-images which are then batched
together and predicted on in parallel.

During operation, video frames are passed to the
preprocessor sequentially as they are captured. The following
steps, shown in Fig. 2, are performed to segment each frame:

1) Mask Application

Applying a color mask, all red pixels in the image are
identified, and coordinates of the horizontal and vertical
extremities are extracted. These coordinates define the
boundaries of an ROI image, Fig. 2 (a), which falls within
the frame and includes every pixel identified by the mask.
Image Segmentation

The ROI image is segmented into rectangular boxes which
are approximately equal to a pre-determined resolution.
Each box defines a sub-image within the ROI image, shown
in Fig. 2 (b), that can be sent to the predictor. Each sub-
image also overlaps neighboring sub-images by 10 pixels to
ensure edge strawberries can still be identified. The mask is
then applied to each sub-image, and sub-images which
contain fewer than 100 red pixels are discarded. Remaining
sub-images are sent to the predictor, Fig. 2 (c).

Sub-Image Mask Application

Bounding box predictions are adjusted based on the
locations of their corresponding sub-images within the
original input frame, shown in Fig. 2 (d). To accommodate
strawberries that occur between sub-images, bounding
boxes on edges that overlap by 10 pixels are merged.

2)

3)

C. Network Compression

When deploying neural networks on SBCs,eptimizing usage
of computational resources is necessary to ‘achieve reasonable
performance. Network compression is used to reduce the
number of parameters within the network, thus reducing
computational load and increasing performance. Compression
does not always increase inference speed however, so careful
attention must be given to selecting the method of compression.
Parameter pruning, low-rank factorization, compacted
convolutional filters, and knowledge distillation [14] are some
of the most common methods of network compression. Because
of the relatively small size of our network, we implemented
selective filter pruning over other compression methods.

To perform filter pruning, filters are extracted from each of
the network’s convolutional layers. Filters are then ranked in
order of ascending L1-norm. Iterative L1-norm thresholding
was used initially to remove filters, but we later found that
removing batches of low-scoring filters instead produced
consistently better results. Because of this, filters were later
removed in groups of 16. To perform this method of
compression, filters from each convolution layer are analyzed
as before. However, rather than iterating over the filters in order
of increasing L1-norm, if the 1* filter is found to have an L1-
norm below the threshold, it and the next 15 lowest scoring
filters are removed from the layer. This operation is repeated on
the 17" filter, and so on, until the threshold is exceeded. Input
dimensions for successive convolutional layers, class inference
layers, and bounding box predictor layers are then resized
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according to the new dimensions of the filter batch. Finally,
after filter removal each network is retrained using the same
hyperparameters as were used to train initially.

V. EXPERIMENTAL EVALUATIONS

Here, we present an overview of ablation studies performed
on the object detection network, with detection results for the
various network permutations. All trials use the same SSD
network architecture, though in later trials we adjust and refine
the structure of the network. Optimization techniques are
applied sequentially to obtain the highest performance, with the
more satisfactory networks from each successive method acting
as test candidates for the next method. In the conclusion we
present our final set of network optimization techniques

A. Experimental Setup

Our dataset is composed of high-resolution BRG images of
ripe strawberries and manually annotated bounding boxes
identifying each piece of fruit in each image. This image data
was collected exclusively from a small strawberry farm near
Bethlehem, PA. During data collection, a camera is held
approximately two feet from a row of strawberry plants and set
to collect video as the camera is moved down the row. Video is
collected near peak daylight so that the strawberries are
reasonably illuminated. Strawberry ripeness varies from unripe
to oyerripe, though most of the strawberries captured are ripe
enough to harvest. Strawberries are 0fla wide range of sizes and
some exhibit unusual or,uncharacteristic shapes. Strawberries
are alsosshown occluded by other fruit, foliage, or dirt.

After video data is collected, the video is exported as a
sequence of individual frames to be fed as input data to the
network. To accelerate computation, the frames are compressed
from their original resolution of 1080x1920 pixels (px) to
360x640px. Rectangular bounding boxes denoting ripe
strawberries are manually generated. Because spatial continuity
is maintained between video frames, bounding boxes can be
slightly shifted from one to the next, simplifying the annotation
process. Strawberries are annotated if they are (i) at least 25%
visible, (ii) in the foreground, and (iii) appear to be ripe for
picking. Relative ripeness is left to human interpretation, with
the understanding that the network should avoid detecting
strawberries which are not yet ripe. To normalize the process,
all bounding boxes are generated by a single person.

For training, the dataset is shuffled and randomly divided
into training, validation, and testing sets. We use a split of 60%
training, 20% validation and 20% testing. From approximately
three minutes of video, we extract 4,550 images containing
22,662 annotated strawberries, which results in a split of 2,730
training, 910 validation, and 910 testing images. Though some
optimization methods will expand this dataset, the ratio of
training, validation, and testing images is maintained.

To begin the training process, the images are fed into the base
layer, which is composed of three convolutional layers with a
successively increasing number of filters. Smooth L1 norm loss
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False Positives

False Negatives

True Positives

Fig. 3. Example predictions made by our final network on the test set, with ground truth boxes in blue and prediction boxes in orange. Columns contain examples,
from left to right, of several false positives, several false negatives, and several true positives.

and back propagation are applied end to end using Adam
optimizer and final detection confidences are attuned by
softmax loss. The network produces a fixed-size collection of
bounding boxes and confidence scores for objects contained
within the boxes. The final output returns 400 predictions,
which are pruned using non-maximum suppression and_a.
default probability threshold.

Training is performed on a desktop workstation with a Nvidia
GTX 1080ti. Training is run for 200 epochs at1000 steps per
epoch, with a batch sizé of 32 images. Images are loaded and
then saved as an uncompressed array in a contiguous block of
memory to accelerate “training times. The inference speed
testing is performed on a Raspberry Pi 3B SBC. For testing
purposes video rendering is disabled and all triggering is done
remotely through secure shell (SHH).

B. Impact of Input Compression

To test input compression, images are compressed to various
resolutions with linear color interpolation between pixels.
Compression factors are chosen based on their proportional
relationship to the base resolution. As original video is taken at
a standard 16:9 aspect ratio, additional compression factors
preserve this aspect ratio. This maintains geometric structure
and spatial arrangement of fruits.

Table I shows detection results and prediction speeds for
various input resolutions. It can be observed that precision
decreases exponentially with resolution, while frame rate
increases exponentially. When high resolution inputs are fed
into the network, resulting detections are highly precise,
nearing 0.877 average precision (AP) [10] at 360x640px. High
resolution predictions also take significantly longer to generate,
with an average frame rate of 0.23 frames-per-second (FPS) at
the same resolution. Similarly, predictions on low resolution
inputs show very low precision but very high prediction speeds,
0.518 AP and 3.16 FPS respectively at 72x128px.
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TABLE I
Speed and Precision at Various Resolutions
Height (px) Width (px) Precision (AP) Speed (FPS)
360 640 0.877 0.23
180 320 0.843 0.84
144 256 0.827 1.22
108 192 0.725 1.91
90, 160 0.664 245
72 128 0.518 3.16

C. Impact of Color Masking and Image Tiling

Two different sub-image aspect ratios were tested, as altering
aspect ratio of image tiles does not affect spatial relationship.
To generate the color mask, we selected a range of HSV values
to denote the color of ripe strawberries. Subsequent manual
testing was performed to verify the color range. To train the
network, our initial dataset is segmented according to the
procedure described in Section IV B. To maintain the integrity
of the ground truth boxes, bounding boxes are analyzed before
and after segmentation and are discarded if segmentation has
reduced their area by more than 80%. This may occur when
bounding boxes fall between sub-images but have most of their
area, and identifiable fruit features, in only one of the sub-
images they are divided amongst.

Table II shows the detection results and prediction speeds for
various sub-image resolutions. It can be observed that though
precision only slightly decreases, from 0.880 to 0.814 AP,
speed increases dramatically, from 0.48 FPS to 1.45 FPS, as the
resolution is reduced from 144x256px to 72x72px. Although
additional prediction speed gains could be achieved by
continuing to reduce the resolution, strawberries would begin
to fill the entire frame, severely handicapping feature learning.
Because of this, precision begins to decrease more sharply at
72x72px, as the largest strawberry in the dataset has a bounding
box of 58x79px.



TABLE II
Speed and Precision at Various Sub-Image Resolutions
Height (px) Width (px) Precision (AP) Speed (FPS)
360 640 0.877* 0.23*
144 256 0.880 0.48
100 100 0.864 1.05
72 72 0.814 1.45

*This trial was generated using base input image without tiling as a control for tiled resolutions.
D. Impact of Network Compression

Table III shows the effect of network compression via filter
removal on precision and prediction speed. As previously
mentioned, because acceleration methods were tested
sequentially, compression was applied to the best candidates
from the image tiling method. It can be observed that removing
more filters generally increases speed and decreases
performance, though this is only evident when observing trends
from a high level. Extreme compression rates see the removal
of seventy percent of filters with very little precision
degradation, from 0.864 to 0.842 AP in the case of 100x100px,
indicating that many of the learned features are weighted very
low. Finally, of the two tiling resolutions tested, 100x100px
shows higher precision with the same number of filters
removed, indicating that was able to identify more valuable
features from the dataset than the smaller 72x72px network.

TABLE III
Speed and Precision for Various Compressions at 72x72 Resolution
Filters Network Precision (AP) Speed (EPS)
Removed Parameters
0 185,520 0.814 1.45
23 165,846 0.815 124
96 98,676 0.803 1.31
112 88,392 0.768 1.45
160 61,728 0.758 2.15
Speed and Precision for Various Compressions at 100x100 Resolution
0 185,520 0.864 1.05
96 94,224 0.838 1.04
160 57,672 0.842 1.63

VI. CONCLUSION

Prior work has demonstrated the value of computer vision
algorithms for fruit detection. Our system strives to be fast,
precise, and affordable to spur easy adoption and high
efficiency. We implement the state-of-the-art SSD neural
network framework as a fruit detector. We use a sparse, three-
layer convolutional classifier as our base classifier, and alter the
network in various ways to increase speed and precision. To
accelerate our network performance, we first compress the
input to the network to 360x640px and apply a color mask to
isolate regions of interest. The region is broken into many sub-
images of 100x100px which are sent to the network in a single
batch. Finally, the entire network is compressed by removing
160 lowly weighted filters, and then retrained.

Combining all optimization methods, we assembled a
network with three convolutional layers (176 filters and 57,627
parameters) capable of predicting with 0.842 AP at 1.63 FPS on
a Raspberry Pi 3B SBC. Example correct and incorrect
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predictions generated by this network are shown in Fig. 3. This
network was trained on a version of our original dataset which
was processed using the color masking and image tiling method
discussed in Section IV B. This fruit detector will be used to
detect strawberries for mass harvesting. As the model is given
a live video, individual frames will be augmented with depth
information to approximate the location of each identifiable
strawberry in 3D. Predicted bounding boxes will then be used
to generate a path for an articulated robot arm or picking
apparatus. This system will enable unmanned robots to replace
humans as harvesters, dramatically improving agricultural
efficiency and reducing damage to crops.
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