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Abstract—In recent years, robotic technologies, e.g. drones or 
autonomous cars have been applied to the agricultural sectors to 
improve the efficiency of typical agricultural operations. Some 
agricultural tasks that are ideal for robotic automation are yield 
estimation and robotic harvesting. For these applications, an 
accurate and reliable image-based detection system is critically 
important. In this work, we present a low-cost strawberry 
detection system based on convolutional neural networks. 
Ablation studies are presented to validate the choice of hyper-
parameters, framework, and network structure. Additional 
modifications to both the training data and network structure that 
improve precision and execution speed, e.g., input compression, 
image tiling, color masking, and network compression, are 
discussed. Finally, we present a final network implementation on 
a Raspberry Pi 3B that demonstrates a detection speed of 1.63 
frames per second and an average precision of 0.842.  
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I. INTRODUCTION 

As agricultural automation becomes more feasible, due in 
part to lighter and more robust computer vision algorithms, 
produce detection has emerged as an essential part of the 
production pipeline. Automatic harvesting of fruit requires a 
precise understanding of individual fruit location, and delicate 
fruit may require systems to be aware of additional attributes 
like color or shape.  Fundamental tasks like yield estimation and 
resource management also rely on having accurate knowledge 
of fruit location. These tasks are expensive and time-consuming 
when performed manually, and mishandling of produce by 
workers can often result in damaged produce [1]. Automation, 
through use of a produce detector, provides a very cost-

effective method of processing produce and mitigates the risk 
of damage by improper handling. 

There exist several approaches to detecting fruit, most of 
which utilize convolutional neural networks (CNNs), as color 
cameras are inexpensive and make capturing data over large 
swaths of field easy. However, existing implementations 
capture images which contain very dense patches of small 
fruits, a configuration which lends to large, complex networks. 
Existing implementations also favor high resolution images to 
maximize learned features, especially with very small fruits. 
Because of this, these systems require expensive hardware to 
operate, or are unable to predict quickly on most hardware.  

This work presents a sparse CNN optimized to run quickly 
on mobile low-power hardware. Our approach is novel as it 
applies many optimization techniques to enable the system to 
run on computationally limited hardware. Our network 
implements Single Shot Multibox Detector (SSD) [2], a state-
of-the-art detector framework which maximizes both speed and 
precision. Our system is designed to process low density images 
of strawberries, allowing us to experiment with exhaustive 
input reduction methods and techniques to exploit color and 
location to produce better predictions. These optimizations 
enable our system to predict quickly when deployed on a highly 
mobile low-power single board computer (SBC). 

This paper is organized as follows: In Section II, we provide 
a brief overview of existing fruit detection systems and network 
optimization methods. In Section III, we provide an overview 
of our proposed CNN for detecting strawberries. In Section IV, 
we discuss the techniques implemented to optimize the CNN, 
which enables the network to run efficiently on low-cost off the Funded by the National Science Foundation under grant no. CNS-1757787.

Fig. 1. Our initial SSD network configuration. The first 3 convolutional layers perform basic image classification. Successive layers generate feature maps, 
establish multi-scale predictions and generate classification confidences. The final predictions are then pruned using non-maximum suppression.  
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shelf devices such as the Raspberry PI 3B SBC. In Section V, 
we describe our experimental setup, the dataset we use, and 
present several ablation studies performed on our dataset.  
Finally, in Section VI we present our final CNN configuration 
and discuss how our designed fruit detector can be incorporated 
into a low-cost robot for fruit harvesting.  

II. RELATED WORK 

Several methods have already been proposed and tested to 
identify fruit on a large scale for automating agricultural tasks. 
Most prior approaches utilize a state-of-the-art localization, 
segmentation, or classification network to identify one or more 
types of fruit in their growing habitat. Approaches generally 
favor high resolution images, allowing more fruit to be included 
in each image and maximizing learned features. Additional pre 
or post-processing techniques are sometimes employed, such as 
Region Of Interest (ROI) segmentation or color masking, to 
identify zones which have a higher probability of containing 
fruit [3]. Various compression techniques can also be applied to 
the input to reduce computational workload. Combinations of 
these processes have the potential to both accelerate prediction 
speed and increase network accuracy.  

Bargoti et al. describe a segmentation network for fruit 
detection in various settings [4], [5] using feature learning 
algorithms, tested on apples and almonds. This approach gives 
precise predictions, identifying individual fruit on a pixel-wise 
basis. Various heuristic measures are then used to classify them 
as correct or incorrect. Linker et al. describes blob extraction 
[6], which allows individual mangos to be resolved when 
occluded or clustered by matching transformed circular zones 
to proposed mangos. Similarly, Payne et al. analyzes colors and 
textures to produce pixel-wise classifications on mangos, which 
are then refined using blob extraction [7].  Shape analysis can 
also be employed to verify proposed fruit regions [8], as shown 
by Yamamoto et al., who extracts circular apples from 
segmented predictions. Nuske et al. also uses radial symmetry 
of specular reflections to extract key points on berries [9].  

Though many algorithms which focus on image 
segmentation exist, object detection using bounding boxes has 
become increasingly used for piecemeal identification, as 
bounding box annotations are much easier to generate. Several 
more optimized detectors which implement bounding box 
detection (R-CNN, Faster R-CNN, YOLO) have recently been 
shown to achieve high accuracy on the PASCAL-VOC 
detection dataset [10]. Further optimizations to Faster R-CNN 
using fully convolutional networks have shown additional 
speed and accuracy improvements [11]. Faster R-CNN has been 
used to detect densely clustered almonds, mangos, and apples 
[12] in high resolution images, and has also been used for sweet 
pepper and rockmelon detection when shown with five other 
unknown fruit types [13].  However, these implementations 
require expensive desktop computers to run in real time. Our 
approach is novel as it produces accurate predictions while 
running on computationally limited low-cost hardware.  

III. FRUIT DETECTOR 

Though Faster R-CNN has been most frequently used for 
fruit detection, SSD has been shown to give similar accuracy 
results and is able to generate predictions significantly faster 
[2], which is why it was implemented for our system. This 
section presents an overview of our SSD framework for fruit 
detection. It also includes brief descriptions of common 
techniques for improving speed and accuracy that were used in 
the base network implementation or were used in our network.  

A. Network Architecture 

Our network, shown in Fig. 1, is based on the framework 
proposed by Liu et at. [2]. As in the original implementation, 
our network is composed of four primary modules:  

1) Base network image classifier 
A set of convolutional layers for basic image classification. 

2) Multi-scale feature maps for detection 
Additional convolutional feature layers of progressively 
decreasing size which augment the truncated base network 
to allow predictions of detections at multiple scales. 

3) Convolutional predictors for detection 
A set of convolutional feature layers which generate a fixed 
set of predictions using a set of convolutional filters.  

4) Default boxes and aspect ratios 
Layers that generate and associate default bounding boxes 
with feature map cells and compute per-class scores for each 
identified bounding box.  

During training, the input to the network is a set of three-
channel BRG color images with associated rectangular ground 
truth bounding boxes. A set of prediction boxes over a variety 
of locations, aspect ratios, and scales is generated and compared 
to ground truth boxes using Jaccard overlap. Considering the 
substantial number of boxes generated by this method, it is 
essential to perform non-maximum suppression (NMS) 
efficiently during inference. This can be done by choosing an 
appropriate confidence threshold and a suitable Jaccard overlap 
threshold to filter out less relevant boxes. 

B. Transfer Learning 

Instantiating weights from a pretrained network has become 
an established method to train new, highly accurate networks. 
Other approaches have used this technique to create fruit 
detection networks which exhibit high accuracy [12]. The 
original implementation of SSD recommends using VGG-16 as 
a base network to perform general object classification. 
However, a robust network like VGG-16 is both large and 
somewhat slow to predict. Because our implementation utilizes 
low-power hardware, this must be taken into account when 
choosing a classifier. Therefore, to accelerate predictions our 
network does not take advantage of transfer learning, instead 
using weights which are randomly initialized. Our network is 
also significantly smaller than most state-of-the art classifiers, 
with only three dedicated convolutional classification layers.  

C. Data Augmentation 

Enlarging datasets by performing geometric or color 
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transformations is an effective way to create more robust and 
adaptable networks. Our data generator uses a sequence of 
geometric transformations to augment the data during training. 
This allows the network to correctly identify fruits from a 
variety of angles and occlusions, as may be observed during 
field traversal. However, the data generator generally preserves 
the input color, as this is a more vital indicator of fruit condition. 
Fruits in particular exhibit specific colors at various stages of 
maturity, and for this reason generating filters that can 
accurately identify them requires preserving their initial color.  

D. Hardware 

A frequent concern of industrial consumers when 
considering adopting an emerging technology is its high initial 
cost. This cost is usually a result of prolonged development of 
software or hardware. As shown in the related works section, 
several methods already exist to identify fruits from densely 
populated images, but their high prediction speed can only be 
achieved on high-end computers. In this project, we desire to 
take advantage of existing low-cost hardware so that our 
deployment is inexpensive and efficient. To satisfy this, we 
optimize our fruit detector to run at a reasonable frame rate on 
a Raspberry Pi 3B low-power SBC, which is available from a 
variety of suppliers for $35.  This off-the-shelf device is of 
interest since it has a 1.2GHz CPU and 1GB of RAM, supports 
USB peripherals and ethernet, has dedicated camera and display 
ports, and consumes a peak of only 2.5A at 5V when under load. 
Additionally, this computer can easily be attached to a field-
traversing robot, taking up only about 100 cubic cm.  

IV. CNN OPTIMIZATION TECHNIQUES 

As stated earlier, we design our fruit detector to run on a low-
cost SBC like the Raspberry Pi 3B. In this section we explore 

the various optimization techniques required to achieve high 
inference speed while maintaining high precision. 

A. Input Compression 

Compressing the input to a neural network is one of the most 
effective methods of accelerating its inference speed. For 
convolutional neural networks, this can be achieved by down 
sampling the input images to a lower resolution. Reduction of 
the input dimensions by half results in an almost four times 
reduction in inference time, and this exponential trend 
continues with even higher compression factors. However, 
compressing the input also degrades the data, resulting in 
generally lower precision as the compression factor is 
increased. Even though our dataset is composed of images with 
relatively low object density, reducing the input dimensions too 
much resolves fruits to an unrecognizable degree, plummeting 
precision. It is therefore the goal of input compression to strike 
a balance between inference speed and relative precision. This 
objective is recurrant in other opimization methods as well. 

B. Color Masking and Image Tiling 

Like input compression, image tiling is another method of 
reducing the size of the network input. Image tiling relies on 
identifying regions of an image that have a higher chance of 
containing objects of interest. This allows regions of the image 
which are obviously background to be ignored by the predictor. 
As mentioned in the related works section, several methods 
exist to produce these regions of interest. Our system 
implements color masking, as ripe strawberries are a 
recognizable shade of red and background foliage is primarily 
green. Additionally, the implementation of SSD that our system 
utilizes can predict more quickly on batches of images than on 
singleton images when prediction times are averaged. Our 

(a) (b) 

Fig. 2. Image tiling method of input reduction. (a) Purple bounding box shows ROI image generated using color mask. (b) Red bounding boxes show overlapping
sub-images that contain valid color values. (c) Orange bounding boxes show strawberry predictions after sub-images are sent to the predictor. (d) Predictions are 
adjusted based on the location of their corresponding sub-image within the input frame. 
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system exploits this property by segmenting the region of 
interest into many smaller sub-images which are then batched 
together and predicted on in parallel.  

During operation, video frames are passed to the 
preprocessor sequentially as they are captured. The following 
steps, shown in Fig. 2, are performed to segment each frame: 

1) Mask Application 
Applying a color mask, all red pixels in the image are 
identified, and coordinates of the horizontal and vertical 
extremities are extracted. These coordinates define the 
boundaries of an ROI image, Fig. 2 (a), which falls within 
the frame and includes every pixel identified by the mask. 

2) Image Segmentation 
The ROI image is segmented into rectangular boxes which 
are approximately equal to a pre-determined resolution. 
Each box defines a sub-image within the ROI image, shown 
in Fig. 2 (b), that can be sent to the predictor. Each sub-
image also overlaps neighboring sub-images by 10 pixels to 
ensure edge strawberries can still be identified. The mask is 
then applied to each sub-image, and sub-images which 
contain fewer than 100 red pixels are discarded. Remaining 
sub-images are sent to the predictor, Fig. 2 (c). 

3) Sub-Image Mask Application 
Bounding box predictions are adjusted based on the 
locations of their corresponding sub-images within the 
original input frame, shown in Fig. 2 (d). To accommodate 
strawberries that occur between sub-images, bounding 
boxes on edges that overlap by 10 pixels are merged. 

C. Network Compression 

When deploying neural networks on SBCs, optimizing usage 
of computational resources is necessary to achieve reasonable 
performance. Network compression is used to reduce the 
number of parameters within the network, thus reducing 
computational load and increasing performance. Compression 
does not always increase inference speed however, so careful 
attention must be given to selecting the method of compression. 
Parameter pruning, low-rank factorization, compacted 
convolutional filters, and knowledge distillation [14] are some 
of the most common methods of network compression. Because 
of the relatively small size of our network, we implemented 
selective filter pruning over other compression methods.  

To perform filter pruning, filters are extracted from each of 
the network’s convolutional layers.  Filters are then ranked in 
order of ascending L1-norm. Iterative L1-norm thresholding 
was used initially to remove filters, but we later found that 
removing batches of low-scoring filters instead produced 
consistently better results. Because of this, filters were later 
removed in groups of 16. To perform this method of 
compression, filters from each convolution layer are analyzed 
as before. However, rather than iterating over the filters in order 
of increasing L1-norm, if the 1st filter is found to have an L1-
norm below the threshold, it and the next 15 lowest scoring 
filters are removed from the layer. This operation is repeated on 
the 17th filter, and so on, until the threshold is exceeded. Input 
dimensions for successive convolutional layers, class inference 
layers, and bounding box predictor layers are then resized 

according to the new dimensions of the filter batch. Finally, 
after filter removal each network is retrained using the same 
hyperparameters as were used to train initially.  

V. EXPERIMENTAL EVALUATIONS 

Here, we present an overview of ablation studies performed 
on the object detection network, with detection results for the 
various network permutations. All trials use the same SSD 
network architecture, though in later trials we adjust and refine 
the structure of the network. Optimization techniques are 
applied sequentially to obtain the highest performance, with the 
more satisfactory networks from each successive method acting 
as test candidates for the next method. In the conclusion we 
present our final set of network optimization techniques 

A. Experimental Setup 

Our dataset is composed of high-resolution BRG images of 
ripe strawberries and manually annotated bounding boxes 
identifying each piece of fruit in each image. This image data 
was collected exclusively from a small strawberry farm near 
Bethlehem, PA. During data collection, a camera is held 
approximately two feet from a row of strawberry plants and set 
to collect video as the camera is moved down the row. Video is 
collected near peak daylight so that the strawberries are 
reasonably illuminated. Strawberry ripeness varies from unripe 
to overripe, though most of the strawberries captured are ripe 
enough to harvest. Strawberries are of a wide range of sizes and 
some exhibit unusual or uncharacteristic shapes. Strawberries 
are also shown occluded by other fruit, foliage, or dirt.  

After video data is collected, the video is exported as a 
sequence of individual frames to be fed as input data to the 
network. To accelerate computation, the frames are compressed 
from their original resolution of 1080x1920 pixels (px) to 
360x640px. Rectangular bounding boxes denoting ripe 
strawberries are manually generated. Because spatial continuity 
is maintained between video frames, bounding boxes can be 
slightly shifted from one to the next, simplifying the annotation 
process. Strawberries are annotated if they are (i) at least 25% 
visible, (ii) in the foreground, and (iii) appear to be ripe for 
picking. Relative ripeness is left to human interpretation, with 
the understanding that the network should avoid detecting 
strawberries which are not yet ripe. To normalize the process, 
all bounding boxes are generated by a single person.  

For training, the dataset is shuffled and randomly divided 
into training, validation, and testing sets. We use a split of 60% 
training, 20% validation and 20% testing. From approximately 
three minutes of video, we extract 4,550 images containing 
22,662 annotated strawberries, which results in a split of 2,730 
training, 910 validation, and 910 testing images. Though some 
optimization methods will expand this dataset, the ratio of 
training, validation, and testing images is maintained. 

To begin the training process, the images are fed into the base 
layer, which is composed of three convolutional layers with a 
successively increasing number of filters. Smooth L1 norm loss 
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and back propagation are applied end to end using Adam 
optimizer and final detection confidences are attuned by 
softmax loss. The network produces a fixed-size collection of 
bounding boxes and confidence scores for objects contained 
within the boxes. The final output returns 400 predictions, 
which are pruned using non-maximum suppression and a 
default probability threshold. 

Training is performed on a desktop workstation with a Nvidia 
GTX 1080ti. Training is run for 200 epochs at 1000 steps per 
epoch, with a batch size of 32 images. Images are loaded and 
then saved as an uncompressed array in a contiguous block of 
memory to accelerate training times. The inference speed 
testing is performed on a Raspberry Pi 3B SBC. For testing 
purposes video rendering is disabled and all triggering is done 
remotely through secure shell (SHH). 

B. Impact of Input Compression 

To test input compression, images are compressed to various 
resolutions with linear color interpolation between pixels. 
Compression factors are chosen based on their proportional 
relationship to the base resolution. As original video is taken at 
a standard 16:9 aspect ratio, additional compression factors 
preserve this aspect ratio. This maintains geometric structure 
and spatial arrangement of fruits.  

Table I shows detection results and prediction speeds for 
various input resolutions. It can be observed that precision 
decreases exponentially with resolution, while frame rate 
increases exponentially. When high resolution inputs are fed 
into the network, resulting detections are highly precise, 
nearing 0.877 average precision (AP) [10] at 360x640px. High 
resolution predictions also take significantly longer to generate, 
with an average frame rate of 0.23 frames-per-second (FPS) at 
the same resolution. Similarly, predictions on low resolution 
inputs show very low precision but very high prediction speeds, 
0.518 AP and 3.16 FPS respectively at 72x128px. 

TABLE I 

Speed and Precision at Various Resolutions 

Height (px) Width (px) Precision (AP) Speed (FPS) 

360 640 0.877 0.23 

180 320 0.843 0.84 

144 256 0.827 1.22 

108 192 0.725 1.91 

90 160 0.664 2.45 

72 128 0.518 3.16 

C. Impact of Color Masking and Image Tiling 

Two different sub-image aspect ratios were tested, as altering 
aspect ratio of image tiles does not affect spatial relationship. 
To generate the color mask, we selected a range of HSV values 
to denote the color of ripe strawberries. Subsequent manual 
testing was performed to verify the color range. To train the 
network, our initial dataset is segmented according to the 
procedure described in Section IV B. To maintain the integrity 
of the ground truth boxes, bounding boxes are analyzed before 
and after segmentation and are discarded if segmentation has 
reduced their area by more than 80%. This may occur when 
bounding boxes fall between sub-images but have most of their 
area, and identifiable fruit features, in only one of the sub-
images they are divided amongst. 

Table II shows the detection results and prediction speeds for 
various sub-image resolutions. It can be observed that though 
precision only slightly decreases, from 0.880 to 0.814 AP, 
speed increases dramatically, from 0.48 FPS to 1.45 FPS, as the 
resolution is reduced from 144x256px to 72x72px. Although 
additional prediction speed gains could be achieved by 
continuing to reduce the resolution, strawberries would begin 
to fill the entire frame, severely handicapping feature learning. 
Because of this, precision begins to decrease more sharply at 
72x72px, as the largest strawberry in the dataset has a bounding 
box of 58x79px. 

False Positives False Negatives True Positives 

Fig. 3. Example predictions made by our final network on the test set, with ground truth boxes in blue and prediction boxes in orange. Columns contain examples, 
from left to right, of several false positives, several false negatives, and several true positives.  
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TABLE II 

Speed and Precision at Various Sub-Image Resolutions 

Height (px) Width (px) Precision (AP) Speed (FPS) 

360 640 0.877* 0.23* 

144 256 0.880 0.48 

100 100 0.864 1.05 

72 72 0.814 1.45 

 
D. Impact of Network Compression 

Table III shows the effect of network compression via filter 
removal on precision and prediction speed. As previously 
mentioned, because acceleration methods were tested 
sequentially, compression was applied to the best candidates 
from the image tiling method. It can be observed that removing 
more filters generally increases speed and decreases 
performance, though this is only evident when observing trends 
from a high level. Extreme compression rates see the removal 
of seventy percent of filters with very little precision 
degradation, from 0.864 to 0.842 AP in the case of 100x100px, 
indicating that many of the learned features are weighted very 
low. Finally, of the two tiling resolutions tested, 100x100px 
shows higher precision with the same number of filters 
removed, indicating that was able to identify more valuable 
features from the dataset than the smaller 72x72px network. 

TABLE III 

Speed and Precision for Various Compressions at 72x72 Resolution 

Filters 
Removed 

Network 
Parameters 

Precision (AP) Speed (FPS) 

0 185,520 0.814 1.45 

23 165,846 0.815 1.24 

96 98,676 0.803 1.31 

112 88,392 0.768 1.45 

160 61,728 0.758 2.15 

Speed and Precision for Various Compressions at 100x100 Resolution 

0 185,520 0.864 1.05 

96 94,224 0.838 1.04 

160 57,672 0.842 1.63 

VI. CONCLUSION 

Prior work has demonstrated the value of computer vision 
algorithms for fruit detection. Our system strives to be fast, 
precise, and affordable to spur easy adoption and high 
efficiency. We implement the state-of-the-art SSD neural 
network framework as a fruit detector. We use a sparse, three-
layer convolutional classifier as our base classifier, and alter the 
network in various ways to increase speed and precision. To 
accelerate our network performance, we first compress the 
input to the network to 360x640px and apply a color mask to 
isolate regions of interest. The region is broken into many sub-
images of 100x100px which are sent to the network in a single 
batch. Finally, the entire network is compressed by removing 
160 lowly weighted filters, and then retrained. 

Combining all optimization methods, we assembled a 
network with three convolutional layers (176 filters and 57,627 
parameters) capable of predicting with 0.842 AP at 1.63 FPS on 
a Raspberry Pi 3B SBC. Example correct and incorrect 

predictions generated by this network are shown in Fig. 3. This 
network was trained on a version of our original dataset which 
was processed using the color masking and image tiling method 
discussed in Section IV B. This fruit detector will be used to 
detect strawberries for mass harvesting. As the model is given 
a live video, individual frames will be augmented with depth 
information to approximate the location of each identifiable 
strawberry in 3D. Predicted bounding boxes will then be used 
to generate a path for an articulated robot arm or picking 
apparatus. This system will enable unmanned robots to replace 
humans as harvesters, dramatically improving agricultural 
efficiency and reducing damage to crops. 
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