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Abstract — This paper aims to develop insights into 

Bayesian truth serum (BTS) mechanism by postulating a 
sequence of seven natural conditions reminiscent of axioms 
in information theory. The condition that reduces a larger 
family of mechanisms to BTS is additivity, akin to the 
axiomatic development of entropy. The seven conditions 
identify BTS as the unique scoring rule for ranking 
respondents in situations in which respondents are asked 
to choose an alternative from a finite set and provide 
predictions of their peers’ propensities to choose, for finite 
or infinite sets of respondents. 
 

Index Terms— Bayesian Truth Serum, information entropy, 
Shannon theory 
 

I.  INTRODUCTION 
The Bayesian truth serum (BTS) algorithm [1] is a game-
theoretic scoring system, designed to incentivize honest 

responses to non-verifiable questions. For each multiple-
choice question in a survey, the respondent is asked to both 
answer the question and also to predict the distribution of 
answers by the rest of the survey sample.  The prediction is 
expressed in terms of percentages of respondents that will 
choose each possible answer. Once these two inputs are 
collected from all respondents, the algorithm assigns to each 
respondent a numerical BTS score, calculated via a 
mathematical formula (that we recall below).  
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The original paper on BTS [1] defined conditions under 
which the scoring rule is strictly incentive-compatible, which 
means that an honest answer on each question strictly 
maximizes that respondent’s expected score, assuming that 
other respondents are answering honestly and the sample size 
can be made arbitrarily large. BTS incentives have been 
applied to a range of survey settings, including knowledge 
design [2], criminology [3], economics and psychology [4], 
and new product adoption [5]1. 

This paper is concerned with a different property of the 
BTS score, namely, that it generates a ranking of respondents 
that reflects the quality of their information, or domain 
expertise. We show that a finite version of the BTS score can 
be obtained as the outcome of a “game of duels” in which 
each player engages in a duel with every other player 
(including himself). That is, for each player, under natural 
conditions on the rules of the game, the payoffs in the “game 
of duels” are exactly those of BTS. The key condition is the 
additivity property as employed in the Shannon information 
theory. 

It is known that the ranking by the BTS score, in the case of 
infinitely many players, corresponds to the ranking by 
posterior probabilities of the true state of nature, called 
“posteriors” (see [1] and [6]). Unfortunately, this property 
fails in the case when there are finitely many players. While 
there exist mechanisms that are incentive compatible in the 
finite case (e.g., [15], [16], [17] etc.), it is not difficult to show 
that no finite case algorithm will rank players by posteriors. In 
this paper we, instead, rank the players by having them 
compete pairwise in scored duels. This can be done both in the 
finite and in the infinite case. The main contribution of the 
paper is to identify natural conditions under which such a 
game reproduces BTS scores. 

 
1 For numerous references for the study of various truth-inducing scoring 
rules in the game-theoretic context with many players see [6]. When only one 
respondent is asked to reveal an opinion on a probability distribution, the 
mechanisms that incentivize truth-telling are called proper scoring rules. The 
literature goes back all the way back to [7], [8] and [9]. Papers that make a 
connection between proper scoring rules and entropy include [10], [11], [12], 
[13] and [14]. 
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Let us elaborate on the connection between BTS, ranking 
by game of duels and ranking by posteriors, to which we refer 
as PstRn or posterior ranking. Recently, it was shown in [18] 
that with infinitely many respondents, the best PstRn expert is 
also the respondent who selects the answer that is most 
‘surprisingly common,’ that is, most underestimated relative to 
predictions. Although the best expert according to PstRn 
cannot be identified in the finite case, we show that it is 
possible instead to identify the person who selects the answer 
that is most surprisingly common through a series of pairwise 
comparisons (or ‘duels’). The ranking of respondents in this 
contest serves as a proxy for the PstRn ranking in the finite 
case. Figure 1 displays the relationships. 

 
Figure 1. Comparison of BTS ranking in finite and infinite 

samples 
 

 
 
In our model, players play a series of (conceptual) duels. 

After each duel, points are transferred from one player to the 
other2. A player’s final score is the total number of points 
received (or lost). The respondents are ranked according to 
their scores. The nature of the game makes it especially 
suitable for situations when players are machines. Although 
this approach seems to have little in common with BTS, our 
main contribution lies in establishing a connection between 
the two. Notably, the games of duels in which transfers satisfy 
certain conditions rank the players according to how 
“generously” they predict the shares of the answers they have 
not chosen, and with the additional additivity condition, the 
only possible game of duels is the one that results in BTS 
scores. 
 
 

 
2 This means that each of the duels results in a transfer of points between 

players. The order of duels is not important, and there is no interdependence 
of duels. Although for each of the players her/his duels occur in a sequence, 
the procedure can be implemented so that different set of players engage in 
duels simultaneously.  

II. BAYESIAN TRUTH SERUM ALGORITHM  
 
Here we give a short theoretical exposition of the Bayesian 

Truth Serum. We denote by 𝑅 the set of players (respondents). 
We assume that 𝑅 is not empty, not a singleton, and at most 
countable (i.e. the cardinal number of the set 𝑅 satisfies 2 ≤
𝑐𝑎𝑟𝑑(𝑅) ≤ ℵ0). Suppose that the players are presented with a 
multiple choice question, offering a choice of 𝑚 ∈ ℕ ∖ {1} 
answers (we use the standard mathematical notation where ℕ 
is the set of natural numbers, ℝ is the set of real numbers, and 
ℝ ̅̅̅ = ℝ ⋃{−∞} ⋃{+∞} ). Each player picks a simple answer 
(the one s/he thinks is the correct one) and gives a prediction 
in terms of probabilities about the distribution of m answers 
within 𝑅.3 More precisely, we present the answer of a player 
𝑟 ∈ 𝑅 as a pair of ordered probability vectors 

 
((𝑥1

𝑟 , … , 𝑥𝑚
𝑟  ); (𝑦1

𝑟 , … , 𝑦𝑚
𝑟  ))  ;                   (1) 

 
where 𝑥1

𝑟 , … , 𝑥𝑚
𝑟  ∈ {0,1}, and 𝑦1

𝑟 , … , 𝑦𝑚
𝑟 ∈ [0,1] such that 

∑ 𝑥𝑘
𝑟𝑚

𝑘=1 = 1 and ∑ 𝑦𝑘
𝑟𝑚

𝑘=1 = 1. Exactly one of 𝑥𝑘
𝑟 is equal to 

one (the non-zero term which corresponds to the selected 
answer), while (𝑦1

𝑟 , … , 𝑦𝑚
𝑟 ) is a probability distribution on 

{1,2, … , 𝑚}. As a consequence, answers of all the players can 
be presented as a (finite or infinite) matrix (𝑋; 𝑌); it is of the 
order 𝑐𝑎𝑟𝑑(𝑅) × 2𝑚 and its rth row, 𝑟 ∈ 𝑅, is given by (1). 
 

We want to assign a numerical score to each player based 
on (𝑋; 𝑌), denoted 

 
𝑢𝑟 = 𝑢𝑟(𝑋; 𝑌);                               (2)                                                                

 
for player 𝑟 ∈ 𝑅. Eventually, we expect our scores to be real-
valued, but here at the outset we shall not restrict ourselves 
and in principle we allow even for infinite values, i.e.  

 
𝑢𝑟  (𝑋; 𝑌) ∈    ℝ ̅̅̅̅  .                                (3) 

 
 
 

A. The score in Bayesian Truth Serum 
 
To develop the formula for the score, we shall use the 

notation ∑  𝑠∈𝑅  in both finite and infinite case. If 𝑅 is finite, 
then ∑  𝑠∈𝑅  has its usual meaning of the sum over all elements 
of 𝑅. We define 𝑥 ̅: = (𝑥1̅̅̅, … , 𝑥𝑚̅̅ ̅̅ ) where  𝑥𝑘̅̅ ̅: =

 
1

𝑐𝑎𝑟𝑑(𝑅)
∑ 𝑥𝑘

𝑆
𝑠∈𝑅 , for k=1,…,m. It is easy to see that 𝑥𝑘̅̅ ̅ 

represent arithmetic means of X-columns. We also define 𝑦̂ ∶=

(𝑦1̂, … , 𝑦𝑚̂) where  ln(𝑦𝑘̂) : =
1

𝑐𝑎𝑟𝑑(𝑅)
∑ ln (𝑦𝑘

𝑠
𝑠∈𝑅 )   for 

k=1,…,m. Here 𝑦𝑘̂  are geometric means of Y-columns. 
If 𝑅 is infinite, then we write 𝑅 = ⋃ 𝑅𝑛𝑛∈ℕ , where 

𝑐𝑎𝑟𝑑(𝑅𝑛) = 𝑛, and the meaning of  ∑  𝑠∈𝑅   is in the sense of 
 

3 The latter question is usually asked in the following way: “please 
estimate the percentage of your peers who will choose answer k”, and the 
question is repeated for each k=1,..,m. 
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lim
𝑛→∞

∑  𝑠∈𝑅𝑛
; the notation comes together with the assumption 

that the limit exists within  ℝ ̅̅̅̅ .  We extend the definition of 
𝑥 ̅: = (𝑥1̅̅̅, … , 𝑥𝑚̅̅ ̅̅ ) so that we define 

 𝑥𝑘̅̅ ̅: =  lim
𝑛→∞

1

𝑛
∑ 𝑥𝑘

𝑠
𝑠∈𝑅𝑛

. Similarly, we extend the definition 
of 𝑦̂ ∶= (𝑦1̂, … , 𝑦𝑚̂) by defining  ln(𝑦𝑘̂) : =

 lim
𝑛→∞

1

𝑛
∑ ln (𝑦𝑘

𝑠
𝑠∈𝑅𝑛

). 
 

Using the notation above, the respondent’s BTS score in [1] 
is defined as  

 
𝑢𝑟(X; Y) ∶=  ∑ 𝑥𝑘

𝑟𝑚
𝑘=1  ln

𝑥𝑘̅̅ ̅̅

𝑦𝑘̂
+ ∑ 𝑥𝑘̅̅ ̅𝑚

𝑘=1  ln
𝑦𝑘

𝑟

𝑥𝑘̅̅ ̅̅
;         (4)                    

  
where 𝑟 ∈ 𝑅. The first part of the sum is called the 
information score, while the second one is called the 
prediction score [1].  
 

 

B. Bayesian Truth Serum in applications 
 

BTS method can be applied in survey settings, as 
explained in [1]. In applications, this algorithm works as 
follows: 

 
1. It is explained to the respondents that they will be 

rewarded according to the BTS scoring rule. The rule 
itself is not explained, except that the respondents are 
told that it is incentive compatible.  

2. Respondents are asked to report their answer from m 
offered alternatives. For a chosen respondent r this 
will create the vector  (𝑥1

𝑟 , … , 𝑥𝑚
𝑟 ). 

3. Respondents are asked to predict how others will 
choose. This will create the vector (𝑦1

𝑟 , … , 𝑦𝑚
𝑟  ) for 

the respondent r.  
4. Respondents are rewarded according to the BTS 

scoring rule (outlined in (4)). 
 

It was shown in [1] that the BTS scoring rule is budget 
balanced, and allows a strict Nash equilibrium in which 
everyone responds honestly. It is shown in [1] and [6] that 
rank-ordering respondents by their BTS score is the same as 
rank-ordering them by their posterior probability for the 
realized state of nature. In [19] it was experimentally 
demonstrated that BTS alters respondents’ behavior in the 
desired direction, which makes it suitable for survey 
applications.  

 

C.   A Bayesian framework and ranking of players 
 
For theoretical studies of BTS, the following Bayesian 
framework is assumed. We assume that respondents are 
presented via a family (𝑉(𝑟) ∶ 𝑟 ∈ 𝑅) of random variables 

taking values in {1, … , 𝑚}. We also assume that there is a 
random variable Ω, the actual state of nature, with finitely 
many values N. It is standard to assume that (𝑉(𝑟) ∶ 𝑟 ∈ 𝑅) 
are Ω-conditionally i.i.d. Hence, the complete probability 
distribution of the system is given via the distribution of the 2-
dimensional random vector (𝑉(𝑟0), Ω) (notice that we can take 
any 𝑟0 ∈ 𝑅 here due to Ω-conditional i.i.d. assumption). 
Obviously, this distribution is given as a 𝑚 × 𝑁 probability 
matrix Q. In particular, the probabilities  
 

𝑝𝑗𝑘 ≔ 𝑃(𝑉(𝑟) = 𝑗, 𝑉(𝑠) = 𝑘), 𝑟 ≠ 𝑠 
 
do not depend on the choice of r and s, as long as 𝑟 ≠ 𝑠;  𝑟, 𝑠 ∈
𝑅.  Within this Bayesian framework the theoretical analysis of 
the system is done under the assumption that the values 𝑦𝑗

𝑟 are 
given through Bayesian updating (see, for example [6] for 
details). More precisely, assuming that 𝑥𝑘

𝑟 = 1, we have 
 

𝑦𝑗
𝑟 = 𝑃(𝑉(𝑟) = 𝑗 | 𝑉(𝑠) = 𝑘) =

𝑝𝑗𝑘

∑ 𝑝𝑙𝑘
𝑚
𝑙=1

 . 

 
We can write 𝑥𝑘

𝑟 = 1 as 𝑉(𝑟) = 𝑘 . Notice that the vectors 
(𝑥𝑘

𝑟 ) and (𝑦𝑗
𝑟) allow us to compute the BTS payoff 𝑢𝑟(X; Y)  

to  player r . Then, it can be shown that (see [1] and  [19]),  
 

𝑢𝑟 = 𝑢𝑟(X; Y) = ln(𝑃(Ω = 𝑖0|𝑉(𝑟) = 𝑘)) − 

− ∑ 𝑃(𝑉(𝑟) = 𝑗|Ω = 𝑖0)ln (P(

𝑚

𝑗=1

Ω = 𝑖0|𝑉(𝑟) = 𝑗)) ; 

 
where 𝑖0 denoted the true state of nature and 𝑐𝑎𝑟𝑑(𝑅) = ℵ0.  
In particular, the above formula shows that for the infinite set 
of respondents BTS is increasing in the posterior probabilities, 
a property called Posterior Ranking or PstRn. However, PstRn 
does not hold with finitely many players. We now identify a 
property that is equivalent to PstRn with infinitely many 
players, which will hold also in the finite case under our 
mechanism. 
 
        For simplicity, let us turn to the binary case where 𝑚 =
2. We denote possible answers as Y and N. We also assume 
that there are two states of nature “True” and “False”. We 
identify states of nature with distributions on (Y,N), i.e. 
“True”=(T, 1-T) and “False”=(F,1-F), where T,F ∈ (0,1) and 
𝑇 ≠ 𝐹. Observe that 𝑇 = 𝑃(𝑉(𝑟) = 𝑌|Ω = True) and 
analogous formula holds for F. We also denote P(Ω =True) as 
𝑃(𝑇) and P(Ω =False) as 𝑃(𝐹).   
 
We introduce the property of “being modest to oneself”, called  
Mds, defined as, for player r,   
 

𝑇

𝑦𝑌
𝑟 >

1 − 𝑇

𝑦𝑁
𝑠 ; 

 
where 𝑥𝑌

𝑟 = 1, 𝑟 ≠ 𝑠 and 𝑥𝑁
𝑠 = 1. This condition essentially 

considers how players predict the share of their chosen 
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answers compared to the realized percentage. Player r satisfies 
Mds if she underestimates the share of her chosen answer Y 
more than the player s does for his chosen answer N. In that 
sense the player r is more “modest”.  
 
We also introduce the property “being generous to others”, 
called Gen, by  
 

𝑇

𝑦𝑌
𝑠 >

1 − 𝑇

𝑦𝑁
𝑟  ; 

 
where 𝑥𝑌

𝑟 = 1, 𝑟 ≠ 𝑠 and 𝑥𝑁
𝑠 = 1. While Mds considers how 

players predict the percentage of people who choose the same 
answer as them, the condition Gen considers how players 
predict the share of the opposite answer. Player r satisfies Gen 
if her prediction of the opposite answer N is closer to the real 
percentage compared to what player s predicts for the answer 
Y. In other words, the player r underestimates her non-chosen 
answer less than player s underestimates his non-chosen 
answer. In this sense player r is more “generous” than player s. 
 
Observe that Mds and Gen can both be interpreted as “the 
player has selected a surprisingly common answer”. 
 
An elementary calculation shows that we have 
 

𝑝𝑌𝑌 = 𝑇2𝑃(𝑇) + 𝐹2𝑃(𝐹) 
𝑝𝑌𝑁 = 𝑝𝑁𝑌 = 𝑇(1 − 𝑇)𝑃(𝑇) + 𝐹(1 − 𝐹)𝑃(𝐹) 

𝑝𝑁𝑁 = (1 − 𝑇)2𝑃(𝑇) + (1 − 𝐹)2𝑃(𝐹) . 
 
Furthermore, we have, for 𝑥𝑌

𝑟 = 1, 
 

𝑦𝑌
𝑟 =

𝑇2𝑃(𝑇) + 𝐹2𝑃(𝐹)

 𝑇𝑃(𝑇) + 𝐹𝑃(𝐹)
 ; 

 
and, similarly, for 𝑥𝑁

𝑟 = 1, 
 

𝑦𝑁
𝑟 =

(1 − 𝑇)2𝑃(𝑇) + (1 − 𝐹)2𝑃(𝐹)

(1 −  𝑇)𝑃(𝑇) + (1 − 𝐹)𝑃(𝐹)
 . 

 
It is now a straightforward algebraic calculation to check that 
under the assumptions that 𝑟, 𝑠 ∈ 𝑅,   𝑟 ≠ 𝑠 ,  𝑥𝑌

𝑟 = 1, 𝑥𝑁
𝑠 = 1 

we have  
 

𝑢𝑟 > 𝑢𝑠                                        (5) 
⇔ 𝑃(Ω = True|V(r) = Y) > 𝑃(Ω = True|V(s) = N)         (6) 

⇔ 𝑇 > 𝐹                                      (7) 

⇔
𝑇

𝑦𝑌
𝑟 >

1 − 𝑇

𝑦𝑁
𝑠  ⇔  

𝑇

𝑦𝑌
𝑠 >

1 − 𝑇

𝑦𝑁
𝑟  .                 (8) 

 
Observe that the first and the second equivalence do not make 
sense if we are not within a stochastic framework. The first 
equivalence is PstRn. Hence, we have five equivalent 
conditions, one of which is BTS.  However, in the finite case, 
the above equivalences do not all hold.  We will show below 
that in our deterministic mechanism (“game of duels”) the Gen 

equivalence remains and it is valid both in the finite and the 
infinite case. 

 

III. A  SYSTEM OF CONDITIONS  
 

     We will develop a system of conditions that results in 
scores (4). In our approach players get ranked via 
simultaneous conceptual duels. Each duel has a “challenger”, 
player 𝑟 ∈ 𝑅, and an “offender”, player 𝑠 ∈ 𝑅.4 We denote 
such duel as 𝑟 → 𝑠. Each respondent plays a duel with every 
other respondent, including oneself. 

 
Each duel 𝑟 → 𝑠 ends with a transfer of points from player r 

to player s. We denote the number of transferred points by 
 

𝑇𝑟→𝑠 = 𝑇𝑟→𝑠 (𝑋; 𝑌) ∈ ℝ .                      (9)                                                             
 
We can think of positive 𝑇𝑟→𝑠 as the winning case for the 

offender, while negative 𝑇𝑟→𝑠 means that the challenger 
prevails. All the possible duels are to be performed (including 
the duel with oneself) in order to determine scores 𝑢𝑟 for all 
respondents 𝑟 ∈ 𝑅. In particular, if R is finite, there will be 
[𝑐𝑎𝑟𝑑(𝑅)]2 duels.  

 
Let us introduce the basic rule for a duel. For every 𝑟 ∈ 𝑅 

the score 𝑢𝑟 equals the number of received points minus the 
number of given points, i.e. 

 
𝑢𝑟 = 𝑢𝑟(X, Y) = ∑ 𝑇𝑠→𝑟(𝑋; 𝑌)𝑠∈𝑅  -  ∑ 𝑇𝑟→𝑠(𝑋; 𝑌)𝑠∈𝑅   (10) 
 
There are two immediate important consequences of (10). 

First, assuming that all the sums are finite-valued (which is the 
only interesting case), the duel is a zero-sum game, 

 
∑ 𝑢𝑟

𝑟∈𝑅 = ∑ ∑ 𝑇𝑠→𝑟
𝑠∈𝑅𝑟∈𝑅 − ∑ ∑ 𝑇𝑟→𝑠

𝑠∈𝑅𝑟∈𝑅 = 0.     (11)   
 
The second consequence of (10) is that the description of 𝑢𝑟 

reduces to the description of 𝑇𝑟→𝑠. We will present a set of 
seven conditions about 𝑇𝑟→𝑠 that generate BTS algorithm (4). 
For each condition we give an intuitive justification (which 
may include some ideas from statistics) and a formal statement 
(which is always going to be deterministic). 

 
 The first six conditions are natural to impose and their 
combined effect will be that, for every 𝑟, 𝑠 ∈ 𝑅, for some 
function P we have  

 

𝑇𝑟→𝑠 (𝑋; 𝑌) = ∑ 𝑥𝑘
𝑠

𝑚

𝑘=1

 𝑃(𝑥𝑘̅̅ ̅; 𝑦𝑘
𝑟); 

                 
 

where  𝑥𝑘̅̅ ̅  is the sample mean.  The seventh condition will be 

 
4 We use traditional duel terminology, where one player (offender) offends 

the other (challenger), who in turn challenges the first player to a duel  
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the additivity condition, which will reduce the above 
representation to BTS. 
 
 Our first condition is very much in the spirit of medieval 
duels. We can interpret it as “the offender chooses the 
playground for the duel”.  

 
Condition 1. The challenger r will transfer points to the 
offender s based on the x answer of the offender s. More 
precisely, for every 𝑟, 𝑠 ∈ 𝑅 and for every 𝑘 ∈ {1, … , 𝑚}  
there exists a number 𝑃𝑘

𝑟𝑠(𝑋; 𝑌) ∈ ℝ such that  
 

𝑇𝑟→𝑠 (𝑋; 𝑌) = ∑ 𝑥𝑘
𝑠𝑚

𝑘=1  𝑃𝑘
𝑟𝑠(𝑋; 𝑌).                    (12)                                                   

 
Observe that Condition 1 reduces our analysis from  𝑇𝑟→𝑠 to 

𝑃𝑘
𝑟𝑠. Observe also that, for every 𝑠 ∈ 𝑅, there is exactly one 

𝑘 ∈ {1, … , 𝑚} such that 𝑥𝑘
𝑠 = 1. Hence, we can think of that 𝑘 

as being the function of s, i.e. 𝑘 = 𝑘(𝑠). It follows then that 
(12) becomes 

 
𝑇𝑟→𝑠 (𝑋; 𝑌) = 𝑃𝑘(𝑠)

𝑟𝑠 (𝑋; 𝑌) .                (13) 
 

In order to understand the second condition, we introduce the 
following partition of R 

 
𝑅𝑘 ∶= {𝑠 ∈ 𝑅 | 𝑥𝑘

𝑠 = 1},     𝑘 = 1, … , 𝑚.              (14)                                         
 

Obviously, the partition 𝑅 = 𝑅1 ⋃ … . ⋃ 𝑅𝑚 is a function of X. 
Fix k for a moment and consider 𝑅𝑘, which is a subset of 
players who choose the same answer 𝑘. In general, the number 
of points 𝑃𝑘

𝑟𝑠 may vary as s changes within 𝑅𝑘. The purpose of 
our second condition is to prevent this from happening, i.e. 
that condition can be thought of as “the egalitarian principle 
within 𝑅𝑘. "  

 
 
Condition 2. Given 𝑟 ∈ 𝑅 and 𝑘 ∈  {1, … , 𝑚} we have  
 

𝑠, 𝑠′ ∈ 𝑅𝑘  ⇒  𝑃𝑘
𝑟𝑠(𝑋; 𝑌) = 𝑃𝑘

𝑟𝑠′
(𝑋; 𝑌) . 

 
Condition 2 says that if offenders 𝑠, 𝑠′ ∈ 𝑅 choose the same 

answer, then in the duels with all challengers they will receive 
the same number of points. Observe that Condition 2 includes 
even the cases when for some k the set 𝑅𝑘 may be an empty 
set; in this case the implication in Condition 2 is true, since the 
premise of the implication is never true. Using a slight abuse 
of notation (think of k=k (s)), Condition 2 implies that 

 
 𝑃𝑘

𝑟𝑠(𝑋; 𝑌) = 𝑃𝑘
𝑟(𝑋; 𝑌)   .                          (15) 

 
In order to understand the third condition, observe that by 

choosing the answer k, the offender s decides (given that r is 
known) on a type of function 𝑃𝑘

𝑟 that will be used in the duel 
𝑟 → 𝑠. However, the 𝑃𝑘

𝑟 will in general still depend on (𝑋; 𝑌). 
Our next condition can be thought of as strengthening 
Condition 1. The offender s chooses the playground k, and in 

doing so it reduces the variable dependence accordingly. 
 
 
Condition 3.  For every 𝑟 ∈ 𝑅 and for every 𝑘 ∈  {1, … , 𝑚},  
 

𝑃𝑘
𝑟(𝑋; 𝑌) = 𝑃𝑘

𝑟((𝑥𝑘
𝑞

)𝑞∈𝑅; (𝑦𝑘
𝑞

)𝑞∈𝑅) . 
 
Next we turn to Condition 4 which has a deterministic form, 

but which can be justified using some ideas from statistics. 
One of the main problems in statistical analysis is to make 
inference about some unknown parameter 𝜃. The inference is 
based on the information given in a sample 𝑋1, … , 𝑋𝑛. If t is a 
sufficient statistic for 𝜃, then whenever we have two sample 
points 𝑥 = (𝑥1, … , 𝑥𝑛) and 𝑥′ = (𝑥′1, … , 𝑥𝑛′) with the property 
𝑇(𝑥) = 𝑇(𝑥′), then the inference about 𝜃 is the same 
regardless whether 𝑥 or 𝑥′ is observed. A typical example is a 
Bernoulli sample in which the sufficient statistics for the 
probability of success is the sample mean.  

 
We argue here that the X-part of our data is akin to the 

Bernoulli sample set-up. We are interested in 𝜔 =
(𝜔1, … , 𝜔𝑛), where 𝜔𝑘 gives the actual fraction of the 
population that thinks k is the correct answer to the original 
question. Hence, since we are interested in 𝜔𝑘, then the 
average value gives as much information about 𝜔𝑘 as the 
entire k-th column of the matrix X, i.e. (𝑥𝑘

𝑞
)𝑞∈𝑅. Therefore, we 

term our fourth condition “the data reduction principle for X”.  
 

 
Condition 4. For every 𝑟 ∈ 𝑅 and for every 𝑘 ∈  {1, … , 𝑚},  
 

𝑃𝑘
𝑟 ((𝑥𝑘

𝑞
)

𝑞∈𝑅
; (𝑦𝑘

𝑞
)

𝑞∈𝑅
) = 𝑃𝑘

𝑟(𝑥𝑘̅̅ ̅; (𝑦𝑘
𝑞

)𝑞∈𝑅). 
 
Our second data reduction principle deals with Y. Our 

conditions so far provided the offender s with the advantage to 
“choose the playground” k. In the next condition we give an 
advantage to the challenger r by giving him/her an option to 
“choose the weapon”. We can think of it as allowing the 
challenger to select some information from the kth column of Y 
in order to predict 𝜔𝑘. We assume that the challenger is very 
self-confident and uses only his/her own choice 𝑦𝑘

𝑟 . This gives 
us the data reduction principle for Y. 

 
 
Condition 5. For every 𝑟 ∈ 𝑅 and for every 𝑘 ∈  {1, … , 𝑚},  
 

𝑃𝑘
𝑟(𝑥𝑘̅̅ ̅; (𝑦𝑘

𝑞
)𝑞∈𝑅) = 𝑃𝑘

𝑟(𝑥𝑘̅̅ ̅; 𝑦𝑘
𝑟). 

 
Observe that our conditions have reduced a function defined 

on a matrix (𝑋; 𝑌)  to a function defined on a pair of numbers   
(𝑥𝑘̅̅ ̅; 𝑦𝑘

𝑟) which are between 0 and 1. However, at this level of 
generality we still allow the form of the function to change 
with r or with k (i.e. the function can vary with the choice of 
different players or responses). A system that would allow for 
such level of generality would not be very practical, as for 
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every k and every r we would have a different function 𝑃𝑘
𝑟. 

Hence we opt for a more robust selection and introduce the 
following “universality condition”. 

 
 
Condition 6. There exists a function 𝑃: [0,1] × [0,1] → ℝ 

such that for every 𝑟 ∈ 𝑅 and for every 𝑘 ∈ {1, … , 𝑚} we have 
𝑃𝑘

𝑟 = 𝑃. 
 

In other words, Condition 6 ensures that function 𝑃𝑘
𝑟 is the 

same for every player r and for every answer k.  
 
To recap, the first six conditions imply that, for every 𝑟, 𝑠 ∈

𝑅 
 

𝑇𝑟→𝑠 (𝑋; 𝑌) = ∑ 𝑥𝑘
𝑠𝑚

𝑘=1  𝑃(𝑥𝑘̅̅ ̅; 𝑦𝑘
𝑟).             (16) .                                                   

 
Remark on ranking of players: Consider a finite set R and a 
function P given by  

𝑃(𝑥, 𝑦) =
1

𝑐𝑎𝑟𝑑(𝑅)
[𝑓(𝑥) − 𝑓(𝑦)] ; 

 
where 𝑓: (0,1) → ℝ. For the purpose of this discussion, let us 
also assume that the same x response implies the same y 
response, i.e., (𝑥𝑘

𝑟 = 1 = 𝑥𝑘
𝑠  ⇒  𝑦𝑗

𝑟 = 𝑦𝑗
𝑠 for every 𝑗 ∈

{1, … 𝑚}). Then, we can use notation 𝑦𝑗
𝑘 = 𝑦𝑗

𝑟 for 𝑥𝑘
𝑟 = 1. It is 

not difficult to calculate 𝑢𝑟 for 𝑥𝑘
𝑟 = 1.  We obtain  

 
𝑢𝑟 = 𝑓(𝑥𝑘̅̅ ̅) − ∑ 𝑥𝑙̅

𝑚
𝑙=1 𝑓(𝑦𝑙

𝑘) − ∑ 𝑥𝑙̅ 
𝑚
𝑙=1 (𝑓(𝑥𝑙̅) − 𝑓(𝑦𝑙

𝑘)) . 
 
Consider now the case m=2, with two answers being Y and 

N. To simplify notation, denote 𝑥𝑌̅̅ ̅ by p, 𝑦𝑌
𝑌 by y, and 𝑦𝑌

𝑁 by z. 
If 𝑥𝑌

𝑟 = 1, then we denote 𝑢𝑟 by 𝑢𝑌 (and similarly for 𝑢𝑁). 
Observe that we are in a deterministic situation, so we do not 
have neither states of nature nor 𝑦𝑗

𝑟 which are given by 
Bayesian update. Hence, 𝑦, 𝑧 ∈ (0,1) with 𝑦 ≠ 𝑧 as the only 
requirement. We then obtain 

 
𝑢𝑌 = 𝑓(𝑝) − (𝑝𝑓(𝑦) + (1 − 𝑝)𝑓(𝑧)) − [𝑝(𝑓(𝑝) − 𝑓(𝑦)) + 

+(1 − 𝑝)(𝑓(1 − 𝑝) − 𝑓(1 − 𝑦))] = 
= (1 − 𝑝)[𝑓(𝑝) − 𝑓(𝑧) + 𝑓(1 − 𝑦) − 𝑓(1 − 𝑝)] ; 

 
𝑢𝑁 = 𝑓(1 − 𝑝) − (𝑝𝑓(1 − 𝑦) + (1 − 𝑝)𝑓(1 − 𝑧)) − 

−[𝑝(𝑓(𝑝) − 𝑓(𝑧)) + (1 − 𝑝)(𝑓(1 − 𝑝) − 𝑓(1 − 𝑧))] = 
= 𝑝[𝑓(1 − 𝑝) − 𝑓(1 − 𝑦) + 𝑓(𝑧) − 𝑓(𝑝)]. 

 
It follows then that 
 

𝑢𝑌 > 𝑢𝑁 ⇔ 𝑓(1 − 𝑦) − 𝑓(1 − 𝑝) > 𝑓(𝑧) − 𝑓(𝑝) . 
 
It is easier to follow the argument if we assume that f is also a 
strictly increasing function. Observe that the above condition 
is then essentially Gen-type condition, in the sense that Y 
player has a higher score if and only if she predicts the 
opposite answer more generously (in the sense of an f 

increment) than N player predicts the opposite answer.  
 
If we want to have exactly the Gen condition, then we need 

the “same f increments”, i.e., we need  𝑓(𝑥1) − 𝑓(𝑥2) =

𝑓(
𝑥1

𝑥2
). In other words, we need the additivity property. 

Interestingly enough, this property works even more generally, 
and our last condition takes this point into consideration.   

 
Before turning back to our condition system, let us observe 

that in a deterministic framework, i.e., when 𝑦, 𝑧 ∈ (0,1) with 
𝑦 ≠ 𝑧, conditions Gen and Mds are not equivalent. Given 𝑝 ∈

(0,1), Mds says that 𝑝 𝑦⁄ >
(1 − 𝑝)

𝑧⁄ , which is equivalent to 

𝑧 > (
(1 − 𝑝)

𝑝⁄ ) 𝑦. On the other hand, Gen says that  
𝑝

𝑧⁄ >

(1 − 𝑝)
(1 − 𝑦)⁄ , which is equivalent to  𝑧 <

(
𝑝

(1 − 𝑝)⁄ ) (1 − 𝑦). 

 
Let us now turn our attention to the last and the most 
demanding condition. In order to justify it, we borrow ideas 
from information theory5. Consider two identical games of 
duels with the same players participating, with transfers 
𝑃(𝑥𝑘

𝑖̅̅ ̅̅  
; 𝑦𝑘

𝑟𝑖 
), 𝑖 = 1,2. Assume each player chooses an 

alternative in the second game independently from his choice 
in the first game, and independently of each other. Also 
consider a hypothetical "combined" third game that considers 
the pair alternatives the players have made in the first two 
games. Denote by 𝑥𝑘𝑙

 ̅̅ ̅̅̅ the proportion of the players 
choosing alternative (k,l). If the number of players is large, 
under independence assumption we have approximately 𝑥𝑘𝑙

 ̅̅ ̅̅̅ =

𝑥𝑘
𝑙 ̅̅ ̅̅ ̅ 

∙ 𝑥𝑘
𝑙 ̅̅ ̅̅ ̅  

. Then, the additivity condition translates into a 
"scaling of transfers" condition: the corresponding transfers in 
the combined game should be equal to the sum of transfers in 
the two original games. 
In other words, if a game is composed of (independent) 
subgames, the transfers should scale at the same rate as the 
number of subgames. 
 
As in [20] we exclude the case of zero and treat it separately 
(see also [1]). Hence, we introduce the additivity property 
condition in the following form. 

 
 
Condition 7. The restriction 𝑃|⟨0,1]×⟨0,1] of the function P 

given in (12) is a continuous function such that, for every 𝑢 ∈
⟨0, 1], 𝑃(𝑢; 𝑢) = 0, and for every 𝑢1, 𝑢2, 𝑣1, 𝑣2 ∈ ⟨0, 1],  

 
𝑃(𝑢1𝑢2; 𝑣1𝑣2)= 𝑃(𝑢1; 𝑣1) + 𝑃(𝑢2; 𝑣2). 

 
Observe that if the selected “playground information” of the 

offender results in 𝑥𝑘̅̅ ̅ which is exactly equal to the “challenger 
 

5 In particular, one may consult a chapter on a measure of information in 
[20] with the emphasis on section 1.2. 



IT-16-0208.R2 

 
7 

information”, then the natural outcome is “a draw”, i.e. 
𝑃(𝑢, 𝑢) = 0. As in Shannon theory, the consequence of 
Condition 7 is the following well known result: 

 
 
Lemma. If ℎ: ⟨0, 1] → ℝ  is continuous and such that, for 

every 𝑢, 𝑣 ∈  ⟨0, 1], ℎ(𝑢𝑣) = ℎ(𝑢) + ℎ(𝑣), then ℎ(𝑢) = 𝑎 ∙
𝑙𝑛(𝑢), where 𝑎 = −ℎ(𝑒−1). 

 
Recall that the additivity property is very strong. The 
conclusion of the lemma follows even with much milder 
requirements than continuity on function h; for example it is 
sufficient to require monotonicity or measurability. Although 
this would allow us to reduce the requirement on continuity 
given in Condition 7, in order to avoid unnecessary 
mathematical intricacies we presented Condition 7 in the 
above form.  

 
The lemma implies:  
 
Corollary. If a function 𝑃: ⟨0, 1] × ⟨0, 1] → ℝ satisfies 

Condition 7, then there exists 𝑎 ∈  ℝ such that, for every 
𝑢, 𝑣 ∈  ⟨0, 1], 

 
𝑃(𝑢; 𝑣) = 𝑎 ∙ 𝑙 𝑛 (

𝑢

𝑣
). 

  
Proof. Take 𝑢1 = 𝑢,  𝑢2 = 1, 𝑣1 = 𝑣,  𝑣2 = 1  in Condition 

7. We obtain 𝑃(𝑢; 𝑣) = 𝑃(𝑢; 1) + 𝑃(1; 𝑣). We start with the 
function 𝑢 → 𝑃(𝑢; 1). If we apply Condition 7 with 𝑣1 =
𝑣2 = 1, 
we obtain 

𝑃(𝑢1𝑢2;  1) = 𝑃(𝑢1; 1) + 𝑃(𝑢2; 1). 
 
Hence, 𝑢 → 𝑃(𝑢; 1) satisfies the requirement of the lemma. 
We conclude that there exists 𝑎 ∈  ℝ such that 𝑃(𝑢; 1) = 𝑎 ∙
𝑙 𝑛(𝑢) . 
 
Consider now the function 𝑣 → 𝑃(1; 𝑣). If we apply Condition 
7 with 𝑢1 = 𝑢2 = 1, we obtain  
 

𝑃(1; 𝑣1𝑣2) = 𝑃(1; 𝑣1) + 𝑃(1; 𝑣2). 
 

Again, using the lemma we conclude that there exists 𝑏 ∈  ℝ 
such that 𝑃(1; 𝑣) = 𝑏 ∙ 𝑙 𝑛(𝑣) . 
 
Finally, using 𝑃(𝑢; 𝑢) = 0 and 𝑃(𝑢; 𝑢) = 𝑃(𝑢; 1) +
𝑃(1; 𝑢) =  𝑎 ∙ 𝑙𝑛 (𝑢)+ 𝑏 ∙ 𝑙𝑛 (𝑢),  we obtain 𝑏 = −𝑎.  Hence, 
for every 𝑢, 𝑣 ∈  ⟨0, 1], it follows 𝑃(𝑢; 𝑣) = 𝑎 ∙ 𝑙 𝑛 (

𝑢

𝑣
).   

 
                                        Q.E.D. 

 
 

Remark. We need to decide on a particular choice of the 
normalizing constant 𝑎 ∈  ℝ from the previous corollary. 
Suppose for the moment that the challenger r has selected 

𝑦𝑘
𝑟 = 1,  for some k. This implies 𝑦𝑙

𝑟 = 0 for all 𝑙 ≠ 𝑘, i.e. the 
challenger has put his entire trust on k. If, in this case, “the 
playground chosen by the offender” is indeed k, then it is the 
challenger who should earn points in this duel. More precisely, 
if  0 < 𝑢 < 1, then 𝑃(𝑢, 1) < 0, and it follows that 

 
𝑎 > 0 .                                               (17) 

 
What is then the natural choice for the constant a? This is now 
just the matter of normalization. Suppose for the moment that 
all offenders have chosen playground k. In that case the 
challenger would receive in total6 −𝑎 ∙ 𝑐𝑎𝑟𝑑(𝑅) ∙ 𝑃(𝑥𝑘̅̅ ̅; 1) 
points in the finite case, and lim

𝑛→∞
−𝑎(𝑅𝑛) ∙ 𝑐𝑎𝑟𝑑(𝑅𝑛) ∙

𝑃(𝑥𝑘̅̅ ̅; 1) points in the infinite case. It is natural to normalize 
so that the total is −𝑃(𝑥𝑘̅̅ ̅; 1) points. Hence we define the 
constant a to be 

     𝑎 =
1

𝑐𝑎𝑟𝑑(𝑅)
     in the finite case, or 

               𝑎(𝑅𝑛) =
1

𝑐𝑎𝑟𝑑(𝑅𝑛)
   in the infinite case.    (18) 

         
 
Theorem 1. If the scoring system satisfies Conditions 1-7 

and condition (18), then the resulting system is the Bayesian 
Truth Serum algorithm, i.e,. 𝑢𝑟 satisfies (4). 

 
 
Proof.  Without loss of generality we present the proof for 

the finite case. In the infinite case we can use exactly the same 
proof under the limit sign lim

𝑛→∞

1

𝑛
∑  𝑠∈𝑅𝑛

.  
 
Using (12) and the Corollary, we obtain 
 
𝑢𝑟 = 𝑢𝑟(X, Y) = ∑ 𝑇𝑠→𝑟  (𝑋; 𝑌)𝑠∈𝑅  -  ∑ 𝑇𝑟→𝑠 (𝑋; 𝑌) =𝑠∈𝑅     
 

= ∑ ∑ 𝑥𝑘
𝑟

𝑚

𝑘=1𝑠∈𝑅

1

𝑐𝑎𝑟𝑑(𝑅)
(ln

𝑥𝑘̅̅ ̅

𝑦𝑘
𝑠) − ∑ ∑ 𝑥𝑘

𝑠

𝑚

𝑘=1𝑠∈𝑅

1

𝑐𝑎𝑟𝑑(𝑅)
(ln

𝑥𝑘̅̅ ̅

𝑦𝑘
𝑟) . 

 
The first sum becomes 

 

∑ ∑ 𝑥𝑘
𝑟

𝑚

𝑘=1𝑠∈𝑅

1

𝑐𝑎𝑟𝑑(𝑅)
(ln(𝑥𝑘̅̅ ̅) − ln(𝑦𝑘

𝑠)) = 

 

= ∑ 𝑥𝑘
𝑟

𝑚

𝑘=1

[
1

𝑐𝑎𝑟𝑑(𝑅)
∑ ln(𝑥𝑘̅̅ ̅) −

𝑠∈𝑅

1

𝑐𝑎𝑟𝑑(𝑅)
∑ ln(𝑦𝑘

𝑠)

𝑠∈𝑅

] . 

 
 

Since the choice of k depends on r (not on s), we obtain 
 

1

𝑐𝑎𝑟𝑑(𝑅)
∑ ln(𝑥𝑘̅̅ ̅) =

𝑠∈𝑅

ln(𝑥𝑘̅̅ ̅) . 

 

 
6 In total here means from all the offenders. 
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On the other hand, 

1

𝑐𝑎𝑟𝑑(𝑅)
∑ ln(𝑦𝑘

𝑠)

𝑠∈𝑅

= ln(𝑦𝑘̂) . 

 
It follows that the first sum equals ∑ 𝑥𝑘

𝑟𝑚
𝑘=1  ln (

𝑥𝑘̅̅ ̅̅

𝑦𝑘̂
), i.e. equals 

the information score in (4). For the second sum we obtain  

− ∑ ∑ 𝑥𝑘
𝑠

𝑚

𝑘=1𝑠∈𝑅

1

𝑐𝑎𝑟𝑑(𝑅)
(ln

𝑥𝑘̅̅ ̅

𝑦𝑘
𝑟) = ∑ ∑ 𝑥𝑘

𝑠

𝑚

𝑘=1𝑠∈𝑅

1

𝑐𝑎𝑟𝑑(𝑅)
ln

𝑦𝑘
𝑟

𝑥𝑘̅̅ ̅
= 

 
 

= ∑ ln
𝑦𝑘

𝑟

𝑥𝑘̅̅ ̅
 (

1

𝑐𝑎𝑟𝑑(𝑅)
 ∑ 𝑥𝑘

𝑠

𝑚

𝑘=1

)

𝑚

𝑘=1

= ∑ 𝑥𝑘̅̅ ̅ln
𝑦𝑘

𝑟

𝑥𝑘̅̅ ̅
 

𝑚

𝑘=1

 . 

 
 
This is equal to prediction score in (4).         

          Q.E.D. 
 
Remark: We would like to emphasize a parallelism 
between  "entropy ↔ information" vs. "BTS ↔ 
information/prediction". This parallelism does not mean that 
one can be constructed from the other. At this point we are not 
aware of any approach that axiomatically produces BTS from 
entropy or vice versa. Perhaps this could be an interesting 
problem to consider. 
 
      First, observe that entropy can be constructed in a similar 
way, as the one described in this paper. Instead of (X;Y) data, 
consider only (X). Instead of playing duels both ways, 
consider r only as a "challenger" (one can think of it as 
r  "collecting" information data from other players). Hence 
 

𝑢𝑟(𝑋) =  −  ∑ 𝑇𝑟→𝑠 (𝑋)𝑠∈𝑅 . 
 
Suppose that transfers, now only functions of X, satisfy the 
conditions analogous to the first six conditions in this paper, 
i.e., we end up with a function 𝑃(𝑥).  Impose the last condition 
on P to be the usual additivity condition. Using the same 
calculation as in the proof of the previous theorem, we obtain 
that 
 

𝑢𝑟(𝑋) = − ∑ 𝑥𝑘̅̅ ̅ln (𝑥𝑘̅̅ ̅) 𝑚
𝑘=1     , 

 
which is the entropy of 𝑋̅ .  The difference between the input 
data, i.e. (X,Y) vs. only (X), is a crucial one. Consider the 
BTS with the case where Y “does not reveal anything new”. 
More precisely, 𝑦𝑘

𝑟 =
1

𝑚
 for every k and r (this, of course, is 

only for academic purpose). It is then easy to check that, with 
𝑥𝑘0

𝑟 = 1 for a particular 𝑘0 and r, 𝐵𝑇𝑆𝑟 = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑥𝑘̅̅ ̅) +

𝑙𝑛(𝑥𝑘0
̅̅ ̅̅ ̅̅ ). Observe that the correction factor 𝑙𝑛(𝑥𝑘0

̅̅ ̅̅ ̅̅ ) is precisely 
the one required to keep the zero sum game property. 
 
 

Secondly, it is also possible to connect entropy somewhat 
more directly with the BTS in the following way. From the six 

conditions we obtain the form 𝑃(𝑋, 𝑌). Assume that we can 
separate the variables; say 𝑃(𝑥, 𝑦) = 𝐻(𝑥) − 𝐺(𝑦). Impose a 
natural condition that "prediction = actual information" is a 
draw, i.e., that 𝑃(𝑎, 𝑎) = 0. Obviously then H = G. Imposing 
any entropy-like condition on the second sum (it could be the 
additivity of G, the proper scoring rule, or even the truth-
incentive condition if one wants to work within the Bayesian 
framework), it can be shown that G is the log function (up to a 
linear transformation). Consequently, as in the proof of the 
theorem it follows that  𝑢𝑟(𝑋) = 𝐵𝑇𝑆𝑟  (up to a linear 
transformation). 
 
 
 

 IV. CONCLUSION 
 
The Bayesian truth serum has been successfully tested on 

human subjects and in a variety of settings in terms of 
incentive-compatibility for truth-telling. However, there are 
situations where telling the truth is not a major issue, but the 
ranking system is. Moreover, BTS can also be applied in 
contexts where players are machines (for example measuring 
information-prediction capability in meteorology, finance, 
medicine, etc.). In those cases the implementation would shift 
from truth-telling to ranking systems. 

 
Our ranking is based on a new deterministic mechanism 

called a “game of duels.” There is a large subfamily of those 
mechanisms in which the ranking of players in the binary case 
is essentially equivalent to a property we call Gen, which, in 
the case of infinitely many players, is equivalent to ranking by 
posterior probabilities. This is similar to the information-cost 
analysis in which there are many families of functions that 
will fulfill most properties of standard entropy (so called “sub-
exponential” functions can be used instead of entropy; see [21] 
and the references therein). However, if one wants the 
additivity property of the uncertainty measure (see [20] for 
details), then one ends with the standard entropy. Similarly, if 
one wants additivity for the transfer of points in the game of 
duels, one ends up with BTS. In future research, it would be of 
interest to study whether additivity can be replaced by 
incentive compatibility in a stochastic setting with infinitely 
many players without additional assumptions that we impose. 
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