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Game of Duels: Information-Theoretic
Axiomatization of Scoring Rules

Jaksa Cvitani¢!, Drazen Prelec?, Sonja Radas®, and Hrvoje Siki¢*

Abstract — This paper aims to develop insights into
Bayesian truth serum (BTS) mechanism by postulating a
sequence of seven natural conditions reminiscent of axioms
in information theory. The condition that reduces a larger
family of mechanisms to BTS is additivity, akin to the
axiomatic development of entropy. The seven conditions
identify BTS as the unique scoring rule for ranking
respondents in situations in which respondents are asked
to choose an alternative from a finite set and provide
predictions of their peers’ propensities to choose, for finite
or infinite sets of respondents.

Index Terms— Bayesian Truth Serum, information entropy,
Shannon theory

1. INTRODUCTION

The Bayesian truth serum (BTS) algorithm [1] is a game-

theoretic scoring system, designed to incentivize honest
responses to non-verifiable questions. For each multiple-
choice question in a survey, the respondent is asked to both
answer the question and also to predict the distribution of
answers by the rest of the survey sample. The prediction is
expressed in terms of percentages of respondents that will
choose each possible answer. Once these two inputs are
collected from all respondents, the algorithm assigns to each
respondent a numerical BTS score, calculated via a
mathematical formula (that we recall below).
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The original paper on BTS [1] defined conditions under
which the scoring rule is strictly incentive-compatible, which
means that an honest answer on each question strictly
maximizes that respondent’s expected score, assuming that
other respondents are answering honestly and the sample size
can be made arbitrarily large. BTS incentives have been
applied to a range of survey settings, including knowledge
design [2], criminology [3], economics and psychology [4],
and new product adoption [5]".

This paper is concerned with a different property of the
BTS score, namely, that it generates a ranking of respondents
that reflects the quality of their information, or domain
expertise. We show that a finite version of the BTS score can
be obtained as the outcome of a “game of duels” in which
each player engages in a duel with every other player
(including himself). That is, for each player, under natural
conditions on the rules of the game, the payoffs in the “game
of duels” are exactly those of BTS. The key condition is the
additivity property as employed in the Shannon information
theory.

It is known that the ranking by the BTS score, in the case of
infinitely many players, corresponds to the ranking by
posterior probabilities of the true state of nature, called
“posteriors” (see [1] and [6]). Unfortunately, this property
fails in the case when there are finitely many players. While
there exist mechanisms that are incentive compatible in the
finite case (e.g., [15], [16], [17] etc.), it is not difficult to show
that no finite case algorithm will rank players by posteriors. In
this paper we, instead, rank the players by having them
compete pairwise in scored duels. This can be done both in the
finite and in the infinite case. The main contribution of the
paper is to identify natural conditions under which such a
game reproduces BTS scores.

! For numerous references for the study of various truth-inducing scoring
rules in the game-theoretic context with many players see [6]. When only one
respondent is asked to reveal an opinion on a probability distribution, the
mechanisms that incentivize truth-telling are called proper scoring rules. The
literature goes back all the way back to [7], [8] and [9]. Papers that make a
connection between proper scoring rules and entropy include [10], [11], [12],
[13] and [14].



IT-16-0208.R2

Let us elaborate on the connection between BTS, ranking
by game of duels and ranking by posteriors, to which we refer
as PstRn or posterior ranking. Recently, it was shown in [18]
that with infinitely many respondents, the best PstRn expert is
also the respondent who selects the answer that is most
‘surprisingly common,’ that is, most underestimated relative to
predictions. Although the best expert according to PstRn
cannot be identified in the finite case, we show that it is
possible instead to identify the person who selects the answer
that is most surprisingly common through a series of pairwise
comparisons (or ‘duels’). The ranking of respondents in this
contest serves as a proxy for the PstRn ranking in the finite
case. Figure 1 displays the relationships.

Figure 1. Comparison of BTS ranking in finite and infinite
samples
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In our model, players play a series of (conceptual) duels.
After each duel, points are transferred from one player to the
other?. A player’s final score is the total number of points
received (or lost). The respondents are ranked according to
their scores. The nature of the game makes it especially
suitable for situations when players are machines. Although
this approach seems to have little in common with BTS, our
main contribution lies in establishing a connection between
the two. Notably, the games of duels in which transfers satisfy
certain conditions rank the players according to how
“generously” they predict the shares of the answers they have
not chosen, and with the additional additivity condition, the
only possible game of duels is the one that results in BTS
scores.

% This means that each of the duels results in a transfer of points between
players. The order of duels is not important, and there is no interdependence
of duels. Although for each of the players her/his duels occur in a sequence,
the procedure can be implemented so that different set of players engage in
duels simultaneously.

II.BAYESIAN TRUTH SERUM ALGORITHM

Here we give a short theoretical exposition of the Bayesian
Truth Serum. We denote by R the set of players (respondents).
We assume that R is not empty, not a singleton, and at most
countable (i.e. the cardinal number of the set R satisfies 2 <
card(R) < R,). Suppose that the players are presented with a
multiple choice question, offering a choice of m € N \ {1}
answers (we use the standard mathematical notation where N
is the set of natural numbers, R is the set of real numbers, and
R = R U{—o} U{+} ). Each player picks a simple answer
(the one s/he thinks is the correct one) and gives a prediction
in terms of probabilities about the distribution of m answers
within R.3 More precisely, we present the answer of a player
r € R as a pair of ordered probability vectors

(CEPRE D PR D) I €y

where x7,..,xh €{0,1}, and y7,...,yn €[0,1] such that
re1xp =1 and Y,7=, y; = 1. Exactly one of xj, is equal to
one (the non-zero term which corresponds to the selected
answer), while (yf,...,)5) is a probability distribution on
{1,2, ...,m}. As a consequence, answers of all the players can
be presented as a (finite or infinite) matrix (X;Y); it is of the
order card(R) X 2m and its ' row, r € R, is given by (1).

We want to assign a numerical score to each player based
on (X;Y), denoted

u" =u"(X;Y); 2

for player r € R. Eventually, we expect our scores to be real-
valued, but here at the outset we shall not restrict ourselves
and in principle we allow even for infinite values, i.e.

u" (X;Y) e R. 3)

A. The score in Bayesian Truth Serum

To develop the formula for the score, we shall use the
notation Y,ccg in both finite and infinite case. If R is finite,
then Y;cg has its usual meaning of the sum over all elements
of R. We define x:=(X,..,%,) where Xp: =

1 s _ . J—
—card(R)ZSEka’ for k=1,...m. It is easy to see that X

represent arithmetic means of X-columns. We also define y :=

SN _ 1
(7, -, Vm) where  In(yp):= W—d(R)ZseR In(yi) for

k=1,...,m. Here y are geometric means of Y-columns.
If R is infinite, then we write R = U,eyR,, where
card(R,) = n, and the meaning of Y.z is in the sense of

3 The latter question is usually asked in the following way: “please
estimate the percentage of your peers who will choose answer £, and the
question is repeated for each k=1,..,m.
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lim Yscg, ; the notation comes together with the assumption
n—-oo

that the limit exists within R. We extend the definition of
X := (x4, ..., X) so that we define

X = lim lZSeRn xj,. Similarly, we extend the definition

n-oon
of  J:=07 ., Vm) by In(y;):=

. 1
1111_1;1;10 ;ZseRn ln(yli)

defining

Using the notation above, the respondent’s BTS score in [1]
is defined as

u(X;Y) = N, xf ln%+ I T lnz—_i; 4)

where r € R. The first part of the sum is called the
information score, while the second one is called the
prediction score [1].

B. Bayesian Truth Serum in applications

BTS method can be applied in survey settings, as
explained in [1]. In applications, this algorithm works as
follows:

1. It is explained to the respondents that they will be
rewarded according to the BTS scoring rule. The rule
itself is not explained, except that the respondents are
told that it is incentive compatible.

2. Respondents are asked to report their answer from m
offered alternatives. For a chosen respondent 7 this
will create the vector (x7, ..., x5,).

3. Respondents are asked to predict how others will
choose. This will create the vector (y1, ...,V ) for
the respondent -

4. Respondents are rewarded according to the BTS
scoring rule (outlined in (4)).

It was shown in [1] that the BTS scoring rule is budget
balanced, and allows a strict Nash equilibrium in which
everyone responds honestly. It is shown in [1] and [6] that
rank-ordering respondents by their BTS score is the same as
rank-ordering them by their posterior probability for the
realized state of nature. In [19] it was experimentally
demonstrated that BTS alters respondents’ behavior in the
desired direction, which makes it suitable for survey
applications.

C. A Bayesian framework and ranking of players

For theoretical studies of BTS, the following Bayesian
framework is assumed. We assume that respondents are
presented via a family (V(r) : r € R) of random variables

taking values in {1, ..,m}. We also assume that there is a
random variable (), the actual state of nature, with finitely
many values N. It is standard to assume that (V(r) : r € R)
are ()-conditionally i.i.d. Hence, the complete probability
distribution of the system is given via the distribution of the 2-
dimensional random vector (V (ry), Q) (notice that we can take
any 15 € R here due to Q-conditional i.i.d. assumption).
Obviously, this distribution is given as a m X N probability
matrix Q. In particular, the probabilities
P =PV =jV(E) =k), r#s
do not depend on the choice of ¥ and s, as long as r # s; 1,5 €
R. Within this Bayesian framework the theoretical analysis of
the system is done under the assumption that the values y; are
given through Bayesian updating (see, for example [6] for
details). More precisely, assuming that x;; = 1, we have

. Dj
Y= PU@ =j1V(s) = k) = mm—.
1=1Pu

We can write x; =1 as V(r) = k . Notice that the vectors
(x%) and (y]) allow us to compute the BTS payoff u” (X; Y)

to player r. Then, it can be shown that (see [1] and [19]),

u"=u"(XY) =In(PQ =i |V(r) =k)) —
=) PW@) =10 = iR = 6V() = ) ;

j=1

where i, denoted the true state of nature and card(R) = X,.
In particular, the above formula shows that for the infinite set
of respondents BTS is increasing in the posterior probabilities,
a property called Posterior Ranking or PstRn. However, PstRn
does not hold with finitely many players. We now identify a
property that is equivalent to PstRn with infinitely many
players, which will hold also in the finite case under our
mechanism.

For simplicity, let us turn to the binary case where m =
2. We denote possible answers as Y and N. We also assume
that there are two states of nature “True” and “False”. We
identify states of nature with distributions on (Y,N), i.e.
“True”=(T, 1-T) and “False”=(F,I-F), where T,F € (0,1) and
T +F. Observe that T=PWV(r)=Y|Q=True) and
analogous formula holds for F. We also denote P(QQ =True) as
P(T) and P(Q) =False) as P(F).

We introduce the property of “being modest to oneself”, called
Mds, defined as, for player 7,

T 1-T
_T

Yy

5

IN

where xj, =1, r # s and x5 = 1. This condition essentially
considers how players predict the share of their chosen
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answers compared to the realized percentage. Player r satisfies
Mds if she underestimates the share of her chosen answer Y
more than the player s does for his chosen answer N. In that
sense the player r is more “modest”.

We also introduce the property “being generous to others”,
called Gen, by

)
wooow

where xj = 1, r # s and x3j = 1. While Mds considers how
players predict the percentage of people who choose the same
answer as them, the condition Gen considers how players
predict the share of the opposite answer. Player r satisfies Gen
if her prediction of the opposite answer N is closer to the real
percentage compared to what player s predicts for the answer
Y. In other words, the player r underestimates her non-chosen
answer less than player s underestimates his non-chosen
answer. In this sense player r is more “generous” than player s.

Observe that Mds and Gen can both be interpreted as “the
player has selected a surprisingly common answer”.

An elementary calculation shows that we have
pyy = T2P(T) + F2P(F)
pyn =Py = T(L = T)P(T) + F(1 — F)P(F)
pan = (1 =T)?P(T) + (1 = F)?P(F).

Furthermore, we have, for xy = 1,

T2P(T) + FP(F)
TP(T) + FP(F) ’

yy =

and, similarly, for xy = 1,

(1-T)*P(T) + (1 = F)*P(F)
(1-T)P(T)+ (1 —F)P(F) °

Yy =

It is now a straightforward algebraic calculation to check that
under the assumptions that r,s ER, r#s,xy =1, x5 =1
we have

u” >u’ (5)
S P(Q = True|V(r) =Y) > P(Q = True|V(s) = N) (6)
ST>F 7
<:>T>1—T T>1—T ®)
Yo N A

Observe that the first and the second equivalence do not make
sense if we are not within a stochastic framework. The first
equivalence is PstRn. Hence, we have five equivalent
conditions, one of which is BTS. However, in the finite case,
the above equivalences do not all hold. We will show below
that in our deterministic mechanism (“game of duels”) the Gen

equivalence remains and it is valid both in the finite and the
infinite case.

III. A SYSTEM OF CONDITIONS

We will develop a system of conditions that results in
scores (4). In our approach players get ranked via
simultaneous conceptual duels. Each duel has a “challenger”,
player r € R, and an “offender”, player s € R.* We denote
such duel as r — s. Each respondent plays a duel with every
other respondent, including oneself.

Each duel r — s ends with a transfer of points from player r
to player s. We denote the number of transferred points by

T™S = T™S (X;Y) € R. 9)

We can think of positive T7~% as the winning case for the
offender, while negative T"~° means that the challenger
prevails. All the possible duels are to be performed (including
the duel with oneself) in order to determine scores u” for all
respondents r € R. In particular, if R is finite, there will be
[card(R)]? duels.

Let us introduce the basic rule for a duel. For every r € R
the score u” equals the number of received points minus the
number of given points, i.e.

ut=u"(XY) = Yser T7T(XGY) - Mser T (X;Y) (10)

There are two immediate important consequences of (10).
First, assuming that all the sums are finite-valued (which is the
only interesting case), the duel is a zero-sum game,

YrerU = Xrer2serTS7T — YrerZser T 5 =0. (11)

The second consequence of (10) is that the description of u”
reduces to the description of T775. We will present a set of
seven conditions about T7~° that generate BTS algorithm (4).
For each condition we give an intuitive justification (which
may include some ideas from statistics) and a formal statement
(which is always going to be deterministic).

The first six conditions are natural to impose and their
combined effect will be that, for every r,s € R, for some
function P we have

m

TTS (GY) = ) ¥ Py
k=1

where X, is the sample mean. The seventh condition will be

4 We use traditional duel terminology, where one player (offender) offends
the other (challenger), who in turn challenges the first player to a duel
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the additivity condition, which will reduce the above
representation to BTS.

Our first condition is very much in the spirit of medieval
duels. We can interpret it as “the offender chooses the
playground for the duel”.

Condition 1. The challenger r will transfer points to the
offender s based on the x answer of the offender s. More
precisely, for every r,s € R and for every k € {1,...,m}
there exists a number P;°(X;Y) € R such that
TS (X;Y) =Yre1xi PR°(X; 7). (12)
Observe that Condition 1 reduces our analysis from T77° to
Pp°. Observe also that, for every s € R, there is exactly one
k € {1, ...,m} such that x§ = 1. Hence, we can think of that k
as being the function of s, i.e. k = k(s). It follows then that
(12) becomes
TT75 (X;Y) = Py (X V) . (13)
In order to understand the second condition, we introduce the
following partition of R
Ry:={s ER|x;=1}, k=1,...m (14)
Obviously, the partition R = R, U .... U R;,, is a function of X.
Fix k for a moment and consider Ry, which is a subset of
players who choose the same answer k. In general, the number
of points P;* may vary as s changes within R. The purpose of
our second condition is to prevent this from happening, i.e.
that condition can be thought of as “the egalitarian principle
within R,."

Condition 2. Givenr € R and k € {1, ..., m} we have
s,s' €R, = PIS(X;Y) = PIS'(X;Y).

Condition 2 says that if offenders s,s’ € R choose the same
answer, then in the duels with all challengers they will receive
the same number of points. Observe that Condition 2 includes
even the cases when for some & the set R, may be an empty
set; in this case the implication in Condition 2 is true, since the
premise of the implication is never true. Using a slight abuse
of notation (think of k=k (s)), Condition 2 implies that

PEX;Y) = PE(XY) (15)

In order to understand the third condition, observe that by
choosing the answer £, the offender s decides (given that r is
known) on a type of function P} that will be used in the duel
r = s. However, the P, will in general still depend on (X;Y).
Our next condition can be thought of as strengthening
Condition 1. The offender s chooses the playground £, and in

doing so it reduces the variable dependence accordingly.

Condition 3. For everyr € R and for every k € {1, ..., m},

PE(X;Y) = PL((e)gers (k) ger) -

Next we turn to Condition 4 which has a deterministic form,
but which can be justified using some ideas from statistics.
One of the main problems in statistical analysis is to make
inference about some unknown parameter 8. The inference is
based on the information given in a sample X, ..., X,,. If fis a
sufficient statistic for 6, then whenever we have two sample
points x = (X, ..., ) and x" = (x4, ..., x,") with the property
T(x) =T(x"), then the inference about 6 is the same
regardless whether x or x’ is observed. A typical example is a
Bernoulli sample in which the sufficient statistics for the
probability of success is the sample mean.

We argue here that the X-part of our data is akin to the
Bernoulli sample set-up. We are interested in w =
(wq, ..., wy), where w, gives the actual fraction of the
population that thinks & is the correct answer to the original
question. Hence, since we are interested in wy, then the
average value gives as much information about w; as the
entire k-th column of the matrix X, i.e. (xg) qer- Therefore, we
term our fourth condition “the data reduction principle for X.

Condition 4. For every r € R and for every k € {1, ...,m},
PE (40 e ) yen) = P G O qer).

Our second data reduction principle deals with Y. Our
conditions so far provided the offender s with the advantage to
“choose the playground” k. In the next condition we give an
advantage to the challenger by giving him/her an option to
“choose the weapon”. We can think of it as allowing the
challenger to select some information from the k™ column of ¥
in order to predict wy. We assume that the challenger is very
self-confident and uses only his/her own choice yy. This gives
us the data reduction principle for Y.

Condition 5. For every r € R and for every k € {1, ...,m},
Pyt (% 0 qer) = Pl (Tics io).

Observe that our conditions have reduced a function defined
on a matrix (X;Y) to a function defined on a pair of numbers
(Xx; ¥i) which are between 0 and 1. However, at this level of
generality we still allow the form of the function to change
with 7 or with k (i.e. the function can vary with the choice of
different players or responses). A system that would allow for
such level of generality would not be very practical, as for
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every k and every » we would have a different function Py.
Hence we opt for a more robust selection and introduce the
following “universality condition”.

Condition 6. There exists a function P:[0,1] X [0,1] » R
such that for every r € R and for every k € {1, ..., m} we have
Pl =P.

In other words, Condition 6 ensures that function P}, is the
same for every player » and for every answer k.

To recap, the first six conditions imply that, for every r,s €
R

T (X;Y) = Xk xi P (X vio)- (16) .

Remark on ranking of players: Consider a finite set R and a
function P given by

1
P(x,y) = m[f(x) -

where f:(0,1) - R. For the purpose of this discussion, let us
also assume that the same x response implies the same y
response, ie., (xp=1=x;g = yj =y/ for every j €
{1, ...m}). Then, we can use notation y/ = y/ for xj = 1. It s
not difficult to calculate u” for xj; = 1. We obtain

u" = f(G) — X T f () - Xk (FR) = F(vE)) -

Consider now the case m=2, with two answers being Y and
N. To simplify notation, denote Xy by p, y¥ by y, and y¥ by z.
If xj = 1, then we denote u” by u" (and similarly for u").
Observe that we are in a deterministic situation, so we do not
have neither states of nature nor y; which are given by
Bayesian update. Hence, y,z € (0,1) with y # z as the only
requirement. We then obtain

u=f®-(f0M+0A-0f@)-p(f®) - Q)+
+A-p(fA-p-fA -] =
=1-Dif®-f@Q+fA-y)-fA-p]l;

W =f1-p-(pfA-N+0A-p)f(1-2)—
-p(f@) - f@)+ A -p(FA-p) - f(1-2)] =
=plf(l-p)—fA-y)+f(2 - fP)

It follows then that

wW>uNe fl-y)—fA-p)>f2)-fp).

It is easier to follow the argument if we assume that f is also a
strictly increasing function. Observe that the above condition
is then essentially Gen-type condition, in the sense that Y
player has a higher score if and only if she predicts the
opposite answer more generously (in the sense of an f

increment) than N player predicts the opposite answer.

If we want to have exactly the Gen condition, then we need
the “same f increments”, i.e., we need f(x;) — f(x;) =
f (;2). In other words, we need the additivity property.

2

Interestingly enough, this property works even more generally,
and our last condition takes this point into consideration.

Before turning back to our condition system, let us observe
that in a deterministic framework, i.e., when y,z € (0,1) with
y # z, conditions Gen and Mds are not equivalent. Given p €

(0,1), Mds says that p/y > (1= p)/Z’ which is equivalent to
z> ((1 B p)/p) y. On the other hand, Gen says that p/Z >

(1- p)/(1 —y) which is  equivalent to z <

Cla-p)a-»

Let us now turn our attention to the last and the most
demanding condition. In order to justify it, we borrow ideas
from information theory®. Consider two identical games of
duels with the same players participating, with transfers
P(x_k‘;y,:i ),i =1,2. Assume each player chooses an
alternative in the second game independently from his choice
in the first game, and independently of each other. Also
consider a hypothetical "combined" third game that considers
the pair alternatives the players have made in the first two
games. Denote by Xj; the proportion of the players
choosing alternative (k,/). If the number of players is large,
under independence assumption we have approximately X;; =
ﬂ W Then, the additivity condition translates into a
"scaling of transfers" condition: the corresponding transfers in
the combined game should be equal to the sum of transfers in
the two original
In other words, if a game is composed of (independent)

games.

subgames, the transfers should scale at the same rate as the
number of subgames.

As in [20] we exclude the case of zero and treat it separately
(see also [1]). Hence, we introduce the additivity property
condition in the following form.

Condition 7. The restriction Pl 11x(0,1] of the function P
given in (12) is a continuous function such that, for every u €
(0,1], P(w;u) = 0, and for every u;,u,, vy, v, € 0,1],

P(uquy; v1v2)= P(ug; vy) + P(Up; v3).

Observe that if the selected “playground information” of the
offender results in X3, which is exactly equal to the “challenger

5 In particular, one may consult a chapter on a measure of information in
[20] with the emphasis on section 1.2.
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information”, then the natural outcome is “a draw”, i.e.
P(u,u) =0. As in Shannon theory, the consequence of
Condition 7 is the following well known result:

Lemma. If h:{0,1] » R is continuous and such that, for
every u,v € (0,1], h(uv) = h(uw) + h(v), then h(uw) =a-
In(w), where a = —h(e™1).

Recall that the additivity property is very strong. The
conclusion of the lemma follows even with much milder
requirements than continuity on function 4; for example it is
sufficient to require monotonicity or measurability. Although
this would allow us to reduce the requirement on continuity
given in Condition 7, in order to avoid unnecessary
mathematical intricacies we presented Condition 7 in the
above form.

The lemma implies:

Corollary. If a function P:{0,1] X (0,1] » R satisfies
Condition 7, then there exists a € R such that, for every
u,v € (0,1],

Pu;v) =a- ln(g).

Proof. Take u; = u, u, =1, v; = v, v, =1 in Condition
7. We obtain P(u;v) = P(u; 1) + P(1;v). We start with the
function u —» P(u; 1). If we apply Condition 7 with v; =
v, =1,
we obtain

P(ujug; 1) = P(ug; 1) + P(ug; 1).

Hence, u = P(u; 1) satisfies the requirement of the lemma.
We conclude that there exists a € R such that P(u;1) = a-
In(u).

Consider now the function v = P(1; v). If we apply Condition
7 with u; = u, = 1, we obtain

P(1;vyv,) = P(L;v1) + P(1; v,).

Again, using the lemma we conclude that there exists b € R
such that P(1;v) = b - In(v) .

Finally, wusing P(w;u)=0 and P(uu)=Pu;1l)+
P(1;u) = a-Iln(u)+ b -In(u), we obtain b = —a. Hence,
for every u, v € (0, 1], it follows P(u; v) = a-ln (%)

Q.E.D.

Remark. We need to decide on a particular choice of the
normalizing constant a € R from the previous corollary.
Suppose for the moment that the challenger r has selected

Vi =1, for some k. This implies y] = 0 for all [ # k, i.e. the
challenger has put his entire trust on £. If, in this case, “the
playground chosen by the offender” is indeed £, then it is the
challenger who should earn points in this duel. More precisely,
if 0 <u<1,thenP(u,1) <0, and it follows that

a>0. a7
What is then the natural choice for the constant a? This is now
just the matter of normalization. Suppose for the moment that
all offenders have chosen playground k. In that case the
challenger would receive in total® —a - card(R) - P(Xg; 1)
points in the finite case, and rlll_r)g —a(R,) - card(R,) -

P(Xy; 1) points in the infinite case. It is natural to normalize
so that the total is —P(xy; 1) points. Hence we define the
constant a to be

1 . .
a= in the finite case, or
card(R)

a(R n)_

in the infinite case. (18)

card (Rn)

Theorem 1. If the scoring system satisfies Conditions 1-7
and condition (18), then the resulting system is the Bayesian
Truth Serum algorithm, i.e,. U™ satisfies (4).

Proof. Without loss of generality we present the proof for
the finite case. In the infinite case we can use exactly the same

proof under the limit sign 7111_120 %ZseRn .

Using (12) and the Corollary, we obtain

u' =u"(XY) = Yser T (X;Y) - Xser T7° (X;Y) =

-3 i (W) > Y st ()

SER k=

The first sum becomes

ZZxk i (G~ InG) =

SER k

% 1 - 1 .
- Z R [card(R) ; In(x,) = card(R) ; ln(yk)l '

k=1

Since the choice of £ depends on r (not on s), we obtain

card(R) Z In(¥,) =In(xi) -

® In total here means from all the offenders.
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On the other hand,
1

m; In(y;) = In(F) .

It follows that the first sum equals } 7=, x; In (?), i.e. equals
k

the information score in (4). For the second sum we obtain

m m
‘ZZ"S;O“E) _szs;lny_%_
k r| — k —
] card(R) Vi L card(R)  xi

m m

T m T
- (i 2ot = Y
L card(R) ] Xy

This is equal to prediction score in (4).
Q.E.D.

Remark: We would like to emphasize a parallelism
between  "entropy <« information" vs. "BTS <«
information/prediction". This parallelism does not mean that
one can be constructed from the other. At this point we are not
aware of any approach that axiomatically produces BTS from
entropy or vice versa. Perhaps this could be an interesting
problem to consider.

First, observe that entropy can be constructed in a similar
way, as the one described in this paper. Instead of (X;Y) data,
consider only (X). Instead of playing duels both ways,
consider » only as a "challenger" (one can think of it as
r "collecting" information data from other players). Hence

u'(X) = = XserT"° (X).

Suppose that transfers, now only functions of X, satisfy the
conditions analogous to the first six conditions in this paper,
i.e., we end up with a function P(x). Impose the last condition
on P to be the usual additivity condition. Using the same
calculation as in the proof of the previous theorem, we obtain
that

u"(X) = =Xkt Xn(x)

which is the entropy of X . The difference between the input
data, i.e. (X,Y) vs. only (X), is a crucial one. Consider the
BTS with the case where Y “does not reveal anything new”.
More precisely, y; = i for every k and r (this, of course, is
only for academic purpose). It is then easy to check that, with
X, =1 for a particular ko and r, BTS™ = entropy(X) +

[n(xy,). Observe that the correction factor In(xy,) is precisely
the one required to keep the zero sum game property.

Secondly, it is also possible to connect entropy somewhat
more directly with the BTS in the following way. From the six

conditions we obtain the form P(X,Y). Assume that we can
separate the variables; say P(x,y) = H(x) — G(y). Impose a
natural condition that "prediction = actual information" is a
draw, i.e., that P(a, a) = 0. Obviously then H = G. Imposing
any entropy-like condition on the second sum (it could be the
additivity of G, the proper scoring rule, or even the truth-
incentive condition if one wants to work within the Bayesian
framework), it can be shown that G is the log function (up to a
linear transformation). Consequently, as in the proof of the
theorem it follows that wu"(X) = BTS" (up to a linear
transformation).

IV. CONCLUSION

The Bayesian truth serum has been successfully tested on
human subjects and in a variety of settings in terms of
incentive-compatibility for truth-telling. However, there are
situations where telling the truth is not a major issue, but the
ranking system is. Moreover, BTS can also be applied in
contexts where players are machines (for example measuring
information-prediction capability in meteorology, finance,
medicine, etc.). In those cases the implementation would shift
from truth-telling to ranking systems.

Our ranking is based on a new deterministic mechanism
called a “game of duels.” There is a large subfamily of those
mechanisms in which the ranking of players in the binary case
is essentially equivalent to a property we call Gen, which, in
the case of infinitely many players, is equivalent to ranking by
posterior probabilities. This is similar to the information-cost
analysis in which there are many families of functions that
will fulfill most properties of standard entropy (so called “sub-
exponential” functions can be used instead of entropy; see [21]
and the references therein). However, if one wants the
additivity property of the uncertainty measure (see [20] for
details), then one ends with the standard entropy. Similarly, if
one wants additivity for the transfer of points in the game of
duels, one ends up with BTS. In future research, it would be of
interest to study whether additivity can be replaced by
incentive compatibility in a stochastic setting with infinitely
many players without additional assumptions that we impose.
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